
DL_MESO Technical Manual
Release 2.7

M. A. Seaton and W. Smith

Mar 21, 2022

CONTENTS:

1 Acknowledgements 1

2 DL_MESO General Information 3
2.1 Description . 3
2.2 Functionality . 3
2.3 Requirements . 4
2.4 The DL_MESO Directory Structure . 5
2.5 Disclaimer . 5
2.6 Copyright . 5
2.7 Authors . 5
2.8 Suggestions and Bug Reports . 5

3 Introduction to DL_MESO Technical Manual 7
3.1 Purpose . 7
3.2 Structure . 7

4 DL_MESO_LBE Programming Background 9
4.1 Basic concepts . 9
4.2 Parallelisation strategies . 10
4.3 Data storage . 11
4.4 Collisions . 13
4.5 Propagation . 14
4.6 Fluid interactions . 15
4.7 Rheological models . 16
4.8 Boundary conditions . 16
4.9 Reading input files . 17
4.10 Writing output files . 18

5 DL_MESO_LBE Code Description 19
5.1 lbe.hpp . 19
5.2 plbe.hpp . 57
5.3 slbe.hpp . 66
5.4 plbe.cpp . 68
5.5 slbe.cpp . 69
5.6 lbpRUNPAR.cpp and lbpRUNSER.cpp . 69
5.7 plbecustom.cpp, slbecustom.cpp and slbecombine.cpp . 72
5.8 lbpBASIC.cpp . 72
5.9 lbpGET.cpp . 78
5.10 lbpMODEL.cpp . 93
5.11 lbpSUB.cpp . 94
5.12 lbpMPI.cpp . 105
5.13 lbpBGK.cpp . 118
5.14 lbpTRT.cpp . 142
5.15 lbpMRT.cpp . 167
5.16 lbpCLBE.cpp . 195

i

5.17 lbpFORCE.cpp . 211
5.18 lbpRHEOLOGY.cpp . 224
5.19 lbpIO.cpp . 232
5.20 lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp . 237
5.21 lbpIOVTK.cpp . 263
5.22 lbpIOLegacyVTK.cpp . 267
5.23 lbpIOPlot3D.cpp . 271
5.24 lbpBOUND.cpp . 275
5.25 lbpBOUNDZouHe.cpp . 299
5.26 lbpBOUNDInamuro.cpp . 374
5.27 lbpBOUNDRegular.cpp . 438
5.28 lbpBOUNDKinetic.cpp . 478
5.29 lbpUSER.cpp . 517

6 DL_MESO_LBE Input and Output File Formats 519
6.1 lbin.sys . 519
6.2 lbin.spa . 523
6.3 lbin.init . 524
6.4 lbout.dump . 525
6.5 lbout*.vts . 526
6.6 lbout*.vtk . 526
6.7 lbout*.q . 527
6.8 lbout.info . 528
6.9 lbout.ext . 528

7 Advice on developing DL_MESO_LBE 529
7.1 User module: lbpUSER.cpp . 529
7.2 Use of customisable codes . 529
7.3 New collision operators . 530
7.4 New interaction forces . 530
7.5 New rheological models . 530
7.6 New boundary conditions . 531
7.7 New lattice model . 531
7.8 New or modified output file format . 532
7.9 Modifications to input file reading . 532

8 Lattice schemes 535
8.1 D2Q9 . 535
8.2 D3Q15 . 539
8.3 D3Q19 . 542
8.4 D3Q27 . 550

9 DL_MESO_DPD Programming Background 563
9.1 Basic concepts . 563
9.2 Parallelisation strategies . 564
9.3 Data storage . 565
9.4 Communications . 567
9.5 Linked-cell lists for pairwise force calculations . 568
9.6 Force calculations . 569
9.7 Many-body DPD . 570
9.8 Intramolecular bond interactions . 570
9.9 Surface interactions . 571
9.10 Electrostatic interactions . 571
9.11 Force integration and barostats . 572
9.12 System initialisation . 574
9.13 Reading input files . 575
9.14 Writing output files . 576

10 DL_MESO_DPD Code Description 579

ii

10.1 dlmesodpd.F90 . 579
10.2 constants.F90 . 579
10.3 variables.F90 . 585
10.4 numeric_container.F90 . 667
10.5 parse_utils.F90 . 676
10.6 bond_module.F90 . 678
10.7 comms_module.F90 . 684
10.8 config_module.F90 . 714
10.9 domain_module.F90 . 716
10.10 error_module.F90 . 730
10.11 ewald_module.F90 . 731
10.12 field_module.F90 . 737
10.13 manybody_module.F90 . 744
10.14 read_module.F90 . 747
10.15 run_module.F90 . 751
10.16 spme_module.F90 . 756
10.17 start_module.F90 . 761
10.18 statistics_module.F90 . 763
10.19 surface_module.F90 . 763
10.20 write_module.F90 . 766
10.21 integrate_dpd_mdvv.F90 . 773
10.22 integrate_dpd_dpdvv.F90 . 776
10.23 integrate_dpd_shardlow.F90 . 779
10.24 integrate_lowe.F90 . 785
10.25 integrate_peters.F90 . 789
10.26 integrate_stoyanov.F90 . 792

11 DL_MESO_DPD Input and Output Files 797
11.1 CONTROL . 797
11.2 FIELD . 801
11.3 CONFIG . 804
11.4 export . 804
11.5 REVIVE . 805
11.6 OUTPUT . 806
11.7 HISTORY . 807
11.8 CORREL . 809
11.9 Stress_*.d . 810

12 Advice on developing DL_MESO_DPD 813
12.1 New conservative interaction forces and potentials . 813
12.2 New wall forces and potentials . 814
12.3 New bond, angle and dihedral forces and potentials . 815
12.4 Change to many-body DPD calculations . 816
12.5 Changes to electrostatic interaction calculations . 816
12.6 New integration scheme or thermostat . 817
12.7 New or modified output file format . 817
12.8 Modifications to input file reading . 817

13 DL_MESO_DPD Error Messages 819
13.1 Messages related to input files . 819
13.2 Messages for processor-to-processor communication . 827
13.3 Messages for runtime issues . 829
13.4 Messages related to output files . 830
13.5 Messages related to memory usage . 830

14 DL_MESO GUI Code Description 831
14.1 dlmesogui.java . 831
14.2 dlmesoguiEvt.java . 832
14.3 dlwelcome.java . 836

iii

14.4 dllbe.java . 837
14.5 lbesysdim.java . 837
14.6 dldpd.java . 839
14.7 dpdsysdim.java . 839
14.8 setlbeSys.java . 840
14.9 setlbeSysEvt.java . 841
14.10 setFluid.java . 846
14.11 setFluidForce.java . 848
14.12 setFluidInteract.java . 849
14.13 setSolute.java . 851
14.14 setThermal.java . 851
14.15 setlbeSpa.java . 852
14.16 setlbeSpaEvt.java . 853
14.17 setBound.java . 859
14.18 changelbecode.java . 860
14.19 changelbeEvt.java . 860
14.20 compilelbe.java . 861
14.21 compilelbeEvt.java . 861
14.22 rublbe.java . 862
14.23 rublbeEvt.java . 862
14.24 gatherlbe.java . 863
14.25 gatherlbeEvt.java . 863
14.26 plotlbe.java . 864
14.27 plotlbeEvt.java . 864
14.28 setdpdSys.java . 865
14.29 setdpdSysEvt.java . 866
14.30 setThermostat.java . 870
14.31 setBarostat.java . 870
14.32 setElectrostatic.java . 871
14.33 setSurface.java . 873
14.34 setdpdInteract.java . 874
14.35 setdpdInteractEvt.java . 875
14.36 setSpecies.java . 877
14.37 setInteraction.java . 878
14.38 setExternal.java . 880
14.39 changedpdcode.java . 881
14.40 changedpdEvt.java . 881
14.41 compiledpd.java . 882
14.42 compiledpdEvt.java . 882
14.43 rubdpd.java . 883
14.44 rubdpdEvt.java . 883
14.45 gatherdpd.java . 884
14.46 gatherdpdEvt.java . 884
14.47 plotdpd.java . 885
14.48 plotdpdEvt.java . 885
14.49 dlmesoeditor.java . 886
14.50 dlmesoeditEvt.java . 886
14.51 msgPanel.java . 887
14.52 msgPanelEvt.java . 887
14.53 Additional subroutines/functions available in multiple classes 888

15 DL_MESO Utilities 893
15.1 DL_MESO_LBE . 893
15.2 DL_MESO_DPD . 896

A DL_MESO Licence Agreement (Academic Purposes) 911

Bibliography 915

iv

CHAPTER

ONE

ACKNOWLEDGEMENTS

DL_MESO was developed under the auspices of the Engineering and Physical Sciences Research Council (EP-
SRC) for the EPSRC’s Collaborative Computational Project for the Computer Simulation of Condensed Phases
(CCP5).

The members of the CCP5 DL_MESO consortium were:

• David M. Heyes, University of Surrey

• Chris M. Care, Sheffield Hallam University

• Peter V. Coveney, University College London

• David Emerson, UKRI STFC Daresbury Laboratory

• Rob English, North East Wales Institute

• Andrea Ferrante, Novidec

• Ian Halliday, Sheffield Hallam University

• John Harding, University of Sheffield

• Sebastian Reich, Imperial College

• Bill Smith, UKRI STFC Daresbury Laboratory

• Patrick B. Warren, Unilever Port Sunlight

• Julia Yeomans, Oxford University

Many other people have given advice and encouragement in the development of DL_MESO. We gratefully ac-
knowledge the support of the following people: Maurice Leslie, Richard Wain, Alexandre Dupuis, Jonathan Chin,
Michael Dupin, Weiming Liu, John Purton, Ilian Todorov, David Bray, Annalaura Del Regno, Olga Lobanova,
Antoine Schlijper, Andrea Ferrante, Massimo Noro, Ian Stott, Neil George, John Hone, Peter Dowding, Kai Luo
and the UK Consortium for Mesoscale Engineering Sciences (UKCOMES), Luke Mason, Sergi Siso and Terry
Hewitt.

Particular thanks go to Rongshan Qin at The Open University as the original author of the Lattice Boltzmann
Equation source code (DL_MESO_LBE) and the DL_MESO graphical user interface, Jianping Meng at UKRI
STFC Daresbury Laboratory for his contributions to DL_MESO_LBE, Richard Anderson at UKRI STFC Dares-
bury Laboratory, Ard van Bergen at Novidec and Bill Swope at IBM for their contributions to the Dissipative
Particle Dynamics source code (DL_MESO_DPD), and Michael Johnston and Leopold Grinberg at IBM for their
extensive optimisation work on both codes.

1

DL_MESO Technical Manual, Release 2.7

2 Chapter 1. Acknowledgements

CHAPTER

TWO

DL_MESO GENERAL INFORMATION

2.1 Description

DL_MESO is a general purpose mesoscopic simulation package developed at Daresbury Laboratory by Dr
Michael Seaton under the auspices of the Engineering and Physical Sciences Research Council (EPSRC) for
the EPSRC’s Collaborative Computational Project for the Computer Simulation of Condensed Phases (CCP5) and
the High-End Computing UK Consortium on Mesoscale Engineering Sciences (UKCOMES). The package is the
property of the UKRI Science and Technology Facilities Council (STFC).

DL_MESO is issued free under licence to academic institutions pursuing scientific research of a non-commercial
nature. All recipients of the code must first agree to the terms and conditions of the licence and register with us
to be kept aware of new developments and discovered bugs. Commercial organisations interested in acquiring the
package should approach the Scientific Computing Department, UKRI STFC Daresbury Laboratory in the first
instance. Daresbury Laboratory is the sole centre for distribution of the package. Under no account is it to be
redistributed to third parties without consent of the owners.

DL_MESO contains two mesoscale simulation methods:

• Lattice Boltzmann Equation (included with version 1.0 and later)

• Dissipative Particle Dynamics (included with version 2.0 and later)

2.2 Functionality

The following is a list of the features that DL_MESO currently supports. Users are reminded that we are interested
in hearing what other features could be usefully incorporated. We obviously have ideas of our own and CCP5 and
UKCOMES strongly influence developments, but other input would be welcome nevertheless.

2.2.1 Lattice Boltzmann Equation

DL_MESO_LBE can simulate fluid (lattice-gas) systems using the Lattice Boltzmann Equation (LBE). The fol-
lowing properties and features are currently available:

• Multiple fluid components, solutes and coupled heat transfers [154]

• Collisions: Bhatnagar-Gross-Krook (BGK) single-relaxation-time [10], Two-Relaxation-Time (TRT) [42],
Multiple-Relaxation-Time (MRT) [73][159][134] or cascaded LBE (CLBE) [35][33]

• Forcing methods: Martys/Chen [91], Equal Difference Method (EDM) [69], Guo [49], He [54]

• Rheological models: Newtonian, power law, Bingham plastic [11], Herschel-Bulkley plastic [55], Casson
[19], Carreau-Yasuda [17][152]

• Boundary conditions: Periodic, bounce-back (including stationary objects), constant pressure/velocity at
planar surfaces [158][63][74][5]

• Mesoscale interactions: Shan-Chen pseudopotential method [118][119], Lishchuk continuum-based method
[81], Swift free-energy method [136][135]

3

DL_MESO Technical Manual, Release 2.7

• Initial conditions can either be determined by DL_MESO_LBE or specified by the user

2.2.2 Dissipative Particle Dynamics

DL_MESO_DPD can model DPD particles (‘beads’) with soft or hard potential fields, along with thermostatting
dissipative and random forces or a similarly pairwise thermostatting scheme. The following properties and features
are currently available:

• Choice of integrators/thermostats: standard Velocity Verlet, DPD Velocity Verlet [40], Lowe-Andersen [83],
Peters [100] and Stoyanov-Groot [131]

• Constant volume (NVT) or constant pressure (NPT) simulations with Berendsen [8] or Langevin [64]
barostats

• User selection of interaction lengths, conservative and dissipative force parameters for each species and
between unlike species

• Bond stretching, angles and dihedrals between beads in user-defined ‘molecules’

• Potentials: standard Groot-Warren DPD [46], density-dependent (many-body) DPD [97][140], Lennard-
Jones [66], Weeks-Chandler-Andersen [147]

• Electrostatic potentials between charged beads using modified Ewald summations [44][146], optionally
using Smooth Particle Mesh Ewald [31]

• Boundaries: Periodic, hard reflecting walls with optional short-range repulsions (DPD [105] or Weeks-
Chandler-Andersen), frozen particle walls, Lees-Edwards periodic shearing boundaries [76]

• Initial conditions can either be determined by DL_MESO_DPD or specified by the user

2.3 Requirements

2.3.1 Software requirements

• Standard C++ Compiler for LBE source code, DL_MESO_LBE

• Standard Fortran (2003 or later) Compiler for DPD source code, DL_MESO_DPD

• GNU Make (included in standard Unix/Linux distributions; can be installed for Windows)

• Message Passing Interface version 2 (MPI-2) or higher (if parallel execution required)

• JAVA 2 Version 1.4 or higher (if GUI is to be used)

Versions of the codes exist that use Open Multi-Processing (OpenMP) to divide up calculations on each processor
core among threads, which require compilers that can link in OpenMP libraries: the majority of recent standard
C++ and Fortran compilers are able to do this. For Smooth Particle Mesh Ewald calculations in the DPD code,
either the FFTW 3.x or IBM ESSL Fast Fourier Transform (FFT) libraries may be used in place of the internal
FFT solver.

2.3.2 System requirements

DL_MESO is designed to work in both serial and parallel running; it can be run on standalone machines, clusters
and supercomputers. The code has been tested on Solaris, Windows XP/7, IBM p690+ HPCx, PowerPC 450 Blue
Gene/P, PowerPC A2 Blue Gene/Q, Cray XT4/XT6 HECToR, Cray XC30 ARCHER and Intel Xeon E5-2670
(Sandy Bridge) machines.

4 Chapter 2. DL_MESO General Information

DL_MESO Technical Manual, Release 2.7

2.4 The DL_MESO Directory Structure

The supplied version of DL_MESO is a zip file dl_meso_2.x, where 𝑥 is a generation number: this unpacks as a
directory dl_meso Beneath the top level of this directory are a number of subdirectories:

• LBE - containing the LBE source code

• DPD - containing the DPD source code

• JAVA - containing the GUI source code

• MAN - containing the DL_MESO user manual

• DEMO - containing test cases for DL_MESO

• WORK - an example ‘working directory’

2.5 Disclaimer

Neither UKRI STFC, CCP5 nor any of the authors of the DL_MESO package guarantee that the package is free
from error. Neither do they accept responsibility for any loss or damage that results from its use.

2.6 Copyright

© UKRI STFC Daresbury Laboratory 2022

2.7 Authors

Dr Michael Seaton and Prof. William Smith
Scientific Computing Department
UKRI STFC Daresbury Laboratory
Sci-Tech Daresbury
Warrington
WA4 4AD
United Kingdom

2.8 Suggestions and Bug Reports

We encourage users to send suggestions for improvements and new features for DL_MESO, including bug reports
and subroutines, as well as any additional test cases that demonstrate its features. All of these should be sent to
michael.seaton@stfc.ac.uk

2.4. The DL_MESO Directory Structure 5

DL_MESO Technical Manual, Release 2.7

6 Chapter 2. DL_MESO General Information

CHAPTER

THREE

INTRODUCTION TO DL_MESO TECHNICAL MANUAL

This chapter gives an overview of the DL_MESO Technical Manual, including its purpose and how it is structured.

3.1 Purpose

This Technical Manual is intended as a guide on how DL_MESO has been written and structured, and how its
codes can be modified. It is intended to be used by code developers and advanced users (e.g. user-developers) who
wish to augment DL_MESO_LBE or DL_MESO_DPD to include new functionalities or modify existing ones,
primarily to carry out or disseminate new scientific research.

This manual is intended to be complementary to the DL_MESO User Manual. The User Manual is intended to help
users get their Lattice Boltzmann Equation (LBE) and Dissipative Particle Dynamics (DPD) simulations running
and to set out the features available in each code (including their theoretical background), while the Technical
Manual is focussed more on how the codes implement the algorithms and features. Some details on algorithmic
implementations are included in the User Manual primarily to enable users to get a simulation running, particularly
on larger computing platforms, while this manual includes further details to enable user-developers to implement
new features.

3.2 Structure

The manual is divided broadly into four sections:

• DL_MESO_LBE (LBE code written in C++)

• DL_MESO_DPD (DPD code written in Fortran)

• DL_MESO GUI (written in Java)

• DL_MESO Utilities

The DL_MESO_LBE and DL_MESO_DPD sections both include chapters providing:

• Programming background

• Detailed code description

• Input and output file formats

• Advice on how to develop the code

• Additional information for the code

The programming background includes the algorithm in use and the basic concepts for coding it up, the strategies
used to parallelise calculations, what is stored in memory during a calculation (and how it is laid out), details on
how key parts of the algorithm (including various functionalities) have been implemented, and how files are read
into the code and simulation data are written.

The detailed code description for each code goes through the various modules, listing the functions, subroutines
and any variables contained inside them, which are later described in more detail, including how functions and

7

DL_MESO Technical Manual, Release 2.7

subroutines are called in the code and the input and/or output variables. These descriptions are based on automated
documentation for DL_MESO_LBE and DL_MESO_DPD created using Doxygen, which has been converted into
reStructuredText (reST) for Sphinx to generate the Technical Manual.

The chapters on input and output file formats are augmented forms of the equivalent chapters in the DL_MESO
User Manual, which go into further detail about the file formats required for user-developers to create utilities or
scripts to read and/or manipulate them. While some details about the available options for input files are included
in these chapters, the user-developer is directed to the User Manual for complete lists of e.g. keywords.

The advice chapters provide some contextual information on how the codes can be modified to include new
functionalities or modify currently-available ones. These include suggestions on where changes need to be made
or where new code can be added, as well as which pre-existing subroutines and functions can be used as ‘templates’
for writing new code.

The additional information chapter includes information that may be relevant for the user-developer for im-
plementing their changes, which are modified versions of appendices in the DL_MESO User Manual. For
DL_MESO_LBE, this includes the lattice schemes used in the codes, including how each lattice link is identi-
fied and consequently how e.g. Multiple-Relaxation-Time (MRT) collision operator matrices are defined. For
DL_MESO_DPD, a list of available error and warning messages is provided.

The DL_MESO GUI section consists of a single chapter containing a detailed code description for the Graphi-
cal User Interface (GUI), primarily to help user-developers make minor changes to the GUI to incorporate their
changes made in DL_MESO_LBE or DL_MESO_DPD. The DL_MESO Utilities chapter consists of a single
chapter listing the available utilities for preparing DL_MESO_LBE and DL_MESO_DPD simulations and pro-
cessing their results: while these are not as rigorously described as the main codes and GUI, sufficient information
about the utilities (and file formats) has been provided to enable user-developers to create their own.

8 Chapter 3. Introduction to DL_MESO Technical Manual

CHAPTER

FOUR

DL_MESO_LBE PROGRAMMING BACKGROUND

4.1 Basic concepts

DL_MESO_LBE solves the Lattice Boltzmann Equation:

𝑓𝑖 (𝑥⃗+ 𝑒𝑖∆𝑡, 𝑡+ ∆𝑡) − 𝑓𝑖 (𝑥⃗, 𝑡) = 𝐶𝑖 + 𝐹𝑖∆𝑡 (4.1)

where 𝑓𝑖 (𝑥⃗, 𝑡) is a distribution function describing the probability of finding particles at time 𝑡 and position 𝑥⃗ with
a particular momentum moving them along a lattice link vector 𝑒𝑖 to neighbouring grid points in a time period of
∆𝑡. The available lattice link vectors, including the number of Cartesian dimensions they cover, define several of
the parameters used in LBE calculations and form a lattice scheme that is often described by D𝑛Q𝑚, where 𝑛 is
the number of dimensions (normally 2 or 3) and 𝑚 is the total number of available link vectors, including any rest
vector with zero distance1.

The macroscopic density of the fluid at a given position and time is equal to the sum of the associated distribution
functions over all lattice links:

𝜌 (𝑥⃗, 𝑡) =
∑︁
𝑖

𝑓𝑖,

while the fluid momentum is given as the first moment of distribution functions (summed product of distribution
functions and link vectors):

𝑝 (𝑥⃗, 𝑡) = 𝜌 (𝑥⃗, 𝑡) 𝑢⃗ (𝑥⃗, 𝑡) =
∑︁
𝑖

𝑓𝑖𝑒𝑖.

The governing equation (4.1) can be divided into separate processes for collisions:

𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
= 𝑓𝑖 (𝑥⃗, 𝑡) + 𝐶𝑖 + 𝐹𝑖∆𝑡 (4.2)

where a collision operator 𝐶𝑖 and forcing term to apply forces to the fluid 𝐹𝑖 can be applied, resulting in post-
collisional distribution functions at time 𝑡+, and propagation:

𝑓𝑖 (𝑥⃗+ 𝑒𝑖∆𝑡, 𝑡+ ∆𝑡) = 𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
(4.3)

which moves collided distribution functions along lattice links to neighbouring grid points. It is worth noting
that (excluding calculations of forces) the collision process operates entirely locally to each grid point, while
propagation of distribution functions only extends to nearest neighbouring grid points.

The collision process can take many different forms, although the simplest is the Bhatnagar-Gross-Krook (BGK)
approximation [10]:

𝐶𝑖 = −∆𝑡

𝜏𝑓
[𝑓𝑖 (𝑥⃗, 𝑡) − 𝑓𝑒𝑞𝑖 (𝜌(𝑥⃗, 𝑡), 𝑢⃗(𝑥⃗, 𝑡)] , (4.4)

where 𝜏𝑓 is a single relaxation time that can be related to the kinematic viscosity of the fluid, and 𝑓𝑒𝑞𝑖 (𝜌, 𝑢⃗)
is the local equilibrium distribution function for the given fluid density and velocity. More complex collision

1 The lattice schemes currently available in DL_MESO_LBE are D2Q9, D3Q15, D3Q19 and D3Q27. Most but not all features are available
for each lattice scheme: the main exceptions are no Swift free-energy interactions available for D3Q27 and no cascaded LBE collisions are
available for D3Q15.

9

append:lattice

DL_MESO Technical Manual, Release 2.7

operators are available with additional relaxation times or frequencies to improve the numerical stability of LBE
calculations and/or to control additional hydrodynamic properties, while it is also possible to apply non-constant
viscosity rheological models with local values of 𝜏𝑓 for each grid point calculated from shear rates (velocity
gradients).

The forcing term 𝐹𝑖 can be used to apply forces to the fluid. As well as constant body forces (e.g. gravity), these
can include interaction forces calculated at each grid point related to gradients of values such as fluid density: the
gradients can be calculated from values in surrounding grid points by using stencils.

Propagation is achieved by moving the post-collisional distribution functions along the lattice links to neighbour-
ing grid points. No further calculation is required for this step, although care is needed to ensure the distribution
functions reach their destination grid points without being overwritten and remain with the same lattice links.

The LBE method can be extended to multiple fluid systems by defining distribution functions for individual fluids
existing on the same grid: interaction forces between fluids can be calculated and (depending on the interaction
scheme) the distribution functions for individual fluids can be collided separately and propagated. A similar
approach can be taken to include diffusion of solutes in a fluid and/or heat transfer: the additional distribution
functions represent solute concentration or temperature respectively, using the fluid velocity to calculate local
equilibrium distribution functions and the relaxation time (𝜏𝑐, 𝜏𝑡) to control the mass or thermal diffusivity.

Boundary conditions are applied by devising distribution functions going back into the bulk system for lattice
points representing a boundary. The simplest class of boundary condition include bounce back - reflection of
distribution functions - that can be applied to any lattice point to provide a no-slip (zero velocity) condition.
Outflow boundary conditions use copies of distribution functions in nearby grid poiints, while other schemes exist
to apply constant values of fluid velocity, densities, solute concentrations and temperature by calculating ‘missing’
distribution functions based on the other available values. Each lattice point can be assigned a number to specify
the type of boundary condition it includes and the direction in which it is applied.

4.2 Parallelisation strategies

DL_MESO_LBE consists of two methods to divide computational work among the available processor cores and
threads:

• Equipartition domain decomposition

• Multithreading of main calculation loops

Domain decomposition involves the division of computational work among the available processor cores, with
each core carrying out a section of the calculation with as little input from other cores as possible. This strategy
is particularly effective for LBE calculations, since the application of collisions at each grid point is generally the
most computationally intensive part and does not require input from other grid points. As such, each processor
core is assigned its own section of the entire lattice - described as a subdomain - and applies collisions solely to
its own grid points. To ensure each processor core carries out similar amounts of computational work, the lattice
is divided as equally as possible among the available cores - fArrangeProcessors() - with each core’s subdomain
selected based on its number: fDefineDomain(). This form of equipartition domain decomposition works well,
particularly since the number of grid points held by each processor core can remain constant throughout the
simulation.

While propagation and interaction force calculations do require information originating from surrounding grid
points, including those found on neighbouring processor cores, these can be achieved by defining a boundary halo
of additional grid points around the subdomain. The information for the boundary halo - distribution functions,
interaction forces etc. - can be shared between pairs of processor cores using MPI (Message Passing Interface)
communications. In the case of DL_MESO_LBE, these are normally carried out after defining MPI derived data
types to specify vectors of data being sent and received by each core - fDefineMessage()2 - and determining which
cores are nearest neighbours in each direction: fDefineNeighbours(). The MPI communications themselves are
carried out using a series of non-blocked send/receive calls applied sequentially in each Cartesian direction (±𝑥,
±𝑦 and, if needed, ±𝑧) to ensure edges and corners are also dealt with correctly. As well as dealing with internal

2 There is a compile-time option available in DL_MESO_LBE, DPackbuf, to alternatively pack the data being communicated into an
array, communicate (send/receive) the data and then unpack the data into the appropriate places in memory. This approach can exploit OpenMP
multithreading to speed up packing and unpacking the arrays. There is also another compile-time option, DMPIold, that makes use of older
names for MPI routines (subsequently changed from MPI-2 onwards) to create derived data types.

10 Chapter 4. DL_MESO_LBE Programming Background

DL_MESO Technical Manual, Release 2.7

boundaries between subdomains, these communications to boundary halos also enable periodic boundaries across
opposite sides of the entire simulation grid.

For each simulation time step, the distribution functions 𝑓𝑖 (𝑥⃗, 𝑡) - fNonBlockCommunication() - need to be com-
municated to boundary halos at the start to enable properties for interaction forces (e.g. fluid densities) to be
calculated. Interaction models that require force calculations based on gradients of phase indices or densities will
require these properties to be communicated - fIndexNonBlockCommunication() - before the interaction forces
themselves are communicated: fForceNonBlockCommunication(). These communications and local calculations
of body forces provide all the information needed to apply collisions to all grid points, including those in the
boundary halo, and no further communications will then be needed for the propagation stage. The boundary con-
dition values for grid points in the boundary halo can also be communicated - fBoundNonBlockCommunication()
- although this is generally only required once at the start while setting up the simulation.

Compared to the serial version, the parallel version of DL_MESO_LBE includes an additional module -
lbpMPI.cpp - which includes functions and subroutines to avoid using MPI calls directly in the main body of
the code. There are separate main source code files for the two versions of DL_MESO_LBE - plbe.cpp for
parallel running, slbe.cpp for serial running - as well as parallel and serial versions of modules with the main
calculation loops - lbpRUNPAR.cpp and lbpRUNSER.cpp - and subroutines to aggregate data for file writing:
lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp.

When running DL_MESO_LBE in serial (i.e. on a single processor core), the boundary halo is not essential as the
distribution functions and other data values for all lattice points are already available. By default, DL_MESO_LBE
will not include a boundary halo for serial running and will instead use modulo functions to find neighbouring
grid points that cross periodic boundaries. A customisable version of the serial DL_MESO_LBE code - slbecom-
bine.cpp - enables the use of the boundary halo when running on a single processor core with additional subrou-
tines - fsPeriodic(), fsIndexPeriodic(), fsForcePeriodic() and fsBoundPeriodic() - to copy the relevant values into
the additional grid points.

The main sections for each timestep - collisions, propagation and calculation of interaction forces - can additionally
be sped up by dividing loop iterations among available threads. This has been enabled in DL_MESO_LBE by
adding OpenMP directives to the main calculation loops, instructing the available threads to divide up the lattice
points among themselves. A single loop is used wherever possible (particularly for collisions and at least part of
propagations) over all available grid points to make division between threads as simple as possible. In the cases
where nested loops are required (e.g. to go through all grid points apart from those in the boundary halo), an
OpenMP directive to collapse these loops for division among threads is used. This form of optimisation can be
used with both the parallel and serial versions of DL_MESO_LBE: in the case of the parallel version, OpenMP
multithreading can be used alongside domain decomposition with MPI to speed up the computational performance
of each individual core. No alternative source code files are needed as the OpenMP directives do not require
changes to how the fundamental calculations in LBE are performed and are ignored if the compile-time option
(normally a compiler flag such as -fopenmp) is not invoked.

4.3 Data storage

DL_MESO_LBE uses one-dimensional arrays to store its main calculational properties for individual grid points:

• lbf - Distribution functions 𝑓𝑖

• lbphi - Boundary condition numbers

• lbneigh - Indicators of boundaries in neighbouring grid points

• lbboundnorm - Surface normals for solid-fluid interfacial forces

• lbft - Interaction values (pseudopotentials for Shan-Chen interactions, interfacial normals for Lishchuk in-
teractions, density and concentration gradients for Swift interactions)

• lbinterforce - Interaction forces acting on fluids due to fluid/phase interfaces

• lbheatforce - Convective heat forces acting on fluids (calculated using Boussinesq approximation)

• lbomega - Fluid relaxation frequencies

4.3. Data storage 11

DL_MESO Technical Manual, Release 2.7

Each array is either the size of the number of available grid points, lbdm.touter, or an integer multiple of
this number. This total number of grid points for a processor’s subdomain is the product of lbdm.xouter
(𝑁𝑥), lbdm.youter (𝑁𝑦) and lbdm.zouter (𝑁𝑧), which include any boundary halo points. The coordinate
number of an individual grid point given as Cartesian coordinates (𝑥, 𝑦, 𝑧) (where 0 ≤ 𝑥 < 𝑁𝑥, 0 ≤ 𝑦 < 𝑁𝑦 and
0 ≤ 𝑧 < 𝑁𝑧) can be calculated3 as:

𝑙 = (𝑥𝑁𝑦 + 𝑦)𝑁𝑧 + 𝑧

with 𝑧 always equal to zero and 𝑁𝑧 = 1 for two-dimensional simulations. This means the 𝑧-coordinate changes
most quickly with grid point location, followed by the 𝑦-coordinate and then the 𝑥-coordinate.

Multiplying 𝑙 by the number of values per grid point for the given array provides the starting location for data at
that point.

The distribution functions 𝑓𝑖 in lbf are stored in blocks ordered by link vector 𝑖, with the distribution functions for
each fluid, solute and temperature field stored in that order. If a phase field 𝜑 is in use4, this value is placed at the
end. For instance, if two fluids (numbered 0 and 1), a temperature field and a phase field are being modelled on a
D2Q9 lattice (with 0 ≤ 𝑖 < 9), the distribution functions at each grid point would be stored as follows:

𝑓00 , 𝑓
1
0 , ℎ0, 𝑓

0
1 , 𝑓

1
1 , ℎ1, 𝑓

0
2 , 𝑓

1
2 , ℎ2, 𝑓

0
3 , 𝑓

1
3 , ℎ3, 𝑓

0
4 , 𝑓

1
4 , ℎ4, 𝑓

0
5 , 𝑓

1
5 , ℎ5, 𝑓

0
6 , 𝑓

1
6 , ℎ6, 𝑓

0
7 , 𝑓

1
7 , ℎ7, 𝑓

0
8 , 𝑓

1
8 , ℎ8, 𝜑

The total number of distribution functions per grid point is given as lbsitelength, equal to the product of the number
of lattice links per grid point lbsy.nq (𝑁𝑞) and the sum of the numbers of fluids (lbsy.nf, 𝑁𝑓), solutes
(lbsy.nc, 𝑁𝑐) and temperature fields (lbsy.nt, 𝑁𝑡), plus the number of phase fields (lbsy.pf, 𝑁𝑝). The
above choice of ordering in memory has been made for better exploitation of cache when applying propagation,
particularly when multiple fluids, solutes and temperature fields are in use, while a subsequent link’s distribution
function for a given fluid/solute/temperature field can be found by increasing the array index by 𝑁𝑓 + 𝑁𝑐 + 𝑁𝑡.
Since macroscopic properties - e.g. velocity, fluid density - can be calculated directly from distribution functions
immediately prior to collisions or when writing output files, no additional arrays are required to store values of
these properties.

The boundary condition numbers in lbphi are stored in an integer array: only one integer is required per grid
point, the values of which are given in the input file lbin.spa. Similarly, the indicators of boundary conditions in
neighbouring grid points in lbneigh also only require one integer per grid point, although these are calculated in
the subroutine fNeighbourBoundary() based on a search of values of lbphi and used to describe how derivatives of
properties should be calculated for each lattice point.

The array with fluid relaxation frequencies lbomega includes blocks with values of 𝜔𝑓 = 1
𝜏𝑓

for all fluids at
each grid point. The convective heat force array lbheatforce includes the Boussinesq approximation (temperature-
dependent) forces calculated for all fluids at each grid point, with the 𝑥-, 𝑦- and 𝑧-components of force for each
fluid together in memory, e.g. for three fluids at a given grid point:

𝐹 0
𝑥 , 𝐹

0
𝑦 , 𝐹

0
𝑧 , 𝐹

1
𝑥 , 𝐹

1
𝑦 , 𝐹

1
𝑧 , 𝐹

2
𝑥 , 𝐹

2
𝑦 , 𝐹

2
𝑧

The size of the interaction force array lbinterforce depends upon the fluid interaction model in use. It can be
identical to the size of 𝑙𝑏ℎ𝑒𝑎𝑡𝑓𝑜𝑟𝑐𝑒 (with each grid point requiring three values per fluid) when Shan-Chen pseu-
dopotential interactions are in use, as forces for individual fluids are calculated. If Lishchuk continuum-based
interactions are selected, however, only a single force is needed per grid point, which is applied to all fluids
simultaneously during collisions.

Similarly, the size of the array lbft will depend on the fluid interaction model, with each grid point storing:

• 𝑁𝑓 values for Shan-Chen interactions to store pseudopotentials for each fluid;

• 𝑁𝑓 (𝑁𝑓−1)
2 values for Lishchuk interactions to store interfacial normals for each pair of fluids (not including

each fluid with itself); or

• 4𝑁𝑓 values for Swift interactions to store first-order and second-order derivatives of densities and concen-
trations (three Cartesian coordinates for first-order, a single value for second-order).

3 This formula is used by the function fGetNodePosi(), while the fGetCoord() subroutine can be used to obtain the inverse (Cartesian
coordinates) by using integer division and modulo functions.

4 No available interaction model in DL_MESO_LBE currently makes use of it: it has been provided as an option for further functionality
expansion, but users currently should specify zero for the number of phase fields in the input file lbin.sys.

12 Chapter 4. DL_MESO_LBE Programming Background

DL_MESO Technical Manual, Release 2.7

A single triple of Cartesian coordinates for surface normals are stored in the array 𝑙𝑏𝑏𝑜𝑢𝑛𝑑𝑛𝑜𝑟𝑚 for each grid
point, which are used to calculate solid-fluid interactions for the Lishchuk continuum-based algorithm.

4.4 Collisions

Four general forms of particle collisions are available in DL_MESO_LBE:

• Bhatnagar-Gross-Krook (BGK) single relaxation time

• Two-Relaxation-Time (TRT)

• Multiple Relaxation Time (MRT) based on raw moments of distribution functions

• Cascaded Lattice Boltzmann Equation (CLBE) based on central moments of distribution functions

Each of these are available in modules - lbpBGK.cpp, lbpTRT.cpp, lbpMRT.cpp and lbpCLBE.cpp - which include
the subroutines required to carry out collisions at all available grid points for each processor core. There are two
main classes of subroutines in each module:

• Subroutines with loops over all grid points, e.g. fCollisionBGK()

• Subroutines to carry out collisions for all fluids, solutes or temperature fields at a single grid point, e.g.
fSiteFluidCollisionBGK()

with the former calling the latter for each lattice site that contains fluid5, sending in calculated values of (variable)
fluid densities and velocities, as well as a pointer indicating the first distribution function value for the required lat-
tice site. The site collision subroutines include calls to other subroutines to calculate values required for collisions,
e.g. local equilibrium distribution functions 𝑓𝑒𝑞𝑖 in fGetEquilibriumF(), forcing terms in fGetMomentForceGuo()
etc., apply (4.2) and overwrite the initial distribution functions 𝑓𝑖 (𝑥⃗, 𝑡) in the lbf array with post-collisional values,
𝑓𝑖 (𝑥⃗, 𝑡+).

There are several variations for each collision scheme based on whether or not fluids are compressible, the type of
fluid interactions in use and the chosen method of applying forces to fluids.

The site subroutines include variants for compressible and incompressible fluids, which use different local equi-
librium distribution functions 𝑓𝑒𝑞𝑖 and (in the case of incompressible fluids) can use both constant and variable
fluid densities. The subroutines with loops generally include two loops for compressible and incompressible flu-
ids apart from Swift free-energy based interactions and CLBE collisions, both of which can only be applied to
compressible fluids.

Shan-Chen interactions between fluids require a slightly different definition for the overall velocity of the fluids
that takes their relaxation times into account: this is dealt with in the loop subroutines by using the fGetSpeed-
ShanChenAllMassSite() and fGetSpeedShanChenIncomAllMassSite() subroutines to calculate fluid densities and
velocity instead of the usual fGetSpeedAllMassSite() and fGetSpeedIncomAllMassSite() subroutines.

The collisions for Lishchuk interactions are applied to all fluids simultaneously by calculating ‘achromatic’ distri-
bution functions, i.e.

𝑓𝑖 =
∑︁
𝑎

𝑓𝑎𝑖 ,

applying the collision and then re-segregating the distribution functions along interfacial normals between pairs of
fluids. The process of carrying out achromatic collisions and segregation are available in site collision subroutines,
e.g. fSiteFluidCollisionBGKLishchuk(), that can take interfacial normals between pairs of fluids as an additional
input sent from loop subroutines, e.g. fCollisionBGKLishchuk(). An alternative to applying interaction forces
between fluids is also available in the form of forcing terms with interfacial normals, which are enacting in both
site and loop subroutines such as fSiteFluidCollisionBGKLishchukLocal() and fCollisionBGKLishchukLocal() re-
spectively.

5 Boundary points for constant fluid velocity/density, solute concentration and temperature conditions must be included in collisions for
the boundary schemes currently available in DL_MESO_LBE and are referred to as ‘wet nodes’ due to their inclusion of fluid. Blank and
bounce back boundary sites do not need to be collided as their distribution functions are either set to zero or given post-collisional values from
neighbouring grid points.

4.4. Collisions 13

DL_MESO Technical Manual, Release 2.7

Collisions for Swift interactions can be applied either to one or two fluid systems: in the case of two fluid systems,
the distribution functions for total fluid density and concentration (related to difference in densities between fluids)
are both collided. For both one- and two-fluid systems, gradients of density (and concentration) need to be passed
into the site collision subroutines, e.g. fSiteFluidCollisionBGKSwiftOneFluid(), to make use of more complex
local equilibrium distribution functions that include these gradients for interfacial tension terms.

Each type of collision can incorporate forces acting on the fluids using one of four different forcing schemes:

• Martys-Chen: adjustment of velocity used in local equilibrium distribution functions 𝑓𝑒𝑞𝑖 for collisions to
include forces

• Equal Difference Method (EDM): additional forcing term 𝐹𝑖 based on differences in 𝑓𝑒𝑞𝑖 with and without
the effect of forces on fluid velocity

• Guo method: adjusted fluid velocity in 𝑓𝑒𝑞𝑖 and additional forcing term 𝐹𝑖 designed to give correct fluid
behaviour

• He method: adjusted fluid velocity in 𝑓𝑒𝑞𝑖 and additional forcing term 𝐹𝑖 determined from derivative of
Maxwell-Boltzman local equilibrium distribution functions

and each of these is applied in both site and loop subroutines: the default forcing scheme is Martys-Chen.

4.5 Propagation

The propagation subroutines in DL_MESO_LBE enact (4.3), moving post-collisional distribution functions
𝑓𝑖 (𝑥⃗, 𝑡+) along the relevant lattice links 𝑒𝑖 to neighbouring grid points in preparation for the next simulation
timestep. The distribution functions in the array lbf for all fluids, solutes and temperature fields are moved: any
phase field values remain in place as these are not specific to particular lattice links.

The simplest form of propagation is enacted in the subroutine fPropagationTwoLattice(). In this instance, the
distribution functions in lbf for each fluid/solute/temperature field and link vector are copied into a temporary
array equal in size to at least the total number of grid points in the subdomain6, each value from position 𝑥⃗ being
placed at the intended destination grid point 𝑥⃗+ 𝑒𝑖∆𝑡. The values in the temporary array are then copied back to
lbf in the appropriate places. While this method is clear, easy to understand and can be applied to the lattice points
in any order, its use of two loops over all grid points per distribution function to move them and the copying of
large numbers of values between arrays requires a lot of memory accesses and data storage. While the subroutine
remains in DL_MESO_LBE as its original implementation of propagation, it is not used by default.

The other two propagation subroutines are based on a swap algorithm [93]. This approach carries out two sets
of swaps of distribution functions: the first set of swaps is applied to distribution functions for each lattice point
between conjugate lattice links, i.e. 𝑓𝑖 (𝑥⃗) is swapped for 𝑓𝑗 (𝑥⃗) when 𝑒𝑗 = −𝑒𝑖, while the second set of swaps is
a reversal but with the neighbouring point, i.e. 𝑓𝑗 (𝑥⃗) is swapped with 𝑓𝑖 (𝑥⃗+ 𝑒𝑖). To make it easier to carry out
swaps between conjugal lattice links, the links for each lattice scheme are arranged in memory so that 𝑒𝑗 = −𝑒𝑖
for 1 ≤ 𝑖 ≤ 𝑁𝑞−1

2 (assuming link zero is a ‘rest’ link, 𝑒0 = 0⃗), where 𝑗 = 𝑖+
𝑁𝑞−1

2 .

The two sets of swaps can either be carried out in two separate loops as in fPropagationSwap() or combined in a
single loop over all grid points (including the boundary halo) as in fPropagationCombinedSwap(). The combined
simulataneous swaps can only work if a boundary halo of grid points is included and the lattice links are ordered
so the first half (1 ≤ 𝑖 ≤ 𝑁𝑞−1

2) are all directed to lattice points that have previously been through at least
the first swap stage. As such, the combined swap implementation is the default for parallel running that uses a
boundary halo but no OpenMP multithreading (as this can break the required sequence of swaps), while the other
implementations of DL_MESO_LBE make use of the two separate loops in fPropagationSwap(), which can have
OpenMP applied to each loop in turn to speed them up by assigning each iteration to different threads.

6 The subroutine reuses the lbft array, overwriting any pseudopotentials, interfacial normals or density/concentration gradients that are now
no longer needed after collisions have taken place.

14 Chapter 4. DL_MESO_LBE Programming Background

append:lattice

DL_MESO Technical Manual, Release 2.7

4.6 Fluid interactions

The module lbpFORCE.cpp includes all of the subroutines required for DL_MESO_LBE to calculate interaction
forces and other related properties among the fluids in the simulation. These forces and other properties typically
rely upon gradient calculations of properties related to fluid densities in some way:

• Pseudopotentials for Shan-Chen interactions

• Phase indices for Lishchuk interactions, used to calculate interfacial normals

• Fluid density (and concentration) for Swift interactions

While the gradient calculations for each interaction method differ, they each rely upon using values of the property
in surrounding grid points. As such, DL_MESO_LBE identifies grid points on the very edge of the subdomain
in the array lbouter (the number of these points given by lboutersize), which require modulo functions to find
neighbouring lattice points across periodic boundaries. These points are located within layers of thickness lbdm.
owidx, lbdm.owidy and lbdm.owidz, which are set to either the boundary halo size lbdm.bwid or 1
(whichever is larger) for all active Cartesian coordinates (i.e. lbdm.owidz is set to 0 for two-dimensional simu-
lations), while the array lbouter stores both the one-dimensional coordinate number 𝑙 and the Cartesian coordinates
(𝑖, 𝑗, 𝑘) for each point. As such, two sets of subroutines exist to calculate gradients at a given grid point: one type
works on grid points near the edge of the subdomain and uses modulo functions to find neighbouring points across
periodic boundaries, while the other works on grid points away from the subdomain edge and does not require
modulo functions to find neighbours.

As with collisions, the module includes a number of subroutines with loops through the available grid points
- excluding any in the boundary halo - to calculate forces and/or gradients. For instance, the forces for Shan-
Chen interactions can be calculated using fInteractionForceShanChen() for parallel calculations - which excludes
grid points in the boundary halo - or fsInteractionForceShanChen() for serial calculations that include grid points
right at the edges of the lattice. In the case of the parallel version, the values of forces or gradients for lattice
points in the boundary halo are obtained by applying a communication - fForceNonBlockCommunication() for
forces, fIndexNonBlockCommunication() for gradient-based properties (interfacial normals for Lishchuk inter-
actions, density/concentration gradients for Swift interactions) - to copy in values from neighbouring processor
cores.

The subroutines in this module that do not require separated calculations for grid points near and far from the edge
of the subdomain (and therefore do not subsequently require communications for running in parallel) include:

• fInteractionForceZero() - zeros all interaction and convective heat forces

• fCalcPotential_ShanChen() - calculates pseudopotential values for Shan-Chen interactions for all grid points
(including the boundary halo)7

• fCalcPhaseIndex_LishchukLocal() - calculates interfacial normals for Lishchuk interactions in an entirely
local manner for all grid points (using an approximation for the phase index gradient based on distribution
functions for each grid point)

• fCalcForce_Boussinesq() - calculates temperature-dependent heat convection forces using the Boussinesq
approximation at a given grid point

• fConvectionForceBoussinesq() - calculates temperature-dependent heat convection forces using the Boussi-
nesq approximation at all grid points

All three interaction methods can include interactions between fluids and solid surfaces represented by lattice sites
with specified boundary conditions. The array lbneigh is used for these interactions to identify the sites where
they take place (at grid points adjacent to solid boundaries) and how the gradients need to be calculated (e.g. using
one-sided gradient approximations to use fluid points further away from the boundary).

7 The pseudopotentials in Shan-Chen interactions can be selected to give specific equation of states as functions of fluid density 𝜌 and
temperature 𝑇 . Four of these equations of state - Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson and Carnahan-Starling-Redlich-
Kwong - include more complex dependences on temperature, which can either be fixed across the system (in the input file lbin.sys) or vary
locally at each grid point using temperature field distribution functions: as such, these equations come in both constant and variable temperature
forms. (This is also the case for calculations of bulk pressures 𝑝𝑏 used for Swift interactions, although these are mainly calculated during the
collision step.)

4.6. Fluid interactions 15

DL_MESO Technical Manual, Release 2.7

4.7 Rheological models

While the default hydrodynamic behaviour in DL_MESO_LBE is for constant kinematic viscosities 𝜈 for each
fluid - represented as relaxation times 𝜏𝑓 - DL_MESO_LBE allows for alternative rheological models to be ap-
plied. The array lbomega is used to store relaxation frequencies (reciprocals of relaxation times) for all fluids
at each grid point (including any boundary halo points), which can be updated with appropriate values based on
specified rheological models for local shear rates (velocity gradients).

The shear rates at each grid point are calculated from the non-equilibrium part of the momentum flux tensor:

𝛾̇ =

√︃
2
∑︁
𝛼,𝛽

𝑆𝛼𝛽𝑆𝛼𝛽

which is itself calculated using distribution functions and a collision matrix Λ that includes the relaxation fre-
quency calculated during the previous timestep:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

Λ𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀
.

Subroutines in lbpRHEOLOGY.cpp are available to calculate the shear rate 𝛾̇ at individual grid points based on
the collision scheme in use, e.g. fGetShearRateBGK() for BGK collisions. These are called by the subroutine
fGetSystemOmega() before it calls fGetRelaxationFrequency() to calculate a new relaxation frequency for each
grid point and fluid based on the rheological model and the shear rate. The relaxation frequencies in lbomega are
included when writing the restart file lbout.dump to ensure the simulation can be resumed from where it left off.

4.8 Boundary conditions

The array lbphi is used by DL_MESO_LBE to identify grid points with boundary conditions: the values in this
array are read in from the input file lbin.spa, which identifies each boundary condition by a number indicating its
type, the direction in which it is applied and which properties are being specified (e.g. fluid velocity or densities,
solute concentrations and/or temperature). A full list of available boundary codes is given in Chapter 6 of the
DL_MESO User Manual, while an overview is given in Table 6.4 and Table 6.5.

The default value for the boundary code in lbphi is 0, which indicates no boundary condition is applied at that grid
point, other than periodic boundaries if the point is at the outside of the simulation grid. If a boundary halo is in
use, a boundary code of 10 is used at each of its grid points to indicate its location if no other boundary conditions
need to be applied: this code ensures the grid point is involved in collisions but is omitted from sums of fluid
densities and momenta used in diagnostic messages printed by DL_MESO_LBE.

A boundary code of 11 is used to indicate a blank site, e.g. one that is inside a solid object but not at a grid point
adjacent to fluid. A code of 12 applies an on-grid bounce-back boundary condition, which provides a no-slip
condition (zero fluid velocity) at a wall and is obtained by reversing distribution functions at the grid point once
propagation has taken place. A mid-grid bounce-back condition is indicated by a boundary code of 13 and is
implemented by copying and reflecting post-collisional distribution functions going into the boundary grid point.
All three boundary types here can be applied at any arbitrary lattice point and their implementations do not depend
upon direction (i.e. where the nearest fluid points happen to be).

All other boundary condition types available in DL_MESO_LBE include indications of the direction in which
they are applied. Outflow conditions are implemented directly in DL_MESO_LBE, since either only four or six
directions need to be considered as they are limited to those orthogonal to the outer surfaces or edges of the
simulation grid. (First and second order accurate schemes are available, which make use of distribution functions
from one or two fluid points beyond the boundary point respectively: the choice for these is made by the user in
the lbin.sys input file.)

Other directional boundaries are treated in DL_MESO_LBE based on their types: planar surfaces, concave edges
and concave corners. Only one direction for each of these needs to be implemented directly for each boundary
condition scheme and each lattice scheme, as the inputs and outputs parameters for the subroutines (specifically
distribution functions, velocities, forces and density/concentration gradients for Swift interactions) can be rear-
ranged when called to give the correct results for other directions. The codes used in lbphi for these boundaries

16 Chapter 4. DL_MESO_LBE Programming Background

append:lattice

DL_MESO Technical Manual, Release 2.7

are represented as numbers between 100 and 899: the last two digits indicate direction, while the first digit
specifies whether a constant fluid velocity or density condition is needed along with constant solute concentra-
tion/temperature or bounce back for these properties. The quantities being held constant at these boundaries are
specified in lbin.sys for planar surfaces in three-dimensional simulations or concave edges in two-dimensional
simulations. Corners and edges use one fluid property (velocity or densities/concentrations/temperature) from
intersecting surface/edge boundaries and either take fluid densities or other properties from a nearby fluid point or
assume zero fluid velocity.

Four boundary condition schemes are currently available in DL_MESO_LBE for constant fluid velocity and den-
sity conditions:

• Zou-He: lbpBOUNDZouHe.cpp

• Inamuro: lbpBOUNDInamuro.cpp

• Regularised: lbpBOUNDRegular.cpp

• Kinetic: lbpBOUNDKinetic.cpp

and each scheme has its own module with subroutines to implement the boundaries for each available lat-
tice scheme. For instance, constant velocity conditions using the Zou-He scheme with a D2Q9 lattice are
found in fD2Q9VFZouHe(), which calls fD2Q9VCEZouHe() for edges (as defined for the bottom edge) and
fD2Q9VCCZouHe() for corners (defined for the bottom-left corner): the selection of lattice and boundary scheme
for this kind of condition is made in the fFixedSpeedFluid() subroutine. Boundary conditions for constant solute
concentrations and temperatures are currently limited to the Zou-He and Inamuro schemes.

4.9 Reading input files

Four input files can be read by DL_MESO_LBE at the start of a simulation: lbin.sys with simulation parameters,
lbin.spa with boundary conditions, lbin.init with initial conditions and lbout.dump to restart a previous simulation.
The first three of these are (human-readable) text files, while the lbout.dump file is written in binary (see below).
All processor cores read each of these files in the current version of DL_MESO_LBE, although the assignment of
boundary conditions, initial conditions and restart data in each core will depend on whether or not the specified
grid points exist in its subdomain.

The lbin.sys consists of lines, each with a word at the start and a value (either a number or another word) separated
by spaces and/or tab characters. The subroutines reading this file - fDefineSystem() and fInputParameters() - use
the C++ function getline to extract each line in turn as a string, before applying the fReadString() function
to find the word and value as individual strings. The word string is then compared with specific key words for
simulation properties, and the value string is either compared with other key words or parsed using the function
fStringToNumber() to give a number for assignment to a variable or array. The fDefineSystem() subroutine restricts
itself to searching for fundamental properties for the simulation: spatial dimensions and discrete speeds (number
of lattice links) to give the lattice scheme, numbers of fluids, solutes, temperature and phase fields, the total size of
the lattice, the boundary halo size, whether or not the fluids are exactly incompressible, if the simulation is being
restarted, the collision/forcing type, interaction type, and output file format. Many of these values are used to
define array sizes, for storing the data used directly for simulations (e.g. distribution functions, interaction forces)
and for parameters used to describe each fluid/solute/temperature field (e.g. relaxation times). These, along with
initial and boundary conditions, are then read in by the fInputParameters() subroutine.

Both the lbin.spa and lbin.init files consist of lines of numbers. Each line of each file starts with three integers
indicating integer Cartesian coordinates of a grid point, which are followed by the required data at that point
(boundary code in lbin.spa, velocity, fluid densities, solute concentrations and temperatures in lbin.init). These
numbers are read in directly from the filestream for the opened file and the value(s) assigned to the grid point
if it exists in the current subdomain. (When running a two-dimensional simulation, only grid points where the
𝑧-coordinate is equal to 0 will be accepted.) The subroutines fReadSpaceParameter() and fReadInitialState() are
used to read in the lbin.spa and lbin.init files respectively.

If a simulation restart is requested in the lbin.sys file and a lbout.dump can be found, the subroutine fReadRestart()
will read the latter file. Some basic information about the simulation is read in first as a series of integers and
compared with the information provided in lbin.sys: mismatches in lattice scheme, grid size, numbers of fluids,
solutes, temperature and phase fields cannot be reconciled and will cause DL_MESO_LBE to halt with at least one

4.9. Reading input files 17

append:lattice
append:lattice

DL_MESO Technical Manual, Release 2.7

error message stating the mismatch(es). The timestep at which the simulation previously stopped and the number
of output files previously written are also among the basic information, as well as whether or not incompressible
fluids were used: while a mismatch in this latter property is not fatal for restarting a DL_MESO_LBE simulation,
the value in lbout.dump indicates that constant densities 𝜌0 then immediately follow. After these data, the Cartesian
coordinates identifying all grid points are then read in one set at a time: if the grid point is found inside the current
processor core’s subdomain, the distribution functions and fluid relaxation frequencies for that grid point are
then read in and assigned to the arrays. All of the data in the lbout.dump is provided in binary format using the
endianness of the computer that previously ran the simulation, although utilities also exist in DL_MESO to read
and manipulate this data.

4.10 Writing output files

The main output files written by DL_MESO_LBE are in one of three different formats: XML-based structured
grid VTK (lbout*.vts), structured grid Legacy VTK (lbout*.vtk) or Plot3D (lbout*.q). While the exact formats of
the files differ, the details about how they are prepared and written are very similar.

By default, each processor core will write its own file for each trajectory frame (a snapshot of the simulation
at a given timestep). This option can be overridden using the output_combine keywords in lbin.sys, which
tell DL_MESO_LBE to combine data from processor cores along specific Cartesian axes onto a single processor
core, which then produces a single output file for that group of processor cores. If all dimensions are requested for
combination of output data, DL_MESO_LBE will switch on the option to use MPI-IO instead of full combination
of data: multiple groups of processor cores are still created to combine data in all but one dimension (𝑧-dimension
for three-dimensional simulations, 𝑦-dimension for two-dimensional simulations)in slices, but each group’s root
core writes concurrently to a single output file at unique locations to ensure the data are written in the required
order.

The fCreateIOGroups() subroutine sets up groups of processor cores that will share their data, determines the
extent of the grid that each group will cover and creates MPI communicators to enable each group to gather their
data on to a root core that will end up writing to its output file. A series of subroutines, e.g. fGroupDensities()
for fluid densities, are available to gather together data required for file-writing and are called by subroutines
specifying what is written to each file for the given format (e.g. fOutputVTK() for XML-based VTK files). In
these subroutines, each processor core puts together the required values into an array (swapping bits if requested)
before this data is gathered together into a larger array in the groups’ root cores and then reordered with the 𝑥-
coordinate as the fastest changing coordinate (followed by the 𝑦- and 𝑧-coordinates). Subroutines are then called,
e.g. fWriteVTKFloatBinaryData(), to get the root processor core for each group to write the data to the file as a
stream of numbers: if MPI-IO is in use, the MPI subroutine MPI_File_write_at is used to place the data in
the appropriate place in the file. (If any text is required before or after the data, e.g. XML tags, this can also be
added by the appropriate I/O groups.)

The lbout.dump restart file is prepared in a similar fashion to other output files. The subroutine fGroupGather-
RestartData() - as called by the fWriteRestart() subroutine - brings together the grid point coordinates for each
individual processor core or each I/O group of processor cores, as well as the distribution functions and relaxation
frequencies for all fluids at each grid point. After writing the important simulation data required for a restart
(lattice scheme, grid size etc.) and constant fluid densities if incompressible fluids are in use, the grid point co-
ordinates are written by every core or I/O group (using MPI-IO to do this concurrently if running in parallel) to
form a single block of integer numbers, before the distribution functions and relaxation frequencies are written as
a single block of double precision floating-point numbers. Unlike other output files, only a single lbout.dump file
is ever produced at a time regardless of the number of processor cores used to run the simulation.

18 Chapter 4. DL_MESO_LBE Programming Background

CHAPTER

FIVE

DL_MESO_LBE CODE DESCRIPTION

This chapter lists and describes the subroutines, functions, variables, datatypes etc. in DL_MESO_LBE, based on
output generated using Doxygen with annotations in the code.

5.1 lbe.hpp

5.1.1 Summary

Common variables and arrays when running DL_MESO_LBE in both serial and parallel. Required variables and
arrays for LBE calculations that are applicable for both serial and parallel running of DL_MESO_LBE (made
globally accessible with global.hpp).

5.1.2 Classes

• struct sSystem

Structure for system information.

• struct sDomain

Structure for domain information.

5.1.3 Enumerations

• enum BoundaryType :: {

PST = 21, PSD = 22, PSL = 23, PSR = 24, PSF = 25, PSB = 26, CCTRB = 27, CCTLB
= 28, CCDLB = 29, CCDRB = 30, CCTRF = 31, CCTLF = 32, CCDLF = 33, CCDRF
= 34, CETR = 43, CETL = 44, CEDL = 45, CEDR = 46, CETF = 47, CELF = 48,
CEDF = 49, CERF = 50, CETB = 51, CELB = 52, CEDB = 53, CERB = 54

}

Types of boundary conditions.

19

DL_MESO Technical Manual, Release 2.7

5.1.4 Variables

• sSystem lbsy

System information for LBE simulation.

• sDomain lbdm

Domain information for LBE simulation.

• double lbiniv [3]

Initial fluid velocities.

• double lbtopv [3]

Fluid velocity at top boundary.

• double lbbotv [3]

Fluid velocity at bottom boundary.

• double lbfrov [3]

Fluid velocity at front boundary.

• double lbbacv [3]

Fluid velocity at back boundary.

• double lblefv [3]

Fluid velocity at left boundary.

• double lbrigv [3]

Fluid velocity at right boundary.

• double lbtopvoscil [3]

Oscillating fluid velocity at top boundary.

• double lbbotvoscil [3]

Oscillating fluid velocity at bottom boundary.

• double lbfrovoscil [3]

Oscillating fluid velocity at front boundary.

• double lbbacvoscil [3]

Oscillating fluid velocity at back boundary.

• double lblefvoscil [3]

Oscillating fluid velocity at left boundary.

• double lbrigvoscil [3]

Oscillating fluid velocity at right boundary.

• double lbtopvfq

Angular frequency of oscillating fluid velocity at top boundary.

• double lbbotvfq

Angular frequency of oscillating fluid velocity at bottom boundary.

• double lbfrovfq

Angular frequency of oscillating fluid velocity at front boundary.

• double lbbacvfq

Angular frequency of oscillating fluid velocity at back boundary.

20 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• double lblefvfq

Angular frequency of oscillating fluid velocity at left boundary.

• double lbrigvfq

Angular frequency of oscillating fluid velocity at right boundary.

• int lbtopvbc

Flag indicating kind of velocity boundary condition at top boundary.

• int lbbotvbc

Flag indicating kind of velocity boundary condition at bottom boundary.

• int lbfrovbc

Flag indicating kind of velocity boundary condition at front boundary.

• int lbbacvbc

Flag indicating kind of velocity boundary condition at back boundary.

• int lblefvbc

Flag indicating kind of velocity boundary condition at left boundary.

• int lbrigvbc

Flag indicating kind of velocity boundary condition at right boundary.

• double * lbincp

Constant fluid densities.

• double * lbinip

Initial fluid densities.

• double * lbtopp

Fluid densities at top boundary.

• double * lbbotp

Fluid densities at bottom boundary.

• double * lbfrop

Fluid densities at front boundary.

• double * lbbacp

Fluid densities at back boundary.

• double * lblefp

Fluid densities at left boundary.

• double * lbrigp

Fluid densities at right boundary.

• double * lbinic

Initial solute concentrations.

• double * lbtopc

Solute concentrations at top boundary.

• double * lbbotc

Solute concentrations at bottom boundary.

5.1. lbe.hpp 21

DL_MESO Technical Manual, Release 2.7

• double * lbfroc

Solute concentrations at front boundary.

• double * lbbacc

Solute concentrations at back boundary.

• double * lblefc

Solute concentrations at left boundary.

• double * lbrigc

Solute concentrations at right boundary.

• double lbsyst

Constant system temperature.

• double lbinit

Initial temperature.

• double lbtopt

Temperature at top boundary.

• double lbbott

Temperature at bottom boundary.

• double lbfrot

Temperature at front boundary.

• double lbbact

Temperature at back boundary.

• double lbleft

Temperature at left boundary.

• double lbrigt

Temperature at right boundary.

• double lbsysdt

System-wide heating rate.

• double lbtopdt

Heating rate at top boundary.

• double lbbotdt

Heating rate at bottom boundary.

• double lbfrodt

Heating rate at front boundary.

• double lbbacdt

Heating rate at back boundary.

• double lblefdt

Heating rate at left boundary.

• double lbrigdt

Heating rate at right boundary.

22 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int lbtotstep

Total number of simulation timesteps.

• int lbequstep

Number of equilibration timesteps.

• int lbsave

Output file writing frequency.

• int lbdump

Simulation restart file writing frequency.

• int lbcurstep

Current timestep number.

• int lbsteer

Flag for computational steering.

• int lbmpiio

Flag for writing output files using MPI-IO.

• int lbrestart

Flag for restarting a previous simulation.

• double lbcalctime

Total specified calculation time (in seconds) for simulation.

• double lbnoise

Noise intensity for fluid densities.

• double lbtrtmagic

Two relaxation time (TRT) ‘magic number’.

• double lbgasconst

Universal gas constant.

• double * lbtf

Fluid relaxation frequencies.

• double * lbtfbulk

Fluid bulk relaxation frequencies.

• double * lbtfclb3

Third-order relaxation frequencies for CLBE collisions.

• double * lbtfclb4

Fourth-order relaxation frequencies for CLBE collisions.

• double * lbtc

Solute relaxation frequencies.

• double * lbtt

Thermal relaxation frequencies.

• double lbtmob

Free-energy concentration relaxation frequency for mobility between two fluid species.

5.1. lbe.hpp 23

DL_MESO Technical Manual, Release 2.7

• int * lbscpot

Pseudopotential types for fluids.

• int * lbwet

Solid-fluid wetting type.

• double lbfewet [4]

Surface free energy parameters for Swift free-energy interactions.

• int lbfeeos

Fluid equation of state for Swift free-energy interactions.

• int lbfepot

Chemical potential type for Swift free-energy interactions.

• int lbgradord

Accuracy of gradient approximation for solid-fluid interactions.

• int lbbctyp

Type of constant velocity or density boundary conditions.

• int lbsbctyp

Type of constant solute concentration boundary conditions.

• int lbtbctyp

Type of constant temperature boundary conditions.

• double lbkappa

Surface tension parameter.

• double lbfemob

Fluid mobility parameter.

• double * lbg

Fluid-fluid interaction parameters.

• double * lbgwall

Solid-fluid interaction parameters.

• double * lbseg

Fluid-fluid segregation parameters for Lishchuk continuum-based interactions.

• double * lbpsi0

Parameters for 1994 Shan-Chen pseudopotential model.

• double * lbcritt

Fluid critical temperatures.

• double * lbcritp

Fluid critical pressures.

• double * lbeosa

Fluid attraction coefficients for equations of state.

• double * lbeosb

Fluid finite volume coefficients for equations of state.

24 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• double * lbacentric

Fluid acentric factors for equations of state.

• double * lbscquad

Weighting factors for quadratic Shan-Chen pseudopotential forces.

• double * lbbdforce

Constant body forces on fluids.

• double * lboscilforce

Amplitudes of oscillating forces on fluids.

• double * lbbousforce

Boussinesq buoyancy forces on fluids.

• double * lbheatforce

Heat convection forces.

• double * lbinterforce

Interfacial forces.

• double lboscilfreq

Angular frequency of oscillating forces acting on fluids.

• int lbbdforcetyp

Flag indicating kind of body forces acting on fluids.

• double * lbomega

Fluid relaxation frequencies at lattice points.

• int * lbrheo

Rheological models for fluids.

• double * lbrheoa

Parameters a for rheological models.

• double * lbrheob

Parameters b for rheological models.

• double * lbrheoc

Parameters c for rheological models.

• double * lbrheod

Parameters d for rheological models.

• double * lbrheopower

Power-law indices for rheological models.

• double * lbf

Distribution functions.

• double * lbft

Pseudopotentials, interfacial normals or density/concentration gradients.

• double * lbfeq

Local equilibrium distribution functions.

5.1. lbe.hpp 25

DL_MESO Technical Manual, Release 2.7

• int * lbphi

Boundary condition properties (phase fields).

• int * lbneigh

Neighbouring point properties.

• double * lbboundnorm

Surface normals for lattice points.

• int * lbvx

Link vectors (x-components).

• int * lbvy

Link vectors (y-components).

• int * lbvz

Link vectors (z-components).

• int lbfevx [19]

Gradient stencil for Swift free-energy interactions (x-component).

• int lbfevy [19]

Gradient stencil for Swift free-energy interactions (y-component).

• int lbfevz [19]

Gradient stencil for Swift free-energy interactions (z-component).

• int * lbopv

Conjugate lattice links.

• int * lbspair

List of fluid pairs.

• double * lbw

Link weights.

• double * lbvwx

Products of x-components of link vector and weights.

• double * lbvwy

Products of y-components of link vector and weights.

• double * lbvwz

Products of z-components of link vector and weights.

• double * lbwi

Velocity link weights for Swift free-energy interaction local equilibrium distribution functions.

• double * lbw0

Density link weights for Swift free-energy interaction local equilibrium distribution functions.

• double * lbwpt

Bulk pressure/surface tension link weights for Swift free-energy interaction local equilibrium distribution
functions.

• double * lbwxx

Surface tension (xx-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

26 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• double * lbwyy

Surface tension (yy-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

• double * lbwzz

Surface tension (zz-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

• double * lbwxy

Surface tension (xy-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

• double * lbwxz

Surface tension (xz-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

• double * lbwyz

Surface tension (yz-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

• double * lbwgam

Galilean invariance link weights for Swift free-energy interaction local equilibrium distribution functions.

• double * lbwdel

Galilean invariance link weights for Swift free-energy interaction local equilibrium distribution functions.

• double * lbtr

Multiple relaxation time (MRT) transformation matrix.

• double * lbtrinv

Multiple relaxation time (MRT) inverse transformation matrix.

• double lbmrts [8]

Tuneable collision frequencies for multiple relaxation time (MRT) collisions.

• double lbmrtw [3]

Tuneable parameters for moments for multiple relaxation time (MRT) collisions.

• int lbsitelength

Number of distribution functions per lattice point.

• double lbdx

Grid spacing in ‘real world’ units.

• double lbdt

Timestep in ‘real world’ units.

• double lbcs

Lattice speed of sound.

• double lbcssq

Square of lattice speed of sound.

• double lbrcssq

Reciprocal of the square of lattice speed of sound.

• double lbsoundv

Speed of sound of fluid 0.

5.1. lbe.hpp 27

DL_MESO Technical Manual, Release 2.7

• double lbreynolds

Reynolds number for LBE simulation.

• double lbkinetic

Kinematic viscosity of fluid 0.

• double lbbousth

High temperature for Boussinesq approximation.

• double lbboustl

Low temperature for Boussinesq approximation.

• double lbevaplim

Evaporation limit for fluid density.

• unsigned long * lbouter

List of lattice points at outer edge of subdomain.

• int lboutersize

Number of lattice points in outer edge region of subdomain.

• int bigend

Flag for big endianness of system.

• double timetotal

Total calculation time in seconds.

• int qVersion

Output file number.

• int collide

Collision type.

• int interact

Interaction type.

• int incompress

Flag for incompressible fluids.

• int nonnewtonian

Flag for variable fluid relaxation times (non-Newtonian rheology).

• int outformat

Output file format.

• int postequil

Flag for post-equilibration state.

28 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.1.5 Class Documentation

struct sSystem

Structure for system information (e.g. numbers of dimensions and lattice links per grid point, fluids, solutes,
temperature fields, size of lattice).

Table 5.1: Class Members
int nc Number of solutes in LBE simulation: helps specify the total number of lattices for the simulation,

as each solute exists on its own lattice. If at least one solute is in use, only one fluid can currently
be used.

int nd Number of dimensions for lattice and simulation: used to specify lattice scheme
int nf Number of fluids in LBE simulation: helps specify the total number of lattices for the simulation,

as each fluid exists on its own lattice
int nq Number of lattice link vectors from each grid point: used to specify lattice scheme
int nt Number of temperature fields in LBE simulation, which can either be 0 or 1: helps specify the total

number of lattices for the simulation, as the temperature field exists on its own lattice
int nx Number of grid points in x-direction for LBE simulation
int ny Number of grid points in y-direction for LBE simulation
int nz Number of grid points in z-direction for LBE simulation. This value needs to be set to 1 for two-

dimensional simulations.
int pf Number of phase fields in LBE simulation: this property is currently not used in DL_MESO_LBE

for any of its interaction models, but only one value per phase field per grid point is required

struct sDomain

Structure for domain information (e.g. processor number, numbers of processors, boundary halo size, dimensions
of lattice subdomain).

5.1. lbe.hpp 29

DL_MESO Technical Manual, Release 2.7

Table 5.2: Class Members
int bwid Size of boundary halo to receive communications from neighbouring processors.
int owidx Size of boundary region at edge of lattice (used to apply modulo functions for periodic boundaries)

in x-direction. This value is set to the default of 1.
int owidy Size of boundary region at edge of lattice (used to apply modulo functions for periodic boundaries)

in y-direction. This value is set to the default of 1.
int owidz Size of boundary region at edge of lattice (used to apply modulo functions for periodic boundaries)

in z-direction. This value is set to 0 for two-dimensional simulations and 1 for three-dimensional
simulations.

int rank Number (rank) of current processor: used to identify processor.
int size Total number of processors involved in LBE calculation.
int touter Total number of grid points (including the boundary halo) held by the current processor for its

lattice subdomain.
int xcor Position of current processor within system given as the x-component of a Cartesian coordinate.
int xdim Total number of processors for current LBE calculation in x-direction.
int xe Highest x-coordinate for lattice subdomain of current processor (excluding boundary halo).
int xin-

ner
Number of grid points in x-direction for the lattice subdomain of current processor excluding the
boundary halo.

int xouter Number of grid points in x-direction for the lattice subdomain of current processor including the
boundary halo.

int xs Lowest x-coordinate for lattice subdomain of current processor (excluding boundary halo).
int ycor Position of current processor within system given as the y-component of a Cartesian coordinate.
int ydim Total number of processors for current LBE calculation in y-direction.
int ye Highest y-coordinate for lattice subdomain of current processor (excluding boundary halo).
int yin-

ner
Number of grid points in y-direction for the lattice subdomain of current processor excluding the
boundary halo.

int youter Number of grid points in y-direction for the lattice subdomain of current processor including the
boundary halo.

int ys Lowest y-coordinate for lattice subdomain of current processor (excluding boundary halo).
int zcor Position of current processor within system given as the z-component of a Cartesian coordinate.
int zdim Total number of processors for current LBE calculation in z-direction. This value is set to 1 for

two-dimensional simulations.
int ze Highest z-coordinate for lattice subdomain of current processor (excluding boundary halo).
int zin-

ner
Number of grid points in z`-direction for the lattice subdomain of current processor excluding the
boundary halo.

int zouter Number of grid points in z-direction for the lattice subdomain of current processor including the
boundary halo.

int zs Lowest z-coordinate for lattice subdomain of current processor (excluding boundary halo).

Enumeration Type Documentation

BoundaryType

enum BoundaryType

Numerical identifiers for constant density/velocity, concentration and temperature boundary points based on di-
rection. All of these are in use for three-dimensional LBE simulations: two-dimensional simulations make use
of concave edges and corners pointing to the front (CCTRF, CCDTLF, CCDLF, CCDRF, CETF, CELF, CEDF,
CERF).

30 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.3: Enumerator
PST Planar surface (bottom) pointing upwards.
PSD Planar surface (top) pointing downwards.
PSL Planar surface (right) pointing to the left.
PSR Planar surface (left) pointing to the right.
PSF Planar surface (back) pointing to the front.
PSB Planar surface (front) pointing to the back.
CCTRB Concave corner (bottom-left-front) pointing upwards, to the right and back.
CCTLB Concave corner (bottom-right-front) pointing upwards, to the left and back.
CCDLB Concave corner (top-right-front) pointing downwards, to the left and back.
CCDRB Concave corner (top-left-front) pointing downwards, to the right and back.
CCTRF Concave corner (bottom-left-back) pointing upwards, to the right and front.
CCTLF Concave corner (bottom-right-back) pointing upwards, to the left and ftont.
CCDLF Concave corner (top-right-back) pointing downwards, to the left and front.
CCDRF Concave corner (top-left-back) pointing downwards, to the right and front.
CETR Concave edge (bottom-left) pointing upwards to the right.
CETL Concave edge (bottom-right) pointing upwards to the left.
CEDL Concave edge (top-right) pointing downwards to the left.
CEDR Concave edge (top-left) pointing downwards to the right.
CETF Concave edge (bottom-back) pointing upwards to the front.
CELF Concave edge (right-back) pointing to the left and front.
CEDF Concave edge (top-back) pointing downwards to the front.
CERF Concave edge (left-back) pointing to the right and front.
CETB Concave edge (bottom-front) pointing to the top and back.
CELB Concave edge (right-front) pointing to the left and back.
CEDB Concave edge (top-front) pointing to the bottom and back.
CERB Concave edge (left-front) pointing to the right and back.

Variable Documentation

bigend

extern int bigend

Flag to indicate whether or not the system stores binary numbers in big endian order (1 = big endian, 0 = little
endian).

collide

extern int collide

Parameter for type of collisions and forcing scheme, used to select collision subroutines for simulation.

5.1. lbe.hpp 31

DL_MESO Technical Manual, Release 2.7

incompress

extern int incompress

Flag to indicate whether or not fluids are fully incompressible (1 = fully incompressible, 0 = mildly compressible).

interact

extern int interact

Parameter for type of interactions between fluids and/or phases, used to select main simulation loop.

lbacentric

extern double* lbacentric

Acentric factors 𝜔 for fluids, used in equations of state applied by Shan-Chen pseudopotential and Swift free-
energy interaction models.

lbbacc

extern double* lbbacc

Concentrations of solutes at back boundary when using constant concentration boundary condition.

lbbacdt

extern double lbbacdt

Constant rate of change of temperature at back boundary when using temperature boundary condition.

lbbacp

extern double* lbbacp

Densities of fluids at back boundary when using constant density boundary condition.

lbbact

extern double lbbact

Temperature at back boundary when using constant temperature boundary condition.

32 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbbacv

extern double lbbacv[3]

Velocity for fluids at back boundary when using constant velocity boundary condition.

lbbacvbc

extern int lbbacvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at back boundary when using
constant velocity boundary condition (0 = off, 1 = on).

lbbacvfq

extern double lbbacvfq

Angular frequency of fluid velocity sinusoidal oscillations applied at back boundary when using constant velocity
boundary condition.

lbbacvoscil

extern double lbbacvoscil[3]

Amplitude of velocity for fluids at back boundary varying sinusoidally with time when using constant velocity
boundary condition.

lbbctyp

extern int lbbctyp

Type of boundary conditions in use for constant fluid velocities or densities (0 = Zou-He, 1 = Inamuro, 2 =
regularised, 10 = simple Zou-He, 11 = kinetic).

lbbdforce

extern double* lbbdforce

Constant body forces (e.g. gravity) acting on each fluid, applied using forcing terms during collisions.

lbbdforcetyp

extern int lbbdforcetyp

Flag to indicate whether or not to include sinusoidal oscillation in time to forces acting on all fluids (0 = off, 1 =
on).

5.1. lbe.hpp 33

DL_MESO Technical Manual, Release 2.7

lbbotc

extern double* lbbotc

Concentrations of solutes at bottom boundary when using constant concentration boundary condition.

lbbotdt

extern double lbbotdt

Constant rate of change of temperature at bottom boundary when using temperature boundary condition.

lbbotp

extern double* lbbotp

Densities of fluids at bottom boundary when using constant density boundary condition.

lbbott

extern double lbbott

Temperature at bottom boundary when using constant temperature boundary condition.

lbbotv

extern double lbbotv[3]

Velocity for fluids at bottom boundary when using constant velocity boundary condition.

lbbotvbc

extern int lbbotvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at bottom boundary when using
constant velocity boundary condition (0 = off, 1 = on).

lbbotvfq

extern double lbbotvfq

Angular frequency of fluid velocity sinusoidal oscillations applied at bottom boundary when using constant ve-
locity boundary condition.

34 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbbotvoscil

extern double lbbotvoscil[3]

Amplitude of velocity for fluids at bottom boundary varying sinusoidally with time when using constant velocity
boundary condition.

lbboundnorm

extern double* lbboundnorm

Normals of surfaces at lattice points for calculating solid-fluid interfacial forces using Lishchuk continuum-based
interactions.

lbbousforce

extern double* lbbousforce

Products of gravitational acceleration and volumetric expansivity 𝑔⃗𝛽 for fluids, used to determine temperature-
dependent buoyancy forces for Boussinesq approximation.

lbbousth

extern double lbbousth

Maximum system temperature used in temperature-dependent forces for Boussinesq approximation 𝑇ℎ.

lbboustl

extern double lbboustl

Minimum system temperature used in temperature-dependent forces for Boussinesq approximation 𝑇𝑙.

lbcalctime

extern double lbcalctime

Total wall time (in seconds) to run DL_MESO_LBE calculation before writing a restart file (lbout.dump) and
shutting down. (If this value is zero, the calculation will continue until all timesteps have been completed.)

lbcritp

extern double* lbcritp

Critical pressures 𝑝𝑐 for fluids, connected to parameters for equations of state.

5.1. lbe.hpp 35

DL_MESO Technical Manual, Release 2.7

lbcritt

extern double* lbcritt

Critical temperatures 𝑇𝑐 for fluids, connected to parameters for equations of state.

lbcs

extern double lbcs

Speed of sound for the lattice, 𝑐𝑠, given in lattice-based units.

lbcssq

extern double lbcssq

Square of the speed of sound for the lattice, 𝑐2𝑠, given in lattice-based units.

lbcurstep

extern int lbcurstep

Timestep number for current point in LBE simulation.

lbdm

extern sDomain lbdm

Domain information for LBE simulation (e.g. extents of lattice held by processors), using struct sDomain structure
to store information.

lbdt

extern double lbdt

Timestep ∆𝑡 given in consistent ‘real world’ units, calculated from the kinetic viscosity and speed of sound in
‘real world’ units and the selected relaxation time for fluid 0. This value is checked to ensure a valid value for the
relaxation time/frequency of fluid 0 is selected.

lbdump

extern int lbdump

Interval (number of timesteps) between overwrites of a simulation restart file (lbout.dump).

36 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbdx

extern double lbdx

Grid spacing between lattice points ∆𝑥 given in consistent ‘real world’ units, calculated from the speed of sound
for fluid 0 and the ‘real world’ timestep size.

lbeosa

extern double* lbeosa

Attraction coefficients 𝑎 for fluids, used in equations of state applied by Shan-Chen pseudopotential and Swift
free-energy interaction models.

lbeosb

extern double* lbeosb

Finite volume coefficients 𝑏 for fluids, used in equations of state applied by Shan-Chen pseudopotential and Swift
free-energy interaction models.

lbequstep

extern int lbequstep

Number of timesteps required at start of LBE simulation to allow system to settle before applying boundary
conditions and body forces.

lbevaplim

extern double lbevaplim

Minimum viable fluid density for applying Inamuro and kinetic boundary conditions, and calculating mass frac-
tions and fluid velocities for output files.

lbf

extern double* lbf

Distribution functions (𝑓𝑖, 𝑔𝑖, ℎ𝑖) for all lattice points in subdomain: in order of fluid/solute/temperature field,
then lattice link and then lattice point.

5.1. lbe.hpp 37

DL_MESO Technical Manual, Release 2.7

lbfeeos

extern int lbfeeos

Selected equation of state for one or two fluids undergoing Swift free-energy interactions.

lbfemob

extern double lbfemob

Mobility parameter (multiplier) Γ between two fluids undergoing Swift free-energy interactions.

lbfepot

extern int lbfepot

Selected chemical potential between two fluids undergoing Swift free-energy interactions (0 = none, 1 = quartic).

lbfeq

extern double* lbfeq

Local equilibrium distribution functions (𝑓𝑒𝑞𝑖 , 𝑔𝑒𝑞𝑖 , ℎ𝑒𝑞𝑖) for a lattice point, used during system initialisation and
collisions.

lbfevx

extern int lbfevx[19]

Vectors (x-components) for calculating first-order and second-order gradients of density and concentration for
Swift free-energy calculations with reduced microcurrents [102] used at fluid lattice points without neighbouring
boundaries.

lbfevy

extern int lbfevy[19]

Vectors (y-components) for calculating first-order and second-order gradients of density and concentration for
Swift free-energy calculations with reduced microcurrents [102] used at fluid lattice points without neighbouring
boundaries.

38 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbfevz

extern int lbfevz[19]

Vectors (z-components) for calculating first-order and second-order gradients of density and concentration for
Swift free-energy calculations with reduced microcurrents [102] used at fluid lattice points without neighbouring
boundaries.

lbfewet

extern double lbfewet[4]

Parameters for surface free energy with Swift free-energy interactions: indices 0 and 1 for linear and quadratic
terms in density, 2 and 3 for linear and quadratic terms in concentration.

lbfroc

extern double* lbfroc

Concentrations of solutes at front boundary when using constant concentration boundary condition.

lbfrodt

extern double lbfrodt

Constant rate of change of temperature at front boundary when using temperature boundary condition.

lbfrop

extern double* lbfrop

Densities of fluids at front boundary when using constant density boundary condition.

lbfrot

extern double lbfrot

Temperature at front boundary when using constant temperature boundary condition.

lbfrov

extern double lbfrov[3]

Velocity for fluids at front boundary when using constant velocity boundary condition.

5.1. lbe.hpp 39

DL_MESO Technical Manual, Release 2.7

lbfrovbc

extern int lbfrovbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at front boundary when using
constant velocity boundary condition (0 = off, 1 = on).

lbfrovfq

extern double lbfrovfq

Angular frequency of fluid velocity sinusoidal oscillations applied at front boundary when using constant velocity
boundary condition.

lbfrovoscil

extern double lbfrovoscil[3]

Amplitude of velocity for fluids at front boundary varying sinusoidally with time when using constant velocity
boundary condition.

lbft

extern double* lbft

Pseudopotentials for Shan-Chen interactions (ordered by fluid), interfacial normals for Lishchuk continuum-based
interactions (ordered by fluid pairs) or gradients of density/concentration for Swift free-energy interactions (all
three components of first-order gradients and then secord-order gradient for density and concentration).

lbg

extern double* lbg

Interaction parameters between fluids (including self-interactions) 𝑔𝑎𝑏, used for Shan-Chen pseudopotential and
Lishchuk continuum-based interactions.

lbgasconst

extern double lbgasconst

Universal gas constant 𝑅 used for equations of state applied in Shan-Chen pseudopotential and Swift free-energy
interactions.

40 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbgradord

extern int lbgradord

Selected accuracy of one-sided gradient approximations used at lattice points next to solid boundaries for Lishchuk
continuum-based phase index gradients and interfacial forces and Swift free-energy solid-fluid interactions.

lbgwall

extern double* lbgwall

Interaction parameters between fluids and solid walls 𝑔𝑤𝑎𝑙𝑙,𝑎, used for Shan-Chen pseudopotential and Lishchuk
continuum-based interactions.

lbheatforce

extern double* lbheatforce

Forces acting on fluids due to heat convection as given by Boussinesq approximation.

lbincp

extern double* lbincp

Constant densities for fully incompressible fluids in LBE simulation (used in local equilibrium distribution func-
tions, and as parameters for 1994 Shan-Chen [119] and Qian [106] pseudopotentials).

lbinic

extern double* lbinic

Initial default concentrations for solutes at all lattice points in LBE simulation (unless overridden by values in
initial state input file lbin.init).

lbinip

extern double* lbinip

Initial default densities for fluids at all lattice points in LBE simulation (unless overridden by values in initial state
input file lbin.init).

5.1. lbe.hpp 41

DL_MESO Technical Manual, Release 2.7

lbinit

extern double lbinit

Initial default temperature at all lattice points in LBE simulation (unless overriden by values in initial state input
file lbin.init).

lbiniv

extern double lbiniv[3]

Initial default velocities for fluids at all lattice points in LBE simulation (unless overridden by values in initial
state input file lbin.init).

lbinterforce

extern double* lbinterforce

Forces acting on fluids due to interfaces between fluids or phases (obtained from Shan-Chen pseudopotential or
Lishchuk continuum-based interactions).

lbkappa

extern double lbkappa

Surface tension parameter 𝜅 between phases and/or fluids for Swift free-energy intereactions.

lbkinetic

extern double lbkinetic

Kinematic viscosity (quotient of dynamic viscosity with density) for fluid 0 given in consistent ‘real world’ units,
used to find actual timestep size.

lblefc

extern double* lblefc

Concentrations of solutes at left boundary when using constant concentration boundary condition.

lblefdt

extern double lblefdt

Constant rate of change of temperature at left boundary when using temperature boundary condition.

42 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lblefp

extern double* lblefp

Densities of fluids at left boundary when using constant density boundary condition.

lbleft

extern double lbleft

Temperature at left boundary when using constant temperature boundary condition.

lblefv

extern double lblefv[3]

Velocity for fluids at left boundary when using constant velocity boundary condition.

lblefvbc

extern int lblefvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at left boundary when using
constant velocity boundary condition (0 = off, 1 = on).

lblefvfq

extern double lblefvfq

Angular frequency of fluid velocity sinusoidal oscillations applied at left boundary when using constant velocity
boundary condition.

lblefvoscil

extern double lblefvoscil[3]

Amplitude of velocity for fluids at left boundary varying sinusoidally with time when using constant velocity
boundary condition.

lbmpiio

extern int lbmpiio

Flag to indicate if a single output file per simulation snapshot is to be written using MPI-IO (0 = off, 1 = on).

5.1. lbe.hpp 43

DL_MESO Technical Manual, Release 2.7

lbmrts

extern double lbmrts[8]

System-wide all-fluid collision frequencies for multiple relaxation time (MRT) collisions for non-hydrodynamic
moments intended to enhance the numerical stability of LBE calculations. (Default values are provided for each
lattice scheme but can be overridden by the user.)

lbmrtw

extern double lbmrtw[3]

System-wide parameters for local equilibrium values of energy-squared and diagonal fourth-order moments used
in multiple relaxation time (MRT) collisions. (Default values are provided for D2Q9, D3Q15 and D3Q19 lattice
schemes to boost numerical stablity of LBE calculations, which can only be changed by modifying source code:
no values are required for the D3Q27 lattice scheme.)

lbneigh

extern int* lbneigh

Numbers indicating existence and directions of neighbouring boundary lattice sites, with a number’s hundreds in-
dicating x-dimension, tens indicating y-dimension and units indicating z-dimension. The digits indicate existence
of neighbouring boundary points in particular directions and any fluid points available for calculating gradients of
fluid properties.

lbnoise

extern double lbnoise

Maximum amplitude of random noise in fluid densities (relative to specified values) when setting up LBE simula-
tion.

lbomega

extern double* lbomega

Relaxation frequencies for all fluids at each lattice point: these will change over time when using non-Newtonian
rheological models for fluids.

lbopv

extern int* lbopv

Lattice links that are conjugates (exact opposites) to current links.

44 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lboscilforce

extern double* lboscilforce

Amplitudes of oscillating forces acting on fluids throughout lattice that vary sinusoidally with time.

lboscilfreq

extern double lboscilfreq

Angular frequency of force sinusoidal oscillations applied at top boundary when using constant velocity boundary
condition.

lbouter

extern unsigned long* lbouter

List of lattice points (given as one-dimensional positions) at the outer edge of the processor’s subdomain, used to
distinguish boundary halo regions in parallel and lattice points with neighbours on opposite sides of the grid in
serial.

lboutersize

extern int lboutersize

Total number of lattice points at the outer edge of the processor’s subdomain.

lbphi

extern int* lbphi

Numbers indicating existence, type and directions for boundary conditions for all lattice points in subdomain.

lbpsi0

extern double* lbpsi0

Parameters (multipliers) for 1994 Shan-Chen pseudopotential model [119], 𝜓0.

lbrcssq

extern double lbrcssq

Reciprocal of the square of the speed of sound for the lattice, 𝑐−2
𝑠 , given in lattice-based units.

5.1. lbe.hpp 45

DL_MESO Technical Manual, Release 2.7

lbrestart

extern int lbrestart

Flag to indicate whether or not to read in the state of a previous simulation from a restart file (lbout.dump) and
resume that simulation (0 = off, 1 = on).

lbreynolds

extern double lbreynolds

Reynolds number 𝑅𝑒 = 𝑢𝐿
𝜈 representative of the LBE simulation, used in Plot3D solution files.

lbrheo

extern int* lbrheo

Identifiers of rheological models for fluids: 0 = constant kinematic viscosity, 1 = constant dynamic viscosity, 2 =
power law, 3 = Bingham plastic, 4 = Herschel-Bulkley, 5 = Casson, 6 = Carreau-Yasuda.

lbrheoa

extern double* lbrheoa

First parameters for rheological models (𝜈0, 𝜇0 or 𝜇∞).

lbrheob

extern double* lbrheob

Second parameters for rheological models (𝜎𝑦 , 𝜇0 or (𝜇0 − 𝜇∞)).

lbrheoc

extern double* lbrheoc

Third parameters for rheological models (𝜆 or exponential decay parameter 𝑚 for models with yield stresses).

lbrheod

extern double* lbrheod

Fourth parameters for rheological models (𝜆 or exponential decay parameter 𝑚 for models with yield stresses).

46 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbrheopower

extern double* lbrheopower

Indices 𝑛 for power-law-based rheological models (power law, Herschel-Bulkley, Carreau-Yasuda).

lbrigc

extern double* lbrigc

Concentrations of solutes at right boundary when using constant concentration boundary condition.

lbrigdt

extern double lbrigdt

Constant rate of change of temperature at right boundary when using temperature boundary condition.

lbrigp

extern double* lbrigp

Densities of fluids at right boundary when using constant density boundary condition.

lbrigt

extern double lbrigt

Temperature at right boundary when using constant temperature boundary condition.

lbrigv

extern double lbrigv[3]

Velocity for fluids at right boundary when using constant velocity boundary condition.

lbrigvbc

extern int lbrigvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at right boundary when using
constant velocity boundary condition (0 = off, 1 = on).

5.1. lbe.hpp 47

DL_MESO Technical Manual, Release 2.7

lbrigvfq

extern double lbrigvfq

Angular frequency of fluid velocity sinusoidal oscillations applied at right boundary when using constant velocity
boundary condition.

lbrigvoscil

extern double lbrigvoscil[3]

Amplitude of velocity for fluids at right boundary varying sinusoidally with time when using constant velocity
boundary condition.

lbsave

extern int lbsave

Interval (number of timesteps) between each simulation snapshot written to output file(s).

lbsbctyp

extern int lbsbctyp

Type of boundary conditions in use for constant solute concentrations: 0 = Zou-He, 1 = Inamuro.

lbscpot

extern int* lbscpot

Shan-Chen pseudopotential types for fluids to obtain particular equations of state.

lbscquad

extern double* lbscquad

Weighting factors between fluids for Shan-Chen interfacial forces with quadratic pseudopotential terms 𝛽𝑎𝑏.

lbseg

extern double* lbseg

Post-collisional segregation parameters between fluids 𝛽𝑎𝑏, used for Lishchuk continuum-based interactions.

48 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbsitelength

extern int lbsitelength

Total number of distribution functions per lattice point, equal to the product of the number of links per point and
the sum of numbers of fluids, solutes and temperature fields.

lbsoundv

extern double lbsoundv

Speed of sound for fluid 0 given in consistent ‘real world’ units, used to find actual grid spacing and timestep
sizes.

lbspair

extern int* lbspair

List of unlink fluid pairs to calculate interfacial normals for Lishchuk continuum-based interactions, also used to
calculate interfacial forces and apply post-collisional segregation.

lbsteer

extern int lbsteer

Flag to indicate if computational steering is to be applied during DL_MESO_LBE run (currently not in use) (0 =
off, 1 = on).

lbsy

extern sSystem lbsy

System information for LBE simulation (e.g. lattice scheme, system size, numbers of fluids), using struct sSystem
structure to store information.

lbsysdt

extern double lbsysdt

Constant rate of change of initial system-wide temperature at all lattice points when using temperature fields.

5.1. lbe.hpp 49

DL_MESO Technical Manual, Release 2.7

lbsyst

extern double lbsyst

System-wide temperature used in equations of state for Shan-Chen pseudiopotential and Swift free-energy inter-
actions.

lbtbctyp

extern int lbtbctyp

Type of boundary conditions in use for constant temperatures: 0 = Zou-He, 1 = Inamuro.

lbtc

extern double* lbtc

Relaxation frequencies 𝜔𝑐 = 1
𝜏𝑐

for solutes, related to (mass) diffusivities.

lbtf

extern double* lbtf

Relaxation frequencies 𝜔 = 1
𝜏 for fluids (or symmetric relaxation times for TRT collisions), related to kinematic

viscosities. (These are initial values when using non-Newtonian rheological models.)

lbtfbulk

extern double* lbtfbulk

Bulk relaxation frequencies 𝜔𝑏 = 1
𝜏𝑏

for fluids, related to bulk viscosities.

lbtfclb3

extern double* lbtfclb3

Third-order relaxation frequencies 𝜔3 = 1
𝜏3

for fluids, used as numerical stability parameters for cascaded LBE
(CLBE) collisions.

lbtfclb4

extern double* lbtfclb4

Fourth-order relaxation frequencies 𝜔4 = 1
𝜏4

for fluids, used as numerical stability parameters for cascaded LBE
(CLBE) collisions.

50 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbtmob

extern double lbtmob

Concentration relaxation frequency 𝜔𝜑 = 1
𝜏𝜑

between two fluid species with Swift free-energy interactions, related
to mobility.

lbtopc

extern double* lbtopc

Concentrations of solutes at top boundary when using constant concentration boundary condition.

lbtopdt

extern double lbtopdt

Constant rate of change of temperature at top boundary when using temperature boundary condition.

lbtopp

extern double* lbtopp

Densities of fluids at top boundary when using constant density boundary condition.

lbtopt

extern double lbtopt

Temperature at top boundary when using constant temperature boundary condition.

lbtopv

extern double lbtopv[3]

Velocity for fluids at top boundary when using constant velocity boundary condition.

lbtopvbc

extern int lbtopvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at top boundary when using
constant velocity boundary condition (0 = off, 1 = on).

5.1. lbe.hpp 51

DL_MESO Technical Manual, Release 2.7

lbtopvfq

extern double lbtopvfq

Angular frequency of fluid velocity sinusoidal oscillations applied at top boundary when using constant velocity
boundary condition.

lbtopvoscil

extern double lbtopvoscil[3]

Amplitude of velocity for fluids at top boundary varying sinusoidally with time when using constant velocity
boundary condition.

lbtotstep

extern int lbtotstep

Total number of timesteps required for LBE simulation.

lbtr

extern double* lbtr

Matrix used in multiple relaxation time (MRT) collisions T to transform distribution functions to moments prior
to applying collisions.

lbtrinv

extern double* lbtrinv

Matrix used in multiple relaxation time (MRT) collisions T−1 to transform moments to distribution functions
after applying collisions.

lbtrtmagic

extern double lbtrtmagic

‘Magic number’ for two relaxation time (TRT) symmetric and anti-symmetric relaxation times: Λ𝑒𝑜 =(︀
𝜏+ − 1

2

)︀ (︀
𝜏− − 1

2

)︀
.

52 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbtt

extern double* lbtt

Relaxation frequencies 𝜔𝑡 = 1
𝜏𝑡

for temperature fields, related to thermal diffusivities (conduction). (Only one
thermal relaxation frequency is currently used.)

lbvwx

extern double* lbvwx

Products of x-components of link vectors and the corresponding weighting parameter, 𝑤𝑖𝑒𝑖,𝑥, used for gradi-
ent calculations and post-collisional segregations in Shan-Chen pseudopotential and Lishchuk continuum-based
interactions.

lbvwy

extern double* lbvwy

Products of y-components of link vectors and the corresponding weighting parameter, 𝑤𝑖𝑒𝑖,𝑦 , used for gradi-
ent calculations and post-collisional segregations in Shan-Chen pseudopotential and Lishchuk continuum-based
interactions.

lbvwz

extern double* lbvwz

Products of z-components of link vectors and the corresponding weighting parameter, 𝑤𝑖𝑒𝑖,𝑧 , used for gradi-
ent calculations and post-collisional segregations in Shan-Chen pseudopotential and Lishchuk continuum-based
interactions.

lbvx

extern int* lbvx

Link (speed) vectors for the lattice scheme in use (x-components), 𝑒𝑖,𝑥.

lbvy

extern int* lbvy

Link (speed) vectors for the lattice scheme in use (y-components), 𝑒𝑖,𝑦 .

5.1. lbe.hpp 53

DL_MESO Technical Manual, Release 2.7

lbvz

extern int* lbvz

Link (speed) vectors for the lattice scheme in use (z-components), 𝑒𝑖,𝑧 .

lbw

extern double* lbw

Weighting parameters for each lattice link 𝑤𝑖 used to calculate local equilibrium distribution functions (excluding
those for Swift free-energy interactions).

lbw0

extern double* lbw0

Weighting parameters for each lattice link 𝑤00
𝑖 used for density-dependent terms in local equilibrium distribution

functions for Swift free-energy interactions.

lbwdel

extern double* lbwdel

Weighting parameters for each lattice link 𝛿𝑖 used for Galilean invariance correction terms in local equilibrium
distribution functions for Swift free-energy interactions.

lbwet

extern int* lbwet

Type of solid-fluid wetting to be applied at lattice points close to solid boundaries, for either Shan-Chen pseu-
dopotential (0 = density, 1 = potential, 2 = screened potential) or Swift free-energy interactions (0 = none, 1 =
quadratic).

lbwgam

extern double* lbwgam

Weighting parameters for each lattice link 𝛾𝑖 used for Galilean invariance correction terms in local equilibrium
distribution functions for Swift free-energy interactions.

54 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbwi

extern double* lbwi

Weighting parameters for each lattice link 𝑤𝑖 used for velocity-dependent terms in local equilibrium distribution
functions for Swift free-energy interactions.

lbwpt

extern double* lbwpt

Weighting parameters for each lattice link 𝑤𝑝
𝑖 = 𝑤𝑡

𝑖 used for bulk pressure and second-order gradient terms for
surface tension in local equilibrium distribution functions for Swift free-energy interactions.

lbwxx

extern double* lbwxx

Weighting parameters for each lattice link𝑤𝑥𝑥
𝑖 used for xx-component first-order gradient terms for surface tension

in local equilibrium distribution functions for Swift free-energy interactions.

lbwxy

extern double* lbwxy

Weighting parameters for each lattice link𝑤𝑥𝑦
𝑖 used for xy-component first-order gradient terms for surface tension

in local equilibrium distribution functions for Swift free-energy interactions.

lbwxz

extern double* lbwxz

Weighting parameters for each lattice link𝑤𝑥𝑧
𝑖 used for xz-component first-order gradient terms for surface tension

in local equilibrium distribution functions for Swift free-energy interactions.

lbwyy

extern double* lbwyy

Weighting parameters for each lattice link𝑤𝑦𝑦
𝑖 used for yy-component first-order gradient terms for surface tension

in local equilibrium distribution functions for Swift free-energy interactions.

5.1. lbe.hpp 55

DL_MESO Technical Manual, Release 2.7

lbwyz

extern double* lbwyz

Weighting parameters for each lattice link𝑤𝑦𝑧
𝑖 used for yz-component first-order gradient terms for surface tension

in local equilibrium distribution functions for Swift free-energy interactions.

lbwzz

extern double* lbwzz

Weighting parameters for each lattice link𝑤𝑧𝑧
𝑖 used for zz-component first-order gradient terms for surface tension

in local equilibrium distribution functions for Swift free-energy interactions.

nonnewtonian

extern int nonnewtonian

Flag to indicate whether or not fluid relaxation frequencies (and shear rates) are to be calculated for each timestep,
i.e. if a rheological model is to be applied: 0 = no rheology calculations, 1 = calculations of relaxation frequencies
for Newtonian fluids without calculating shear rates, 2 = calculations of shear rates and relaxation frequencies for
non-Newtonian fluids.

outformat

extern int outformat

Flag to indicate format for output files with simulation snapshots: 0 = binary XML-based Vtk, 1 = binary Legacy
VTK, 2 = binary Plot3D, 3 = ANSI/text XML-based VTK, 4 = ANSI/text Legacy VTK, 5 = ANSI/text Plot3D.

postequil

extern int postequil

Flag to indicate whether or not equilibration period has passed (1 = yes, 0 = no): boundary conditions other than
bounce-back and body forces are only applied after equilibration.

qVersion

extern int qVersion

Upcoming number for output file(s) of simulation snapshot, used in filename(s) for output file(s).

56 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

timetotal

extern double timetotal

Total wall time (in seconds) spent on LBE calculations during DL_MESO_LBE run: used to determine efficiency
measure (MLUPS, millions of lattice updates per second).

5.2 plbe.hpp

Common variables and arrays when running DL_MESO_LBE in parallel.

Required variables and arrays for LBE calculations that are applicable for parallel running of DL_MESO_LBE.

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <ctime>
#include <cstdio>
#include <cmath>
#include <iomanip>
#include <string>
#include <cstring>
#include <sstream>
#include <vector>
#include <sys/time.h>
#include <sys/stat.h>
#include <mpi.h>
#include "lbe.hpp"

5.2.1 Classes

• struct sNeighbour

Structure for neighbouring processor information.

• struct sIOGroup

Structure for I/O group.

5.2.2 Macros

• #define omp_get_num_thread

Setting OpenMP number of threads when compiling DL_MESO_LBE without OpenMP.

• #define omp_get_thread_num

Setting OpenMP thread number when compiling DL_MESO_LBE without OpenMP.

5.2. plbe.hpp 57

DL_MESO Technical Manual, Release 2.7

5.2.3 Variables

• sNeighbour lbnb

Neighbour information for LBE simulation on current processor.

• sIOGroup lbIOGroup

I/O group information for LBE simulation on current processor.

• MPI_Comm ioRootCommunicator

MPI communicator among file writing processors.

• MPI_File output_handle

MPI file handle for writing simulation snapshot output files.

• MPI_File dump_handle

MPI file handle for writing simulation restart files.

• MPI_Datatype lbmsg2x

MPI derived datatype to send/receive distribution functions in x-direction in 2D.

• MPI_Datatype lbmsg2y

MPI derived datatype to send/receive distribution functions in y-direction in 2D.

• MPI_Datatype lbmsg3x

MPI derived datatype to send/receive distribution functions in x-direction in 3D.

• MPI_Datatype lbmsg3y

MPI derived datatype to send/receive distribution functions in y-direction in 3D.

• MPI_Datatype lbmsg3z

MPI derived datatype to send/receive distribution functions in z-direction in 3D.

• MPI_Datatype lbbmsg2x

MPI derived datatype to send/receive boundary conditions (phase fields) in x-direction in 2D.

• MPI_Datatype lbbmsg2y

MPI derived datatype to send/receive boundary conditions (phase fields) in y-direction in 2D.

• MPI_Datatype lbbmsg3x

MPI derived datatype to send/receive boundary conditions (phase fields) in x-direction in 3D.

• MPI_Datatype lbbmsg3y

MPI derived datatype to send/receive boundary conditions (phase fields) in y-direction in 3D.

• MPI_Datatype lbbmsg3z

MPI derived datatype to send/receive boundary conditions (phase fields) in z-direction in 3D.

• MPI_Datatype lbfmsg2x

MPI derived datatype to send/receive interfacial forces in x-direction in 2D.

• MPI_Datatype lbfmsg2y

MPI derived datatype to send/receive interfacial forces in y-direction in 2D.

• MPI_Datatype lbfmsg3x

MPI derived datatype to send/receive interfacial forces in x-direction in 3D.

• MPI_Datatype lbfmsg3y

MPI derived datatype to send/receive interfacial forces in y-direction in 3D.

58 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• MPI_Datatype lbfmsg3z

MPI derived datatype to send/receive interfacial forces in z-direction in 3D.

• MPI_Datatype lbimsg2x

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in x-direction
in 2D.

• MPI_Datatype lbimsg2y

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in y-direction
in 2D.

• MPI_Datatype lbimsg3x

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in x-direction
in 3D.

• MPI_Datatype lbimsg3y

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in y-direction
in 3D.

• MPI_Datatype lbimsg3z

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in z-direction
in 3D.

• MPI_Datatype lbnmsg2x

MPI derived datatype to send/receive surface normals in x-direction in 2D.

• MPI_Datatype lbnmsg2y

MPI derived datatype to send/receive surface normals in y-direction in 2D.

• MPI_Datatype lbnmsg3x

MPI derived datatype to send/receive surface normals in x-direction in 3D.

• MPI_Datatype lbnmsg3y

MPI derived datatype to send/receive surface normals in y-direction in 3D.

• MPI_Datatype lbnmsg3z

MPI derived datatype to send/receive surface normals in z-direction in 3D.

5.2.4 Class Documentation

struct sNeighbour

Structure for information about communications between processors (e.g. numbers for neighbouring processors,
locations in arrays for sending and receiving data to/from neighbours).

5.2. plbe.hpp 59

DL_MESO Technical Manual, Release 2.7

Table 5.4: Class Members
un-
signed
long
int

br-
pos

Starting positions in boundary condition (lbphi) and neighbouring boundary information (lb-
neigh) arrays for receiving boundary information from neighbouring processors as boundary
halos.

un-
signed
long
int

bspos Starting positions in boundary condition (lbphi) and neighbouring boundary information (lb-
neigh) arrays for sending boundary information to neighbouring processors.

un-
signed
long
int

fr-
pos

Starting positions in interfacial forces array (lbinterforce) for receiving interfacial forces from
neighbouring processors as boundary halos.

un-
signed
long
int

fs-
pos

Starting positions in interfacial forces array (lbinterforce) for sending interfacial forces to
neighbouring processors.

un-
signed
long
int

ir-
pos

Starting positions in array for either Lishchuk interfacial normals or Swift free-energy gradi-
ents in density and concentration (lbft) for receiving normals or gradients from neighbouring
processors as boundary halos.

un-
signed
long
int

is-
pos

Starting positions in array for either Lishchuk interfacial normals or Swift free-energy gra-
dients in density and concentration (lbft) for sending normals or gradients to neighbouring
processors.

un-
signed
long
int

nr-
pos

Starting positions in surface normals (lbboundnorm) array for receiving surface normals from
neighbouring processors as boundary halos.

un-
signed
long
int

nspos Starting positions in surface normals (lbboundnorm) array for sending surface normals to
neighbouring processors.

int rank Identifying neighbouring processors by numbers (ranks).
un-
signed
long
int

rpos Starting positions in distribution function array (lbf) for receiving distribution functions from
neighbouring processors as boundary halos.

un-
signed
long
int

spos Starting positions in distribution function array (lbf) for sending distribution functions to
neighbouring processors.

struct sIOGroup

Structure for information about I/O group for writing output files (e.g. processors in group, identity of root
processor for gathering and writing data to files, extent of lattice covered by group).

60 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.5: Class Members
MPI_Commcart-

Com-
muni-
cator

MPI communicator for entire Cartesian grid of processors in simulation, used to generate I/O
communicator by specifying combinations in Cartesian directions (subgrid).

int cart-
Co-
ords[3]

Coordinates of current processor within entire grid of processors established to divide up
lattice as equally as possible. These coordinates are determined by creating a Cartesian com-
municator and are checked against those predicted in simulation domain setup.

int car-
tEnd[3]

Ending coordinates of the I/O group in terms of numbers of processors (top-right-front cor-
ner).

int cart-
Start[3]

Starting coordinates of the I/O group in terms of numbers of processors (bottom-left-back
corner).

int gri-
dEnd-
Global[3]

Ending coordinates of the section of lattice covered by I/O group (top-right-front corner).

int grid-
Start-
Global[3]

Starting coordinates of the section of lattice covered by I/O group (bottom-left-back corner).

int groupId Number (identifier) for the current I/O group: this is used in output filenames when more than
one file is written per snapshot (i.e. when MPI-IO is not in use).

MPI_Commio-
Com-
muni-
cator

MPI communicator for all processors in the I/O group, used for gathering data to be written
to output files.

int rank Number (rank) of current processor in I/O group: used to identify processor within group.
(This value might not be the same as the rank (processor number) for the entire simulation
domain.)

int rootRank Number (rank) of root processor for the I/O group: data for the group is gathered onto this
processor, which then writes it to the output file.

int root-
Size

Total number of root processors in all I/O groups, i.e. the total number of processors involved
in writing to output files.

int size Total number of processors in the I/O group.
int * sort-

point
List of one-dimensional grid locations to put each data value in the required sorted order
for the output file (sorting by x-coordinate as the fastest changing coordinate, followed by
y-coordinate and then z-coordinate) prior to writing the data to the file.

int sub-
grid[3]

Flags to indicate in which directions to combine lattice subdomains when forming I/O groups,
i.e. creating I/O groups by collecting together processors in each Cartesian direction.

Macro Definition Documentation

omp_get_num_thread

#define omp_get_num_thread() 1

Sets the number of OpenMP threads to 1 for the function omp_get_num_thread when DL_MESO_LBE is not
compiled with OpenMP.

5.2. plbe.hpp 61

DL_MESO Technical Manual, Release 2.7

omp_get_thread_num

#define omp_get_thread_num() 0`

Sets the OpenMP thread number to 0 for the function omp_get_thread_num when DL_MESO_LBE is not com-
piled with OpenMP.

Variable Documentation

dump_handle

MPI_File dump_handle

MPI file handle to identify simulation restart files (lbout.dump) when writing data using MPI-IO.

ioRootCommunicator

MPI_Comm ioRootCommunicator

MPI communicator among root processors of I/O groups to coordinate writing to output files using MPI-IO.

lbbmsg2x

MPI_Datatype lbbmsg2x

MPI derived datatype to send and receive boundary conditions (phase fields) in x-directions for a two-dimensional
simulation.

lbbmsg2y

MPI_Datatype lbbmsg2y

MPI derived datatype to send and receive boundary conditions (phase fields) in y-directions for a two-dimensional
simulation.

lbbmsg3x

MPI_Datatype lbbmsg3x

MPI derived datatype to send and receive boundary conditions (phase fields) in x-directions for a three-
dimensional simulation.

62 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbbmsg3y

MPI_Datatype lbbmsg3y

MPI derived datatype to send and receive boundary conditions (phase fields) in y-directions for a three-
dimensional simulation.

lbbmsg3z

MPI_Datatype lbbmsg3z

MPI derived datatype to send and receive boundary conditions (phase fields) in z-directions for a three-dimensional
simulation.

lbfmsg2x

MPI_Datatype lbfmsg2x

MPI derived datatype to send and receive interfacial forces in x-directions for a two-dimensional simulation.

lbfmsg2y

MPI_Datatype lbfmsg2y

MPI derived datatype to send and receive interfacial forces in y-directions for a two-dimensional simulation.

lbfmsg3x

MPI_Datatype lbfmsg3x

MPI derived datatype to send and receive interfacial forces in x-directions for a three-dimensional simulation.

lbfmsg3y

MPI_Datatype lbfmsg3y

MPI derived datatype to send and receive interfacial forces in y-directions for a three-dimensional simulation.

lbfmsg3z

MPI_Datatype lbfmsg3z

MPI derived datatype to send and receive interfacial forces in z-directions for a three-dimensional simulation.

5.2. plbe.hpp 63

DL_MESO Technical Manual, Release 2.7

lbimsg2x

MPI_Datatype lbimsg2x

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in x-directions for
a two-dimensional simulation.

lbimsg2y

MPI_Datatype lbimsg2y

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in y-directions for
a two-dimensional simulation.

lbimsg3x

MPI_Datatype lbimsg3x

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in x-directions for
a three-dimensional simulation.

lbimsg3y

MPI_Datatype lbimsg3y

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in y-directions for
a three-dimensional simulation.

lbimsg3z

MPI_Datatype lbimsg3z

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in z-directions for
a three-dimensional simulation.

lbIOGroup

extern sIOGroup lbIOGroup

Information about I/O group for LBE simulation on current processor (e.g. MPI communicators, processor and
lattice extents covered by group).

64 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

lbmsg2x

MPI_Datatype lbmsg2x

MPI derived datatype to send and receive distribution functions in x-directions for a two-dimensional simulation.

lbmsg2y

MPI_Datatype lbmsg2y

MPI derived datatype to send and receive distribution functions in y-directions for a two-dimensional simulation.

lbmsg3x

MPI_Datatype lbmsg3x

MPI derived datatype to send and receive distribution functions in x-directions for a three-dimensional simulation.

lbmsg3y

MPI_Datatype lbmsg3y

MPI derived datatype to send and receive distribution functions in y-directions for a three-dimensional simulation.

lbmsg3z

MPI_Datatype lbmsg3z

MPI derived datatype to send and receive distribution functions in z-directions for a three-dimensional simulation.

lbnb

extern sNeighbour lbnb[6]

Neighbour information for LBE simulation on current processor (e.g. neighbouring processor ranks, locations for
sending/receiving data).

lbnmsg2x

MPI_Datatype lbnmsg2x

MPI derived datatype to send and receive surface normals in x-directions for a two-dimensional simulation.

5.2. plbe.hpp 65

DL_MESO Technical Manual, Release 2.7

lbnmsg2y

MPI_Datatype lbnmsg2y

MPI derived datatype to send and receive surface normals in y-directions for a two-dimensional simulation.

lbnmsg3x

MPI_Datatype lbnmsg3x

MPI derived datatype to send and receive surface normals in x-directions for a three-dimensional simulation.

lbnmsg3y

MPI_Datatype lbnmsg3y

MPI derived datatype to send and receive surface normals in y-directions for a three-dimensional simulation.

lbnmsg3z

MPI_Datatype lbnmsg3z

MPI derived datatype to send and receive surface normals in z-directions for a three-dimensional simulation.

output_handle

MPI_File output_handle

MPI file handle to identify simulation snapshot output files (in XML-based VTK, Legacy VTK or Plot3D formats)
when writing data using MPI-IO.

5.3 slbe.hpp

Common variables and arrays when running DL_MESO_LBE in serial.

Required variables and arrays for LBE calculations that are applicable for serial running of DL_MESO_LBE.

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <ctime>
#include <cstdio>
#include <cmath>
#include <iomanip>
#include <string>
#include <cstring>
#include <sstream>
#include <vector>
#include <sys/time.h>
#include <sys/stat.h>
#include "lbe.hpp"
#include "lbpBASIC.hpp"

(continues on next page)

66 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

#include "lbpGET.hpp"
#include "lbpIOAGGSER.hpp"
#include "lbpMODEL.hpp"
#include "lbpIO.hpp"
#include "lbpIOPlot3D.hpp"
#include "lbpIOLegacyVTK.hpp"
#include "lbpIOVTK.hpp"
#include "lbpFORCE.hpp"
#include "lbpRHEOLOGY.hpp"
#include "lbpBGK.hpp"
#include "lbpTRT.hpp"
#include "lbpMRT.hpp"
#include "lbpCLBE.hpp"
#include "lbpSUB.hpp"
#include "lbpBOUND.hpp"
#include "lbpBOUNDZouHe.hpp"
#include "lbpBOUNDInamuro.hpp"
#include "lbpBOUNDRegular.hpp"
#include "lbpBOUNDKinetic.hpp"
#include "lbpUSER.hpp"
#include "lbpRUNSER.hpp"
#include "lbpBASIC.cpp"
#include "lbpGET.cpp"
#include "lbpIOAGGSER.cpp"
#include "lbpMODEL.cpp"
#include "lbpIO.cpp"
#include "lbpIOPlot3D.cpp"
#include "lbpIOLegacyVTK.cpp"
#include "lbpIOVTK.cpp"
#include "lbpFORCE.cpp"
#include "lbpRHEOLOGY.cpp"
#include "lbpBGK.cpp"
#include "lbpTRT.cpp"
#include "lbpMRT.cpp"
#include "lbpCLBE.cpp"
#include "lbpSUB.cpp"
#include "lbpBOUND.cpp"
#include "lbpBOUNDZouHe.cpp"
#include "lbpBOUNDInamuro.cpp"
#include "lbpBOUNDRegular.cpp"
#include "lbpBOUNDKinetic.cpp"
#include "lbpUSER.cpp"
#include "lbpRUNSER.cpp"

5.3.1 Classes

• struct sIOGroup

Structure for I/O group. (Common to plbe.hpp.)

5.3. slbe.hpp 67

DL_MESO Technical Manual, Release 2.7

5.3.2 Macros

• #define omp_get_num_thread

Setting OpenMP number of threads when compiling DL_MESO_LBE without OpenMP.

• #define omp_get_thread_num

Setting OpenMP thread number when compiling DL_MESO_LBE without OpenMP.

5.3.3 Variables

• sIOGroup lbIOGroup

I/O group information for LBE simulation on current processor.

Variable Documentation

lbIOGroup

lbIOGroup slbe.hpp slbe.hpp lbIOGroup extern sIOGroup lbIOGroup

Information about I/O group for LBE simulation on current processor (e.g. MPI communicators, processor and
lattice extents covered by group).

5.4 plbe.cpp

Main DL_MESO_LBE program for parallel running. (Header file available in plbe.hpp.)

Main DL_MESO_LBE program to run LBE simulations in parallel using Message Passing Interface (MPI) for
processor-to-processor communications and optionally using OpenMP multithreading.

5.4.1 Functions

• int main()

Main program for running DL_MESO_LBE in parallel.

5.4.2 Function Documentation

main()

int main (int argc, char * argv[])

The main content of this source file is to read input files, set up the simulation, select the main simulation loop
based on the selected type of interactions between fluids or phases, and close the simulation down after completing
all specified timesteps or running out of calculation time.

Parameters

in argc Number of command-line arguments included in command to launch DL_MESO_LBE
in argv Character array of command-line arguments

68 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.5 slbe.cpp

Main DL_MESO_LBE program for serial running. (Header file available in slbe.hpp.)

Main DL_MESO_LBE program to run LBE simulations in serial, optionally using OpenMP multithreading.

5.5.1 Functions

• int main()

Main program for running DL_MESO_LBE in serial.

5.5.2 Function Documentation

main()

int main (int argc, char * argv[])

The main content of this source file is to read input files, set up the simulation, select the main simulation loop
based on the selected type of interactions between fluids or phases, and close the simulation down after completing
all specified timesteps or running out of calculation time.

Parameters

in argc Number of command-line arguments included in command to launch DL_MESO_LBE
in argv Character array of command-line arguments

5.6 lbpRUNPAR.cpp and lbpRUNSER.cpp

Modules with main simulation loops for parallel and serial running. (Header files available as lbpRUNPAR.hpp
and lbpRUNSER.hpp.)

Subroutines with main simulation loops for LBE simulations in parallel (lbpRUNPAR.cpp) and serial (lbpRUN-
PAR.cpp) based on interaction types.

5.6.1 Functions

The functions shown here are those included in lbpRUNPAR.cpp for parallel LBE simulations: similar ones are
available in lbpRUNSER.cpp for serial LBE simulations with the initial f changed to fs, e.g. fsNoInteract
in place of fNoInteract.

• int fNoInteract()

Simulation loop for LBE simulations without mesoscopic interactions.

• int fShanChen()

Simulation loop for LBE simulations with Shan-Chen pseudopotential interactions.

• int fShanChenQuadratic()

Simulation loop for LBE simulations with quadratic Shan-Chen pseudopotential interactions.

• int fLishchuk()

Simulation loop for LBE simulations with Lishchuk continuum-based interactions.

5.5. slbe.cpp 69

DL_MESO Technical Manual, Release 2.7

• int fLishchukSpencer()

Simulation loop for LBE simulations with Lishchuk-Spencer continuum-based interactions.

• int fLishchukSpencerTensor()

Simulation loop for LBE simulations with Lishchuk ‘Spencer tensor’ continuum-based interactions.

• int fLishchukLocal()

Simulation loop for LBE simulations with local Lishchuk continuum-based interactions.

• int fSwift()

Simulation loop for LBE simulations with Swift free-energy interactions.

5.6.2 Function Documentation

Note that the first call for each function refers to the parallel version of DL_MESO_LBE (as contained in lbpRUN-
PAR.cpp), while the second refers to the serial version (as contained in lbpRUNSER.cpp). The major differences
between the two functions are additional calls for core-to-core communications in the parallel version and alter-
native interaction calculation routines to include grid points at the system edges for the serial version.

fLishchuk()

int fLishchuk ()
int fsLishchuk ()

Main simulation loop for a LBE simulation with standard Lishchuk continuum-based interactions between fluids
(non-local calculation of interfacial normals, calculation of interfacial forces with interfacial curvatures). By
default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected and
the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fLishchukLocal()

int fLishchukLocal ()
int fsLishchukLocal ()

Main simulation loop for a LBE simulation with fully local Lishchuk continuum-based interactions between fluids
(local calculation of interfacial normals, application of direct interaction forcing term in collisions). By default,
the simulation will run for the specified number of timesteps, but if a calculation time is also selected and the
running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fLishchukSpencer()

int fLishchukSpencer ()
int fsLishchukSpencer ()

Main simulation loop for a parallel LBE simulation with Lishchuk-Spencer continuum-based interactions between
fluids (non-local calculation of interfacial normals, calculation of interfacial forces without interfacial curvatures).
By default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected
and the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

70 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fLishchukSpencerTensor()

int fLishchukSpencerTensor ()
int fsLishchukSpencerTensor ()

Main simulation loop for a LBE simulation with Lishchuk ‘Spencer tensor’ continuum-based interactions between
fluids (non-local calculation of interfacial normals, application of direct interaction forcing term in collisions). By
default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected and
the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fNoInteract()

int fNoInteract ()
int fsNoInteract ()

Main simulation loop for a LBE simulation without mesoscopic interactions between fluids or phases. By default,
the simulation will run for the specified number of timesteps, but if a calculation time is also selected and the
running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fShanChen()

int fShanChen ()
int fsShanChen ()

Main simulation loop for a LBE simulation with standard Shan-Chen pseudopotential interactions between fluids
or phases. By default, the simulation will run for the specified number of timesteps, but if a calculation time is also
selected and the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated
safely.

fShanChenQuadratic()

int fShanChenQuadratic ()
int fsShanChenQuadratic ()

Main simulation loop for a parallel LBE simulation with Shan-Chen pseudopotential interactions between fluids
or phases with quadratic pseudopotential terms. By default, the simulation will run for the specified number of
timesteps, but if a calculation time is also selected and the running time exceeds this value at the end of an earlier
timestep, the simulation will be terminated safely.

fSwift()

int fSwift ()
int fsSwift ()

Main simulation loop for a LBE simulation with Swift free-energy interactions between fluids or phases. By
default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected and
the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

5.6. lbpRUNPAR.cpp and lbpRUNSER.cpp 71

DL_MESO Technical Manual, Release 2.7

5.7 plbecustom.cpp, slbecustom.cpp and slbecombine.cpp

Customisable DL_MESO_LBE programs for parallel running (plbecustom.cpp), serial running (slbecustom.cpp)
and serial running with boundary halos (slbecombine.cpp). The standard headers for parallel and serial running,
plbe.hpp and slbe.hpp, are used for these programs.

Customisable versions of DL_MESO_LBE program to run LBE simulations in parallel using Message Passing
Interface (MPI) for processor-to-processor communications (plbecustom.cpp), in serial (slbecustom.cpp) and in
serial with boundary halos (slbecombine.cpp), all optionally using OpenMP multithreading.

5.7.1 Functions

• int main()

Customisable program for running DL_MESO_LBE.

5.7.2 Function Documentation

main()

int main (int argc, char ** argv)

The main content of these source files is to set up MPI (if running in parallel), read input files, set up the simulation
(including I/O groups of processors to write output files), run through the main simulation loop, and close the
simulation down after completing all specified timesteps. These versions of the code are intended for advanced
DL_MESO users to select which subroutines are used for force calculations, collisions, output file writing and
communications: these options are effectively hard-coded in and cannot be changed in input files. (This approach
could be used for running LBE simulations with user-created subroutines.) The source file slbecombine.cpp makes
use of boundary halos for serial running (unlike the standard serial code slbe.cpp) and includes calls to subroutines
for filling grid points in the boundary halo with values for distribution functions, interaction forces etc.

Parameters

in argc Number of command-line arguments included in command to launch DL_MESO_LBE
in argv Character array of command-line arguments

5.8 lbpBASIC.cpp

5.8.1 Summary

Module with general-purpose functions and subroutines required for LBE simulations, such as sorting numbers,
byte-swapping and random number generator. (Header file available as lbpBASIC.hpp.)

5.8.2 Functions

• template <class T> T fCppAbs()

Returns absolute value of input value.

• template <class T> T fCppSign()

Returns sign of input value.

• template <class T> T fReciprocal()

Returns reciprocal while avoiding divisions by zero.

72 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• template <class T> T fEvapLimit()

Applies evaporation limit for input value.

• template <class T> void fSwapPair()

Swaps a pair of numbers.

• template <typename T> T fStringToNumber()

Parses a string and returns numbers contained in it.

• template <typename T> T fCppMax()

Finds maximum of a pair of numbers.

• template <typename T> T fCppMin()

Finds minimum of a pair of numbers.

• int fGetNumberOrdered()

Rearranges two or three integers in descending numerical order.

• int fGetNumberOrderFixed()

Rearranges two or three integers in the same numerical order as another set of two or three integers.

• int fBestGrouping()

Distributes grid points among processors as evenly as possible.

• int fCppMod()

Calculates modulo of a value within a given range.

• long fCppMod()

Calculates modulo of a value within a given range.

• int fPrintLine()

Prints a line of ‘-‘ characters.

• int fPrintDoubleLine()

Prints a line of ‘=’ characters.

• double fRandom()

Generates a random number between -1 and +1.

• int fBigEndian()

Detects endianness of machine running DL_MESO_LBE.

• void fByteSwap()

Swaps the byte order of a given value or series of values.

• double fCheckTimeSerial()

Outputs time in seconds.

• string fReadString()

Outputs a given ‘word’ in an input string.

5.8. lbpBASIC.cpp 73

DL_MESO Technical Manual, Release 2.7

5.8.3 Function Documentation

fBestGrouping()

int fBestGrouping (int totalgrid,
int totalgroup,
int & indigrid,
int & critigroup)

Based on the total number of grid points in a given direction and the total number of processors in the same
direction, calculate the numbers of grid points per processor to give as even a distribution as possible. This is
achieved by calculating a larger number of grid points and the number of processors to apply this to: the other
processors will use the same number less 1.

Parameters

in total-
grid

Total number of grid points in given direction

in total-
group

Total number of processors over which to split the grid points

out indigrid Larger number of grid points per processor
out criti-

group
Number of processors to apply larger number of grid points (beyond which, the number of
grid points is indigrid-1)

fBigEndian()

int fBigEndian ()

Check to determine the endianness of the computer running DL_MESO_LBE: returns 1 for big endian, 0 for little
endian.

fByteSwap()

void fByteSwap (void * data,
int len,
int count)

Swaps the byte order of a given array of values to convert between endian types. This subroutine is mainly
required when writing binary files where a specific endianness is required (e.g. binary VTK files are required in
big endian).

Parameters

in,out data Values in an array (of any type) for swapping endianness
in len Length of a single value in input array in bytes
in count Number of values in array

74 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCheckTimeSerial()

double fCheckTimeSerial ()

Checks the time since the first call of the function obtained from system clock. This function is used to time
DL_MESO_LBE simulations run in serial: there is an alternative function to do the same for parallel calculations
(fCheckTimeMPI).

fCppAbs()

template <class T>
T fCppAbs (T a)

Finds and returns the absolute value of an inputted number by removing its negative sign if less than zero.

Parameters

in a Number whose absolute value is to be found.

fCppMax()

template <typename T>
T fCppMax (T & a, T & b)

Finds the larger of two inputted numbers and returns the larger number’s value.

Parameters

in a First number to compare.
in b Second number to compare.

fCppMin()

template <typename T>
T fCppMin (T & a, T & b)

Finds the smaller of two inputted numbers and returns the smaller number’s value.

Parameters

in a First number to compare.
in b Second number to compare.

fCppMod()

int fCppMod (int a, int b)
long fCppMod (long a, long b)

Ensures a given value (a) is within a given range (0 to b-1), so the value immediately beyond the maximum value
equals the minimum, and vice versa, i.e. the output equals 𝑎− 𝑏 when 𝑎 ≥ 𝑏 or 𝑎+ 𝑏 when 𝑎 < 0. This function
is useful for applying periodic boundary conditions.

Parameters

5.8. lbpBASIC.cpp 75

DL_MESO Technical Manual, Release 2.7

in,out a Value to find modulo of (i.e. output is in range 0 to b-1)
in b Range within which value should fit

fCppSign()

template <class T>
T fCppSign (T a)

Finds and returns the sign of an inputted number (giving +1 for a positive number, -1 for a negative number, or 0
for zero.)

Parameters

in a Number whose sign is to be found.

fEvapLimit()

template <class T>
T fEvapLimit (T a)

Returns an input number if it is larger than the small number set as the evaporation limit: if the number is smaller,
zero is returned.

Parameters

in a Number to assess compared with evaporation limit.

fGetNumberOrdered()

int fGetNumberOrdered (int & iox, int & ioy)
int fGetNumberOrdered (int & iox, int & ioy, int & ioz)

Rearranges two or three integers to put them into descending numerical order, i.e. largest to smallest.

Parameters

in,out &iox First integer
in,out &ioy Second integer
in,out &ioz Third integer

fGetNumberOrderFixed()

int fGetNumberOrderFixed (int & iox, int & ioy, int & ioz, int ix, int iy, int iz)
int fGetNumberOrderFixed (int & iox, int & ioy, int ix, int iy)

Rearranges two or three integers to put them into the same numerical order as another set of two or three integers.

Parameters

76 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out &iox First integer to sort
in,out &ioy Second integer to sort
in,out &ioz Third integer to sort
in ix First integer as basis of sorting
in iy Second integer as basis of sorting
in iz Third integer as basis of sorting

fPrintDoubleLine()

int fPrintDoubleLine ()

Prints a line of 76 ‘=’ characters to standard output as part of a DL_MESO_LBE run.

fPrintLine()

int fPrintLine ()

Prints a line of 76 ‘-‘ characters to standard output as part of a DL_MESO_LBE run.

fRandom()

double fRandom ()

Applies a single linear congruential random number generator:

𝑢𝑛 = (𝑎𝑢𝑛−1 + 𝑐) (mod 𝑚)

to generate a random number between -1 and +1 for initailising LBE simulations with random noise in fluid
densities. This random number generator applies a seed based on the processor number (rank) the first time this
function is called, so different results will be obtained when using different numbers of processors.

fReadString()

string fReadString (string line, int i)

Reads a given string delimited by spaces and outputs the ‘i’-th word from that string: this function is used when
reading input files.

Parameters

in line String to be read
in i Number of word in input string to output

fReciprocal()

template <class T>
T fReciprocal (T a)

Finds and returns the reciprocal of an inputted number if the number is not equal to zero: if the number is zero,
the function returns zero to avoid divisions by zero.

Parameters

in a Number whose reciprocal is to be found.

5.8. lbpBASIC.cpp 77

DL_MESO Technical Manual, Release 2.7

fStringToNumber()

template <typename T>
T fStringToNumber (const string & text)

Takes a string as input and returns any numbers found inside: if no number can be found, this function returns a
value of zero.

Parameters

in text String to parse and find numbers.

fSwapPair()

template <class T>
void fSwapPair (T & a, T & b)

Takes a pair of numbers and swaps their values, each returning the other’s original value.

Parameters

in a First number to swap.
in b Second number to swap.

5.9 lbpGET.cpp

Module with routines to calculate fluid, solute and temperature properties at lattice points. (Header file available
as lbpGET.hpp.)

Functions and subroutines to calculate memory locations for grid points, find fluid velocities, densities and mass
fractions, solute concentrations and temperature, and overall fluid masses and momentum for subdomain. Many
of these are used during LBE calculations to e.g. determine local equilibrium distribution functions, while others
are used in output files and to report on the progress of a LBE simulation.

5.9.1 Functions

• long fGetNodePosi()

Calculates the position of a grid point in a one-dimensional array from its two- or three-dimensional Carte-
sian coordinates.

• int fGetCoord()

Calculates the two- or three-dimensional Cartesian coordinates of a grid point from its one-dimensional
array position.

Calculates the two-dimensional Cartesian coordinates of a grid point from its one-dimensional array posi-
tion.

• double fGetOneMassSite()

Calculates the density of a single fluid at a grid point using distribution functions.

• int fGetAllMassSite()

Calculates the densities of all fluids at a grid point using distribution functions.

• double fGetTotMassSite()

Calculates the total mass density of all fluids at a grid point using distribution functions.

78 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fGetAllConcSite()

Calculates the concentrations of all solutes at a grid point using distribution functions.

• double fGetOneMassDomain()

Calculates the total mass of a specific fluid in the simulation subdomain.

• double fGetOneMassSwiftDomain()

Calculates the total mass of a specific fluid in the simulation subdomain when using Swift free-energy
interactions.

• double fGetTotMassDomain()

Calculates the total mass of all fluids in the simulation subdomain.

• double fGetFracSite()

Calculates the mass fraction of a single fluid at a grid point using distribution functions.

• double fGetFracSwiftSite()

Calculates the mass fraction of a single fluid at a grid point using distribution functions when using two-fluid
Swift free-energy interactions.

• int fGetOneSpeedSite()

Calculates the macroscopic speed of a specific compressible fluid at a grid point using distribution functions.

• int fGetOneSpeedIncomSite()

Calculates the macroscopic speed of a specific incompressible fluid at a grid point using distribution func-
tions.

• int fGetOneMomentSite()

Calculates the macroscopic momentum of a specific fluid at a grid point using distribution functions.

• int fGetTotMomentSite()

Calculates the macroscopic momentum of all fluids at a grid point using distribution functions.

• int fGetTotMomentDomain()

Calculates the total momentum of all fluids in the simulation subdomain.

• int fGetTotMomentSwiftDomain()

Calculates the total momentum of all fluids in the simulation subdomain when using Swift free-energy
interactions.

• int fGetSpeedSite()

Calculates the macroscopic velocity of all compressible fluids at a grid point using distribution functions.

• int fGetSpeedAllMassSite()

Calculates the macroscopic velocity and densities of all compressible fluids at a grid point using distribution
functions.

• int fGetSpeedIncomSite()

Calculates the macroscopic velocity of all incompressible fluids at a grid point using distribution functions.

• int fGetSpeedIncomAllMassSite()

Calculates the macroscopic velocity and variable densities of all incompressible fluids at a grid point using
distribution functions.

• int fGetSpeedShanChenSite()

Calculates the macroscopic velocity of all compressible fluids at a grid point using distribution functions
when using Shan-Chen interactions.

5.9. lbpGET.cpp 79

DL_MESO Technical Manual, Release 2.7

• int fGetSpeedShanChenAllMassSite()

Calculates the macroscopic velocity and densities of all compressible fluids at a grid point using distribution
functions when using Shan-Chen interactions.

• int fGetSpeedShanChenIncomSite()

Calculates the macroscopic velocity of all incompressible fluids at a grid point using distribution functions
when using Shan-Chen interactions.

• int fGetSpeedShanChenIncomAllMassSite()

Calculates the macroscopic velocity and variable densities of all incompressible fluids at a grid point using
distribution functions when using Shan-Chen interactions.

• float fGetOneDirecSpeedSite()

Calculates component of compressible fluid velocity at specified grid point.

• float fGetOneDirecSpeedIncomSite()

Calculates component of incompressible fluid velocity at specified grid point.

• float fGetOneDirecSpeedSwiftSite()

Calculates component of compressible fluid velocity at specified grid point when using Swift free-energy
interactions.

• double fGetOneConcSite()

Calculates the concentration of a single solute at a grid point using distribution functions.

• double fGetTemperatureSite()

Calculates the temperature at a grid point using distribution functions.

5.9.2 Function Documentation

fGetAllConcSite()

int fGetAllConcSite (double * rho, double * startpos)

Returns the concentrations of all solutes at a given lattice point by summing up solute distribution functions, i.e.

𝑐𝑎 =
∑︁
𝑖

𝑔𝑎𝑖

Since the distribution functions for each grid point are sorted by fluid, solutes and temperature field and then by
lattice link, this subroutine will only give the correct densities if the starting position for the pointer is 𝑔0 for solute
0.

Parameters

out rho Solute concentrations at given lattice point
in startpos Pointer for distribution function of solute 0 in link 0.

80 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetAllMassSite()

int fGetAllMassSite (double * rho, double * startpos)
int fGetAllMassSite (double * rho, int xpos, int ypos, int zpos)
int fGetAllMassSite (double * rho, long tpos)

Returns the densities of all fluids at a given lattice point by summing up distribution functions, i.e.

𝜌𝑎 =
∑︁
𝑖

𝑓𝑎𝑖

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid (plus solutes
and temperature field) and then by lattice link, this subroutine will only give the correct densities if the starting
position for the pointer is 𝑓0 for fluid 0.

Parameters

out rho Fluid densities at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0.
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetCoord()

int fGetCoord (long tpos, int & xpos, int & ypos)
int fGetCoord (long tpos, int & xpos, int & ypos, int & zpos)

Depending on which interface is used, returns the two- or three-dimensional Cartesian coordinates of a lattice
point specified by a one-dimensional array position.

Parameters

in tpos Position of lattice site in one-dimensional form
out xpos Coordinate of lattice point (x-component)
out ypos Coordinate of lattice point (y-component)
out zpos Coordinate of lattice point (z-component)

fGetFracSite()

double fGetFracSite (int fpos, double * startpos)
double fGetFracSite (int fpos, int xpos, int ypos, int zpos)
double fGetFracSite (int fpos, long tpos)

Returns the mass fraction of a single fluid at a given lattice point by summing up distribution functions, i.e.

𝜌𝑎

𝜌
=

∑︀
𝑖 𝑓

𝑎
𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid (plus solutes
and temperature field) and then by lattice link, this function will only give the correct mass fraction if the starting
position for the pointer is 𝑓0 for fluid 0. If the total mass of all fluids is less than the evaporation limit (a very small
number, set to 10−8 by default), the returned mass fraction will be zero.

Parameters

5.9. lbpGET.cpp 81

DL_MESO Technical Manual, Release 2.7

in fpos Number of fluid whose mass fraction is to be determined at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetFracSwiftSite()

double fGetFracSwiftSite (int fpos, double * startpos) double
fGetFracSwiftSite (int fpos, int xpos, int ypos, int zpos) double
fGetFracSwiftSite (int fpos, long tpos)

Returns the mass fraction of a single fluid at a given lattice point when using two-fluid Swift free-energy interac-
tions. This function uses fluid concentrations to determine the mass fractions, i.e.

𝜌0,1

𝜌
=

1

2
(1 ± 𝜑)

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid density and
concentration (plus solutes and temperature field) and then by lattice link, this function will only give the correct
mass fraction if the starting position for the pointer is 𝑓0 for fluid densities.

Parameters

in fpos Number of fluid whose mass fraction is to be determined at given lattice point
in startpos Pointer for distribution function of fluid density in link 0
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetNodePosi()

inline long fGetNodePosi (int xpos, int ypos)
inline long fGetNodePosi (int xpos, int ypos, int zpos)

Returns a one-dimensional position in arrays for e.g. distribution functions based on the Cartesian coordinates for
a two- or three-dimensional simulation: this value follows the standard data structure for C++ (i.e. row-major)
with the z-component as the fastest changing coordinate, followed by the y-component and then the x-component.

Parameters

in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)

82 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetOneConcSite()

double fGetOneConcSite (int cpos, int xpos, int ypos, int zpos)
double fGetOneConcSite (int cpos, long tpos)

Returns the concentration of a single solute at a given lattice point by summing up solute distribution functions,
i.e.

𝑐𝑎 =
∑︁
𝑖

𝑔𝑎𝑖

The solute and three-dimensional Cartesian coordinates or one-dimensional grid position are inputs for this func-
tion, which point to the required starting distribution function for the given solute (𝑔0).

Parameters

in cpos Number of solute whose concentration is to be determined at given lattice point
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetOneDirecSpeedIncomSite()

float fGetOneDirecSpeedIncomSite (int dire, double * startpos)
float fGetOneDirecSpeedIncomSite (int dire, int xpos, int ypos, int zpos)
float fGetOneDirecSpeedIncomSite (int dire, long tpos)

Returns the specified component of velocity for all incompressible fluids at a given lattice point by summing
moments of distribution functions, i.e.

𝑢𝛼 =
𝑠𝑢𝑚𝑖,𝑎𝑓

𝑎
𝑖 𝑒𝑖,𝛼∑︀

𝑎 𝜌
𝑎
0

.

where 𝜌𝑎0 is the constant density for fluid 𝑎. The result is output as a single-precision float (real) number: this
function is intended for obtaining fluid velocities to write to output files. Three different interfaces for the function
are available with different inputs to specify the lattice point and/or the starting distribution function. Since the
distribution functions for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice
link, this function will only give the correct velocity and densities if the starting position for the pointer is 𝑓0 for
fluid 0.

Parameters

in dire Component of velocity to output (0 = x, 1 = y, 2 = z)
in startpos Pointer for distribution function of fluid 0 in link 0.
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

5.9. lbpGET.cpp 83

DL_MESO Technical Manual, Release 2.7

fGetOneDirecSpeedSite()

float fGetOneDirecSpeedSite (int dire, double * startpos)
float fGetOneDirecSpeedSite (int dire, int xpos, int ypos, int zpos)
float fGetOneDirecSpeedSite (int dire, long tpos)

Returns the specified component of velocity for all compressible fluids at a given lattice point by summing mo-
ments of distribution functions, i.e.

𝑢𝛼 =
𝑠𝑢𝑚𝑖,𝑎𝑓

𝑎
𝑖 𝑒𝑖,𝛼∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

The result is output as a single-precision float (real) number: this function is intended for obtaining fluid velocities
to write to output files. Three different interfaces for the function are available with different inputs to specify
the lattice point and/or the starting distribution function. Since the distribution functions for each grid point are
sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only give the correct
velocity and densities if the starting position for the pointer is 𝑓0 for fluid 0.

Parameters

in dire Component of velocity to output (0 = x, 1 = y, 2 = z)
in startpos Pointer for distribution function of fluid 0 in link 0.
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetOneDirecSpeedSwiftSite()

float fGetOneDirecSpeedSwiftSite (int dire, double * startpos)
float fGetOneDirecSpeedSwiftSite (int dire, int xpos, int ypos, int zpos)
float fGetOneDirecSpeedSwiftSite (int dire, long tpos)

Returns the specified component of velocity for all compressible fluids at a given lattice point when using Swift
free-energy interactions by summing moments of density distribution functions, i.e.

𝑢𝛼 =
𝑠𝑢𝑚𝑖𝑓𝑖𝑒𝑖,𝛼∑︀

𝑖 𝑓𝑖
.

The result is output as a single-precision float (real) number: this function is intended for obtaining fluid velocities
to write to output files. Three different interfaces for the function are available with different inputs to specify
the lattice point and/or the starting distribution function. Since the distribution functions for each grid point are
sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only give the correct
velocity and densities if the starting position for the pointer is 𝑓0 for the density distribution functions.

Parameters

in dire Component of velocity to output (0 = x, 1 = y, 2 = z)
in startpos Pointer for distribution function of fluid 0 in link 0.
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

84 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetOneMassDomain()

double fGetOneMassDomain (int fpos)

Returns the total mass of a specified fluid in the current processor’s simulation subdomain (i.e. its section of the
lattice). This function excludes all boundary lattice sites, including those indicating boundary halos for communi-
cations between processors (which avoids double counting if summed up later).

Parameters

in fpos Number of fluid whose total mass is to be found

fGetOneMassSite()

double fGetOneMassSite (double * startpos)
double fGetOneMassSite (int fpos, int xpos, int ypos, int zpos)
double fGetOneMassSite (int fpos, long tpos)

Returns the density of a single fluid at a given lattice point by summing up distribution functions, i.e.

𝜌𝑎 =
∑︁
𝑖

𝑓𝑎𝑖

Three different interfaces for the function are available with different inputs to specify the fluid, lattice point and/or
the starting distribution function. For each grid point, the distribution functions are sorted by fluid (plus solutes
and temperature field) and then by lattice link, so the starting position for the pointer will be 𝑓0 for the given fluid.

Parameters

in startpos Pointer for distribution function of specified fluid in link 0.
in fpos Number of fluid whose density is to be found
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetOneMassSwiftDomain()

double fGetOneMassSwiftDomain (int fpos)

Returns the total mass of a specified fluid in the current processor’s simulation subdomain (i.e. its section of the
lattice) when using Swift free-energy interactions. This function returns the actual mass for the specified fluid
from the total masses and the fluid concentrations 𝜑 at each grid point, i.e.

𝜌0,1 =
1

2
𝜌 (1 ± 𝜑)

This function excludes all boundary lattice sites, including those indicating boundary halos for communications
between processors (which avoids double counting if summed up later).

Parameters

in fpos Number of fluid whose total mass in the subdomain is to be found

5.9. lbpGET.cpp 85

DL_MESO Technical Manual, Release 2.7

fGetOneMomentSite()

int fGetOneMomentSite (double * speed, double * startpos)
int fGetOneMomentSite (double * speed, int fpos, int xpos, int ypos, int zpos)
int fGetOneMomentSite (double * speed, int fpos, long tpos)

Returns the momentum (product of density and velocity) of a single fluid at a given lattice point by summing up
distribution functions, i.e.

𝑝𝑎 =
∑︁
𝑖

𝑓𝑎𝑖 𝑒𝑖

This subroutine will work for both mildly compressible and fully incompressible fluids. Three different interfaces
for the function are available with different inputs to specify the fluid, lattice point and/or the starting distribution
function. For each grid point, the distribution functions are sorted by fluid (plus solutes and temperature field) and
then by lattice link, so the starting position for the pointer will be 𝑓0 for the given fluid.

Parameters

out speed Momentum of specified fluid at given lattice point
in startpos Pointer for distribution function of specified fluid in link 0
in fpos Number of fluid whose momentum is to be determined at given lattice point
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetOneSpeedIncomSite()

int fGetOneSpeedIncomSite (double * speed, double * startpos, double rho0)

Returns the velocity of a single incompressible fluid at a given lattice point by summing up distribution functions,
i.e.

𝑢⃗𝑎 =

∑︀
𝑖 𝑓

𝑎
𝑖 𝑒𝑖

𝜌𝑎0

where 𝜌𝑎0 is the constant density for fluid 𝑎. Three different interfaces for the function are available with different
inputs to specify the fluid (or its constant density), lattice point and/or the starting distribution function. For each
grid point, the distribution functions are sorted by fluid (plus solutes and temperature field) and then by lattice
link, so the starting position for the pointer will be 𝑓0 for the given fluid.

Parameters

out speed Velocity of specified fluid at given lattice point
in startpos Pointer for distribution function of specified fluid in link 0
in rho0 Constant density for specified fluid
in fpos Number of fluid whose velocity is to be determined at given lattice point
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

86 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetOneSpeedSite()

int fGetOneSpeedSite (double * speed, double * startpos)
int fGetOneSpeedSite (double * speed, int fpos, int xpos, int ypos, int zpos)
int fGetOneSpeedSite (double * speed, int fpos, long tpos)

Returns the velocity of a single compressible fluid at a given lattice point by summing up distribution functions,
i.e.

𝑢⃗𝑎 =

∑︀
𝑖 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖 𝑓
𝑎
𝑖

Three different interfaces for the function are available with different inputs to specify the fluid, lattice point and/or
the starting distribution function. For each grid point, the distribution functions are sorted by fluid (plus solutes
and temperature field) and then by lattice link, so the starting position for the pointer will be 𝑓0 for the given fluid.

Parameters

out speed Velocity of specified fluid at given lattice point
in startpos Pointer for distribution function of specified fluid in link 0
in fpos Number of fluid whose velocity is to be determined at given lattice point
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetSpeedAllMassSite()

int fGetSpeedAllMassSite (double * speed,
double * rho,
double * startpos)

Returns the velocity and densities of all compressible fluids at a given lattice point by summing up distribution
functions, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

and

𝜌𝑎 =
∑︁
𝑖

𝑓𝑎𝑖 .

Since the distribution functions for each grid point are sorted by fluid (plus solutes and temperature field) and then
by lattice link, this function will only give the correct velocity and densities if the starting position for the pointer
is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
out rho Fluid densities at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0.

5.9. lbpGET.cpp 87

DL_MESO Technical Manual, Release 2.7

fGetSpeedIncomAllMassSite()

int fGetSpeedIncomAllMassSite (double * speed,
double * rho,
double * startpos)

Returns the velocity and variable densities of all incompressible fluids at a given lattice point by summing up
distribution functions, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑎 𝜌
𝑎
0

and

𝜌𝑎 =
∑︁
𝑖

𝑓𝑎𝑖 .

where 𝜌𝑎0 is the constant density for fluid 𝑎. Since the distribution functions for each grid point are sorted by fluid
(plus solutes and temperature field) and then by lattice link, this function will only give the correct velocity and
densities if the starting position for the pointer is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
out rho Variable fluid densities at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0.

fGetSpeedIncomSite()

int fGetSpeedIncomSite (double * speed, double * startpos)
int fGetSpeedIncomSite (double * speed, int xpos, int ypos, int zpos)
int fGetSpeedIncomSite (double * speed, long tpos)

Returns the velocity of all incompressible fluids at a given lattice point by summing up distribution functions, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑎 𝜌
𝑎
0

where 𝜌𝑎0 is the constant density for fluid 𝑎. Three different interfaces for the function are available with different
inputs to specify the lattice point and/or the starting distribution function. Since the distribution functions for each
grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only
give the correct velocity if the starting position for the pointer is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0.
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

88 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetSpeedShanChenAllMassSite()

int fGetSpeedShanChenAllMassSite (double * speed,
double * rho,
double * startpos,
double * omega)

Returns the velocity and densities of all compressible fluids at a given lattice point when using Shan-Chen pseu-
dopotential interactions by summing up distribution functions (weighting with relaxation frequencies for the ve-
locity [91]), i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝜔

𝑎𝑓𝑎𝑖 𝑒𝑖∑︀
𝑖,𝑎 𝜔

𝑎𝑓𝑎𝑖

and

𝜌𝑎 =
∑︁
𝑖

𝑓𝑎𝑖 .

where :math:` omega^a = tau_{f,a}^{-1}` is the relaxation frequency of fluid 𝑎. Since the distribution functions
for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this function
will only give the correct velocity and densities if the starting position for the pointer is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
out rho Fluid densities at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0
in omega Relaxation frequencies for all fluids at given lattice point

fGetSpeedShanChenIncomAllMassSite()

int fGetSpeedShanChenIncomAllMassSite (double * speed,
double * rho,
double * startpos,
double * omega)

Returns the velocity and variable densities of all icompressible fluids at a given lattice point when using Shan-
Chen pseudopotential interactions by summing up distribution functions (weighting with relaxation frequencies
for the velocity [91]), i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝜔

𝑎𝑓𝑎𝑖 𝑒𝑖∑︀
𝑎 𝜔

𝑎𝜌𝑎0

and

𝜌𝑎 =
∑︁
𝑖

𝑓𝑎𝑖 .

where :math:` omega^a = tau_{f,a}^{-1}` is the relaxation frequency of fluid 𝑎 and 𝜌𝑎0 is the constant density for
the same fluid. Since the distribution functions for each grid point are sorted by fluid (plus solutes and temperature
field) and then by lattice link, this function will only give the correct velocity and densities if the starting position
for the pointer is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
out rho Fluid densities at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0.
in omega Relaxation frequencies for all fluids at given lattice point

5.9. lbpGET.cpp 89

DL_MESO Technical Manual, Release 2.7

fGetSpeedShanChenIncomSite()

int fGetSpeedShanChenIncomSite (double * speed, double * startpos, double * omega)
int fGetSpeedShanChenIncomSite (double * speed, int xpos, int ypos, int zpos)
int fGetSpeedShanChenIncomSite (double * speed, long tpos)

Returns the velocity of all incompressible fluids at a given lattice point when using Shan-Chen pseudopotential
interactions by summing up distribution functions weighted by relaxation frequencies [91], i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝜔

𝑎𝑓𝑎𝑖 𝑒𝑖∑︀
𝑎 𝜔

𝑎𝜌𝑎0

where 𝜔𝑎 = 𝜏−1
𝑓,𝑎 is the relaxation frequency of fluid 𝑎 and 𝜌𝑎0 is the constant density for the same fluid. Three

different interfaces for the function are available with different inputs to specify the lattice point and/or the starting
distribution function (and the relaxation frequencies if using the latter). Since the distribution functions for each
grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only
give the correct velocity if the starting position for the pointer is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0
in omega Relaxation frequencies for all fluids at given lattice point
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetSpeedShanChenSite()

int fGetSpeedShanChenSite (double * speed, double * startpos, double * omega)
int fGetSpeedShanChenSite (double * speed, int xpos, int ypos, int zpos)
int fGetSpeedShanChenSite (double * speed, long tpos)

Returns the velocity of all compressible fluids at a given lattice point when using Shan-Chen pseudopotential
interactions by summing up distribution functions weighted by relaxation frequencies [91], i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝜔

𝑎𝑓𝑎𝑖 𝑒𝑖∑︀
𝑖,𝑎 𝜔

𝑎𝑓𝑎𝑖

where 𝜔𝑎 = 𝜏−1
𝑓,𝑎 is the relaxation frequency of fluid 𝑎. Three different interfaces for the function are available with

different inputs to specify the lattice point and/or the starting distribution function (and the relaxation frequencies
if using the latter). Since the distribution functions for each grid point are sorted by fluid (plus solutes and
temperature field) and then by lattice link, this function will only give the correct velocity if the starting position
for the pointer is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0
in omega Relaxation frequencies for all fluids at given lattice point
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

90 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetSpeedSite()

int fGetSpeedSite (double * speed, double * startpos)
int fGetSpeedSite (double * speed, int xpos, int ypos, int zpos)
int fGetSpeedSite (double * speed, long tpos)

Returns the velocity of all compressible fluids at a given lattice point by summing up distribution functions, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid (plus solutes
and temperature field) and then by lattice link, this function will only give the correct velocity if the starting
position for the pointer is 𝑓0 for fluid 0.

Parameters

out speed Velocity of all fluids at given lattice point
in startpos Pointer for distribution function of fluid 0 in link 0.
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetTemperatureSite()

double fGetTemperatureSite (long tpos)
double fGetTemperatureSite (long xpos, long ypos, long zpos)

Returns the temperature at a given lattice point by summing up temperature distribution functions, i.e.

𝑇 =
∑︁
𝑖

ℎ𝑖

The one-dimensional grid point or three-dimensional Cartesian coordinates are inputs for this function, which
point to the required starting distribution function for the temperature field (ℎ0).

Parameters

in tpos Position of lattice site in one-dimensional form
in xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in zpos Coordinate of lattice point (z-component)

fGetTotMassDomain()

double fGetTotMassDomain ()

Returns the total mass of all fluids in the current processor’s simulation subdomain (i.e. its section of the lattice).
This function excludes all boundary lattice sites, including those indicating boundary halos for communications
between processors (which avoids double counting if summed up later).

5.9. lbpGET.cpp 91

DL_MESO Technical Manual, Release 2.7

fGetTotMassSite()

double fGetTotMassSite (double * startpos)
double fGetTotMassSite (long tpos)

Returns the total density of all fluids at a given lattice point by summing up distribution functions, i.e.

𝜌 =
∑︁
𝑖,𝑎

𝑓𝑎𝑖

Either the distribution function pointer or the one-dimensional grid point is the input for this function. Since the
distribution functions for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice
link, this function will only give the correct total density if the starting position for the pointer is 𝑓0 for fluid 0.

Parameters

in startpos Pointer for distribution function of fluid 0 in link 0.
in tpos Position of lattice site in one-dimensional form

fGetTotMomentDomain()

int fGetTotMomentDomain (double * momentum)

Returns the total momentum of all fluids in the current processor’s simulation subdomain (i.e. its section of the
lattice). This function excludes all boundary lattice sites, including those indicating boundary halos for communi-
cations between processors (which avoids double counting if summed up later).

Parameters

momentum Total momentum of fluids at all fluid sites in simulation subdomain

fGetTotMomentSite()

int fGetTotMomentSite (double * momentum, double * startpos)

Returns the momentum (product of density and velocity) of all fluids at a given lattice point by summing up
distribution functions, i.e.

𝑝 =
∑︁
𝑖,𝑎

𝑓𝑎𝑖 𝑒𝑖

This subroutine will work for both mildly compressible and fully incompressible fluids. Since the distribution
functions for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this
function will only give the correct momentum if the starting position for the pointer is 𝑓0 for fluid 0.

Parameters

out momentum Momentum of all fluids at given lattice point
in startpos Pointer for distribution function of specified fluid in link 0.

92 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetTotMomentSwiftDomain()

int fGetTotMomentSwiftDomain (double * momentum)

Returns the total momentum of all fluids in the current processor’s simulation subdomain (i.e. its section of the
lattice) when using Swift free-energy interactions. This function only uses sums moments of the distribution
functions for fluid density - concentration distribution functions used in two-fluid models do not contribute to this
property - and excludes all boundary lattice sites, including those indicating boundary halos for communications
between processors (which avoids double counting if summed up later).

5.10 lbpMODEL.cpp

Module to set up lattice-based weighting functions, link vectors and multiple relaxation time (MRT) transforma-
tion matrices. (Header file available as lbpMODEL.hpp.)

5.10.1 Functions

• int D2Q9()

Sets up lattice-based parameters, vectors and transformation matrices for D2Q9 lattice scheme.

• int D3Q15()

Sets up lattice-based parameters, vectors and transformation matrices for D3Q15 lattice scheme.

• int D3Q19()

Sets up lattice-based parameters, vectors and transformation matrices for D3Q19 lattice scheme.

• int D3Q27()

Sets up lattice-based parameters, vectors and transformation matrices for D3Q27 lattice scheme.

5.10.2 Detailed Description

Subroutines to set up speeds of sound 𝑐𝑠, weighting functions for local equilibrium distribution functions 𝑤𝑖 (in-
cluding those for Swift free-energy interactions if applicable), vectors for links between lattice points 𝑒𝑖, products
of weighting functions and link vectors for gradient stencils used in Shan-Chen pseudopotential and Lishchuk
continuum-based interactions, first-order and second-order gradient stencils for Swift free-energy interactions (if
applicable), conjugate link identifiers, and the multiple relaxation time (MRT) transformation matrix T and its
inverse T−1. (Transformation matrices for cascaded LBE collisions are not set up in these routines as these are
dependent on fluid velocities at each lattice point.)

5.10.3 Function Documentation

D2Q9()

int D2Q9 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradi-
ent stencils, conjugate links and MRT transformation matrices [73] for the D2Q9 (two-dimensional, nine lattice
vectors) lattice scheme. If using Swift free-energy interactions, these will include the weighting parameters for the
free-energy local equilibrium distribution functions and microcurrent-reducing stencils for first-order and second-
order gradients [102].

5.10. lbpMODEL.cpp 93

DL_MESO Technical Manual, Release 2.7

D3Q15()

int D3Q15 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradient
stencils, conjugate links and MRT transformation matrices [159] for the D3Q15 (three-dimensional, fifteen lattice
vectors) lattice scheme. If using Swift free-energy interactions, these will include the weighting parameters for the
free-energy local equilibrium distribution functions and microcurrent-reducing stencils for first-order and second-
order gradients [102].

D3Q19()

int D3Q19 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradient
stencils, conjugate links and MRT transformation matrices [159] for the D3Q19 (three-dimensional, nineteen
lattice vectors) lattice scheme. If using Swift free-energy interactions, these will include the weighting parameters
for the free-energy local equilibrium distribution functions and microcurrent-reducing stencils for first-order and
second-order gradients [102].

D3Q27()

int D3Q27 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradient
stencils, conjugate links and MRT transformation matrices [134] for the D3Q27 (three-dimensional, twenty-seven
lattice vectors) lattice scheme. No Swift free-energy interactions are currently available for this lattice scheme.

5.11 lbpSUB.cpp

Module with important subroutines and functions for LBE calculations. (Header file available as lbpSUB.hpp.)

Subroutines and functions required to carry out key parts of LBE simulations, e.g. propagation, calculate local
equilibrium distribution functions, allocate and deallocate arrays.

5.11.1 Functions

• void fWeakMemory()

Prints error message due to lack of memory for array allocation.

• int fMemoryAllocation()

Allocates memory for LBE calculations.

• int fFreeMemory()

Frees allocated memory for LBE calculations.

• int fSetSerialDomain()

Determines the domain parameters for the serial LBE calculation.

• int fSetSerialDomainBuffer()

Determines the domain parameters for the serial LBE calculation with a boundary halo.

• int fStartDLMESO()

Announces start of DL_MESO_LBE calculation.

94 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fFinishDLMESO()

Announces end of DL_MESO_LBE calculation.

• int fsPrintDomainInfo()

Prints information about numbers of threads to standard output.

• int fGetModel()

Initialises lattice-related arrays based on lattice scheme in use.

• int fMarkBoundArea3D()

Assigns boundary conditions for boundary halos of three-dimensional systems.

• int fMarkBoundArea2D()

Assigns boundary conditions for boundary halos of two-dimensional systems.

• int fMarkBoundArea()

Assigns boundary conditions for lattice points making up boundary halos.

• int fGetEquilibriumF()

Calculates local equilibrium distribution functions for a mildly compressible fluid.

• int fGetEquilibriumFIncom()

Calculates local equilibrium distribution functions for a fully incompressible fluid.

• int fGetEquilibriumFSwiftOneFluid()

Calculates local equilibrium distribution functions for one mildly compressible fluid with Swift free-energy
interactions.

• int fGetEquilibriumFSwiftTwoFluid()

Calculates local equilibrium distribution functions for two mildly compressible fluids with Swift free-energy
interactions.

• int fGetEquilibriumFCLBED2Q9()

Calculates local equilibrium distribution functions for a mildly compressible fluid undergoing CLBE colli-
sions on a D2Q9 lattice.

• int fGetEquilibriumFCLBED3Q19()

Calculates local equilibrium distribution functions for a mildly compressible fluid undergoing CLBE colli-
sions on a D3Q19 lattice.

• int fGetEquilibriumFCLBED3Q27()

Calculates local equilibrium distribution functions for a mildly compressible fluid undergoing CLBE colli-
sions on a D3Q27 lattice.

• double fGetBulkPressureSwift()

Calculates buik pressure for Swift free-energy interactions.

• double fGetPotentialSwift()

Calculates potential for two-fluid Swift free-energy interactions.

• double fGetLambdaSwift()

Calculates Galilean invariance correction factor for fluids undergoing Swift free-energy interactions.

• int fGetEquilibriumC()

Calculates local equilibrium distribution functions for a solute.

• int fGetEquilibriumT()

Calculates local equilibrium distribution functions for temperature.

5.11. lbpSUB.cpp 95

DL_MESO Technical Manual, Release 2.7

• int fInitializeSystem()

Initialises distribution functions for LBE calculation.

• int fPropagationTwoLattice()

Carries out propagation stage using a two-lattice algorithm.

• int fPropagationSwap()

Carries out propagation stage using a swap-based algorithm.

• int fPropagationCombinedSwap()

Carries out propagation stage using a combined swap-based algorithm.

5.11.2 Function Documentation

fFinishDLMESO()

int fFinishDLMESO ()

Prints messages at the end of a DL_MESO_LBE calculation indicating the elapsed calculation time, the efficiency
measure (Millions of Lattice Updates Per Second), the finishing time and possible citations for publishing results
to standard output.

fFreeMemory()

int fFreeMemory ()

Deallocates the arrays previously used for a Lattice Boltzmann Equation (LBE) calculation when
DL_MESO_LBE closes down.

fGetBulkPressureSwift()

double fGetBulkPressureSwift (double rho,
double phi,
double T)

Calculates and returns the bulk pressure at a given lattice point for Swift free-energy interactions, based on the
selected equation of state:

• Ideal lattice gas:

𝑃0 = 𝜌𝑐2𝑠

• Shan-Chen 1993 model [118]:

𝑃0 = 𝜌𝑐2𝑠 +
1

2
𝑐2𝑠𝑔𝜌

2
0

(︁
1 − 𝑒−

𝜌
𝜌0

)︁
• Shan-Chen 1994 model [119]:

𝑃0 = 𝜌𝑐2𝑠 +
1

2
𝑐2𝑠𝑔𝜓

2
0𝑒

− 2𝜌0
𝜌

• Qian model [106]:

𝑃0 = 𝜌𝑐2𝑠 +
𝑐2𝑠𝑔𝜌

2
0𝜌

2

(𝜌0 + 𝜌)
2

96 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• Density model:

𝑃0 = 𝜌𝑐2𝑠 +
1

2
𝑐2𝑠𝑔𝜌

2

• Ideal gas:

𝑃0 = 𝜌𝑅𝑇

• van der Waals:

𝑃0 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝜌2

• Carnahan-Starling-van der Waals [16]:

𝑃0 = 𝜌𝑅𝑇

(︃
1 + 𝜑+ 𝜑2 − 𝜑3

(1 − 𝜑)
3

)︃
− 𝑎𝜌2

• Redlich-Kwong [110]:

𝑃0 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝜌2√

𝑇 (1 + 𝑏𝜌)

• Soave-Redlich-Kwong [128]:

𝑃0 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝛼 (𝑇𝑟, 𝜔) 𝜌2

1 + 𝑏𝜌

• Peng-Robinson [99]:

𝑃0 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝛼 (𝑇𝑟, 𝜔) 𝜌2

1 + 2𝑏𝜌− 𝑏2𝜌2

• Carnahan-Starling-Redlich-Kwong [16]:

𝑃0 = 𝜌𝑅𝑇

(︃
1 + 𝜑+ 𝜑2 − 𝜑3

(1 − 𝜑)
3

)︃
− 𝑎𝜌2√

𝑇 (1 + 𝑏𝜌)

where 𝑅 is the universal gas constant, 𝑎 and 𝑏 are species-dependent coefficients, 𝛼 is a function dependent on the
ratio of temperature to critical temperature 𝑇𝑟 = 𝑇/𝑇𝑐 and acentric factor 𝜔, and 𝜑 = 𝑏𝜌

4 for Carnahan-Starling
equations of state. The temperatures used in some equations of state can either be specified system-wide or at each
lattice point if heat effects are coupled to fluid flows with an additional lattice.

If two fluids are being simulated, the following additional contribution due to mixing:

𝑃𝑚𝑖𝑥 = 𝑎

(︂
−1

2
𝜑2 +

3

4
𝜑4
)︂

is added to the bulk pressure, where 𝑎 is the parameter used for the potential between the two fluids.

Parameters

in rho Fluid density at lattice site 𝜌
in phi Fluid concentration at lattice site (only used for two-fluid interactions) 𝜑
in T Temperature at lattice site

5.11. lbpSUB.cpp 97

DL_MESO Technical Manual, Release 2.7

fGetEquilibriumC()

int fGetEquilibriumC (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a solute [62]:

𝑔𝑒𝑞 = 𝑤𝑖𝐶

[︂
1 +

3 (𝑒𝑖 · 𝑢⃗)

𝑐2

]︂
.

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL_MESO_LBE).

Parameters

out feq Local equilibrium distribution functions for solute at given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Solute concentration at lattice site 𝐶

fGetEquilibriumF()

int fGetEquilibriumF (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid:

𝑓𝑒𝑞 = 𝑤𝑖𝜌

[︃
1 +

3 (𝑒𝑖 · 𝑢⃗)

𝑐2
+

9 (𝑒𝑖 · 𝑢⃗)
2

2𝑐4
− 3𝑢2

2𝑐2

]︃
.

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL_MESO_LBE).

Parameters

out feq Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Fluid density at lattice site 𝜌

fGetEquilibriumFCLBED2Q9()

int fGetEquilibriumFCLBED2Q9 (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid undergoing cascaded LBE
(CLBE) collisions on a two-dimenensional D2Q9 lattice. The distribution functions are obtained by an inverse
transformation of the local equilibrium central moments:

𝑓𝑒𝑞 = T−1N−1 ⃗̃𝑀𝑒𝑞.

These local equilibrium distribution functions are an approximation of the Maxwell-Boltzmann (general) local

equilibrium distribution function, which was used to derive the local equilibrium central moments ⃗̃𝑀𝑒𝑞 . Since
the CLBE collisions are carried out using central moments, this subroutine is mainly used to initialise simulations
using these collisions.

Parameters

98 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

out feq Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Fluid density at lattice site 𝜌

fGetEquilibriumFCLBED3Q19()

int fGetEquilibriumFCLBED3Q19 (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid undergoing cascaded LBE
(CLBE) collisions on a three-dimenensional D3Q19 lattice. The distribution functions are obtained by an inverse
transformation of the local equilibrium central moments:

𝑓𝑒𝑞 = T−1N−1 ⃗̃𝑀𝑒𝑞.

These local equilibrium distribution functions are an approximation of the Maxwell-Boltzmann (general) local

equilibrium distribution function, which was used to derive the local equilibrium central moments ⃗̃𝑀𝑒𝑞 . Since
the CLBE collisions are carried out using central moments, this subroutine is mainly used to initialise simulations
using these collisions.

Parameters

out feq Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Fluid density at lattice site 𝜌

fGetEquilibriumFCLBED3Q27()

int fGetEquilibriumFCLBED3Q27 (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid undergoing cascaded LBE
(CLBE) collisions on a three-dimenensional D3Q27 lattice. The distribution functions are obtained by an inverse
transformation of the local equilibrium central moments:

𝑓𝑒𝑞 = T−1N−1 ⃗̃𝑀𝑒𝑞.

These local equilibrium distribution functions are an approximation of the Maxwell-Boltzmann (general) local

equilibrium distribution function, which was used to derive the local equilibrium central moments ⃗̃𝑀𝑒𝑞 . Since
the CLBE collisions are carried out using central moments, this subroutine is mainly used to initialise simulations
using these collisions.

Parameters

out feq Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Fluid density at lattice site 𝜌

5.11. lbpSUB.cpp 99

DL_MESO Technical Manual, Release 2.7

fGetEquilibriumFIncom()

int fGetEquilibriumFIncom (double * feq,
double * v,
double rho,
double rho0)

Calculates the local equilibrium distribution functions for a fully incompressible fluid [53]:

𝑓𝑒𝑞 = 𝑤𝑖

{︃
𝜌+ 𝜌0

[︃
3 (𝑒𝑖 · 𝑢⃗)

𝑐2
+

9 (𝑒𝑖 · 𝑢⃗)
2

2𝑐4
− 3𝑢2

2𝑐2

]︃}︃

as required for collisions and system initialisation, which uses a constant density 𝜌0 and a variable density 𝜌 as
an analogue for pressure. This expression is only suitable for square lattices (i.e. those currently implemented in
DL_MESO_LBE).

Parameters

out feq Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Variable fluid density at lattice site 𝜌
in rho0 Constant fluid density at lattice site 𝜌0

fGetEquilibriumFSwiftOneFluid()

int fGetEquilibriumFSwiftOneFluid (double * feq,
double * v,
double rho,
double p0,
double lambda,
double * delta)

Calculates the local equilibrium distribution functions for one mildly compressible fluid with Swift free-energy
interactions [136][102]:

𝑓𝑒𝑞𝑖 = 𝑤00
𝑖 𝜌+ 𝑤𝑖

[︂
𝜌

{︂
(𝑒𝑖 · 𝑢⃗) +

3

2
(𝑒𝑖 · 𝑢⃗)

2 − 1

2
𝑢2
}︂

+ 𝜆 {3 (𝑒𝑖 · 𝑢⃗) (𝑒𝑖 · ∇𝜌) + [𝛾𝑖 (𝑒𝑖 · 𝑒𝑖) + 𝛿𝑖] (𝑢⃗ · ∇𝜌)}
]︂

+ 𝑤𝑝
𝑖 𝑃0 − 𝑤𝑡

𝑖𝜅𝜌∇2𝜌+ 𝑤𝑥𝑥
𝑖 𝜅 (𝜕𝑥𝜌)

2
+ 𝑤𝑦𝑦

𝑖 𝜅 (𝜕𝑦𝜌)
2

+ 𝑤𝑧𝑧
𝑖 𝜅 (𝜕𝑧𝜌)

2
+ 𝑤𝑥𝑦

𝑖 𝜅𝜕𝑥𝜌𝜕𝑦𝜌+ 𝑤𝑥𝑧
𝑖 𝜅𝜕𝑥𝜌𝜕𝑧𝜌+ 𝑤𝑦𝑧

𝑖 𝜅𝜕𝑦𝜌𝜕𝑧𝜌

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL_MESO_LBE) apart from D3Q27, for which no free-energy scheme currently exists.

Parameters

out feq Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Fluid density at lattice site 𝜌
in p0 Bulk pressure at lattice site (determined from equation of state) 𝑃0

in lambda Correction parameter for Galilean invariance (determined from equation of state) 𝜆
in delta First-order and second-order derivatives of density

100 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetEquilibriumFSwiftTwoFluid()

int fGetEquilibriumFSwiftTwoFluid (double * feq,
double * v,
double rho,
double phi,
double p0,
double pot,
double lambda,
double * delta)

Calculates the local equilibrium distribution functions for two mildly compressible fluids with Swift free-energy
interactions [135][103] as required for collisions and system initialisation, both for density distribution functions:

𝑓𝑒𝑞𝑖 = 𝑤00
𝑖 𝜌+ 𝑤𝑖

[︂
𝜌

{︂
(𝑒𝑖 · 𝑢⃗) +

3

2
(𝑒𝑖 · 𝑢⃗)

2 − 1

2
𝑢2
}︂

+ 𝜆 {3 (𝑒𝑖 · 𝑢⃗) (𝑒𝑖 · ∇𝜌) + [𝛾𝑖 (𝑒𝑖 · 𝑒𝑖) + 𝛿𝑖] (𝑢⃗ · ∇𝜌)}
]︂

+ 𝑤𝑝
𝑖 𝑃0 − 𝑤𝑡

𝑖𝜅(𝜌∇2𝜌+ 𝜑∇2𝜑) + 𝑤𝑥𝑥
𝑖 𝜅((𝜕𝑥𝜌)

2
+ (𝜕𝑥𝜑)

2
) + 𝑤𝑦𝑦

𝑖 𝜅((𝜕𝑦𝜌)
2

+ (𝜕𝑦𝜑)
2
) + 𝑤𝑧𝑧

𝑖 𝜅((𝜕𝑧𝜌)
2

+ (𝜕𝑧𝜑)
2
) + 𝑤𝑥𝑦

𝑖 𝜅(𝜕𝑥𝜌𝜕𝑦𝜌+ 𝜕𝑥𝜑𝜕𝑦𝜑) + 𝑤𝑥𝑧
𝑖 𝜅(𝜕𝑥𝜌𝜕𝑧𝜌+ 𝜕𝑥𝜑𝜕𝑧𝜑) + 𝑤𝑦𝑧

𝑖 𝜅(𝜕𝑦𝜌𝜕𝑧𝜌+ 𝜕𝑦𝜑𝜕𝑧𝜑)

and for concentration distribution functions:

𝑔𝑒𝑞𝑖 = 𝑤00
𝑖 𝜑+ 𝑤𝑖𝜑

{︂
(𝑒𝑖 · 𝑢⃗) +

3

2
(𝑒𝑖 · 𝑢⃗)

2 − 1

2
𝑢2
}︂

+ 𝑤𝑝
𝑖 Γ𝜇.

These expressions are only suitable for square lattices (i.e. those currently implemented in DL_MESO_LBE)
apart from D3Q27, for which no free-energy scheme currently exists.

Parameters

out feq Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Fluid density at lattice site 𝜌
in phi Fluid concentration at lattice site 𝜑
in p0 Bulk pressure at lattice site (determined from equation of state) 𝑃0

in pot Potential at lattice site (determined from equation of state and free energy functional) 𝜇
in lambda Correction parameter for Galilean invariance (determined from equation of state) 𝜆
in delta First-order and second-order derivatives of density and concentration

fGetEquilibriumT()

int fGetEquilibriumT (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for temperature [62]:

ℎ𝑒𝑞 = 𝑤𝑖𝑇

[︂
1 +

3 (𝑒𝑖 · 𝑢⃗)

𝑐2

]︂
.

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL_MESO_LBE).

Parameters

out feq Local equilibrium distribution functions for solute at given lattice site
in v Fluid velocity at lattice site 𝑢⃗
in rho Temperature at lattice site 𝑇

5.11. lbpSUB.cpp 101

DL_MESO Technical Manual, Release 2.7

fGetLambdaSwift()

double fGetLambdaSwift (double rho,
double omega,
double T)

Calculates and returns the correction factor to ensure Galilean invariance for one or two fluids undergoing Swift
free-energy interactions, based on the governing equation of state:

𝜆 = 𝜈

(︃
1 − 3

(︂
∆𝑡

∆𝑥

)︂2
𝜕𝑃0

𝜕𝜌

)︃

where 𝑃0 is the bulk pressure obtained for the equation of state and 𝜈 is the kinematic viscosity of the fluids (which
can be obtained using relaxation frequencies). This expression reduces to zero in the case of a lattice gas with the
equation of state 𝑃0 = 𝑐2𝑠𝜌.

Parameters

in rho Fluid density at lattice site 𝜌
in omega Relaxation frequency of fluid(s) at lattice site 𝜔
in T Temperature at lattice site

fGetModel()

int fGetModel ()

Assigns values for link vectors, weighting parameters for local equilibrium distribution functions, conjugate links
and transformation matrices for multiple relaxation time (MRT) collision schemes based on the selected lattice
model (numbers of space dimensions and discrete velocities) and mesophase interaction model.

fGetPotentialSwift()

double fGetPotentialSwift (double phi, double d2phi)

Calculates and returns the potential at a given lattice point for two-fluid Swift free-energy interactions, using the
following expression for a double well potential:

𝜇 = 𝑎
(︀
−𝜑+ 𝜑3

)︀
− 𝜅∇2𝜑,

where 𝑎 is a parameter that can control the surface tension between the two fluids and the interfacial width.

Parameters

in phi Fluid concentration at lattice site 𝜑
in d2phi Second-order derivative of fluid concentration ∇2𝜑

fInitializeSystem()

int fInitializeSystem ()

Sets the starting distribution functions for a Lattice Boltzmann Equation (LBE) calculation based on initial val-
ues for fluid velocity, densities, solute concentrations and temperatures at each lattice point. Local equilibrium
distribution functions are used to obtain initial values for distribution functions: the exact forms for these depend
on whether or not the fluids are compressible, if cascaded LBE (CLBE) collisions or Swift free-energy interac-
tions are in use. The initial fluid densities can be varied by random ‘noise’ with a maximum fluctuation given by

102 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

the user: this can be used for multiple fluid/phase simulations to give initial density gradients that can instigate
separation. This subroutine makes use of initial conditions specified in the input system file (lbin.sys) as defaults
for all fluid lattice sites: an initial state input file (lbin.init) can be used to override these defaults at any specified
lattice sites.

fMarkBoundArea()

int fMarkBoundArea ()

Assigns boundary conditions to the edges of a subdomain indicating the lattice points making up the boundary
halo for LBE calculations. This subroutine is essential for parallel calculations to indicate lattice points involved
in processor-to-processor communications and for serial calculations that use a non-zero boundary halo: serial
calculations that do not require a boundary halo do not need to call this subroutine.

fMarkBoundArea2D()

int fMarkBoundArea2D ()

Assigns boundary conditions to the edges of a subdomain indicating the lattice points making up the boundary halo
for LBE calculations in a two-dimensional lattice. The assigned boundary condition (phase field) code indicates
lattice sites that are otherwise fluid (non-boundary) points and are treated as such for e.g. collisions.

fMarkBoundArea3D()

int fMarkBoundArea3D ()

Assigns boundary conditions to the edges of a subdomain indicating the lattice points making up the boundary
halo for LBE calculations in a three-dimensional lattice. The assigned boundary condition (phase field) code
indicates lattice sites that are otherwise fluid (non-boundary) points and are treated as such for e.g. collisions.

fMemoryAllocation()

int fMemoryAllocation ()

Allocates the main arrays for a Lattice Boltzmann Equation (LBE) calculation: distribution functions, inter-
action type-dependent property (Shan-Chen pseudopotentials, Lishchuk interfacial normals, gradients of den-
sity/concentration for Swift free-energy interactions), initial and boundary conditions, lattice weighting parame-
ters and link vectors, interaction forces, simulation parameters etc.

fPropagationCombinedSwap()

int fPropagationCombinedSwap ()

Shifts distribution functions to neighbouring lattice points along link vectors by systematic swapping of post-
collisional distribution functions [93], initially at each lattice point and then between them within the same loop.
This routine should not be modified unless the storage structure for distribution functions is changed. This routine
provides an efficient propagation method for calculations in DL_MESO_LBE, but it can only be used when there is
a boundary halo in use, as the swaps between lattice points require both points to have already swapped distribution
functions among their conjugate links (which cannot happen when modulo functions are in use). As such, it is
therefore the default propagation method in DL_MESO_LBE for parallel calculations when OpenMP is not in
use.

5.11. lbpSUB.cpp 103

DL_MESO Technical Manual, Release 2.7

fPropagationSwap()

int fPropagationSwap ()

Shifts distribution functions to neighbouring lattice points along link vectors by systematic swapping of post-
collisional distribution functions [93], initially at each lattice point and then between them in two separate loops.
This routine should not be modified unless the storage structure for distribution functions is changed. This routine
provides an efficient propagation method for both serial and parallel calculations in DL_MESO_LBE as it uses
less memory and can be carried out over multiple OpenMP threads: it is therefore the default propagation method
in DL_MESO_LBE for serial calculations and parallel calculations when OpenMP is in use.

fPropagationTwoLattice()

int fPropagationTwoLattice ()

Shifts distribution functions to neighbouring lattice points along link vectors by copying values to an additional
second lattice and copying the values back into the main distribution function array afterwards. This routine should
not be modified unless the storage structure for distribution functions is changed and provides the least efficient
propagation method available in DL_MESO_LBE: for this reason it is not the method used by default.

fSetSerialDomain()

int fSetSerialDomain ()

Sets the sizes of the lattice based on inputted values, ignoring the boundary halo size (as modulo functions can
be used to deal with periodic boundaries), and sets a grid boundary region close to the edge of the domain to
find neighbouring lattice points for e.g. interaction forces more efficiently. This subroutine is only used for serial
DL_MESO_LBE runs: an alternative subroutine exists for parallel running (fDefineDomain()).

fSetSerialDomainBuffer()

int fSetSerialDomainBuffer ()

Sets the sizes of the lattice based on inputted values, using the boundary halo size to find outer lattice extents, and
sets a grid boundary region close to the edge of the domain to find neighbouring lattice points for e.g. interaction
forces more efficiently. This subroutine is an alternative to fSetSerialDomain() that is not normally used by default
and is a serial equivalent to the fDefineDomain() subroutine used for parallel calculations.

fsPrintDomainInfo()

int fsPrintDomainInfo ()

Prints the number of available threads to the standard output if OpenMP is in use. This subroutine is only used
for serial calculations: an alternative subroutine for parallel running (fPrintDomainInfo()) that also indicates the
number of processors in use. If DL_MESO_LBE is not compiled with OpenMP, this message is not printed.

104 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fStartDLMESO()

int fStartDLMESO ()

Prints messages at the start of a DL_MESO_LBE calculation indicating the code version (with minor revision
number and release date), authors, contributors, copyright message and starting time to standard output.

fWeakMemory()

inline void fWeakMemory ()

Prints error message and stops DL_MESO_LBE if there is insufficient memory available to allocate arrays for
LBE calculations.

5.12 lbpMPI.cpp

Module with functions and subroutines required for parallel running using MPI. (Header file available as
lbpMPI.hpp.)

Functions and subroutines required to set up parallel LBE calculations using the Message Passing Interface (MPI),
including processor-to-processor communications, global summations, simulation setup over multiple processors
etc.

5.12.1 Functions

• int fStartMPI()

Starts off MPI for a parallel simulation by DL_MESO_LBE.

• int fCloseMPI()

Closes MPI after completion of DL_MESO_LBE calculation in a controlled manner.

• int fGetRank()

Returns number (rank) of current processor.

• int fGetSize()

Returns total number of available processors.

• int fAllReady()

Synchronises all processors before continuing.

• int fGlobalValue()

Applies a global summation to an integer, long integer or double-precision floating-point array and broad-
casts result to all processors in either the original array or as a new array.

• int fGlobalProduct()

Applies a global product to an integer or double-precision floating-point array and broadcasts result to all
processors.

• double fCheckTimeMPI()

Outputs time in seconds.

• int fArrangeProcessors()

Arrange processors to best fit system dimensions.

5.12. lbpMPI.cpp 105

DL_MESO Technical Manual, Release 2.7

• int fGetProcessCoordinate()

Determine processor coordinate for current processor.

• int fGetDomainSize()

Distribute lattice points among all available processors.

• int fErrorInArray()

Checks for and report errors in determined lattice dimensions.

• int fDefineDomain()

Determines the domain parameters for the parallel LBE calculation.

• int fDefineMessage()

Defines vector messages for system to communicate calculational properties between processors.

• int fDefineNeighbours()

Defines the neighbouring processors and data locations for processor-to-processor communications.

• int fNonBlockComm2DX()

Passes distribution functions in x-direction for two-dimensional LBE simulation.

• int fNonBlockComm2DY()

Passes distribution functions in y-direction for two-dimensional LBE simulation.

• int fNonBlockComm2D()

Passes distribution functions to boundary halos for two-dimensional LBE simulation.

• int fNonBlockComm3DX()

Passes distribution functions in x-direction for three-dimensional LBE simulation.

• int fNonBlockComm3DY()

Passes distribution functions in y-direction for three-dimensional LBE simulation.

• int fNonBlockComm3DZ()

Passes distribution functions in z-direction for three-dimensional LBE simulation.

• int fNonBlockComm3D()

Passes distribution functions to boundary halos for three-dimensional LBE simulation.

• int fNonBlockCommunication()

Passes distribution functions to boundary halos for LBE simulation.

• int fPrintDomainInfo()

Prints information about numbers of processors and threads to standard output.

• int fBroadcast()

Broadcasts an integer across all processors.

• int fMPISetoffSteer()

Creates file to prevent reading in input files when using computational steering (in parallel).

• int fMPICheckSteer()

Checks for file indicating steering is occurring and reads in input files if it does not exist (in parallel).

• int fBoundNonBlockComm2DX()

Passes boundary conditions in x-direction for two-dimensional LBE simulation.

106 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fBoundNonBlockComm2DY()

Passes boundary conditions in y-direction for two-dimensional LBE simulation.

• int fBoundNonBlockComm2D()

Passes boundary conditions to boundary halos for two-dimensional LBE simulation.

• int fBoundNonBlockComm3DX()

Passes boundary conditions in x-direction for three-dimensional LBE simulation.

• int fBoundNonBlockComm3DY()

Passes boundary conditions in y-direction for three-dimensional LBE simulation.

• int fBoundNonBlockComm3DZ()

Passes boundary conditions in z-direction for three-dimensional LBE simulation.

• int fBoundNonBlockComm3D()

Passes boundary conditions to boundary halos for three-dimensional LBE simulation.

• int fBoundNonBlockCommunication()

Passes boundary conditions to boundary halos for LBE simulation.

• int fForceNonBlockComm2DX()

Passes interaction forces in x-direction for two-dimensional LBE simulation.

• int fForceNonBlockComm2DY()

Passes interaction forces in y-direction for two-dimensional LBE simulation.

• int fForceNonBlockComm2D()

Passes interfacial forces to boundary halos for two-dimensional LBE simulation.

• int fForceNonBlockComm3DX()

Passes interaction forces in x-direction for three-dimensional LBE simulation.

• int fForceNonBlockComm3DY()

Passes interaction forces in y-direction for three-dimensional LBE simulation.

• int fForceNonBlockComm3DZ()

Passes interaction forces in z-direction for three-dimensional LBE simulation.

• int fForceNonBlockComm3D()

Passes interfacial forces to boundary halos for three-dimensional LBE simulation.

• int fForceNonBlockCommunication()

Passes interfacial forces to boundary halos for LBE simulation.

• int fIndexNonBlockComm2DX()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in x-direction for two-
dimensional LBE simulation.

• int fIndexNonBlockComm2DY()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in y-direction for two-
dimensional LBE simulation.

• int fIndexNonBlockComm2D()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients to boundary halos for
two-dimensional LBE simulation.

5.12. lbpMPI.cpp 107

DL_MESO Technical Manual, Release 2.7

• int fIndexNonBlockComm3DX()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in x-direction for three-
dimensional LBE simulation.

• int fIndexNonBlockComm3DY()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in y-direction for three-
dimensional LBE simulation.

• int fIndexNonBlockComm3DZ()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in z-direction for three-
dimensional LBE simulation.

• int fIndexNonBlockComm3D()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients to boundary halos for
three-dimensional LBE simulation.

• int fIndexNonBlockCommunication()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients to boundary halos for
LBE simulation.

• int fPrintSystemMass()

Calculates and prints total and individual fluid masses in entire system.

• int fPrintSystemMomentum()

Calculates and prints total fluid momentum in entire system.

5.12.2 Function Documentation

fAllReady()

int fAllReady ()

Pauses running until all processors are sychronised and have reached a given point in the code: needed when all
processors need to be involved with what happens subsequently (i.e. are all ready to continue).

fArrangeProcessors()

int fArrangeProcessors ()

Determine the numbers of available processors in each dimension to best fit the lattice grid, i.e. to give as square
or cubic subdomains as possible:

𝑁𝑥

𝑃𝑥
≃ 𝑁𝑦

𝑃𝑦
≃ 𝑁𝑧

𝑃𝑧

where 𝑁𝛼 and 𝑃𝛼 are the numbers of lattice points and processors respectively in dimension 𝛼. (The total number
of processors is 𝑃𝑥𝑃𝑦𝑃𝑧 , where 𝑃𝑧 = 1 for two-dimensional simulations.)

108 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fBoundNonBlockComm2D()

int fBoundNonBlockComm2D ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete two-dimensional LBE calculations. This
subroutine is used to set off the communications in the required directions.

fBoundNonBlockComm2DX()

int fBoundNonBlockComm2DX ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +x and
-x directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into the
boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockComm2DY()

int fBoundNonBlockComm2DY ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +y and
-y directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into the
boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockComm3D()

int fBoundNonBlockComm3D ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete three-dimensional LBE calculations.
This subroutine is used to set off the communications in the required directions.

fBoundNonBlockComm3DX()

int fBoundNonBlockComm3DX ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +x
and -x directions to generate boundary halos required to complete three-dimensional LBE calculations, using
unblocked MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into
the boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockComm3DY()

int fBoundNonBlockComm3DY ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +y
and -y directions to generate boundary halos required to complete three-dimensional LBE calculations, using
unblocked MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into
the boundary condition, neighbouring point and surface normal arrays as boundary halos.

5.12. lbpMPI.cpp 109

DL_MESO Technical Manual, Release 2.7

fBoundNonBlockComm3DZ()

int fBoundNonBlockComm3DZ ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +z
and -z directions to generate boundary halos required to complete three-dimensional LBE calculations, using
unblocked MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into
the boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockCommunication()

int fBoundNonBlockCommunication ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete LBE calculations. This subroutine is
used to choose in which directions the communications should take place based on the number of dimensions in
the system.

fBroadcast()

int fBroadcast (int * item1)

Broadcasts an integer from processor 0 to all processors.

Parameters

in item1 Integer to be broadcast to all processors

fCheckTimeMPI()

double fCheckTimeMPI ()

Checks the time since the first call of the function obtained from MPI wall time. This function is used to time
DL_MESO_LBE simulations run in parallel: there is an alternative function to do the same for serial calculations
(fCheckTimeSerial()).

fCloseMPI()

int fCloseMPI ()

Calls MPI routine to close all communications to end the DL_MESO_LBE after a successful calculation.

fDefineDomain()

int fDefineDomain ()

Obtains processor rank (number) and the total number of processors, arranges the processors to best fit the spec-
ified lattice domain, determines where the current processor is located within the system, distribute lattice points
among the processors and check to ensure at least one lattice point is assigned to each processor. This subroutine
is only used for parallel DL_MESO_LBE runs: an alternative subroutine exists for serial running (fSetSerialDo-
main()).

110 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fDefineMessage()

int fDefineMessage ()

Defines MPI derived datatypes to specify vectors of data (distribution functions, boundary condition properties,
interaction forces and phase indices or density/concentration gradients) to send and receive between neighbouring
processors as boundary halos. The subroutines used by default to create the MPI derived datatypes are based on
MPI-2.x or later, although a compile-time option is available to substitute MPI-1.x subroutines. Another compile-
time option is available to pack and unpack data into and from one-dimensional buffer arrays as an alternative
to using MPI derived datatypes: this subroutine allocates the buffer arrays required to carry out this form of
communication.

fDefineNeighbours()

int fDefineNeighbours ()

Determines which processors are neighbours to the current processor in up to six directions (+x, -x, +y, -y, +z,
-z), and the starting locations in memory for data to send to neighbours and data received from neighbours as
boundary halos.

fErrorInArray()

int fErrorInArray ()

Checks that the processor’s lattice dimensions without boundary halos are at least 1 in all dimensions for simula-
tion: if any of them are zero, an error message is printed to standard output and DL_MESO_LBE stops.

fForceNonBlockComm2D()

int fForceNonBlockComm2D ()

Sends and receives interfacial forces between neighbouring processors to generate boundary halos required to
complete two-dimensional LBE calculations. This subroutine is used to set off the communications in the required
directions.

fForceNonBlockComm2DX()

int fForceNonBlockComm2DX ()

Sends and receives interaction forces in +x and -x directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

5.12. lbpMPI.cpp 111

DL_MESO Technical Manual, Release 2.7

fForceNonBlockComm2DY()

int fForceNonBlockComm2DY ()

Sends and receives interaction forces in +y and -y directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fForceNonBlockComm3D()

int fForceNonBlockComm3D ()

Sends and receives interfacial forces between neighbouring processors to generate boundary halos required to
complete three-dimensional LBE calculations. This subroutine is used to set off the communications in the re-
quired directions.

fForceNonBlockComm3DX()

int fForceNonBlockComm3DX ()

Sends and receives interaction forces in +x and -x directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fForceNonBlockComm3DY()

int fForceNonBlockComm3DY ()

Sends and receives interaction forces in +y and -y directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fForceNonBlockComm3DZ()

int fForceNonBlockComm3DZ ()

Sends and receives interaction forces in +z and -z directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

112 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fForceNonBlockCommunication()

int fForceNonBlockCommunication ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete LBE calculations. This subroutine is
used to choose in which directions the communications should take place based on the number of dimensions in
the system.

fGetDomainSize()

int fGetDomainSize ()

Determines the number of lattice points for each processor (both including and excluding boundary halo points),
based on the best fit to the numbers of processors in each direction, and sets grid boundary regions close to the
edges of each processor’s subdomain.

fGetProcessCoordinate()

int fGetProcessCoordinate ()

Find the location of the current processor within the grid of processors as a Cartesian coordinate.

fGetRank()

int fGetRank ()

Finds rank (number) of current processor, which can range from 0 to the number of processors less 1.

fGetSize()

int fGetSize ()

Finds the total number of processors available for DL_MESO_LBE to run.

fGlobalProduct()

int fGlobalProduct (double * vqua, int nnum)

Carries out an MPI_Allreduce operation on an array of double-precision floating-point or integer numbers to find
the products for all elements across all processors and share the result in the same array.

Parameters

in,out vqua Double-precision floating-point or integer array on which to apply global product
in nnum Size of double-precision floating-point or integer array

5.12. lbpMPI.cpp 113

DL_MESO Technical Manual, Release 2.7

fGlobalValue()

int fGlobalValue (double * vqua, int nnum)
int fGlobalValue (double * vqua, int nnum, double * vtot)
int fGlobalValue (int * vqua, int nnum)
int fGlobalValue (int * vqua, int nnum, int * vtot)
int fGlobalValue (long int * vqua, int nnum)
int fGlobalValue (long int * vqua, int nnum, long int * vtot)

Carries out an MPI_Allreduce operation on an array of double-precision floating-point, integer or long integer
numbers to find the sums for all elements across all processors and share the result either in the same array or as a
new array.

Parameters

in,[out] vqua Double-precision floating-point, integer or long integer array on which to apply global sum-
mation

in nnum Size of double-precision floating-point, integer or long integer array
out vtot Double-precision floating-point, integer or long integer array with resulting global summa-

tion

fIndexNonBlockComm2D()

int fIndexNonBlockComm2D ()

Sends and receives Lishchuk phase indices or Swift free-energy density/concentration gradients between neigh-
bouring processors to generate boundary halos required to complete two-dimensional LBE calculations. This
subroutine is used to set off the communications in the required directions.

fIndexNonBlockComm2DX()

int fIndexNonBlockComm2DX ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +x and -x
directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fIndexNonBlockComm2DY()

int fIndexNonBlockComm2DY ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +y and -y
directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

114 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fIndexNonBlockComm3D()

int fIndexNonBlockComm3D ()

Sends and receives Lishchuk phase indices or Swift free-energy density/concentration gradients between neigh-
bouring processors to generate boundary halos required to complete three-dimensional LBE calculations. This
subroutine is used to set off the communications in the required directions.

fIndexNonBlockComm3DX()

int fIndexNonBlockComm3DX ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +x and -x
directions to generate boundary halos required to complete three-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fIndexNonBlockComm3DY()

int fIndexNonBlockComm3DY ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +y and -y
directions to generate boundary halos required to complete three-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fIndexNonBlockComm3DZ()

int fIndexNonBlockComm3DZ ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +z and -z
directions to generate boundary halos required to complete three-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fIndexNonBlockCommunication()

int fIndexNonBlockCommunication ()

Sends and receives Lishchuk phase indices or Swift free-energy density/concentration gradients between neigh-
bouring processors to generate boundary halos required to complete LBE calculations. This subroutine is used
to choose in which directions the communications should take place based on the number of dimensions in the
system.

5.12. lbpMPI.cpp 115

DL_MESO Technical Manual, Release 2.7

fMPICheckSteer()

int fMPICheckSteer ()

Checks for the existence of a file called notsteer, which was created to prevent DL_MESO_LBE from starting a
new simulation when computaional steering is applied. If the files does not exist, read in system and space property
files. This routine is for parallel calculations: an atlnerative routine exists for serial running (fCheckSteer()), but
neither routine is currently in use in the main DL_MESO_LBE code.

fMPISetoffSteer()

int fMPISetoffSteer ()

Creates a file called notsteer to prevent DL_MESO_LBE from starting a new simulation by reading in system and
space property files when a LBE simulation is computationally steered. This routine is for parallel calculations:
an alternative routine exists for serial running (fSetoffSteer()), but neither routine is currently in use in the main
DL_MESO_LBE code.

fNonBlockComm2D()

int fNonBlockComm2D ()

Sends and receives distribution functions between neighbouring processors to generate boundary halos required to
complete two-dimensional LBE calculations. This subroutine is used to set off the communications in the required
directions.

fNonBlockComm2DX()

int fNonBlockComm2DX ()

Sends and receives distribution functions in +x and -x directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockComm2DY()

int fNonBlockComm2DY ()

Sends and receives distribution functions in +y and -y directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

116 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fNonBlockComm3D()

int fNonBlockComm3D ()

Sends and receives distribution functions between neighbouring processors to generate boundary halos required
to complete three-dimensional LBE calculations. This subroutine is used to set off the communications in the
required directions.

fNonBlockComm3DX()

int fNonBlockComm3DX ()

Sends and receives distribution functions in +x and -x directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockComm3DY()

int fNonBlockComm3DY ()

Sends and receives distribution functions in +y and -y directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockComm3DZ()

int fNonBlockComm3DZ ()

Sends and receives distribution functions in +z and -z directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockCommunication()

int fNonBlockCommunication ()

Sends and receives distribution functions between neighbouring processors to generate boundary halos required
to complete LBE calculations. This subroutine is used to choose in which directions the communications should
take place based on the number of dimensions in the system.

5.12. lbpMPI.cpp 117

DL_MESO Technical Manual, Release 2.7

fPrintDomainInfo()

int fPrintDomainInfo ()

Prints the number of available OpenMP threads per processor and the number of processors (including the extents
of their subdomains within the overall lattice) to the standard output. This subroutine is only used for parallel
calculations: an alternative subroutine for serial running (fsPrintDomainInfo()).

fPrintSystemMass()

int fPrintSystemMass ()

Calculates both the total mass and the individual masses of all fluids in the entire simulation lattice and prints the
results to the standard output. This subroutine can only be used for parallel calculations: an alternative routine
(fPrintDomainMass()) is available for printing total and individual fluid masses in serial.

fPrintSystemMomentum()

int fPrintSystemMomentum ()

Calculates the total momentum of all fluids in the entire simulation lattice and prints the result to the standard out-
put. This subroutine can only be used for parallel calculations: an alternative routine (fPrintDomainMomentum())
is available for printing the total momentum in serial.

fStartMPI()

int fStartMPI (int argc, char * argv[])

Starts the Message Passing Interface (MPI) for the instance of DL_MESO_LBE.

Parameters

in argc Number of command-line arguments included in command to launch DL_MESO_LBE
in argv Character array of command-line arguments

5.13 lbpBGK.cpp

Module with routines for Bhatnagar-Gross-Krook (BGK) single relaxation time collisions. (Header file available
as lbpBGK.hpp.)

Applies collisions to grid points using a single relaxation time scheme, known as Bhatnagar-Gross-Krook (BGK),
on each fluid, i.e.

𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
= 𝑓𝑖 (𝑥⃗, 𝑡) − 𝑓𝑖 (𝑥⃗, 𝑡) − 𝑓𝑒𝑞𝑖 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))

𝜏
.

where 𝑓𝑒𝑞𝑖 is the local equilibrium distribution function (dependent on macroscopic fluid density 𝜌 and velocity
𝑢⃗). Similar collisions can also be applied to solutes and temperature fields.

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [34]
:cite:`martys1996 force scheme applies a modified velocity for calculating local equilibrium distribution func-
tions:

𝑣⃗ = 𝑢⃗+
𝜏𝑓𝐹∆𝑡

𝜌
,

118 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

𝐹𝑖 = 𝑓𝑒𝑞𝑖

(︃
𝜌, 𝑢⃗+

𝐹∆𝑡

𝜌

)︃
− 𝑓𝑒𝑞𝑖 (𝜌, 𝑢⃗) .

The Guo scheme [49] both adjusts the velocity for local equilibrium distribution functions to 𝑣⃗ = 𝑢⃗ + 𝐹Δ𝑡
2𝜌 and

includes the following forcing term for BGK collisions:

𝐹𝑖 =

(︂
1 − 1

2𝜏𝑓

)︂
𝑤𝑖

[︂
𝑒𝑖 − 𝑣⃗

𝑐2𝑠
+
𝑒𝑖 · 𝑣⃗
𝑐4𝑠

𝑒𝑖

]︂
· 𝐹

and the He scheme [54] uses the same adjusted velocity and the following forcing term for BGK collisions:

𝐹𝑖 =

(︂
1 − 1

2𝜏𝑓

)︂
𝑓𝑒𝑞𝑖
𝜌𝑐2𝑠

(𝑒𝑖 − 𝑣⃗) · 𝐹 .

5.13.1 Functions

• int fSiteFluidCollisionBGK()

Applies BGK collisions to all compressible fluids at a given lattice site with standard forcing.

• int fSiteFluidIncomCollisionBGK()

Applies BGK collisions to all incompressible fluids at a given lattice site with standard forcing.

• int fSiteFluidCollisionBGKEDM()

Applies BGK collisions to all compressible fluids at a given lattice site with EDM forcing.

• int fSiteFluidIncomCollisionBGKEDM()

Applies BGK collisions to all incompressible fluids at a given lattice site with EDM forcing.

• int fSiteFluidCollisionBGKGuo()

Applies BGK collisions to all compressible fluids at a given lattice site with Guo forcing.

• int fSiteFluidIncomCollisionBGKGuo()

Applies BGK collisions to all incompressible fluids at a given lattice site with Guo forcing.

• int fSiteFluidCollisionBGKHe()

Applies BGK collisions to all compressible fluids at a given lattice site with He forcing.

• int fSiteFluidIncomCollisionBGKHe()

Applies BGK collisions to all incompressible fluids at a given lattice site with He forcing.

• int fSiteFluidCollisionBGKLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionBGKLishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionBGKEDMLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionBGKEDMLishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

5.13. lbpBGK.cpp 119

DL_MESO Technical Manual, Release 2.7

• int fSiteFluidCollisionBGKGuoLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionBGKGuoLishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionBGKHeLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionBGKHeLishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionBGKLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionBGKLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionBGKEDMLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionBGKEDMLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionBGKGuoLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionBGKGuoLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionBGKHeLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionBGKHeLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionBGKSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with standard forcing and Swift
free-energy interactions.

• int fSiteFluidCollisionBGKSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with standard forcing and Swift
free-energy interactions.

120 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fSiteFluidCollisionBGKEDMSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with EDM forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionBGKEDMSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with EDM forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionBGKGuoSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with Guo forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionBGKGuoSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with Guo forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionBGKHeSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with He forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionBGKHeSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with He forcing and Swift free-
energy interactions.

• int fSiteSoluteCollisionBGK()

Applies BGK collisions to all solutes at a given lattice site with standard forcing.

• int fSiteThermalCollisionBGK()

Applies BGK collisions to temperature field at a given lattice site with standard forcing.

• int fCollisionBGK()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forc-
ing.

• int fCollisionBGKEDM()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing.

• int fCollisionBGKGuo()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing.

• int fCollisionBGKHe()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing.

• int fCollisionBGKShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
for Shan-Chen interactions.

• int fCollisionBGKEDMShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
for Shan-Chen interactions.

• int fCollisionBGKGuoShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing for
Shan-Chen interactions.

• int fCollisionBGKHeShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing for
Shan-Chen interactions.

5.13. lbpBGK.cpp 121

DL_MESO Technical Manual, Release 2.7

• int fCollisionBGKLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
and Lishchuk interactions provided as interfacial forces.

• int fCollisionBGKEDMLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
and Lishchuk interactions provided as interfacial forces.

• int fCollisionBGKGuoLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing
and Lishchuk interactions provided as interfacial forces.

• int fCollisionBGKHeLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing and
Lishchuk interactions provided as interfacial forces.

• int fCollisionBGKLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
and Lishchuk interactions provided as an additional forcing term.

• int fCollisionBGKEDMLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
and Lishchuk interactions provided as an additional forcing term.

• int fCollisionBGKGuoLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing
and Lishchuk interactions provided as an additional forcing term.

• int fCollisionBGKHeLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing and
Lishchuk interactions provided as an additional forcing term.

• int fCollisionBGKSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
for Swift free-energy interactions.

• int fCollisionBGKEDMSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
for Swift free-energy interactions.

• int fCollisionBGKGuoSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing for
Swift free-energy interactions.

• int fCollisionBGKHeSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing for
Swift free-energy interactions.

122 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.13.2 Function Documentation

fCollisionBGK()

int fCollisionBGK ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field us-
ing single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing. This version of the collisions
uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionBGKEDM()

int fCollisionBGKEDM ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing. This version of
the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionBGKEDMLishchuk()

int fCollisionBGKEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid
collisions and segregation. The interfacial forces are applied using the main forcing scheme: this approach can be
used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKEDMLishchukLocal()

int fCollisionBGKEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid
collisions and segregation. The interfacial forces are applied using separate forcing terms: this approach can be
used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionBGKEDMShanChen()

int fCollisionBGKEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing. This version of
the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

5.13. lbpBGK.cpp 123

DL_MESO Technical Manual, Release 2.7

fCollisionBGKEDMSwift()

int fCollisionBGKEDMSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing and Swift free-
energy interactions (enacted using modified local equilibrium distribution functions to incorporate density and
concentration gradients).

fCollisionBGKGuo()

int fCollisionBGKGuo ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Guo [49] forcing. This version of the collisions uses the standard
values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionBGKGuoLishchuk()

int fCollisionBGKGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions, using Guo [49] forcing, achromatic fluid collisions and segregation.
The interfacial forces are applied using the main forcing scheme: this approach can be used with the original
Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKGuoLishchukLocal()

int fCollisionBGKGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Guo [49] forcing, achromatic fluid collisions and segregation.
The interfacial forces are applied using separate forcing terms: this approach can be used with the Lishchuk
‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionBGKGuoShanChen()

int fCollisionBGKGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field us-
ing single relaxation time BGK collisions with Guo [49] forcing. This version of the collisions uses the following
values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

124 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionBGKGuoSwift()

int fCollisionBGKGuoSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Guo [49] forcing and Swift free-energy interactions (enacted
using modified local equilibrium distribution functions to incorporate density and concentration gradients).

fCollisionBGKHe()

int fCollisionBGKHe ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing. This version of the collisions uses the standard
values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionBGKHeLishchuk()

int fCollisionBGKHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions, using He [54] forcing, achromatic fluid collisions and segregation.
The interfacial forces are applied using the main forcing scheme: this approach can be used with the original
Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKHeLishchukLocal()

int fCollisionBGKHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing, achromatic fluid collisions and segregation. The
interfacial forces are applied using separate forcing terms: this approach can be used with the Lishchuk ‘Spencer
tensor’ and local Lishchuk interaction models.

fCollisionBGKHeShanChen()

int fCollisionBGKHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing. This version of the collisions uses the following
values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

5.13. lbpBGK.cpp 125

DL_MESO Technical Manual, Release 2.7

fCollisionBGKHeSwift()

int fCollisionBGKHeSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing and Swift free-energy interactions (enacted using
modified local equilibrium distribution functions to incorporate density and concentration gradients).

fCollisionBGKLishchuk()

int fCollisionBGKLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions
and segregation. The interfacial forces are applied using the main forcing scheme: this approach can be used with
the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKLishchukLocal()

int fCollisionBGKLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions
and segregation. The interfacial forces are applied using separate forcing terms: this approach can be used with
the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionBGKShanChen()

int fCollisionBGKShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field us-
ing single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing. This version of the collisions
uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionBGKSwift()

int fCollisionBGKSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing and Swift free-energy inter-
actions (enacted using modified local equilibrium distribution functions to incorporate density and concentration
gradients).

126 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGK()

int fSiteFluidCollisionBGK (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionBGKEDM()

int fSiteFluidCollisionBGKEDM (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionBGKEDMLishchuk()

int fSiteFluidCollisionBGKEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

5.13. lbpBGK.cpp 127

DL_MESO Technical Manual, Release 2.7

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionBGKEDMLishchukLocal()

int fSiteFluidCollisionBGKEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except
Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionBGKEDMSwiftOneFluid()

int fSiteFluidCollisionBGKEDMSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Equal Difference Method (EDM) [69] forcing.

128 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKEDMSwiftTwoFluid()

int fSiteFluidCollisionBGKEDMSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Equal Difference Method
(EDM) [69] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKGuo()

int fSiteFluidCollisionBGKGuo (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

5.13. lbpBGK.cpp 129

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKGuoLishchuk()

int fSiteFluidCollisionBGKGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionBGKGuoLishchukLocal()

int fSiteFluidCollisionBGKGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

130 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKGuoSwiftOneFluid()

int fSiteFluidCollisionBGKGuoSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKGuoSwiftTwoFluid()

int fSiteFluidCollisionBGKGuoSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.13. lbpBGK.cpp 131

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKHe()

int fSiteFluidCollisionBGKHe (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionBGKHeLishchuk()

int fSiteFluidCollisionBGKHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionBGKHeLishchukLocal()

int fSiteFluidCollisionBGKHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

132 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionBGKHeSwiftOneFluid()

int fSiteFluidCollisionBGKHeSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.13. lbpBGK.cpp 133

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKHeSwiftTwoFluid()

int fSiteFluidCollisionBGKHeSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKLishchuk()

int fSiteFluidCollisionBGKLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

134 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKLishchukLocal()

int fSiteFluidCollisionBGKLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk inter-
facial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionBGKSwiftOneFluid()

int fSiteFluidCollisionBGKSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.13. lbpBGK.cpp 135

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKSwiftTwoFluid()

int fSiteFluidCollisionBGKSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying standard (Martys-Chen)
[91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidIncomCollisionBGK()

int fSiteFluidIncomCollisionBGK (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionBGKEDM()

int fSiteFluidIncomCollisionBGKEDM (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

136 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionBGKEDMLishchuk()

int fSiteFluidIncomCollisionBGKEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionBGKEDMLishchukLocal()

int fSiteFluidIncomCollisionBGKEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except
Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

5.13. lbpBGK.cpp 137

DL_MESO Technical Manual, Release 2.7

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionBGKGuo()

int fSiteFluidIncomCollisionBGKGuo (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionBGKGuoLishchuk()

int fSiteFluidIncomCollisionBGKGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

138 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidIncomCollisionBGKGuoLishchukLocal()

int fSiteFluidIncomCollisionBGKGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionBGKHe()

int fSiteFluidIncomCollisionBGKHe (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

5.13. lbpBGK.cpp 139

DL_MESO Technical Manual, Release 2.7

fSiteFluidIncomCollisionBGKHeLishchuk()

int fSiteFluidIncomCollisionBGKHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionBGKHeLishchukLocal()

int fSiteFluidIncomCollisionBGKHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

140 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidIncomCollisionBGKLishchuk()

int fSiteFluidIncomCollisionBGKLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionBGKLishchukLocal()

int fSiteFluidIncomCollisionBGKLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk inter-
facial forces, which are applied using a direct forcing term [129] :

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in p hasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.13. lbpBGK.cpp 141

DL_MESO Technical Manual, Release 2.7

fSiteSoluteCollisionBGK()

int fSiteSoluteCollisionBGK (double * startpos, double * sitespeed)

Applies single relaxation time (BGK) collisions to all solutes at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for diffusion of solutes.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

fSiteThermalCollisionBGK()

int fSiteThermalCollisionBGK (double * startpos, double * sitespeed)

Applies single relaxation time (BGK) collisions to temperature field at a given lattice site, operating on the distri-
bution functions provided, using the local equilibrium distribution functions for heat diffusion.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

5.14 lbpTRT.cpp

Module with routines for two relaxation time (TRT) collisions.

Applies collisions to grid points using a two relaxation time (TRT) scheme [42] on each fluid. This scheme is
based on splitting distribution functions (including local equilibrium values) into symmetric 𝑓+𝑖 = 1

2 (𝑓𝑖 + 𝑓𝑗)

and anti-symmetric 𝑓+𝑖 = 1
2 (𝑓𝑖 − 𝑓𝑗) parts, using values in conjugate links to construct them, i.e. 𝑒𝑗 = −𝑒𝑖. The

collision operator is defined as:

𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
= 𝑓𝑖 (𝑥⃗, 𝑡) − 𝑓+𝑖 (𝑥⃗, 𝑡) − 𝑓𝑒𝑞,+𝑖 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))

𝜏+
− 𝑓−𝑖 (𝑥⃗, 𝑡) − 𝑓𝑒𝑞,−𝑖 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))

𝜏−
.

where 𝜏+ and 𝜏− are respectively the symmetric and anti-symmetric relaxation times. The symmetric relaxation
time controls fluid kinematic viscosity in an identical fashion to the single relaxation time 𝜏 used in BGK col-
lisions, while the anti-symmetric relaxation time is chosen to enhance numerical stability: this can be specified
using a ‘magic number’:

Λ𝑒𝑜 = Λ𝑒Λ𝑜 =

(︂
𝜏+ − 1

2

)︂(︂
𝜏− − 1

2

)︂
.

To simplify the implementation, the collsions can be re-expressed using full distribution functions:

𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
= 𝑓𝑖 (𝑥⃗, 𝑡) − 𝑓𝑖 (𝑥⃗, 𝑡) − 𝑓𝑒𝑞𝑖 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))

𝜏𝑝
−
𝑓𝑗 (𝑥⃗, 𝑡) − 𝑓𝑒𝑞𝑗 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))

𝜏𝑛
,

where 𝜏𝑝 = 2𝜏+𝜏−

𝜏++𝜏− and 𝜏𝑛 = 2𝜏+𝜏−

𝜏+−𝜏− .

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [91] force scheme
applies a modified velocity for calculating local equilibrium moments:

𝑣⃗ = 𝑢⃗+
𝜏𝑓𝐹∆𝑡

𝜌
,

142 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

𝐹𝑖 = 𝑓𝑒𝑞𝑖

(︃
𝜌, 𝑢⃗+

𝐹∆𝑡

𝜌

)︃
− 𝑓𝑒𝑞𝑖 (𝜌, 𝑢⃗) .

The Guo scheme [49] both adjusts the velocity for local equilibrium distribution functions to 𝑣⃗ = 𝑢⃗ + 𝐹Δ𝑡
2𝜌 and

includes the following forcing term for TRT collisions [115]:

𝐹𝑖 =

(︂
1 − 1

2𝜏𝑓,𝑝

)︂
𝑤𝑖

[︂
𝑒𝑖 − 𝑣⃗

𝑐2𝑠
+
𝑒𝑖 · 𝑣⃗
𝑐4𝑠

𝑒𝑖

]︂
· 𝐹 − 1

2𝜏𝑓,𝑛
𝑤𝑗

[︂
𝑒𝑗 − 𝑣⃗

𝑐2𝑠
+
𝑒𝑗 · 𝑣⃗
𝑐4𝑠

𝑒𝑗

]︂
· 𝐹

and the He scheme [54] uses the same adjusted velocity and the following forcing term for TRT collisions:

𝐹𝑖 =

(︂
1 − 1

2𝜏𝑓,𝑝

)︂
𝑓𝑒𝑞𝑖
𝜌𝑐2𝑠

(𝑒𝑖 − 𝑣⃗) · 𝐹 − 1

2𝜏𝑓,𝑝

𝑓𝑒𝑞𝑗
𝜌𝑐2𝑠

(𝑒𝑗 − 𝑣⃗) · 𝐹 .

5.14.1 Functions

• double fTRTOmegaAntisymmetric()

Calculates antisymmetric relaxation frequency for TRT collisions.

• int fSiteFluidCollisionTRT()

Applies TRT collisions to all compressible fluids at a given lattice site with standard forcing.

• int fSiteFluidIncomCollisionTRT()

Applies TRT collisions to all incompressible fluids at a given lattice site with standard forcing.

• int fSiteFluidCollisionTRTEDM()

Applies TRT collisions to all compressible fluids at a given lattice site with EDM forcing.

• int fSiteFluidIncomCollisionTRTEDM()

Applies TRT collisions to all incompressible fluids at a given lattice site with EDM forcing.

• int fSiteFluidCollisionTRTGuo()

Applies TRT collisions to all compressible fluids at a given lattice site with Guo forcing.

• int fSiteFluidIncomCollisionTRTGuo()

Applies TRT collisions to all incompressible fluids at a given lattice site with Guo forcing.

• int fSiteFluidCollisionTRTHe()

Applies TRT collisions to all compressible fluids at a given lattice site with He forcing.

• int fSiteFluidIncomCollisionTRTHe()

Applies TRT collisions to all incompressible fluids at a given lattice site with He forcing.

• int fSiteFluidCollisionTRTLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionTRTLishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionTRTEDMLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

5.14. lbpTRT.cpp 143

DL_MESO Technical Manual, Release 2.7

• int fSiteFluidIncomCollisionTRTEDMLishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionTRTGuoLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segrega-
tion when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionTRTGuoLishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionTRTHeLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with He forcing and phase segregation
when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionTRTHeLishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionTRTLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionTRTLishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionTRTEDMLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionTRTEDMLishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionTRTGuoLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segrega-
tion when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionTRTGuoLishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionTRTHeLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with He forcing and phase segregation
when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionTRTHeLishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionTRTSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with standard forcing and Swift
free-energy interactions.

144 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fSiteFluidCollisionTRTSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with standard forcing and Swift
free-energy interactions.

• int fSiteFluidCollisionTRTEDMSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with EDM forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionTRTEDMSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with EDM forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionTRTGuoSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with Guo forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionTRTGuoSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with Guo forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionTRTHeSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with He forcing and Swift free-energy
interactions.

• int fSiteFluidCollisionTRTHeSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with He forcing and Swift free-
energy interactions.

• int fCollisionTRT()

Applies collision steps for all fluids using TRT scheme with standard forcing, and solutes and temperature
fields using BGK scheme..

• int fCollisionTRTEDM()

Applies collision steps for all fluids using TRT scheme with EDM forcing, and solutes and temperature
fields using BGK scheme..

• int fCollisionTRTGuo()

Applies collision steps for all fluids using TRT scheme with Guo forcing, and solutes and temperature fields
using BGK scheme.

• int fCollisionTRTHe()

Applies collision steps for all fluids using TRT scheme with He forcing, and solutes and temperature fields
using BGK scheme.

• int fCollisionTRTShanChen()

Applies collision steps for all fluids using TRT scheme with standard forcing for Shan-Chen interactions,
and solutes and temperature fields using BGK scheme.

• int fCollisionTRTEDMShanChen()

Applies collision steps for all fluids using TRT scheme with EDM forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

• int fCollisionTRTGuoShanChen()

Applies collision steps for all fluids using TRT scheme with Guo forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

5.14. lbpTRT.cpp 145

DL_MESO Technical Manual, Release 2.7

• int fCollisionTRTHeShanChen()

Applies collision steps for all fluids using TRT scheme with He forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

• int fCollisionTRTLishchuk()

Applies collision steps for all fluids using TRT scheme with standard forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTEDMLishchuk()

Applies collision steps for all fluids using TRT scheme with EDM forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTGuoLishchuk()

Applies collision steps for all fluids using TRT scheme with Guo forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTHeLishchuk()

Applies collision steps for all fluids using TRT scheme with He forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTLishchukLocal()

Applies collision steps for all fluids using TRT scheme with standard forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTEDMLishchukLocal()

Applies collision steps for all fluids using TRT scheme with EDM forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTGuoLishchukLocal()

Applies collision steps for all fluids using TRT scheme with Guo forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTHeLishchukLocal()

Applies collision steps for all fluids using TRT scheme with He forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTSwift()

Applies collision steps for all fluids using TRT scheme with standard forcing for Swift free-energy interac-
tions, and solutes and temperature fields using BGK scheme.

• int fCollisionTRTEDMSwift()

Applies collision steps for all fluids using TRT scheme with EDM forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

• int fCollisionTRTGuoSwift()

Applies collision steps for all fluids using TRT scheme with Guo forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

• int fCollisionTRTHeSwift()

Applies collision steps for all fluids using TRT scheme with He forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

146 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.14.2 Function Documentation

fCollisionTRT()

int fCollisionTRT ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation
time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity at each
site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionTRTEDM()

int fCollisionTRTEDM ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using single
relaxation time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid
velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionTRTEDMLishchuk()

int fCollisionTRTEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer
interaction models.

fCollisionTRTEDMLishchukLocal()

int fCollisionTRTEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using separate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk
interaction models.

5.14. lbpTRT.cpp 147

DL_MESO Technical Manual, Release 2.7

fCollisionTRTEDMShanChen()

int fCollisionTRTEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using
single relaxation time BGK collisions. This version of the collisions uses the following values for macroscopic
fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionTRTEDMSwift()

int fCollisionTRTEDMSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Equal DIfference Method (EDM) [69] forcing and Swift free-energy interactions (enacted using mod-
ified local equilibrium distribution functions to incorporate density and concentration gradients), and all solutes
and any temperature field using single relaxation time BGK collisions.

fCollisionTRTGuo()

int fCollisionTRTGuo ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionTRTGuoLishchuk()

int fCollisionTRTGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionTRTGuoLishchukLocal()

int fCollisionTRTGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

148 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionTRTGuoShanChen()

int fCollisionTRTGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionTRTGuoSwift()

int fCollisionTRTGuoSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing and Swift free-energy interactions (enacted using modified local equilibrium distribu-
tion functions to incorporate density and concentration gradients), and all solutes and any temperature field using
single relaxation time BGK collisions.

fCollisionTRTHe()

int fCollisionTRTHe ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionTRTHeLishchuk()

int fCollisionTRTHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionTRTHeLishchukLocal()

int fCollisionTRTHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

5.14. lbpTRT.cpp 149

DL_MESO Technical Manual, Release 2.7

fCollisionTRTHeShanChen()

int fCollisionTRTHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionTRTHeSwift()

int fCollisionTRTHeSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing and Swift free-energy interactions (enacted using modified local equilibrium distribu-
tion functions to incorporate density and concentration gradients), and all solutes and any temperature field using
single relaxation time BGK collisions.

fCollisionTRTLishchuk()

int fCollisionTRTLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and
any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using the
main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction
models.

fCollisionTRTLishchukLocal()

int fCollisionTRTLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and
any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using sepa-
rate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

fCollisionTRTShanChen()

int fCollisionTRTShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation
time BGK collisions. This version of the collisions uses the following values for macroscopic fluid velocity at
each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

150 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionTRTSwift()

int fCollisionTRTSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing and Swift free-energy interactions (enacted using modified local
equilibrium distribution functions to incorporate density and concentration gradients), and all solutes and any
temperature field using single relaxation time BGK collisions.

fSiteFluidCollisionTRT()

int fSiteFluidCollisionTRT (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionTRTEDM()

int fSiteFluidCollisionTRTEDM (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

5.14. lbpTRT.cpp 151

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTEDMLishchuk()

int fSiteFluidCollisionTRTEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionTRTEDMLishchukLocal()

int fSiteFluidCollisionTRTEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

152 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTEDMSwiftOneFluid()

int fSiteFluidCollisionTRTEDMSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Equal Difference Method (EDM) [69] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTEDMSwiftTwoFluid()

int fSiteFluidCollisionTRTEDMSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Equal Difference Method
(EDM) [69] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single
relaxation time scheme.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.14. lbpTRT.cpp 153

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTGuo()

int fSiteFluidCollisionTRTGuo (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionTRTGuoLishchuk()

int fSiteFluidCollisionTRTGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25] :

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionTRTGuoLishchukLocal()

int fSiteFluidCollisionTRTGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

154 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionTRTGuoSwiftOneFluid()

int fSiteFluidCollisionTRTGuoSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.14. lbpTRT.cpp 155

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTGuoSwiftTwoFluid()

int fSiteFluidCollisionTRTGuoSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Guo [49] forcing. Colli-
sions of distribution functions for fluid concentration are carried out using a BGK single relaxation time scheme.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTHe()

int fSiteFluidCollisionTRTHe (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionTRTHeLishchuk()

int fSiteFluidCollisionTRTHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for

156 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionTRTHeLishchukLocal()

int fSiteFluidCollisionTRTHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.14. lbpTRT.cpp 157

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTHeSwiftOneFluid()

int fSiteFluidCollisionTRTHeSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTHeSwiftTwoFluid()

int fSiteFluidCollisionTRTHeSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying He [54] forcing. Collisions
of distribution functions for fluid concentration are carried out using a BGK single relaxation time scheme.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

158 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTLishchuk()

int fSiteFluidCollisionTRTLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionTRTLishchukLocal()

int fSiteFluidCollisionTRTLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.14. lbpTRT.cpp 159

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTSwiftOneFluid()

int fSiteFluidCollisionTRTSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTSwiftTwoFluid()

int fSiteFluidCollisionTRTSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying standard (Martys-Chen)
[91] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single relax-
ation time scheme.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

160 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidIncomCollisionTRT()

int fSiteFluidIncomCollisionTRT (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionTRTEDM()

int fSiteFluidIncomCollisionTRTEDM (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionTRTEDMLishchuk()

int fSiteFluidIncomCollisionTRTEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

5.14. lbpTRT.cpp 161

DL_MESO Technical Manual, Release 2.7

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionTRTEDMLishchukLocal()

int fSiteFluidIncomCollisionTRTEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionTRTGuo()

int fSiteFluidIncomCollisionTRTGuo (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Guo [49] forcing.

Parameters

162 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionTRTGuoLishchuk()

int fSiteFluidIncomCollisionTRTGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionTRTGuoLishchukLocal()

int fSiteFluidIncomCollisionTRTGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

5.14. lbpTRT.cpp 163

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionTRTHe()

int fSiteFluidIncomCollisionTRTHe (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionTRTHeLishchuk()

int fSiteFluidIncomCollisionTRTHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

164 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidIncomCollisionTRTHeLishchukLocal()

int fSiteFluidIncomCollisionTRTHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionTRTLishchuk()

int fSiteFluidIncomCollisionTRTLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

5.14. lbpTRT.cpp 165

DL_MESO Technical Manual, Release 2.7

fSiteFluidIncomCollisionTRTLishchukLocal()

int fSiteFluidIncomCollisionTRTLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fTRTOmegaAntisymmetric()

double fTRTOmegaAntisymmetric (double omegasymmetric, double magic)

Calculates and returns the antisymmetric relaxation frequency 𝜔−
𝑓 = 1

𝜏−
𝑓

for two relaxation time (TRT) collisions

using the symmetric relaxation frequency 𝜔+
𝑓 = 1

𝜏+
𝑓

and the TRT ‘magic number’ Λ𝑒𝑜.

Parameters

in omegasymmetric Symmetric relaxation frequency 𝜔+
𝑓

in magic TRT ‘magic number’ Λ𝑒𝑜

166 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.15 lbpMRT.cpp

Module with routines for moment-based multiple relaxation time (MRT) collisions. (Header file available as
lbpMRT.hpp.)

Applies collisions to grid points using a (raw) moment-based multiple relaxation time (MRT) scheme on each
fluid. This scheme starts by defining a number of moments of distribution functions involving some combination
of the lattice vectors 𝑒𝑖. A vector of moments can be obtained by transforming a vector of distribution functions
using a transformation matrix T:

𝑀⃗ = T𝑓

The equilibrium moments 𝑀⃗𝑒𝑞 can be found by using the same transformation matrix with the local equilibrium
distribution functions 𝑓𝑒𝑞: these can be expressed as functions of fluid density and velocity. (The fluid density and
components of momentum make up some of the moments used in this collision scheme.)

A collision matrix Λ is then used to collide the moments:

𝑀⃗
(︀
𝑥⃗, 𝑡+

)︀
= 𝑀⃗ (𝑥⃗, 𝑡) −Λ

(︁
𝑀⃗ (𝑥⃗, 𝑡) − 𝑀⃗𝑒𝑞 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))

)︁
.

Since the collision matrix is diagonal, the collisions can be carried out individually on each moment, i.e.

𝑀𝑖

(︀
𝑥⃗, 𝑡+

)︀
= 𝑀𝑖 (𝑥⃗, 𝑡) − 𝑠𝑖 (𝑀𝑖 (𝑥⃗, 𝑡) −𝑀𝑒𝑞

𝑖 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡)))

The post-collisional moments are then transformed back by using inverses of the transformation matrices to pro-
duce post-collisional distribution functions.

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [91] force scheme
applies a modified velocity for calculating local equilibrium moments:

𝑣⃗ = 𝑢⃗+
𝜏𝑓𝐹∆𝑡

𝜌
,

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

𝐹𝑖 = 𝑓𝑒𝑞𝑖

(︃
𝜌, 𝑢⃗+

𝐹∆𝑡

𝜌

)︃
− 𝑓𝑒𝑞𝑖 (𝜌, 𝑢⃗) .

The Guo [49] and He schemes [54] both adjust the velocity for local equilibrium distribution functions to 𝑣⃗ =

𝑢⃗+ 𝐹Δ𝑡
2𝜌 and include the following forcing terms for MRT collisions as additional moment terms for collisions:

∆𝑀⃗ =

(︂
1 − 1

2
Λ

)︂
𝑆⃗𝑚∆𝑡,

where 𝑆⃗𝑚 are the source terms for the required forcing scheme transformed into moments [104].

MRT collision schemes exist for D2Q9 [73], D3Q15, D3Q19 [159] and D3Q27 [134] lattices: variations also exist
for fully incompressible fluids and Swift free-energy interactions.

5.15.1 Functions

• int fGetMomentEquilibriumF()

Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of compressible fluids.

• int fGetMomentEquilibriumFIncom()

Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of incompressible flu-
ids.

5.15. lbpMRT.cpp 167

DL_MESO Technical Manual, Release 2.7

• int fGetMomentEquilibriumFSwiftOneFluid()

Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of one fluid with Swift
free-energy interactions.

• int fGetMomentEquilibriumFSwiftTwoFluid()

Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of two fluids with Swift
free-energy interactions.

• int fGetMomentForceGuo()

Calculates Guo forcing terms in terms of moments for multiple relaxation time (MRT) collisions.

• int fGetMomentForceHe()

Calculates He forcing terms in terms of moments for multiple relaxation time (MRT) collisions.

• int fGetMRTCollide()

Calculates the collision frequencies for multiple relaxation time (MRT) collisions based on provided relax-
ation frequencies.

• int fSiteFluidCollisionMRT()

Applies MRT collisions to all compressible fluids at a given lattice site with standard forcing.

• int fSiteFluidIncomCollisionMRT()

Applies MRT collisions to all incompressible fluids at a given lattice site with standard forcing.

• int fSiteFluidCollisionMRTEDM()

Applies MRT collisions to all compressible fluids at a given lattice site with EDM forcing.

• int fSiteFluidIncomCollisionMRTEDM()

Applies MRT collisions to all incompressible fluids at a given lattice site with EDM forcing.

• int fSiteFluidCollisionMRTGuo()

Applies MRT collisions to all compressible fluids at a given lattice site with Guo forcing.

• int fSiteFluidIncomCollisionMRTGuo()

Applies MRT collisions to all incompressible fluids at a given lattice site with Guo forcing.

• int fSiteFluidCollisionMRTHe()

Applies MRT collisions to all compressible fluids at a given lattice site with He forcing.

• int fSiteFluidIncomCollisionMRTHe()

Applies MRT collisions to all incompressible fluids at a given lattice site with He forcing.

• int fSiteFluidCollisionMRTLishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionMRTLishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionMRTEDMLishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionMRTEDMLishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

168 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fSiteFluidCollisionMRTGuoLishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionMRTGuoLishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionMRTHeLishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidIncomCollisionMRTHeLishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionMRTLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionMRTLishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionMRTEDMLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionMRTEDMLishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionMRTGuoLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionMRTGuoLishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionMRTHeLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidIncomCollisionMRTHeLishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionMRTSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with standard forcing and Swift
free-energy interactions.

• int fSiteFluidCollisionMRTSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with standard forcing and Swift
free-energy interactions.

5.15. lbpMRT.cpp 169

DL_MESO Technical Manual, Release 2.7

• int fSiteFluidCollisionMRTEDMSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with EDM forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionMRTEDMSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with EDM forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionMRTGuoSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with Guo forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionMRTGuoSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with Guo forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionMRTHeSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with He forcing and Swift free-
energy interactions.

• int fSiteFluidCollisionMRTHeSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with He forcing and Swift free-
energy interactions.

• int fCollisionMRT()

Applies collision steps for all fluids using MRT scheme with standard forcing, and solutes and temperature
fields using BGK scheme..

• int fCollisionMRTEDM()

Applies collision steps for all fluids using MRT scheme with EDM forcing, and solutes and temperature
fields using BGK scheme..

• int fCollisionMRTGuo()

Applies collision steps for all fluids using MRT scheme with Guo forcing, and solutes and temperature fields
using BGK scheme.

• int fCollisionMRTHe()

Applies collision steps for all fluids using MRT scheme with He forcing, and solutes and temperature fields
using BGK scheme.

• int fCollisionMRTShanChen()

Applies collision steps for all fluids using MRT scheme with standard forcing for Shan-Chen interactions,
and solutes and temperature fields using BGK scheme.

• int fCollisionMRTEDMShanChen()

Applies collision steps for all fluids using MRT scheme with EDM forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

• int fCollisionMRTGuoShanChen()

Applies collision steps for all fluids using MRT scheme with Guo forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

• int fCollisionMRTHeShanChen()

Applies collision steps for all fluids using MRT scheme with He forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

170 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fCollisionMRTLishchuk()

Applies collision steps for all fluids using MRT scheme with standard forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTEDMLishchuk()

Applies collision steps for all fluids using MRT scheme with EDM forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTGuoLishchuk()

Applies collision steps for all fluids using MRT scheme with Guo forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTHeLishchuk()

Applies collision steps for all fluids using MRT scheme with He forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTLishchukLocal()

Applies collision steps for all fluids using MRT scheme with standard forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTEDMLishchukLocal()

Applies collision steps for all fluids using MRT scheme with EDM forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTGuoLishchukLocal()

Applies collision steps for all fluids using MRT scheme with Guo forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTHeLishchukLocal()

Applies collision steps for all fluids using MRT scheme with He forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTSwift()

Applies collision steps for all fluids using MRT scheme with standard forcing for Swift free-energy interac-
tions, and solutes and temperature fields using BGK scheme.

• int fCollisionMRTEDMSwift()

Applies collision steps for all fluids using MRT scheme with EDM forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

• int fCollisionMRTGuoSwift()

Applies collision steps for all fluids using MRT scheme with Guo forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

• int fCollisionMRTHeSwift()

Applies collision steps for all fluids using MRT scheme with He forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

5.15. lbpMRT.cpp 171

DL_MESO Technical Manual, Release 2.7

5.15.2 Function Documentation

fCollisionMRT()

int fCollisionMRT ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relax-
ation time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity
at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionMRTEDM()

int fCollisionMRTEDM ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using
single relaxation time BGK collisions. This version of the collisions uses the standard values for macroscopic
fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionMRTEDMLishchuk()

int fCollisionMRTEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer
interaction models.

fCollisionMRTEDMLishchukLocal()

int fCollisionMRTEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using separate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk
interaction models.

172 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionMRTEDMShanChen()

int fCollisionMRTEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using
single relaxation time BGK collisions. This version of the collisions uses the following values for macroscopic
fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionMRTEDMSwift()

int fCollisionMRTEDMSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal DIfference Method (EDM) [69] forcing and Swift free-energy interactions (enacted using
modified local equilibrium distribution functions to incorporate density and concentration gradients), and all so-
lutes and any temperature field using single relaxation time BGK collisions.

fCollisionMRTGuo()

int fCollisionMRTGuo ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionMRTGuoLishchuk()

int fCollisionMRTGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionMRTGuoLishchukLocal()

int fCollisionMRTGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms:
this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

5.15. lbpMRT.cpp 173

DL_MESO Technical Manual, Release 2.7

fCollisionMRTGuoShanChen()

int fCollisionMRTGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionMRTGuoSwift()

int fCollisionMRTGuoSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing and Swift free-energy interactions (enacted using modified local equilibrium
distribution functions to incorporate density and concentration gradients), and all solutes and any temperature
field using single relaxation time BGK collisions.

fCollisionMRTHe()

int fCollisionMRTHe ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK colli-
sions. This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionMRTHeLishchuk()

int fCollisionMRTHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionMRTHeLishchukLocal()

int fCollisionMRTHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms:
this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

174 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionMRTHeShanChen()

int fCollisionMRTHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionMRTHeSwift()

int fCollisionMRTHeSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing and Swift free-energy interactions (enacted using modified local equilibrium dis-
tribution functions to incorporate density and concentration gradients), and all solutes and any temperature field
using single relaxation time BGK collisions.

fCollisionMRTLishchuk()

int fCollisionMRTLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes
and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using
the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction
models.

fCollisionMRTLishchukLocal()

int fCollisionMRTLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes
and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using sep-
arate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

fCollisionMRTShanChen()

int fCollisionMRTShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relax-
ation time BGK collisions. This version of the collisions uses the following values for macroscopic fluid velocity
at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

5.15. lbpMRT.cpp 175

DL_MESO Technical Manual, Release 2.7

fCollisionMRTSwift()

int fCollisionMRTSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing and Swift free-energy interactions (enacted using modified
local equilibrium distribution functions to incorporate density and concentration gradients), and all solutes and
any temperature field using single relaxation time BGK collisions.

fGetMomentEquilibriumF()

int fGetMomentEquilibriumF (double * meq,
double * p,
double rho)

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based on
transforming the local equilibrium distribution function for mildly compressible fluids. The exact values for each
moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15, D3Q19 [159] and D3Q27 [134] - but these
include the fluid density and components of fluid momentum.

Parameters

out meq Local equilibrium central moments
in p Fluid momentum at lattice site
in rho Fluid density at lattice site

fGetMomentEquilibriumFIncom()

int fGetMomentEquilibriumFIncom (double * meq,
double * p,
double rho,
double rho0)

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based on
transforming the local equilibrium distribution function for fully incompressible fluids. The exact values for each
moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15, D3Q19 [159] and D3Q27 [134] - but these
include the fluid density and components of fluid momentum.

Parameters

out meq Local equilibrium central moments
in p Fluid momentum at lattice site
in rho Variable fluid density at lattice site
in rho0 Constant fluid density at lattice site

fGetMomentEquilibriumFSwiftOneFluid()

int fGetMomentEquilibriumFSwiftOneFluid (double * meq,
double * p,
double rho,
double pb,
double lambda,
double * grad)

176 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based on
transforming the local equilibrium distribution function for a single fluid with Swift free-energy interactions. The
exact values for each moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15 and D3Q19 [159]
- but these include the fluid density, components of fluid momentum and bulk pressure (which depends on the
equation of state being applied).

Parameters

out meq Local equilibrium central moments
in p Fluid momentum at lattice site
in rho Fluid density at lattice site
in pb Bulk pressure at lattice site (based on equation of state)
in lambda Galilean invariance parameter for lattice site (based on equation of state)
in grad First-order and second-order gradients of fluid density at lattice site

fGetMomentEquilibriumFSwiftTwoFluid()

int fGetMomentEquilibriumFSwiftTwoFluid (double * meq,
double * p,
double rho,
double phi,
double pb,
double mu,
double lambda,
double * grad)

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based
on transforming the local equilibrium distribution function for two fluids with Swift free-energy interactions.
The exact values for each moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15 and D3Q19
[159] - but these include the fluid density, components of fluid momentum, bulk pressure (which depends on the
equation of state being applied) and chemical potential (which depends on the free energy functional). The local
equilibrium distribution functions for concentration are also calculated and included in the output array for BGK
single relaxation time collisions of these distribution functions.

Parameters

out meq Local equilibrium central moments for density, local equilibrium distribution functions for
concentration

in p Fluid momentum at lattice site
in rho Fluid density at lattice site
in phi Fluid concentration at lattice site
in pb Bulk pressure at lattice site (based on equation of state)
in mu Chemical potential at lattice site (based on free energy functional)
in lambda Galilean invariance parameter for lattice site (based on equation of state)
in grad First-order and second-order gradients of fluid density and concentration at lattice site

fGetMomentForceGuo()

int fGetMomentForceGuo (double * source,
double * v,
double * force)

Calculates moment-based Guo forcing terms for use in multiple relaxation time (MRT) collisions, as obtained by
applying the transformation matrix to Guo source terms [104]:

𝑆𝑖 = 𝑤𝑖

[︂
𝑒𝑖 − 𝑣⃗

𝑐2𝑠
+
𝑒𝑖 · 𝑣⃗
𝑐4𝑠

𝑒𝑖

]︂
· 𝐹

5.15. lbpMRT.cpp 177

DL_MESO Technical Manual, Release 2.7

i.e. 𝑆⃗𝑚 = T𝑆⃗. The exact form of moment-based forcing terms will depend on the lattice scheme in use (D2Q9,
D3Q15, D3Q19 or D3Q27) but require both forces and the velocity for each lattice point to calculate.

Parameters

out source Moment-based Guo forcing terms 𝑆⃗𝑚

in v Force-corrected fluid velocity at lattice point
in force Forces acting at lattice point

fGetMomentForceHe()

int fGetMomentForceHe (double * source,
double * v,
double * force)

Calculates moment-based He forcing terms for use in multiple relaxation time (MRT) collisions, as obtained by
applying the transformation matrix to He source terms [104]:

𝑆𝑖 =
𝑓𝑒𝑞𝑖
𝜌𝑐2𝑠

(𝑒𝑖 − 𝑣⃗) · 𝐹

i.e. 𝑆⃗𝑚 = T𝑆⃗. The exact form of moment-based forcing terms will depend on the lattice scheme in use (D2Q9,
D3Q15, D3Q19 or D3Q27) but require both forces and the velocity for each lattice point to calculate.

Parameters

out source Moment-based He forcing terms 𝑆⃗𝑚

in v Force-corrected fluid velocity at lattice point
in force Forces acting at lattice point

fGetMRTCollide()

int fGetMRTCollide (double * collide,
double omegashear,
double omegabulk)

Calculates the diagonal collision matrix Λ used in multiple relaxation time (MRT) collisions. This subroutine
requires inputs for two relaxation frequencies at each lattice point and fluid: the main relaxation frequency 𝜔 =
𝜏−1
𝑓 and the bulk relaxation frequency 𝜔𝑏 = 𝜏−1

𝑓,𝑏𝑢𝑙𝑘. Other system-wide relaxation frequencies - used as tuneable
parameters to enhance numerical stability of calculations - are assigned in this subroutine. Moments for fluid
density and momentum have their relaxation frequencies set to 1 to ensure these properties are conserved.

Parameters

out collide Diagonal of relaxation frequencies for MRT collision matrix
in omegashear Relaxation frequency for fluid (giving kinetic viscosity)
in omegabulk Bulk relaxation frequency for fluid (giving bulk viscosity)

178 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRT()

int fSiteFluidCollisionMRT (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTEDM()

int fSiteFluidCollisionMRTEDM (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTEDMLishchuk()

int fSiteFluidCollisionMRTEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution

5.15. lbpMRT.cpp 179

DL_MESO Technical Manual, Release 2.7

functions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionMRTEDMLishchukLocal()

int fSiteFluidCollisionMRTEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
except Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

180 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRTEDMSwiftOneFluid()

int fSiteFluidCollisionMRTEDMSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Equal Difference Method (EDM) [69] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in omegabulk Bulk relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTEDMSwiftTwoFluid()

int fSiteFluidCollisionMRTEDMSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Equal Difference Method
(EDM) [69] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single
relaxation time scheme.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.15. lbpMRT.cpp 181

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRTGuo()

int fSiteFluidCollisionMRTGuo (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTGuoLishchuk()

int fSiteFluidCollisionMRTGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

182 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRTGuoLishchukLocal()

int fSiteFluidCollisionMRTGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionMRTGuoSwiftOneFluid()

int fSiteFluidCollisionMRTGuoSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Guo [49] forcing.

Parameters

5.15. lbpMRT.cpp 183

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in omegabulk Bulk relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTGuoSwiftTwoFluid()

int fSiteFluidCollisionMRTGuoSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribu-
tion functions provided, using the local equilibrium distribution function for two compressible fluids undergoing
Swift free-energy interactions (for fluid density and concentration calculations) and applying Guo [49] forcing.
Collisions of distribution functions for fluid concentration are carried out using a BGK single relaxation time
scheme.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTHe()

int fSiteFluidCollisionMRTHe (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
He [54] forcing.

Parameters

184 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTHeLishchuk()

int fSiteFluidCollisionMRTHeLishchuk (double * startpos, double * sitespeed,
→˓double * omega, double * omegabulk, double * rho, double * bodyforce, double *
→˓phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionMRTHeLishchukLocal()

int fSiteFluidCollisionMRTHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces,
which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

5.15. lbpMRT.cpp 185

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionMRTHeSwiftOneFluid()

int fSiteFluidCollisionMRTHeSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in omegabulk Bulk relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTHeSwiftTwoFluid()

int fSiteFluidCollisionMRTHeSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying He [54] forcing. Collisions
of distribution functions for fluid concentration are carried out using a BGK single relaxation time scheme.

Parameters

186 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluid at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTLishchuk()

int fSiteFluidCollisionMRTLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionMRTLishchukLocal()

int fSiteFluidCollisionMRTLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic dis-
tribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀

5.15. lbpMRT.cpp 187

DL_MESO Technical Manual, Release 2.7

and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionMRTSwiftOneFluid()

int fSiteFluidCollisionMRTSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in omegabulk Bulk relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTSwiftTwoFluid()

int fSiteFluidCollisionMRTSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

188 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribu-
tion functions provided, using the local equilibrium distribution function for two compressible fluids undergoing
Swift free-energy interactions (for fluid density and concentration calculations) and applying standard (Martys-
Chen) [91] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single
relaxation time scheme.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidIncomCollisionMRT()

int fSiteFluidIncomCollisionMRT (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionMRTEDM()

int fSiteFluidIncomCollisionMRTEDM (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters

5.15. lbpMRT.cpp 189

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionMRTEDMLishchuk()

int fSiteFluidIncomCollisionMRTEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionMRTEDMLishchukLocal()

int fSiteFluidIncomCollisionMRTEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
except Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

190 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionMRTGuo()

int fSiteFluidIncomCollisionMRTGuo (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionMRTGuoLishchuk()

int fSiteFluidIncomCollisionMRTGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

5.15. lbpMRT.cpp 191

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionMRTGuoLishchukLocal()

int fSiteFluidIncomCollisionMRTGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionMRTHe()

int fSiteFluidIncomCollisionMRTHe (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

192 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidIncomCollisionMRTHeLishchuk()

int fSiteFluidIncomCollisionMRTHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidIncomCollisionMRTHeLishchukLocal()

int fSiteFluidIncomCollisionMRTHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces,

5.15. lbpMRT.cpp 193

DL_MESO Technical Manual, Release 2.7

which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidIncomCollisionMRTLishchuk()

int fSiteFluidIncomCollisionMRTLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

194 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidIncomCollisionMRTLishchukLocal()

int fSiteFluidIncomCollisionMRTLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic dis-
tribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic variable fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.16 lbpCLBE.cpp

Module with routines for cascaded lattice Boltzmann equation (CLBE) collisions. (Header file available as lbp-
CLBE.hpp.)

Applies collisions to grid points using a central moment multiple relaxation time scheme, known as cascaded LBE
(CLBE) [38], on each fluid. This scheme starts by defining a number of central moments of distribution functions,
i.e.

𝑀̃𝑝𝑞𝑟 =
∑︁
𝑖

𝑓𝑖 (𝑒𝑖,𝑥 − 𝑢𝑥)
𝑝

(𝑒𝑖,𝑦 − 𝑢𝑦)
𝑞

(𝑒𝑖,𝑧 − 𝑢𝑧)
𝑟

which can be related to raw moments, 𝑀𝑝𝑞𝑟 =
∑︀

𝑖 𝑓𝑖𝑒
𝑝
𝑖,𝑥𝑒

𝑞
𝑖,𝑦𝑒

𝑟
𝑖,𝑧 . In a similar fashion to multiple relaxation time

(MRT) collision schemes, the distribution functions can be transformed into central moments using transformation
matrices:

⃗̃𝑀 = NT𝑓

where the matrix T transforms distribution functions into raw moments and the lower triangular matrix N trans-
forms raw moments into central moments and depends upon the fluid velocity at the lattice grid point. A collision

5.16. lbpCLBE.cpp 195

DL_MESO Technical Manual, Release 2.7

matrix Λ that is mostly diagonal (aside from a block diagonal used for second-order moments) is then used to
collide the central moments:

⃗̃𝑀
(︀
𝑥⃗, 𝑡+

)︀
= ⃗̃𝑀 (𝑥⃗, 𝑡) −Λ

(︁
⃗̃𝑀 (𝑥⃗, 𝑡) − ⃗̃𝑀𝑒𝑞 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))

)︁
.

where ⃗̃𝑀𝑒𝑞 - the local equilibrium central moments - are obtained by transforming the Maxwell-Boltzmann (gen-
eral) local equilibrium distribution function. The post-collisional central moments are then transformed back by
using inverses of the transformation matrices to produce post-collisional distribution functions.

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [91] force scheme
applies a modified velocity for calculating local equilibrium central moments:

𝑣⃗ = 𝑢⃗+
𝜏𝑓𝐹∆𝑡

𝜌
,

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

𝐹𝑖 = 𝑓𝑒𝑞𝑖

(︃
𝜌, 𝑢⃗+

𝐹∆𝑡

𝜌

)︃
− 𝑓𝑒𝑞𝑖 (𝜌, 𝑢⃗) .

although extended functions with third-order terms in velocity [84] are used for CLBE collisions. The Guo [49]
and He schemes [54] both adjust the velocity for local equilibrium distribution functions to 𝑣⃗ = 𝑢⃗ + 𝐹Δ𝑡

2𝜌 and
include the following forcing terms for CLBE collisions as additional terms for central moment collisions:

∆𝑀̃𝑝𝑞𝑟 =

(︂
1 − 1

2
𝜔𝑝𝑞𝑟

)︂
𝑆𝑝𝑞𝑟∆𝑡.

Guo forcing source terms can be obtained by transforming the standard terms with the transformation matrices,
while those for He forcing are derived in a similar manner to local equilibrium central moments.

CLBE collision schemes exist for D2Q9 [35], D3Q19 and D3Q27 [33] lattices: no such schemes currently exist
for D3Q15 lattices, fully incompressible fluids or Swift free-energy interactions.

5.16.1 Functions

• int fGetCentralMomentEquilibriumF()

Calculates local equilibrium central moments for cascaded LBE (CLBE) collisions.

• int fGetCentralMomentTransformMatrix()

Calculates full transform matrices (forward and inverse) for cascaded LBE (CLBE) collisions to obtain
central moments from distribution functions and vice versa.

• int fGetCentralMomentForceGuo()

Calculates Guo forcing terms in terms of central moments for cascaded LBE (CLBE) collisions.

• int fGetCentralMomentForceHe()

Calculates Guo forcing terms in terms of central moments for cascaded LBE (CLBE) collisions.

• int fGetCLBECollide()

Calculates the main diagonal collision matrix for cascaded LBE (CLBE) based on provided relaxation fre-
quencies.

• int fSiteFluidCollisionCLBE()

Applies CLBE collisions to all compressible fluids at a given lattice site with standard forcing.

• int fSiteFluidCollisionCLBEEDM()

Applies CLBE collisions to all compressible fluids at a given lattice site with EDM forcing.

196 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fSiteFluidCollisionCLBEGuo()

Applies CLBE collisions to all compressible fluids at a given lattice site with Guo forcing.

• int fSiteFluidCollisionCLBEHe()

Applies CLBE collisions to all compressible fluids at a given lattice site with He forcing.

• int fSiteFluidCollisionCLBELishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionCLBEEDMLishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionCLBEGuoLishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionCLBEHeLishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

• int fSiteFluidCollisionCLBELishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionCLBEEDMLishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionCLBEGuoLishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fSiteFluidCollisionCLBEHeLishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

• int fCollisionCLBE()

Applies collision steps for all fluids using CLBE scheme with standard forcing, and solutes and temperature
fields using BGK scheme..

• int fCollisionCLBEEDM()

Applies collision steps for all fluids using CLBE scheme with EDM forcing, and solutes and temperature
fields using BGK scheme.

• int fCollisionCLBEGuo()

Applies collision steps for all fluids using CLBE scheme with Guo forcing, and solutes and temperature
fields using BGK scheme.

• int fCollisionCLBEHe()

Applies collision steps for all fluids using CLBE scheme with He forcing, and solutes and temperature fields
using BGK scheme.

• int fCollisionCLBEShanChen()

Applies collision steps for all fluids using CLBE scheme with standard forcing for Shan-Chen interactions,
and solutes and temperature fields using BGK scheme.

5.16. lbpCLBE.cpp 197

DL_MESO Technical Manual, Release 2.7

• int fCollisionCLBEEDMShanChen()

Applies collision steps for all fluids using CLBE scheme with EDM forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

• int fCollisionCLBEGuoShanChen()

Applies collision steps for all fluids using CLBE scheme with Guo forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

• int fCollisionCLBEHeShanChen()

Applies collision steps for all fluids using CLBE scheme with He forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

• int fCollisionCLBELishchuk()

Applies collision steps for all fluids using CLBE scheme with standard forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionCLBEEDMLishchuk()

Applies collision steps for all fluids using CLBE scheme with EDM forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionCLBEGuoLishchuk()

Applies collision steps for all fluids using CLBE scheme with Guo forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionCLBEHeLishchuk()

Applies collision steps for all fluids using CLBE scheme with He forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

• int fCollisionCLBELishchukLocal()

Applies collision steps for all fluids using CLBE scheme with standard forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionCLBEEDMLishchukLocal()

Applies collision steps for all fluids using CLBE scheme with EDM forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionCLBEGuoLishchukLocal()

Applies collision steps for all fluids using CLBE scheme with Guo forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

• int fCollisionCLBEHeLishchukLocal()

Applies collision steps for all fluids using CLBE scheme with He forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

5.16.2 Function Documentation

fCollisionCLBE()

int fCollisionCLBE ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation time
BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity at each site,
i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

198 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEEDM()

int fCollisionCLBEEDM ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using single relax-
ation time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity
at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionCLBEEDMLishchuk()

int fCollisionCLBEEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all solutes
and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using
the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction
models.

fCollisionCLBEEDMLishchukLocal()

int fCollisionCLBEEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all solutes and
any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using separate
forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

fCollisionCLBEEDMShanChen()

int fCollisionCLBEEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using single
relaxation time BGK collisions. This version of the collisions uses the following values for macroscopic fluid
velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

5.16. lbpCLBE.cpp 199

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEGuo()

int fCollisionCLBEGuo ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK collisions. This
version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

fCollisionCLBEGuoLishchuk()

int fCollisionCLBEGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field using
single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme: this
approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionCLBEGuoLishchukLocal()

int fCollisionCLBEGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionCLBEGuoShanChen()

int fCollisionCLBEGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionCLBEHe()

int fCollisionCLBEHe ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK collisions. This
version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎 𝑓

𝑎
𝑖 𝑒𝑖∑︀

𝑖,𝑎 𝑓
𝑎
𝑖

.

200 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEHeLishchuk()

int fCollisionCLBEHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field using
single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme: this
approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionCLBEHeLishchukLocal()

int fCollisionCLBEHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field us-
ing single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionCLBEHeShanChen()

int fCollisionCLBEHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fCollisionCLBELishchuk()

int fCollisionCLBELishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and any
temperature field using single relaxation time BGK collisions. The interfacial forces are applied using the main
forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionCLBELishchukLocal()

int fCollisionCLBELishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and any
temperature field using single relaxation time BGK collisions. The interfacial forces are applied using separate
forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

5.16. lbpCLBE.cpp 201

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEShanChen()

int fCollisionCLBEShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation time
BGK collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each
site, i.e.

𝑢⃗ =

∑︀
𝑖,𝑎

𝑓𝑎
𝑖 𝑒𝑖
𝜏𝑎
𝑓∑︀

𝑖,𝑎
𝑓𝑎
𝑖

𝜏𝑎
𝑓

.

fGetCentralMomentEquilibriumF()

int fGetCentralMomentEquilibriumF (double * meq, double rho)

Calculates local equilibrium values for central moments required for cascaded LBE (CLBE) collisions, based on
transforming the Maxwell-Boltzmann local equilibrium distribution function. The exact values for each moment
depends on the lattice scheme in use - for D2Q9 [35], D3Q19 and D3Q27 [33] - but non-zero values are products
of fluid density and even powers of the speed of sound.

Parameters

out meq Local equilibrium central moments
in rho Fluid density at lattice site

fGetCentralMomentForceGuo()

int fGetCentralMomentForceGuo (double * source,
double * v,
double * force)

Calculates central moment-based Guo forcing terms for use in cascaded LBE (CLBE) collisions, as obtained by
applying the transformation and shift matrices to Guo source terms:

𝑆𝑖 = 𝑤𝑖

[︂
𝑒𝑖 − 𝑣⃗

𝑐2𝑠
+
𝑒𝑖 · 𝑣⃗
𝑐4𝑠

𝑒𝑖

]︂
· 𝐹

i.e. ⃗̃𝑆 = NT𝑆⃗. The exact form of central moment forcing terms will depend on the lattice scheme in use (D2Q9,
D3Q19 or D3Q27) but require both forces and the velocity for each lattice point to calculate.

Parameters

out source Central moment-based Guo forcing terms ⃗̃𝑆
in v Force-corrected fluid velocity at lattice point
in force Forces acting at lattice point

202 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetCentralMomentForceHe()

int fGetCentralMomentForceHe (double * source, double * force)

Calculates central moment-based He forcing terms for use in cascaded LBE (CLBE) collisions, as obtained by
applying the transformation and shift matrices to He source terms:

𝑆𝑖 =
𝑓𝑒𝑞𝑖
𝜌𝑐2𝑠

(𝑒𝑖 − 𝑣⃗) · 𝐹

i.e. :math:` vec{tilde{S}} = mathbf{N} mathbf{T} vec{S}`, which use the generalised Maxwell-Boltzmann
local equilibrium distribution. The exact form of central moment forcing terms will depend on the lattice scheme
in use (D2Q9 [35], D3Q19 or D3Q27 [33]) but only require forces for each lattice point to calculate.

Parameters

out source Central moment-based He forcing terms ⃗̃𝑆
in force Forces acting at lattice point

fGetCentralMomentTransformMatrix()

int fGetCentralMomentTransformMatrix (double * rcsh,
double * rcshinv,
double * u)

Calculates the products of the transform and shift matrices NT and the product of their inverses T−1N−1 for
the required lattice scheme to transform distribution functions into central moments and vice versa for cascaded
LBE (CLBE) collisions. These matrices are dependent on the fluid velocity and must be calculated for each lattice
point and at each timestep.

Parameters

out rcsh Product of transform and shift matrices NT
out rcshinv Product of inverses of shift and transform matrices T−1N−1

in u Fluid velocity at lattice point

fGetCLBECollide()

int fGetCLBECollide (double * collide,
double omegashear,
double omegabulk,
double omegathree,
double omegafour)

Calculates the main diagonal for the collision matrix Λ used in cascaded LBE (CLBE) collisions. This subroutine
requires inputs for four relaxation frequencies at each lattice point and fluid: the main relaxation frequency 𝜔 =
𝜏−1
𝑓 , the bulk relaxation frequency 𝜔𝑏 = 𝜏−1

𝑓,𝑏𝑢𝑙𝑘, the third and fourth order relaxation frequencies 𝜔3 and 𝜔4. For
some second-order central moment terms, only the symmetric relaxation frequencies are included in the results
for this routine: the anti-symmetric terms for these moments are calculated and applied in the main site collision
routines. Moments for fluid density and momentum have their relaxation frequencies set to 1 to ensure these
properties are conserved.

Parameters

5.16. lbpCLBE.cpp 203

DL_MESO Technical Manual, Release 2.7

out collide Diagonal of relaxation frequencies for cascaded LBE collision matrix
in omegashear Relaxation frequency for fluid (giving kinetic viscosity)
in omegabulk Bulk relaxation frequency for fluid (giving bulk viscosity)
in omegathree Third-order relaxation frequency for fluid
in omegafour Fourth-order relaxation frequency for fluid

fSiteFluidCollisionCLBE()

int fSiteFluidCollisionCLBE (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying standard (Martys-Chen) [91] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionCLBEEDM()

int fSiteFluidCollisionCLBEEDM (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying Equal Difference Method (EDM) [69] forcing.

Parameters

204 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionCLBEEDMLishchuk()

int fSiteFluidCollisionCLBEEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium distribu-
tion functions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBEEDMLishchukLocal()

int fSiteFluidCollisionCLBEEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for

5.16. lbpCLBE.cpp 205

DL_MESO Technical Manual, Release 2.7

mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionCLBEGuo()

int fSiteFluidCollisionCLBEGuo (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying Guo [49] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

206 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionCLBEGuoLishchuk()

int fSiteFluidCollisionCLBEGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium distri-
bution functions for mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBEGuoLishchukLocal()

int fSiteFluidCollisionCLBEGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

5.16. lbpCLBE.cpp 207

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionCLBEHe()

int fSiteFluidCollisionCLBEHe (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying He [54] forcing.

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site

fSiteFluidCollisionCLBEHeLishchuk()

int fSiteFluidCollisionCLBEHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribu-
tion functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium
distribution functions for mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk

208 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBEHeLishchukLocal()

int fSiteFluidCollisionCLBEHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.16. lbpCLBE.cpp 209

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionCLBELishchuk()

int fSiteFluidCollisionCLBELishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribu-
tion functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium
distribution functions for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phaseindex Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBELishchukLocal()

int fSiteFluidCollisionCLBELishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

𝐹 𝑎𝑏
𝑖 =

𝑤𝑖𝛽
𝑎𝑏𝑔𝑎𝑏𝜌𝑎𝜌𝑏

𝑐4𝑠𝜌
3𝜏𝑓∆𝑡

(𝑛̂𝑎𝑏𝑛̂𝑎𝑏 − I) :
(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
and re-separating the fluids using D’Ortona segregation [25]:

𝑓𝑎𝑖
(︀
𝑥⃗, 𝑡+

)︀
=
𝜌𝑎

𝜌
𝑓𝑖
(︀
𝑥⃗, 𝑡+

)︀
+
∑︁
𝑏̸=𝑎

𝛽𝑎𝑏𝑤𝑖
𝜌𝑎𝜌𝑏

𝜌2
𝑒𝑖 · 𝑛̂𝑎𝑏

Parameters

210 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab-

ulk
Bulk relaxation frequencies for fluids at lattice site

in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce Forces to apply to each fluid at lattice site
in phasein-

dex
Phase indices for all fluid pairs at lattice site

in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.17 lbpFORCE.cpp

Module with routines to calculate non-constant interaction and heat buoyancy forces. (Header file available as
lbpFORCE.hpp.)

Calculates forces and other contributions to determine fluid interactions and Boussinesq buoyancy for heat con-
vection, i.e. any emergent force that does not remain constant during the simulation.

In the cases of Shan-Chen pseudopotential and Swift free-energy interactions, these can make fluids behave ac-
cording to specific equations of state:

• Ideal lattice gas:

𝑝 = 𝜌𝑐2𝑠

• Shan-Chen 1993 model [118]:

𝑝 = 𝜌𝑐2𝑠 +
1

2
𝑐2𝑠𝑔𝜌

2
0

(︁
1 − 𝑒−

𝜌
𝜌0

)︁
• Shan-Chen 1994 model [119]:

𝑝 = 𝜌𝑐2𝑠 +
1

2
𝑐2𝑠𝑔𝜓

2
0𝑒

− 2𝜌0
𝜌

• Qian model [106]:

𝑝 = 𝜌𝑐2𝑠 +
𝑐2𝑠𝑔𝜌

2
0𝜌

2

(𝜌0 + 𝜌)
2

• Density model:

𝑝 = 𝜌𝑐2𝑠 +
1

2
𝑐2𝑠𝑔𝜌

2

• Ideal gas:

𝑝 = 𝜌𝑅𝑇

• van der Waals:

𝑝 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝜌2

5.17. lbpFORCE.cpp 211

DL_MESO Technical Manual, Release 2.7

• Carnahan-Starling-van der Waals [16]:

𝑝 = 𝜌𝑅𝑇

(︃
1 + 𝜑+ 𝜑2 − 𝜑3

(1 − 𝜑)
3

)︃
− 𝑎𝜌2

• Redlich-Kwong [110]:

𝑝 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝜌2√

𝑇 (1 + 𝑏𝜌)

• Soave-Redlich-Kwong [128]:

𝑝 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝛼 (𝑇𝑟, 𝜔) 𝜌2

1 + 𝑏𝜌

• Peng-Robinson [37] :

𝑝 =
𝜌𝑅𝑇

1 − 𝑏𝜌
− 𝑎𝛼 (𝑇𝑟, 𝜔) 𝜌2

1 + 2𝑏𝜌− 𝑏2𝜌2

• Carnahan-Starling-Redlich-Kwong [16]:

𝑝 = 𝜌𝑅𝑇

(︃
1 + 𝜑+ 𝜑2 − 𝜑3

(1 − 𝜑)
3

)︃
− 𝑎𝜌2√

𝑇 (1 + 𝑏𝜌)

where 𝑅 is the universal gas constant, 𝑎 and 𝑏 are species-dependent coefficients, 𝛼 is a function dependent on the
ratio of temperature to critical temperature 𝑇𝑟 = 𝑇/𝑇𝑐 and acentric factor 𝜔, and 𝜑 = 𝑏𝜌

4 for Carnahan-Starling
equations of state. The temperatures used in some equatios of state can either be specified system-wide or at each
lattice point if heat effects are coupled to fluid flows with an additional lattice.

5.17.1 Functions

• int fInteractionForceZero()

Resets all interaction and heat forces to zero before calculations.

• int fCalcPotential_ShanChen()

Calculates Shan-Chen pseudopotentials for each fluid at each lattice point.

• int fCalcInteraction_ShanChen()

Calculates interaction forces for Shan-Chen pseudopotential model (including solid-fluid wetting forces) at
fluid points away from subdomain boundaries.

• int fCalcInteraction_ShanChen_Boundary()

Calculates interaction forces for Shan-Chen pseudopotential model (including solid-fluid wetting forces) at
fluid points close to subdomain boundaries.

• int fCalcInteraction_ShanChenQuadratic()

Calculates interaction forces for a quadratic Shan-Chen pseudopotential model (including solid-fluid wet-
ting forces) at fluid points away from subdomain boundaries.

• int fCalcInteraction_ShanChenQuadratic_Boundary()

Calculates interaction forces for a quadratic Shan-Chen pseudopotential model (including solid-fluid wet-
ting forces) at fluid points close to subdomain boundaries.

• int fInteractionForceShanChen()

Calculates interaction forces for all fluids based on the Shan-Chen pseudopodential model for parallel run-
ning.

212 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fsInteractionForceShanChen()

Calculates interaction forces for all fluids based on the Shan-Chen pseudopodential model for serial running.

• int fInteractionForceShanChenQuadratic()

Calculates interaction forces for all fluids based on the quadratic Shan-Chen pseudopodential model for
parallel running.

• int fsInteractionForceShanChenQuadratic()

Calculates interaction forces for all fluids based on the quadratic Shan-Chen pseudopodential model for
serial running.

• int fCalcPhaseIndex_Lishchuk()

Calculate interfacial normal vectors for Lishchuk interaction model using non-local derivative calculations
at all fluid points away from subdomain boundaries.

• int fsCalcPhaseIndex_Lishchuk()

Calculate interfacial normal vectors for Lishchuk interaction model using non-local derivative calculations
at all fluid points including those in subdomain boundaries.

• int fCalcPhaseIndex_LishchukLocal()

Calculate interfacial normal vectors for Lishchuk interaction model using local derivative calculations at all
fluid points.

• int fCalcInteraction_Lishchuk()

Calculates interaction forces between fluids for original Lishchuk interaction model for fluid points away
from subdomain boundaries.

• int fCalcInteraction_Lishchuk_Boundary()

Calculates interaction forces between fluids for original Lishchuk interaction model for fluid points close to
subdomain boundaries.

• int fCalcInteraction_LishchukSpencer()

Calculates interaction forces between fluids for Lishchuk-Spencer interaction model for fluid points away
from subdomain boundaries.

• int fCalcInteraction_LishchukSpencer_Boundary()

Calculates interaction forces between fluids for Lishchuk-Spencer interaction model for fluid points close
to subdomain boundaries.

• int fWallInteractionForceLishchukLocal()

Calculates interaction forces between walls and fluids for Lishchuk interactions without force calculations.

• int fInteractionForceLishchuk()

Calculates interaction forces for all fluids based on the original Lishchuk continuum-based interaction model
for parallel running.

• int fsInteractionForceLishchuk()

Calculates interaction forces for all fluids based on the original Lishchuk continuum-based interaction model
for serial running.

• int fInteractionForceLishchukSpencer()

Calculates interaction forces for all fluids based on the Lishchuk-Spencer continuum-based interaction
model for parallel running.

• int fsInteractionForceLishchukSpencer()

Calculates interaction forces for all fluids based on the Lishchuk-Spencer continuum-based interaction
model for serial running.

5.17. lbpFORCE.cpp 213

DL_MESO Technical Manual, Release 2.7

• int fCalcDensityGradient_Swift()

Calculates first- and second-order derivatives of fluid density for the one-fluid Swift free-energy model at
fluid points away from subdomain boundaries.

• int fsCalcDensityGradient_Swift()

Calculates first- and second-order derivatives of fluid density for the one-fluid Swift free-energy model at
all fluid points.

• int fCalcDensityConcentrationGradient_Swift()

Calculates first- and second-order derivatives of fluid density and concentration for the two-fluid Swift free-
energy model at fluid points away from subdomain boundaries.

• int fsCalcDensityConcentrationGradient_Swift()

Calculates first- and second-order derivatives of fluid density and concentration for the two-fluid Swift free-
energy model at all fluid points.

• int fCalcGradient_Swift()

Calculate density (and concentration) gradients for Swift free-energy interactions when running in parallel.

• int fsCalcGradient_Swift()

Calculate density (and concentration) gradients for Swift free-energy interactions when running in serial.

• int fCalcForce_Boussinesq()

Calculates buoyancy-driven thermal convection force according to the Boussinesq approximation.

• int fConvectionForceBoussinesq()

Calculates buoyancy-driven thermal convection forces at all fluid lattice points according to the Boussinesq
approximation.

5.17.2 Function Documentation

fCalcDensityConcentrationGradient_Swift()

int fCalcDensityConcentrationGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density and concentration for the two-fluid Swift
free-energy interaction model at all fluid lattice points away from the edges of the processor’s subdomain using
either a stencil to reduce spurious microcurrents [102] or central difference and one-sided difference approxima-
tions for wet boundary nodes and grid points next to bounce-back boundary points. A quadratic surface wetting
potential in density and concentration can also be applied, which modifies density and concentration derivatives
at or near boundary points [13][103]. Since boundary halo points are omitted by this subroutine (intended for use
in parallel running), density and concentration derivatives for these lattice points have to be communicated from
neighbouring processors.

fCalcDensityGradient_Swift()

int fCalcDensityGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density for the one-fluid Swift free-energy interac-
tion model at all fluid lattice points away from the edges of the processor’s subdomain using either a stencil to
reduce spurious microcurrents [102] or central difference and one-sided difference approximations for wet bound-
ary nodes and grid points next to bounce-back boundary points. A quadratic surface wetting potential in density
can also be applied, which modifies density derivatives at or near boundary points [13][103]. Since boundary halo
points are omitted by this subroutine (intended for use in parallel running), density derivatives for these lattice
points have to be communicated from neighbouring processors.

214 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCalcForce_Boussinesq()

int fCalcForce_Boussinesq (long tpos,
double temph,
double templ)

Calculates temperature-dependent forces at a given lattice point based on the Boussinesq approximation [48]:

𝐹 𝑎 = −𝑔⃗𝛽𝑎𝜌

(︂
𝑇 − 𝑇0
𝑇ℎ − 𝑇𝑙

)︂
where 𝑇0 = 1

2 (𝑇ℎ + 𝑇𝑙) is the reference temperature, 𝑇ℎ and 𝑇𝑙 are respectively the high and low system temper-
atures and 𝛽𝑎 is the volumetric expansion coefficient for fluid 𝑎. (The product of gravitational acceleration and
volumetric expansion 𝑔⃗𝛽𝑎 is supplied by the user.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in temph High temperature value for system 𝑇ℎ
in templ Low temperature value for system 𝑇𝑙

fCalcGradient_Swift()

int fCalcGradient_Swift ()

Calculates first-order and second-order density (and concentration) derivatives at all lattice points apart from
boundary halo grid points for Swift free-energy interactions [136][135]. This subroutine avoids any lattice points
that make up the boundary halo when running in parallel: the gradients for these points are to be communicated
from neighbouring processors prior to collisions.

fCalcInteraction_Lishchuk()

int fCalcInteraction_Lishchuk (int xpos,
int ypos,
int zpos)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk interaction scheme [81]:

𝐹 𝑎𝑏 =
1

2
𝑔𝑎𝑏𝐾𝑎𝑏∇𝜌𝑁𝑎𝑏

where 𝐾𝑎𝑏 = −∇𝑆 · 𝑛̂𝑎𝑏 is the local curvative between fluids 𝑎 and 𝑏 and the first-order differential of phase
index can be obtained using the interfacial normal, densities of the two fluids and of all fluids and the segregation
parameter between the two fluids :math:beta^{ab}` [50]:

∇𝜌𝑁𝑎𝑏 =
4𝛽𝑎𝑏𝜌𝑎𝜌𝑏

𝜌3
𝑛̂𝑎𝑏.

Forces are also calculated and applied for surface wetting effects by assuming fluid 0 is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

𝐹 0𝑎
𝑤𝑒𝑡 = −1

2
𝑔𝑤𝑎𝑙𝑙,𝑎∇𝑆,𝑤𝑎𝑙𝑙𝜌

𝑁
0𝑎 =

2𝑔𝑤𝑎𝑙𝑙,𝑎𝛽
0𝑎𝜌0𝜌𝑎

𝜌3
(𝑛̂𝑤 (𝑛̂0𝑎 · 𝑛̂𝑤) − 𝑛̂0𝑎)

where 𝑛̂𝑤 is the normal vector to the solid surface.

This subroutine omits calculations of interfacial curvatures and forces at grid points close to the subdomain bound-
aries, as the former requires non-local gradient calculations that would use modulo functions to find neighbouring
grid points: as such, this subroutine can be used for parallel calculations, although communication of interfacial
forces for boundary halo points from neighbourint processors is required prior to collisions.

5.17. lbpFORCE.cpp 215

DL_MESO Technical Manual, Release 2.7

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)

fCalcInteraction_Lishchuk_Boundary()

int fCalcInteraction_Lishchuk_Boundary (int xpos,
int ypos,
int zpos)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk interaction scheme [81]:

𝐹 𝑎𝑏 =
1

2
𝑔𝑎𝑏𝐾𝑎𝑏∇𝜌𝑁𝑎𝑏

where 𝐾𝑎𝑏 = −∇𝑆 · 𝑛̂𝑎𝑏 is the local curvative between fluids 𝑎 and 𝑏 and the first-order differential of phase
index can be obtained using the interfacial normal, densities of the two fluids and of all fluids and the segregation
parameter between the two fluids :math:beta^{ab}` [50]:

∇𝜌𝑁𝑎𝑏 =
4𝛽𝑎𝑏𝜌𝑎𝜌𝑏

𝜌3
𝑛̂𝑎𝑏.

Forces are also calculated and applied for surface wetting effects by assuming fluid 0 is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

𝐹 0𝑎
𝑤𝑒𝑡 = −1

2
𝑔𝑤𝑎𝑙𝑙,𝑎∇𝑆,𝑤𝑎𝑙𝑙𝜌

𝑁
0𝑎 =

2𝑔𝑤𝑎𝑙𝑙,𝑎𝛽
0𝑎𝜌0𝜌𝑎

𝜌3
(𝑛̂𝑤 (𝑛̂0𝑎 · 𝑛̂𝑤) − 𝑛̂0𝑎)

where 𝑛̂𝑤 is the normal vector to the solid surface.

This subroutine calculates interfacial curvatures and forces at grid points close to the subdomain boundaries: the
former requires non-local gradient calculations with modulo functions to find neighbouring grid points: as such,
this subroutine can be used for serial calculations.

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)

fCalcInteraction_LishchukSpencer()

int fCalcInteraction_LishchukSpencer (int xpos,
int ypos,
int zpos,
double * rho)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk-Spencer interaction scheme
[129]:

𝐹 𝑎𝑏 = −2𝑔𝑎𝑏𝛽
𝑎𝑏∇ ·

(︂
𝜌𝑎𝜌𝑏

𝜌3
𝑛̂𝑎𝑏𝑛̂𝑎𝑏

)︂
where 𝛽𝑎𝑏 is the segregation parameter between the two fluids. Compared to the standard (original) Lishchuk
interaction force, no interfacial curvature is required and correct behaviour can thus be achieved for lattice points
with more than two fluids, although a reduction of density of up to 𝑔𝑎𝑏𝛽

𝑎𝑏

2𝑐2𝑠
can be observed in the interfacial regions

between fluids.

216 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Forces are also calculated and applied for surface wetting effects by assuming fluid 0 is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

𝐹 0𝑎
𝑤𝑒𝑡 = −1

2
𝑔𝑤𝑎𝑙𝑙,𝑎∇𝑆,𝑤𝑎𝑙𝑙𝜌

𝑁
0𝑎 =

2𝑔𝑤𝑎𝑙𝑙,𝑎𝛽
0𝑎𝜌0𝜌𝑎

𝜌3
(𝑛̂𝑤 (𝑛̂0𝑎 · 𝑛̂𝑤) − 𝑛̂0𝑎)

where 𝑛̂𝑤 is the normal vector to the solid surface.

This subroutine omits calculations of interfacial curvatures and forces at grid points close to the subdomain bound-
aries, as the former requires non-local gradient calculations that would use modulo functions to find neighbouring
grid points: as such, this subroutine can be used for parallel calculations, although communication of interfacial
forces for boundary halo points from neighbourint processors is required prior to collisions.

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)
in rho Densities of fluids at lattice point

fCalcInteraction_LishchukSpencer_Boundary()

int fCalcInteraction_LishchukSpencer_Boundary (int xpos,
int ypos,
int zpos,
double * rho)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk-Spencer interaction scheme
[129]:

𝐹 𝑎𝑏 = −2𝑔𝑎𝑏𝛽
𝑎𝑏∇ ·

(︂
𝜌𝑎𝜌𝑏

𝜌3
𝑛̂𝑎𝑏𝑛̂𝑎𝑏

)︂
where 𝛽𝑎𝑏 is the segregation parameter between the two fluids. Compared to the standard (original) Lishchuk
interaction force, no interfacial curvature is required and correct behaviour can thus be achieved for lattice points
with more than two fluids, although a reduction of density of up to 𝑔𝑎𝑏𝛽

𝑎𝑏

2𝑐2𝑠
can be observed in the interfacial regions

between fluids.

Forces are also calculated and applied for surface wetting effects by assuming fluid 0 is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

𝐹 0𝑎
𝑤𝑒𝑡 = −1

2
𝑔𝑤𝑎𝑙𝑙,𝑎∇𝑆,𝑤𝑎𝑙𝑙𝜌

𝑁
0𝑎 =

2𝑔𝑤𝑎𝑙𝑙,𝑎𝛽
0𝑎𝜌0𝜌𝑎

𝜌3
(𝑛̂𝑤 (𝑛̂0𝑎 · 𝑛̂𝑤) − 𝑛̂0𝑎)

where 𝑛̂𝑤 is the normal vector to the solid surface.

This subroutine calculates interfacial curvatures and forces at grid points close to the subdomain boundaries: the
former requires non-local gradient calculations with modulo functions to find neighbouring grid points: as such,
this subroutine can be used for serial calculations.

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)
in rho Densities of fluids at lattice point

5.17. lbpFORCE.cpp 217

DL_MESO Technical Manual, Release 2.7

fCalcInteraction_ShanChen()

int fCalcInteraction_ShanChen (int xpos,
int ypos,
int zpos)

Determines interaction forces for the Shan-Chen pseudopotential model [118][119] based on gradients of pseu-
dopotentials:

𝐹 𝑎 (𝑥⃗) = −𝜓𝑎 (𝑥⃗)
∑︁
𝑏

𝑔𝑎𝑏
∑︁
𝑖

𝑤𝑖𝜓
𝑏 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖.

at all lattice points away from the edges of the subdomain held by each processor to avoid both links crossing
periodic boundaries and the use of modulo functions to find neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function 𝑠 (𝑥⃗)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

• Density-based interactions [91]:

𝐹 𝑎
𝑤𝑒𝑡 (𝑥⃗) = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜌

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

• Potential-based interactions [108][109]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

• Screened potential interactions [80]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝜑
𝑎 (𝑥⃗) 𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)

fCalcInteraction_ShanChen_Boundary()

int fCalcInteraction_ShanChen_Boundary (int xpos,
int ypos,
int zpos)

Determines interaction forces for the Shan-Chen pseudopotential model [118][119] based on gradients of pseu-
dopotentials:

𝐹 𝑎 (𝑥⃗) = −𝜓𝑎 (𝑥⃗)
∑︁
𝑏

𝑔𝑎𝑏
∑︁
𝑖

𝑤𝑖𝜓
𝑏 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖.

at all lattice points close to the edges of the subdomain held by each processor, which require the use of modulo
functions to find neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function 𝑠 (𝑥⃗)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

• Density-based interactions [91]:

𝐹 𝑎
𝑤𝑒𝑡 (𝑥⃗) = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜌

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

218 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• Potential-based interactions [108][109]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

• Screened potential interactions [80]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝜑
𝑎 (𝑥⃗) 𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)

fCalcInteraction_ShanChenQuadratic()

int fCalcInteraction_ShanChenQuadratic (int xpos,
int ypos,
int zpos)

Determines interaction forces for a form of the Shan-Chen pseudopotential model with quadratic pseudopotential
terms [70][43][61]:

𝐹 𝑎 (𝑥⃗) = −𝜓𝑎 (𝑥⃗)
∑︁
𝑏

𝛽𝑎𝑏𝑔𝑎𝑏
∑︁
𝑖

𝑤𝑖𝜓
𝑏 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖 −

1

2

∑︁
𝑏

𝑔𝑎𝑏 (1 − 𝛽𝑎𝑏)
∑︁
𝑖

𝑤𝑖

(︀
𝜓𝑏 (𝑥⃗+ 𝑒𝑖)

)︀2
𝑒𝑖

where 𝛽𝑎𝑏 is a weighting factor between linear and quadratic pseudopotential terms that can be adjusted for
different equations of state. These forces are calculated at all lattice points away from the edges of the subdomain
held by each processor to avoid both links crossing periodic boundaries and the use of modulo functions to find
neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function 𝑠 (𝑥⃗)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

• Density-based interactions [91]:

𝐹 𝑎
𝑤𝑒𝑡 (𝑥⃗) = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜌

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

• Potential-based interactions [108][109]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

• Screened potential interactions [80]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝜑
𝑎 (𝑥⃗) 𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)

5.17. lbpFORCE.cpp 219

DL_MESO Technical Manual, Release 2.7

fCalcInteraction_ShanChenQuadratic_Boundary()

int fCalcInteraction_ShanChenQuadratic_Boundary (int xpos,
int ypos,
int zpos)

Determines interaction forces for a form of the Shan-Chen pseudopotential model with quadratic pseudopotential
terms [70][43][61]:

𝐹 𝑎 (𝑥⃗) = −𝜓𝑎 (𝑥⃗)
∑︁
𝑏

𝛽𝑎𝑏𝑔𝑎𝑏
∑︁
𝑖

𝑤𝑖𝜓
𝑏 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖 −

1

2

∑︁
𝑏

𝑔𝑎𝑏 (1 − 𝛽𝑎𝑏)
∑︁
𝑖

𝑤𝑖

(︀
𝜓𝑏 (𝑥⃗+ 𝑒𝑖)

)︀2
𝑒𝑖

where 𝛽𝑎𝑏 is a weighting factor between linear and quadratic pseudopotential terms that can be adjusted for
different equations of state. These forces are calculated at all lattice points close to the edges of the subdomain
held by each processor, which require the use of modulo functions to find neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function 𝑠 (𝑥⃗)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

• Density-based interactions [91]:

𝐹 𝑎
𝑤𝑒𝑡 (𝑥⃗) = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜌

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

• Potential-based interactions [108][109]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

• Screened potential interactions [80]:

𝐹 𝑎
𝑤𝑒𝑡 = −𝑔𝑎,𝑤𝑎𝑙𝑙𝜑

𝑎 (𝑥⃗)
∑︁
𝑖

𝑤𝑖𝜑
𝑎 (𝑥⃗) 𝑠 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖

Parameters

in xpos Position of lattice point (x-component)
in ypos Position of lattice point (y-component)
in zpos Position of lattice point (z-component)

fCalcPhaseIndex_Lishchuk()

int fCalcPhaseIndex_Lishchuk ()

Calculates the interfacial normal vectors between pairs of fluid species required for Lishchuk interactions [81] by
determing phase indices at every available grid point:

𝜌𝑁𝑎𝑏 =
𝜌𝑎 − 𝜌𝑏

𝜌𝑎 + 𝜌𝑏
,

using stencils to approximate first-order gradients at each grid point [75], ordinarily one that uses values at nearest
neighbouring grid points:

∇𝜌𝑁𝑎𝑏 (𝑥⃗) ≈ 1

𝑐2𝑠∆𝑡

∑︁
𝑖

𝑤𝑖𝜌
𝑁
𝑎𝑏 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖,

and normalising these gradients to obtain the interfacial normals:

𝑛̂𝑎𝑏 =
∇𝜌𝑁𝑎𝑏
|∇𝜌𝑁𝑎𝑏|

.

This subroutine omits calculations of phase index gradients and interfacial normals at grid points close to the
subdomain boundaries to avoid using modulo functions to find neighbouring grid points: as such, this subroutine
can be used for parallel calculations, although communication of phase indices for boundary halo points from
neighbouring processors is required.

220 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCalcPhaseIndex_LishchukLocal()

int fCalcPhaseIndex_LishchukLocal ()

Calculates the interfacial normal vectors between pairs of fluid species required for Lishchuk interactions [81] by
approximating phase indices for each lattice link by using distribution functions [130]:

𝜌𝑁𝑎𝑏,𝑖 ≈ −𝑓
𝑎
𝑖 − 𝑓 𝑏𝑖
𝑓𝑎𝑖 + 𝑓 𝑏𝑖

,

using stencils to approximate first-order gradients at each grid point:

∇𝜌𝑁𝑎𝑏 (𝑥⃗) ≈ 1

𝑐2𝑠∆𝑡

∑︁
𝑖

𝑤𝑖𝜌
𝑁
𝑎𝑏,𝑖 (𝑥⃗) 𝑒𝑖,

and normalising these gradients to obtain the interfacial normals:

𝑛̂𝑎𝑏 =
∇𝜌𝑁𝑎𝑏
|∇𝜌𝑁𝑎𝑏|

.

While the approximated phase index differentials may not be very accurate, the resulting interfacial normals are
generally sufficiently accurate for Lishchuk interaction calculations. There is a risk of the approximated phase
indices being out of range, so the gradients are only calculated when |𝜌𝑁𝑎𝑏| ≤ 1 − 𝜖, where 𝜖 is a small value. As
this subroutine only requires distribution functions at each lattice point, these calculations can be carried out safely
in boundary halos and thus no communication of interfacial normals from neighbouring processors into halos is
required.

fCalcPotential_ShanChen()

int fCalcPotential_ShanChen ()

Calculates the required pseudopotentials 𝜑𝑎 for each fluid for all available lattice points to enable Shan-Chen
interaction forces [118][119] to be calculated. Specific equations of state can be obtained by specifying the form
of pseudopotential 𝜑𝑎 to provide it [155].

fConvectionForceBoussinesq()

int fConvectionForceBoussinesq (double temph, double templ)

Calculates temperature-dependent forces at all fluid lattice points (excluding wet boundary nodes covered by
boundary conditions) based on the Boussinesq approximation [48], specifying 𝑇ℎ and 𝑇𝑙 as the high and low
system temperatures respectively. No communication of thermal forces is required and this subroutine can thus be
used for both serial and parallel running.

Parameters

in temph High temperature value for system 𝑇ℎ
in templ Low temperature value for system 𝑇𝑙

5.17. lbpFORCE.cpp 221

DL_MESO Technical Manual, Release 2.7

fInteractionForceLishchuk()

int fInteractionForceLishchuk ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the original Lishchuk continuum-based interaction model. This subroutine avoids any lattice points that
make up the boundary halo when running in parallel: the forces for these points are to be communicated from
neighbouring processors prior to collisions.

fInteractionForceLishchukSpencer()

int fInteractionForceLishchukSpencer ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the Lishchuk-Spencer continuum-based interaction model. This subroutine avoids any lattice points that
make up the boundary halo when running in parallel: the forces for these points are to be communicated from
neighbouring processors prior to collisions.

fInteractionForceShanChen()

int fInteractionForceShanChen ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the Shan-Chen pseudopotential model. This subroutine avoids any lattice points that make up the boundary
halo when running in parallel: the forces for these points are to be communicated from neighbouring processors
prior to collisions.

fInteractionForceShanChenQuadratic()

int fInteractionForceShanChenQuadratic ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the Shan-Chen pseudopotential model with quadratic psuedopotential terms. This subroutine avoids any
lattice points that make up the boundary halo when running in parallel: the forces for these points are to be
communicated from neighbouring processors prior to collisions.

fInteractionForceZero()

int fInteractionForceZero ()

Sets arrays for interaction and heat forces to zero before any of these are calculated during the current timestep.
This routine is only required if mesophase interactions and/or Boussinesq buoyancy forces are calculated.

fsCalcDensityConcentrationGradient_Swift()

int fsCalcDensityConcentrationGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density and concentration for the two-fluid Swift
free-energy interaction model at all fluid lattice points - both away from and at the edges of the processor’s subdo-
main - using either a stencil to reduce spurious microcurrents [102] or central difference and one-sided difference
approximations for wet boundary nodes and grid points next to bounce-back boundary points. A quadratic sur-
face wetting potential in density and concentration can also be applied, which modifies density and concentration
derivatives at or near boundary points [13][103]. Modulo functions are used to find neighbouring grid points
across periodic boundaries: this subroutine is therefore suitable for serial calculations.

222 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fsCalcDensityGradient_Swift()

int fsCalcDensityGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density for the one-fluid Swift free-energy interac-
tion model at all fluid lattice points - both away from and at the edges of the processor’s subdomain - using either
a stencil to reduce spurious microcurrents [102] or central difference and one-sided difference approximations for
wet boundary nodes and grid points next to bounce-back boundary points. A quadratic surface wetting potential
in density can also be applied, which modifies density derivatives at or near boundary points [13][103]. Modulo
functions are used to find neighbouring grid points across periodic boundaries: this subroutine is therefore suitable
for serial calculations.

fsCalcGradient_Swift()

int fsCalcGradient_Swift ()

Calculates first-order and second-order density (and concentration) derivatives at all lattice points - including
boundary halo grid points - for Swift free-energy interactions [136][135]. The gradient calculations at subdomain
boundaries use modulo functions to find neighbouring points at opposite sides of the lattice, which are required
for serial running when no boundary halo is in use.

fsCalcPhaseIndex_Lishchuk()

int fsCalcPhaseIndex_Lishchuk ()

Calculates the interfacial normal vectors between pairs of fluid species required for Lishchuk interactions [81] by
determing phase indices at every available grid point:

𝜌𝑁𝑎𝑏 =
𝜌𝑎 − 𝜌𝑏

𝜌𝑎 + 𝜌𝑏
,

using stencils to approximate first-order gradients at each grid point [75] , ordinarily one that uses values at nearest
neighbouring grid points:

∇𝜌𝑁𝑎𝑏 (𝑥⃗) ≈ 1

𝑐2𝑠∆𝑡

∑︁
𝑖

𝑤𝑖𝜌
𝑁
𝑎𝑏 (𝑥⃗+ 𝑒𝑖) 𝑒𝑖,

and normalising these gradients to obtain the interfacial normals:

𝑛̂𝑎𝑏 =
∇𝜌𝑁𝑎𝑏
|∇𝜌𝑁𝑎𝑏|

.

This subroutine includes calculations of phase index gradients and interfacial normals at grid points close to the
subdomain boundaries, which requires modulo functions to find neighbouring grid points: as such, this subroutine
can be used for serial calculations where no boundary halos are in use.

fsInteractionForceLishchuk()

int fsInteractionForceLishchuk ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the original Lishchuk continuum-based interaction model. The force calculations at subdomain
boundaries use modulo functions to find neighbouring points at opposite sides of the lattice, which are required
for serial running when no boundary halo is in use.

5.17. lbpFORCE.cpp 223

DL_MESO Technical Manual, Release 2.7

fsInteractionForceLishchukSpencer()

int fsInteractionForceLishchukSpencer ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the Lishchuk-Spencer continuum-based interaction model. The force calculations at subdomain
boundaries use modulo functions to find neighbouring points at opposite sides of the lattice, which are required
for serial running when no boundary halo is in use.

fsInteractionForceShanChen()

int fsInteractionForceShanChen ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the Shan-Chen pseudopotential model. The force calculations at subdomain boundaries use
modulo functions to find neighbouring points at opposite sides of the lattice, which are required for serial running
when no boundary halo is in use.

fsInteractionForceShanChenQuadratic()

int fsInteractionForceShanChenQuadratic ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the Shan-Chen pseudopotential model with quadratic psuedopotential terms. The force calcula-
tions at subdomain boundaries use modulo functions to find neighbouring points at opposite sides of the lattice,
which are required for serial running when no boundary halo is in use.

fWallInteractionForceLishchukLocal()

int fWallInteractionForceLishchukLocal ()

Calculates and applies forces for surface wetting effects by assuming fluid 0 is the background fluid and wets the
walls, which applies an uncompensated Young stress on each fluid [28]:

𝐹 0𝑎
𝑤𝑒𝑡 = −1

2
𝑔𝑤𝑎𝑙𝑙,𝑎∇𝑆,𝑤𝑎𝑙𝑙𝜌

𝑁
0𝑎 =

2𝑔𝑤𝑎𝑙𝑙,𝑎𝛽
0𝑎𝜌0𝜌𝑎

𝜌3
(𝑛̂𝑤 (𝑛̂0𝑎 · 𝑛̂𝑤) − 𝑛̂0𝑎)

where 𝑛̂𝑤 is the normal vector to the solid surface. This subroutine is required for variants of the Lishchuk algo-
rithm that do not calculate interaction forces but apply direct forcing terms in collisions, i.e. Lishchuk ‘Spencer
tensor’ [129] and the fully local Lishchuk [130] algorithms. Since these forces do not require gradients of the in-
terfacial normals, they can be calculated for all lattice points including boundary halos and thus no communication
between neighbouring processors is required.

5.18 lbpRHEOLOGY.cpp

Module with routines to apply various rheological models for LBE calculations. (Header file available as lbpRHE-
OLOGY.hpp.)

Functions and subroutines to calculate shear rates at each lattice site and calculate relaxation frequencies based
on the shear rates to apply specific rheological models to the fluids in a LBE calculation. Rate-of-strain tensors
can be determined using momentum flux tensors [12], which can be calculated locally at each lattice site using its
distribution functions but depend upon the relaxation frequencies used for the previous timestep:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

Λ𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀
≡ 1

2

(︂
𝜕𝑢𝛽
𝜕𝑥𝛼

+
𝜕𝑢𝛼
𝜕𝑥𝛽

)︂
.

224 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

The shear rate is obtained from the rate-of-strain tensor:

𝛾̇ =

√︃
2
∑︁
𝛼,𝛽

𝑆𝛼𝛽𝑆𝛼𝛽

and the shear rate can then be used in various rheological models to find the gradient of shear stress with respect
to shear rate (i.e. viscosity) for each lattice site.

5.18.1 Functions

• double fGetRelaxationFrequency()

Calculates relaxation frequency for a fluid using specified rheological models.

• int fGetShearRateBGK()

Calculates shear rates at specified lattice site when using BGK collisions for compressible fluids.

• int fGetShearRateBGKIncom()

Calculates shear rates at specified lattice site when using BGK collisions for incompressible fluids.

• int fGetShearRateTRT()

Calculates shear rates at specified lattice site when using TRT collisions for compressible fluids.

• int fGetShearRateTRTIncom()

Calculates shear rates at specified lattice site when using TRT collisions for incompressible fluids.

• int fGetShearRateMRT()

Calculates shear rates at specified lattice site when using MRT collisions for compressible fluids.

• int fGetShearRateMRTIncom()

Calculates shear rates at specified lattice site when using MRT collisions for incompressible fluids.

• int fGetShearRateCLBED2Q9()

Calculates shear rates at specified lattice site when using CLBE collisions for compressible fluids with
D2Q9 lattice.

• int fGetShearRateCLBED3Q19()

Calculates shear rates at specified lattice site when using CLBE collisions for compressible fluids with
D3Q19 lattice.

• int fGetShearRateCLBED3Q27()

Calculates shear rates at specified lattice site when using CLBE collisions for compressible fluids with
D3Q27 lattice.

• int fGetShearRateBGKSwift()

Calculates shear rates at specified lattice site when using BGK collisions for compressible fluids with Swift
free-energy interactions.

• int fGetShearRateTRTSwift()

Calculates shear rates at specified lattice site when using TRT collisions for compressible fluids with Swift
free-energy interactions.

• int fGetShearRateMRTSwift()

Calculates shear rates at specified lattice site when using MRT collisions for compressible fluids with Swift
free-energy interactions.

• int fGetSystemOmega()

Calculates relaxation frequencies for all lattice sites based on shear rates and rheological models.

5.18. lbpRHEOLOGY.cpp 225

DL_MESO Technical Manual, Release 2.7

• int fGetSystemOmegaSimple()

Calculates relaxation frequencies for all lattice sites based on rheological models without calculating shear
rates.

5.18.2 Function Documentation

fGetRelaxationFrequency()

double fGetRelaxationFrequency (int typ,
double gamma,
double rho,
double a,
double b,
double c,
double d,
double n)

Calculates and returns the relaxation frequency of a fluid at a given lattice point from its local shear rate, using a
rheological model that relates the shear stress on the fluid to the shear rate. The following rheological models are
available:

• Simple Newtonian fluid (constant kinematic viscosity):

𝜇 = 𝜌𝜈0

• (Density-dependent) Newtonian fluid (constant dynamic viscosity):

𝜇 = 𝜇0

• Power-law fluid:

𝜇 = 𝐾𝛾̇𝑛−1

• Bingham plastic [11]:

𝜇 = 𝜇0 +
𝜎𝑦
𝛾̇

• Herschel-Bulkley plastic [55]:

𝜇 = 𝐾𝛾̇𝑛−1 +
𝜎𝑦
𝛾̇

• Casson fluid [19]:

𝜇 =

(︂
√
𝜇0 +

√︂
𝜎𝑦
𝛾̇

)︂2

• Carreau-Yasuda fluid [152]:

𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞)
(︁

1 + (𝜆𝛾̇)
𝑑
)︁𝑛−1

𝑑

with an additional exponential decay function added to models with reciprocals of shear rates (Bingham plastic,
Herschel-Bulkley plastic and Casson fluid) to avoid discontinuities when shear stresses are close to yield values
[98].

Parameters

226 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in typ Type of rheological model for specified fluid
in gamma Shear stress for fluid at lattice site 𝛾̇
in rho Density of fluid at lattice site
in a Parameter a for rheological model (𝜈0, 𝜇0 or 𝜇∞)
in b Parameter b for rheological model (𝜎𝑦 , 𝜇0 or (𝜇0 − 𝜇∞))
in c Parameter c for rheological model (𝜆 or exponential decay parameter for models with yield

stresses)
in d Parameter d for rheological model (2√𝜇0𝜎𝑦 or 𝑑)
in n Parameter n (power-law index) for rheological model (𝑛)

fGetShearRateBGK()

int fGetShearRateBGK (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using BGK single relaxation time collisions for mildly compressible
fluids:

𝑆𝛼𝛽 =
3𝜔

2𝜌∆𝑡

∑︁
𝑖

(𝑓𝑖 − 𝑓𝑒𝑞𝑖) 𝑒𝑖,𝛼𝑒𝑖,𝛽

where the relaxation frequency for the previous timestep 𝜔 is used to convert the momentum flux tensor to a rate-
of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation
frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateBGKIncom()

int fGetShearRateBGKIncom (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using BGK single relaxation time collisions for fully incompressible
fluids:

𝑆𝛼𝛽 =
3𝜔

2𝜌∆𝑡

∑︁
𝑖

(𝑓𝑖 − 𝑓𝑒𝑞𝑖) 𝑒𝑖,𝛼𝑒𝑖,𝛽

where the relaxation frequency for the previous timestep 𝜔 is used to convert the momentum flux tensor to a rate-
of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation
frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

5.18. lbpRHEOLOGY.cpp 227

DL_MESO Technical Manual, Release 2.7

fGetShearRateBGKSwift()

int fGetShearRateBGKSwift (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using BGK single relaxation time collisions for mildly compressible
fluids with Swift free-energy interactions:

𝑆𝛼𝛽 = − 3𝜔

2𝜌∆𝑡

∑︁
𝑖

(𝑓𝑖 − 𝑓𝑒𝑞𝑖) 𝑒𝑖,𝛼𝑒𝑖,𝛽

where the relaxation frequency for the previous timestep 𝜔 is used to convert the momentum flux tensor to a rate-
of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation
frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateCLBED2Q9()

int fGetShearRateCLBED2Q9 (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using cascaded LBE (CLBE) collisions for mildly compressible fluids
with the two-dimensional D2Q9 lattice:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

(︀
T−1N−1ΛNT

)︀
𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀
where the relaxation frequency for the previous timestep 𝜔 (along with other relaxation frequencies, including
the values for bulk viscosity, third-order and fourth-order central moments) is used to convert the momentum flux
tensor to a rate-of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate
new relaxation frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateCLBED3Q19()

int fGetShearRateCLBED3Q19 (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using cascaded LBE (CLBE) collisions for mildly compressible fluids
with the three-dimensional D3Q19 lattice:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

(︀
T−1N−1ΛNT

)︀
𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀
where the relaxation frequency for the previous timestep 𝜔 (along with other relaxation frequencies, including
the values for bulk viscosity, third-order and fourth-order central moments) is used to convert the momentum flux
tensor to a rate-of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate
new relaxation frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

228 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateCLBED3Q27()

int fGetShearRateCLBED3Q27 (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using cascaded LBE (CLBE) collisions for mildly compressible fluids
with the three-dimensional D3Q27 lattice:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

(︀
T−1N−1ΛNT

)︀
𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀
where the relaxation frequency for the previous timestep 𝜔 (along with other relaxation frequencies, including
the values for bulk viscosity, third-order and fourth-order central moments) is used to convert the momentum flux
tensor to a rate-of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate
new relaxation frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateMRT()

int fGetShearRateMRT (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using multiple relaxation time (MRT) collisions [20] for mildly com-
pressible fluids:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

(︀
T−1ΛT

)︀
𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀
where the relaxation frequency for the previous timestep 𝜔 (along with other relaxation frequencies, including the
value for bulk viscosity) is used to convert the momentum flux tensor to a rate-of-strain tensor. (This is an iterative
calculation since the resulting shear rates are used to calculate new relaxation frequencies, although convergence
is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateMRTIncom()

int fGetShearRateMRTIncom (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using multiple relaxation time (MRT) collisions [20] for fully incom-
pressible fluids:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

(︀
T−1ΛT

)︀
𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀

5.18. lbpRHEOLOGY.cpp 229

DL_MESO Technical Manual, Release 2.7

where the relaxation frequency for the previous timestep 𝜔 (along with other relaxation frequencies, including the
value for bulk viscosity) is used to convert the momentum flux tensor to a rate-of-strain tensor. (This is an iterative
calculation since the resulting shear rates are used to calculate new relaxation frequencies, although convergence
is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateMRTSwift()

int fGetShearRateMRTSwift (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using multiple relaxation time (MRT) collisions [20] for mildly com-
pressible fluids with Swift free-energy interactions:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
∑︁
𝑗

(︀
T−1ΛT

)︀
𝑖𝑗

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀
where the relaxation frequency for the previous timestep 𝜔 (along with other relaxation frequencies, including the
value for bulk viscosity) is used to convert the momentum flux tensor to a rate-of-strain tensor. (This is an iterative
calculation since the resulting shear rates are used to calculate new relaxation frequencies, although convergence
is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateTRT()

int fGetShearRateTRT (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using two relaxation time (TRT) collisions for mildly compressible fluids:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
[︀
𝜔𝑝 (𝑓𝑖 − 𝑓𝑒𝑞𝑖) + 𝜔𝑚

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀]︀
where the symmetric relaxation frequency for the previous timestep 𝜔+ (along with the antisymmetric relaxation
frequency calculated using the ‘magic number’) is used to convert the momentum flux tensor to a rate-of-strain
tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation frequen-
cies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

230 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetShearRateTRTIncom()

int fGetShearRateTRTIncom (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using two relaxation time (TRT) collisions for fully incompressible fluids:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
[︀
𝜔𝑝 (𝑓𝑖 − 𝑓𝑒𝑞𝑖) + 𝜔𝑚

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀]︀
where the symmetric relaxation frequency for the previous timestep 𝜔+ (along with the antisymmetric relaxation
frequency calculated using the ‘magic number’) is used to convert the momentum flux tensor to a rate-of-strain
tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation frequen-
cies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateTRTSwift()

int fGetShearRateTRTSwift (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using two relaxation time (TRT) collisions for mildly compressible fluids
with Swift free-energy interactions:

𝑆𝛼𝛽 = − 3

2𝜌∆𝑡

∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽
[︀
𝜔𝑝 (𝑓𝑖 − 𝑓𝑒𝑞𝑖) + 𝜔𝑚

(︀
𝑓𝑗 − 𝑓𝑒𝑞𝑗

)︀]︀
where the symmetric relaxation frequency for the previous timestep 𝜔+ (along with the antisymmetric relaxation
frequency calculated using the ‘magic number’) is used to convert the momentum flux tensor to a rate-of-strain
tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation frequen-
cies, although convergence is normally obtained within a few timesteps.)

Parameters

out shearrate Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetSystemOmega()

int fGetSystemOmega ()

Calculates the shear rates of all fluids at all lattice sites and the relaxation frequencies for the fluids using the
shear rates with rheological models. This subroutine selects which shear rate calculation routine to use and how
to calculate the relaxation frequencies based on collision type, whether or not the fluids are compressible and
whether or not Swift free-energy interactions are in use. Since shear rates are calculated locally at each lattice site,
this routine can be applied to all lattice sites (including boundary halo points).

5.18. lbpRHEOLOGY.cpp 231

DL_MESO Technical Manual, Release 2.7

fGetSystemOmegaSimple()

int fGetSystemOmegaSimple ()

Calculates the relaxation frequencies of all fluids at all lattice sites using rheological models that do not depend
on shear rate (i.e. Newtonian fluid models for constant kinematic or dynamic viscosity). This subroutine selects
how to calculate the relaxation frequencies based on whether or not the fluids are compressible and whether or not
Swift free-energy interactions are in use. This routine can be applied to all lattice sites (including boundary halo
points).

5.19 lbpIO.cpp

Module with routines to read input files, print simulation information to standard output and write simulation
snapshots. (Header file available as lbpIO.hpp.)

Subroutines to read input files and set up LBE simulations based on user specifications, print summary of simula-
tion input, fluid masses and system momentum periodically, and write snapshots of simulation to output files.

5.19.1 Functions

• int fDefineSystem()

Reads in essential LBE calculation parameters from a system data file.

• int fInputParameters()

Reads system parameters from system data file.

• int fReadSpace2D()

Reads space parameters (boundary conditions) from a data file for a two-dimensional system.

• int fReadSpace3D()

Reads space parameters (boundary conditions) from a data file for a three-dimensional system.

• int fReadSpaceParameter()

Reads space parameters (boundary conditions) from a data file.

• int fReadInitialState2D()

Reads initial simulation state from a data file for a two-dimensional system.

• int fReadInitialState3D()

Reads initial simulation state from a data file for a three-dimensional system.

• int fReadInitialState()

Reads initial simulation state from a data file.

• int fSetoffSteer()

Creates file to prevent reading in input files when using computational steering (in serial).

• int fCheckSteer()

Checks for file indicating steering is occurring and reads in input files if it does not exist (in serial).

• int fPrintSystemInfo()

Prints system information to standard output prior to commencing LBE simulation.

• int fPrintParameters()

Prints parameters for LBE simulation to standard output.

232 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fPrintEndEquilibration()

Prints message indicating end of system equilibration.

• int fPrintEarlyTermination()

Prints message indicating simulation has been terminated early.

• int fPrintDomainMass()

Calculates and prints total and individual fluid masses in subdomain.

• int fPrintDomainMomentum()

Calculates and prints total fluid momentum in subdomain.

• int fsCreateIOGroups()

Creates I/O group to gather together output data for writing to files during serial calculations.

• int fOutput()

Outputs all system data in the required format at user-specified intervals.

5.19.2 Function Documentation

fCheckSteer()

int fCheckSteer ()

Checks for the existence of a file called notsteer, which was created to prevent DL_MESO_LBE from starting a
new simulation when computaional steering is applied. If the files does not exist, read in system and space property
files. This routine is for serial calculations: an atlnerative routine exists for parallel running - fMPICheckSteer() -
but neither routine is currently in use in the main DL_MESO_LBE code.

fDefineSystem()

int fDefineSystem (const char * filename = "lbin.sys")

Reads calculation parameters (lattice scheme, types of collision and forcing, mesophase interaction algorithms,
numbers of fluids, solutes, temperature scalars and phase field order parameters, the size of the grid, if fluids are
fully incompressible, boundary halo size, whether a simulation is being restarted, output file type) from an input
system file. Checks are carried out to ensure the selected combinations of lattice scheme, collisions, mesophase
interactio algorithms etc. are viable for calculations. The lattice scheme, numbers of fluids, solutes, temperature
fields and phase fields, grid size and boundary halo size must be specified and read by this subroutine.

Parameters

in filename Name of input system file (default: lbin.sys)

fInputParameters()

int fInputParameters (const char * filename = "lbin.sys")

Reads additional parameters for LBE simulation (e.g. numbers of timesteps, relaxation times for fluids, initial
and boundary conditions for system, options to combine output files among processors) from an input system
file. Some basic checks are made to ensure the simulation can proceed, and any missing parameters (e.g. critical
temperature and pressure for equations of state) are either calculated using available user inputs or revert to default
values (e.g. tuneable collision parameters for MRT collisions).

Parameters

5.19. lbpIO.cpp 233

DL_MESO Technical Manual, Release 2.7

in filename Name of input system file (default: lbin.sys)

fOutput()

int fOutput (const char * filename = "lbout")

Writes macroscopic system data (fluid densities, mass fractions, velocities, solute concentrations, temperatures,
boundary conditions) to output files in the required format (XML-based VTK, Legacy VTK or Plot3D in either big
endian binary or ANSI text) at user-specified intervals. The filenames for these files start with a given string and
include 6-digit numbers to indicate snapshot number: if more than one file is produced per snapshot (by multiple
processor cores), additional numbers are used in the filename to indicate which processor or group of processors
has written the data in preparation for post-simulation gathering. The solution files for Plot3D can each hold only
one main property (density, mass fraction etc.), so at least one file will also be produced for each property.

Parameters

in filename Beginning of name for output files (default: lbout)

fPrintDomainMass()

int fPrintDomainMass ()

Calculates both the total mass and the individual masses of all fluids in the simulation subdomain for the current
processor and prints the results to the standard output. This subroutine will only produce the total and individual
fluid masses for the entire system if running on a single processor (in serial): an alternative routine - fPrintSystem-
Mass() - is available for printing system-wide total and individual fluid masses in parallel.

fPrintDomainMomentum()

int fPrintDomainMomentum ()

Calculates the total momentum of all fluids in the simulation subdomain for the current processor and prints the
result to the standard output. This subroutine will only produce the total fluid momentume for the entire system
if running on a single processor (in serial): an alternative routine - fPrintSystemMomentum() - is available for
printing the system-wide total momentum in parallel.

fPrintEarlyTermination()

int fPrintEarlyTermination ()

Prints a message to the standard output (often the screen), indicating that the simulation has been terminated after
the specified runtime (in seconds) has come to an end and the number of timesteps that have been completed up
to this point. This message is not printed if no simulation runtime has been supplied or the simulation stops due
to a runtime error.

234 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fPrintEndEquilibration()

int fPrintEndEquilibration ()

Prints a message to the standard output (often the screen), indicating that all equilibration timesteps have been
completed. This message is not printed if no equilibration timesteps are requested for the simulation.

fPrintParameters()

int fPrintParameters ()

Prints parameters for fluids, solutes, temperatures, interactions and rheological models - all obtained from input
system file - to the standard output (often the screen). For simulations using equations of state and constant sys-
tem temperatures, the attractive terms for certain equations of state (Redlich-Kwong, Carnahan-Starling-Redlich-
Kwong, Soave-Redlich-Kwong and Peng-Robinson) are adjusted to incorporate constant temperatures and avoid
recalculating this dependence for each lattice point and timestep.

fPrintSystemInfo()

int fPrintSystemInfo ()

Prints information about the LBE simulation about to start - including the system size, lattice scheme, numbers
of fluids, solutes and temperature scalars, types of collision, forcing and mesoscopic interactions - to the standard
output (often the screen).

fReadInitialState()

int fReadInitialState (const char * filename = "lbin.init")

Reads a initial state input file and replaces default values of initial velocities, fluid densities, solute concentrations
and temperature with values supplied for specified grid points.

Parameters

in filename Name of initial state input file (default: lbin.init)

fReadInitialState2D()

int fReadInitialState2D (const char * filename = "lbin.init")

Reads a initial state input file and replaces default values of initial velocities, fluid densities, solute concentrations
and temperature with values supplied for specified grid points in a two-dimensional system: only grid points
with 𝑧 = 0 are accepted in this case. Local equilibrium distribution functions for the required properties at each
specified grid point are calculated to replace values previously calculated using default initial properties given in
the system data file.

Parameters

in filename Name of initial state input file (default: lbin.init)

5.19. lbpIO.cpp 235

DL_MESO Technical Manual, Release 2.7

fReadInitialState3D()

int fReadInitialState3D (const char * filename = "lbin.init")

Reads a initial state input file and replaces default values of initial velocities, fluid densities, solute concentrations
and temperature with values supplied for specified grid points in a three-dimensional system. Local equilibrium
distribution functions for the required properties at each specified grid point are calculated to replace values pre-
viously calculated using default initial properties given in the system data file.

Parameters

in filename Name of initial state input file (default: lbin.init)

fReadSpace2D()

int fReadSpace2D (const char * filename = "lbin.spa")

Reads a space parameter input file and assigns boundary conditions to specified grid points (supplied as numerical
codes indicating type and direction) for a two-dimensional system: only grid points with 𝑧 = 0 are accepted in this
case. If the system is being equilibrated, no boundary conditions other than blank sites, bounce-back and outflows
are applied until the equilibration period has come to an end, which allows immiscible fluid drops to settle before
flow fields are applied.

Parameters

in filename Name of space parameter input file (default: lbin.spa)

fReadSpace3D()

int fReadSpace3D (const char * filename = "lbin.spa")

Reads a space parameter input file and assigns boundary conditions to specified grid points (supplied as numer-
ical codes indicating type and direction) for a three-dimensional system. If the system is being equilibrated, no
boundary conditions other than blank sites, bounce-back and outflows are applied until the equilibration period
has come to an end, which allows immiscible fluid drops to settle before flow fields are applied.

Parameters

in filename Name of space parameter input file (default: lbin.spa)

fReadSpaceParameter()

int fReadSpaceParameter (const char * filename = "lbin.spa")

Reads a space parameter input file and assigns boundary conditions to specified grid points (supplied as numerical
codes indicating type and direction) for a three-dimensional system.

Parameters

in filename Name of space parameter input file (default: lbin.spa)

236 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fsCreateIOGroups()

int fsCreateIOGroups ()

Sets up the various properties normally required for a group of processors sharing and writing data to output files
for a single processor (running in serial). This subroutine is a serial equivalent of fCreateIOGroups() and populates
the required properties in a structure for storing information on data gathering prior to writing to files.

fSetoffSteer()

int fSetoffSteer ()

Creates a file called notsteer to prevent DL_MESO_LBE from starting a new simulation by reading in system and
space property files when a LBE simulation is computationally steered. This routine is for serial calculations: an
alternative routine exists for parallel running (fMPISetoffSteer()), but neither routine is currently in use in the main
DL_MESO_LBE code.

5.20 lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp

Modules with routines to gather together data for writing output files and reading/writing restart files when running
in parallel (lbpIOAGGPAR.cpp) or serial (lbpIOAGGSER.cpp). (Header files available at lbpIOAGGPAR.hpp and
lbpIOAGGSER.hpp).

Subroutines to gather together system properties (fluid densities, mass fractions, velocities, solute concentrations,
temperatures, boundary conditions) to write to output files, to write gathered data in the required forms for the
available file formats, to read and write files to enable simulation restarts. lbpIOAGGPAR.cpp includes subroutines
for simulations carried out on multiple processors (in parallel), lbpIOAGGSER.cpp has subroutines for simulations
carried out on a single processor (in serial).

5.20.1 Functions

• float fGetTemperatureWrap()

Obtains temperature at given lattice site.

• float fGetOneMassSiteWrap()

Obtains density of specific fluid at given lattice site.

• float fGetOneMassSwiftSiteWrap()

Obtains density of specific fluid at given lattice site when using Swift free-energy interactions.

• float fGetFracSiteWrap()

Obtains mass fraction of specific fluid at given lattice site.

• float fGetFracSwiftSiteWrap()

Obtains mass fraction of specific fluid at given lattice site when using Swift free-energy interactions.

• float fGetOneConcSiteWrap()

Obtains concentration of specific solute at given lattice site.

• void fPieceRangeLocal()

Determines extent of lattice covered by current processor in local coordinates.

• void fPieceRangeGlobal()

Determines extent of lattice covered by current processor in global coordinates.

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 237

DL_MESO Technical Manual, Release 2.7

• int fPieceDataPoints()

Determines number of data points for subdomain in each dimension.

• void fFillBuffer()

Fills floating-point buffer with data for grid points.

• void fPieceDensities()

Fills floating-point buffer with densities of specified fluid at grid points in current processor.

• void fPieceDensitiesSwift()

Fills floating-point buffer with densities of specified fluid at grid points in current processor when using
Swift free-energy interactions.

• void fPieceMassFractions()

Fills floating-point buffer with mass fractions of specified fluid at grid points in current processor.

• voidfPieceMassFractionsSwift()

Fills floating-point buffer with densities of specified fluid at grid points in current processor when using
Swift free-energy interactions.

• void fPieceSoluteConcentrations()

Fills floating-point buffer with concentrations of specified solute at grid points in current processor.

• void fPieceTemperatures()

Fills floating-point buffer with temperatures at grid points in current processor.

• void fPieceVelocity()

Fills floating-point buffer with a single component of fluid velocities at grid points in current processor.

• void fPieceVelocities()

Fills floating-point buffer with fluid velocities at grid points in current processor.

• void fPiecePhaseField()

Fills integer buffer with boundary conditions (phase fields) at grid points in current processor.

• void fPiecePhaseFieldFloat()

Fills single-precision floating-point buffer with boundary conditions (phase fields) at grid points in current
processor.

• void fPieceGridPoints()

Fills floating-point buffer with coordinates of grid points in current processor.

• void fPieceGridPointComponent()

Fills floating-point buffer with a single component of coordinates of grid points in current processor.

• void fGroupRangeGlobal()

Finds minimum and maximum grid coordinates for I/O group of processors.

• void fGroupPieceRangeLocal()

Returns range of grid points covered by an I/O group on a local basis.

• void fGroupPieceRangeGlobal()

Returns range of grid points covered by an I/O group on a global basis.

• int fGroupPieceDataPoints()

Determines number of data points for I/O group in each dimension.

238 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fGroupPieceGatherInfo()

Gathers information about data being gathered together by I/O group among its processors.

• void fGroupGatherFloatData()

Fills single-precision floating-point buffer with data from across entire I/O group.

• void fGroupGatherIntData()

Fills integer buffer with data from across entire I/O group.

• void fGroupGatherRestartData()

Fills double-precision floating-point buffer with data from across entire I/O group required for simulation
restart.

• void fGroupDensities()

Pulls together densities for specific fluid over lattice section covered by I/O group.

• void fGroupMassFractions()

Pulls together mass fractions for specific fluid over lattice section covered by I/O group.

• void fGroupSoluteConcentrations()

Pulls together concentrations for specific solute over lattice section covered by I/O group.

• void fGroupTemperatures()

Pulls together temperatures over lattice section covered by I/O group.

• void fGroupPhaseField()

Pulls together boundary conditions (phase fields) over lattice section covered by I/O group (as integers).

• void fGroupPhaseFieldFloat()

Pulls together boundary conditions (phase fields) over lattice section covered by I/O group (as single-
precision floating-point numbers).

• void fGroupVelocityComponent()

Pulls together values of a single velocity component over lattice section covered by I/O group.

• void fGroupVelocities()

Pulls together fluid velocities over lattice section covered by I/O group.

• void fGroupGridPoints()

Pulls together coordinates over lattice section covered by I/O group.

• void fGroupGridPointComponent()

Pulls together single component of coordinates over lattice section covered by I/O group.

• int fOpenOutputBinaryFile()

Opens binary file for simulation output.

• int fCloseOutputANSIFile()

Closes ANSI text file for simulation output.

• int fOpenOutputANSIFile()

Opens ANSI text file for simulation output.

• int fCloseOutputBinaryFile()

Closes binary file for simulation output.

• int fWriteVTKFloatBinaryData()

Writes a block of single-precision floating-point data to a binary XML-based structured-grid VTK file.

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 239

DL_MESO Technical Manual, Release 2.7

• int fWriteVTKIntegerBinaryData()

Writes a block of integer data to a binary XML-based structured-grid VTK file.

• int fWriteVTKFloatANSIData()

Writes a block of single-precision floating-point data to an ANSI text XML-based structured-grid VTK file.

• int fWriteVTKIntegerANSIData()

Writes a block of integer data to an ANSI text XML-based structured-grid VTK file.

• int fWriteLegacyVTKFloatBinaryData()

Writes a block of single-precision floating-point data to a binary structured-grid Legacy VTK file.

• int fWriteLegacyVTKIntegerBinaryData()

Writes a block of integer data to a binary structured-grid Legacy VTK file.

• int fWriteLegacyVTKFloatANSIData()

Writes a block of single-precision floating-point data to an ANSI text structured-grid Legacy VTK file.

• int fWriteLegacyVTKIntegerANSIData()

Writes a block of integer data to an ANSI text structured-grid Legacy VTK file.

• int fWritePlot3DGridFloatBinaryData()

Writes a block of single-precision floating-point data to a binary Plot3D file.

• int fWritePlot3DGridIntegerBinaryData()

Writes a block of integer data to a binary Plot3D file.

• int fWritePlot3DGridFloatANSIData()

Writes a block of single-precision floating-point data to an ANSI text Plot3D file.

• int fWritePlot3DGridIntegerANSIData()

Writes a block of integer data to an ANSI text Plot3D file.

• int fReadRestart()

Reads simulation state from restart file to resume a previous LBE simulation.

• int fWriteRestart()

Writes current simulation state to a restart file.

• void fGroupCartesianCommRange()

Determines extent of current I/O group among available processors to create its communicator.

• int fCreateIOGroups()

Creates I/O groups to gather together output data for writing to files during parallel calculations.

• int fOutputInfo()

Writes information required to process separate output files after simulations.

240 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.20.2 Function Documentation

fCloseOutputANSIFile()

int fCloseOutputANSIFile (ofstream & file)

Closes an ANSI/text file used to write simulation outputs. If running in serial or not gathering data in all dimen-
sions, a standard text filestream is closed: if combining data in all dimensions, MPI-IO is used to close the file
based on the previously-generated file handle (used to write data to the file). Only the root processor for an I/O
group will close the file.

Parameters

in file Output filestream when not using MPI-IO

fCloseOutputBinaryFile()

int fCloseOutputBinaryFile (ofstream & file)

Closes a binary file used to write simulation outputs. If running in serial or not gathering data in all dimensions, a
standard binary filestream is closed: if combining data in all dimensions, MPI-IO is used to close the file based on
the previously-generated file handle (used to write data to the file). Only the root processor for an I/O group will
close the file.

Parameters

in file Output filestream when not using MPI-IO

fCreateIOGroups()

int fCreateIOGroups ()

Sets up the I/O groups among processors needed to gather together and write data to output files during parallel
LBE simulations. (A serial version of this subroutine - fsCreateIOGroups() - is available in lbpIO.cpp to do the
same for single processor simulations.) This subroutine creates a Cartesian communicator among the available
processors (based on the total number of processors for each direction) and checks the coordinates of each proces-
sor match their location within the entire lattice. I/O groups based on data being shared in selected directions are
then created, identifying the number of processors and root processors for each group and the rank (number) for
the current processor in its I/O group, as well as the extent of the lattice for each I/O group, before creating MPI
communicators to gather data among each group and for all I/O group root processors to write their data to output
files. As data is normally written with the x-coordinate incrementing most quickly (followed by the y-coordinate
and then the z-coordinate) in the output files but may not be gathered together in this order, an array is also created
to specify where each received data value is to be written in the output file, which facilitates reordering the data
values after gathering and before writing.

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 241

DL_MESO Technical Manual, Release 2.7

fFillBuffer()

void fFillBuffer (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit,
float(*)(int, int) GetFunction)

Fills a single-precision floating-point data buffer with values at a range of lattice points representing a piece of the
entire lattice, specifying the lattice extent, property and whether or not to swap bits (to obtain required endianness
when writing to files).

Parameters

out buffer Single-precision floating-point array with data values for specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in iprop Number of fluid/solute/temperature scalar for required property to fill array
in swapbit Flag for swapping bits of each data point
in GetFunction Wrapped function to obtain data value for each lattice point

fGetFracSiteWrap()

float fGetFracSiteWrap (int ilen, int iprop)

Returns mass fraction of a selected fluid at a given lattice site as a single-precision float. This function is a wrapper
for the actual function that calculates the mass fraction, and is used when gathering values together for writing to
output files.

Parameters

in ilen Position of lattice site in one-dimensional form
in iprop Number of fluid for required mass fraction

fGetFracSwiftSiteWrap()

float fGetFracSwiftSiteWrap (int ilen, int iprop)

Returns mass fraction of a selected fluid at a given lattice site when using Swift free-energy interactions as a
single-precision float. This function is a wrapper for the actual function that calculates the mass fraction, and is
used when gathering values together for writing to output files.

Parameters

in ilen Position of lattice site in one-dimensional form
in iprop Number of fluid for required mass fraction

242 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetOneConcSiteWrap()

float fGetOneConcSiteWrap (int ilen, int iprop)

Returns concentration of a selected solute at a given lattice site as a single-precision float. This function is a
wrapper for the actual function that calculates the concentration, and is used when gathering values together for
writing to output files.

Parameters

in ilen Position of lattice site in one-dimensional form
in iprop Number of solute for required concentration

fGetOneMassSiteWrap()

float fGetOneMassSiteWrap (int ilen, int iprop)

Returns density of a selected fluid at a given lattice site as a single-precision float. This function is a wrapper for
the actual function that calculates the density, and is used when gathering values together for writing to output
files.

Parameters

in ilen Position of lattice site in one-dimensional form
in iprop Number of fluid for required density

fGetOneMassSwiftSiteWrap()

float fGetOneMassSwiftSiteWrap (int ilen, int iprop)

Returns density of a selected fluid at a given lattice site when using Swift free-energy interactions as a single-
precision float. This function is a wrapper for the actual functions that calculate the density, and is used when
gathering values together for writing to output files.

Parameters

in ilen Position of lattice site in one-dimensional form
in iprop Number of fluid for required density

fGetTemperatureWrap()

float fGetTemperatureWrap (int ilen, int iprop)

Returns temperature for a given lattice site as a single-precision float. This function is a wrapper for the actual
function that calculates the temperature, and is used when gathering values together for writing to output files.

Parameters

in ilen Position of lattice site in one-dimensional form
in iprop Number of temperature scalar (unused dummy value for this function)

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 243

DL_MESO Technical Manual, Release 2.7

fGroupCartesianCommRange()

void fGroupCartesianCommRange (int * start, int * end, sIOGroup * info)

Finds the range of the Cartesian communicator grid covered by the current I/O group, i.e. find the extent of
processors in each direction for the group in terms of the total numbers of processors in each direction. (Only
needed for parallel calculations.)

Parameters

out start Starting coordinates of the I/O group in terms of numbers of processors (bottom-left-back corner)
out end Ending coordinates of the I/O group in terms of numbers of processors (top-right-front corner)
in info I/O group information (communicator for I/O group)

fGroupDensities()

void fGroupDensities (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer array for each I/O group with densities for a specified fluid.

Parameters

out buffer Array of fluid densities gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in iprop Number of fluid for required density
in swapbit Flag for swapping bits of each data point

fGroupGatherFloatData()

void fGroupGatherFloatData (sIOGroup * ioGroup,
float * buffer,
int * start,
int * end,
int dataPerPoint,
int param,
bool swapbit,
void(*)(float *, int *, int *, int, bool) GetLocalData)

Fills a single-precision floating-point data buffer array for each I/O group with the values of a required property
by filling arrays for each processor with values and gathering the data together into the group’s buffer (stored on
the root processor for the group).

Parameters

244 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in ioGroup I/O group information (flags indicating data gather across processors in each dimension, num-
ber of processors in group, MPI communicator for group, ordering of lattice points for file
writing)

out buffer Array of data gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in data-

Per-
Point

Number of data values per lattice point

in param Parameter denoting property number (for fluid density, mass fraction or solute concentration,
dummy value for other data)

in swap-
bit

Flag for swapping bits of each data point

in Get-
Local-
Data

Function to fill array for each processor in the I/O group (i.e. a piece of the I/O group’s lattice)
with values for the required property

fGroupGatherIntData()

void fGroupGatherIntData (sIOGroup * ioGroup,
int * buffer,
int * start,
int * end,
int dataPerPoint,
int param,
bool swapbit,
void(*)(int *, int *, int *, int, bool) GetLocalData)

Fills an integer data buffer array for each I/O group with the values of a required property by filling arrays for each
processor with values and gathering the data together into the group’s buffer (stored on the root processor for the
group).

Parameters

in ioGroup I/O group information (flags indicating data gather across processors in each dimension, num-
ber of processors in group, MPI communicator for group, ordering of lattice points for file
writing)

out buffer Array of data gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in data-

Per-
Point

Number of data values per lattice point

in param Parameter denoting property number (dummy value)
in swap-

bit
Flag for swapping bits of each data point

in Get-
Local-
Data

Function to fill array for each processor in the I/O group (i.e. a piece of the I/O group’s lattice)
with values for the required property

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 245

DL_MESO Technical Manual, Release 2.7

fGroupGatherRestartData()

void fGroupGatherRestartData (sIOGroup * ioGroup,
double * buffer,
int * posbuffer)

Fills a double-precision floating-point data buffer array for each I/O group with distribution functions and local
relaxation frequencies for all lattice points, as well as an integer array indicating the one-dimensional grid points
(in global terms) for each point in the group’s section of lattice. by filling arrays for each processor with the
required values and gathering the data together into the group’s buffers (stored on the root processor for the
group), which will be written to a file to enable simulation restarts. (This subroutine is only required when
running in parallel.)

Parameters

in ioGroup I/O group information (MPI communicator for group)
out buffer Array of distributions functions and local relaxation frequencies gathered among I/O group

(only on group’s root processor)
out pos-

buffer
Array of one-dimensional lattice positions gathered among I/O group (only on group’s root
processor)

fGroupGridPointComponent()

void fGroupGridPointComponent (float * buffer,
int * start,
int * end,
int comp,
bool swapbit)

Fills a single-precision floating-point data buffer for each I/O with a specified component of coordinates (at ‘real-
world’ scale).

Parameters

out buffer Array of specified lattice point coordinates gathered among I/O group (only on group’s root
processor)

in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in comp Required coordinate components (0 = x, 1 = y, 2 = z)
in swap-

bit
Flag for swapping bits of each data point

fGroupGridPoints()

void fGroupGridPoints (float * buffer,
int * start,
int * end,
bool swapbit)

Fills a single-precision floating-point data buffer for each I/O group with all three components of coordinates (at
‘real-world’ scale).

Parameters

246 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

out buffer Array of lattice point coordinates gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in swap-

bit
Flag for swapping bits of each data point

fGroupMassFractions()

void fGroupMassFractions (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer array for each I/O group with densities for a specified fluid.

Parameters

out buffer Array of fluid mass fractions gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in iprop Number of fluid for required mass fraction
in swapbit Flag for swapping bits of each data point

fGroupPhaseField()

void fGroupPhaseField (int * buffer,
int * start,
int * end,
bool swapbit)

Fills an integer data buffer array for each I/O group with boundary conditions (phase fields).

Parameters

out buffer Array of boundary conditions (phase fields) gathered among I/O group (only on group’s root
processor)

in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in swap-

bit
Flag for swapping bits of each data point

fGroupPhaseFieldFloat()

void fGroupPhaseFieldFloat (float * buffer,
int * start,
int * end,
bool swapbit)

Fills a single-precision floating-point data buffer array for each I/O group with boundary conditions (phase fields).

Parameters

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 247

DL_MESO Technical Manual, Release 2.7

out buffer Array of boundary conditions (phase fields) gathered among I/O group (only on group’s root
processor)

in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in swap-

bit
Flag for swapping bits of each data point

fGroupPieceDataPoints()

int fGroupPieceDataPoints (int * length)

Calculates the number of lattice points (and therefore number of data points) in each dimension of the piece of the
simulation box held by the I/O group, based on the provided extents, and returns the total number.

Parameters

out length Number of lattice points in section for each direction

fGroupPieceGatherInfo()

int fGroupPieceGatherInfo (sIOGroup * ioGroup,
int numberOfPoints,
int dataPerPoint,
int * data,
int * displacements)

Pulls together information required for gathering a data set among processors within an I/O group: the number of
data points in the group and the displacements required to position each processor’s data when gathering together
(only on group’s root processor, i.e. the processor that will receive and write the data to output files). This function
returns the total number of data points for the group only on the I/O group’s root processor. (This subroutine is
only required when running in parallel.)

Parameters

in ioGroup I/O group information (number of processors in group, processor numbers within group,
MPI communicator for group)

in numberOf-
Points

Number of lattice points held by processor

in dataPer-
Point

Number of values required per lattice point

out data Numbers of data values for each processor in the I/O group
out displace-

ments
Displacements for positioning received data (locations for each processor’s data in the
root processor’s array with gathered data)

fGroupPieceRangeGlobal()

void fGroupPieceRangeGlobal (int * start, int * end)

Determines the range of an I/O group’s section of the lattice, outputting the global coordinates of this range.

Parameters

out start Starting (global) coordinates of the lattice section (bottom-left-back corner)
out end Ending (global) coordinates of the lattice section (front-right-front corner)

248 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGroupPieceRangeLocal()

void fGroupPieceRangeLocal (int * start, int * end)

Determines the range of an I/O group’s section of the lattice, outputting the local coordinates of this range with
adjustments for boundary halos if at the edge of entire lattice and/or using MPI-IO.

Parameters

out start Starting (local) coordinates of the lattice section (bottom-left-back corner)
out end Ending (local) coordinates of the lattice section (front-right-front corner)

fGroupRangeGlobal()

void fGroupRangeGlobal (sIOGroup * ioGroup)

Finds the minimum (bottom-left-back corner) and maximum (top-right-front corner) grid global coordinates for
the section of lattice covered by the processors in an I/O group (which will share data and write an output file
per simulation snapshot). This determination only needs to be carried out once per simulation: an internal switch
in the subroutine will skip over this if it is called after the first time. The serial version of this subroutine uses
the extent determined for the only processor, while the parallel version reduces the minimum and maximum grid
coordinates over all processors in the I/O group.

Parameters

out ioGroup I/O group information (start and end global coordinates for group)

fGroupSoluteConcentrations()

void fGroupSoluteConcentrations (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer array for each I/O group with concetrations for a specified solute.

Parameters

out buffer Array of solute concentrations gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in iprop Number of solute for required concentration
in swapbit Flag for swapping bits of each data point

fGroupTemperatures()

void fGroupTemperatures (float * buffer,
int * start,
int * end,
bool swapbit)

Fills a single-precision floating-point data buffer array for each I/O group with temperatures.

Parameters

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 249

DL_MESO Technical Manual, Release 2.7

out buffer Array of temperatures gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in swapbit Flag for swapping bits of each data point

fGroupVelocities()

void fGroupVelocities (float * buffer,
int * start,
int * end,
bool swapbit)

Fills a single-precision floating-point data buffer array for each I/O group with all three components of fluid
velocity.

Parameters

out buffer Array of velocities gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in swapbit Flag for swapping bits of each data point

fGroupVelocityComponent()

void fGroupVelocityComponent (float * buffer,
int * start,
int * end,
int comp,
bool swapbit)

Fills a single-precision floating-point data buffer array for each I/O group with values for a single component of
fluid velocity.

Parameters

out buffer Array of velocity components gathered among I/O group (only on group’s root processor)
in start Starting (local) coordinates of the lattice section for the I/O group (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section for the I/O group (front-right-front corner)
in comp Required velocity components (0 = x, 1 = y, 2 = z)
in swapbit Flag for swapping bits of each data point

fOpenOutputANSIFile()

int fOpenOutputANSIFile (const char * filename, ofstream & file)

Opens an ANSI/text file to write simulation outputs. If running in serial or not gathering data in all dimensions,
a standard text filestream is opened: if combining data in all dimensions, MPI-IO is used to open the file and
generate the required output file handle (used to write data to the file). Only the root processor for an I/O group
will open the file.

Parameters

in filename Name of output file to be opened
out file Output filestream when not using MPI-IO

250 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fOpenOutputBinaryFile()

int fOpenOutputBinaryFile (const char * filename, ofstream & file)

Opens a binary file to write simulation outputs. If running in serial or not gathering data in all dimensions, a
standard binary filestream is opened: if combining data in all dimensions, MPI-IO is used to open the file and
generate the required output file handle (used to write data to the file). Only the root processor for an I/O group
will open the file.

Parameters

in filename Name of output file to be opened
out file Output filestream when not using MPI-IO

fOutputInfo()

int fOutputInfo ()

Creates a file (lbout.info) to specify the numbers of dimensions, fluids, solutes, temperatures and I/O groups, as
well as sizes of integers and single-precision floating-point numbers in bytes. If MPI-IO is not used to create
single output files per simulation snapshot, an additional file (lbout.ext) is created to specify the lattice extents
for each I/O group. Both files are only written when running DL_MESO_LBE in parallel and are intended for
gathering together simulation data written to several files per snapshot after the simulation has finished, using
some of the utilities supplied with DL_MESO (e.g. combining solution and grid files in Plot3D, writing linking
files for XML-based structured-grid VTK files).

fPieceDataPoints()

int fPieceDataPoints (int * start,
int * end,
int * length)

Calculates the number of lattice points (and therefore number of data points) in each dimension of the piece of the
simulation box held by the processor, based on the provided extents, and returns the total number.

Parameters

in start Starting coordinates of the lattice section (bottom-left-back corner)
in end Ending coordinates of the lattice section (front-right-front corner)
out length Number of lattice points in section for each direction

fPieceDensities()

void fPieceDensities (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer with densities of a specific fluid for a range of lattice points held
by the current processor.

Parameters

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 251

DL_MESO Technical Manual, Release 2.7

out buffer Single-precision floating-point array with fluid densities at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in iprop Number of fluid for required densities
in swapbit Flag for swapping bits of each data point

fPieceDensitiesSwift()

void fPieceDensitiesSwift (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer with densities of a specific fluid for a range of lattice points held
by the current processor when using Swift free-energy interactions.

Parameters

out buffer Single-precision floating-point array with fluid densities at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in iprop Number of fluid for required densities
in swapbit Flag for swapping bits of each data point

fPieceGridPointComponent()

void fPieceGridPointComponent (float * buffer,
int * start,
int * end,
int comp,
bool swapbit)

Fills a single-precision floating-point data buffer with a specified component of coordinates (at ‘real-world’ scale)
for a range of lattice points held by the current processor.

Parameters

out buffer Single-precision floating-point array with specified component of coordinates of specified lat-
tice points

in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in comp Required coordinate components (0 = x, 1 = y, 2 = z)
in swap-

bit
Flag for swapping bits of each data point

252 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fPieceGridPoints()

void fPieceGridPoints (float * buffer,
int * start,
int * end,
int param,
bool swapbit)

Fills a single-precision floating-point data buffer with all three components of coordinates (at ‘real-world’ scale)
for a range of lattice points held by the current processor.

Parameters

out buffer Single-precision floating-point array with coordinates of specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in param Dummy parameter (used for calls to data gathering routines)
in swapbit Flag for swapping bits of each data point

fPieceMassFractions()

void fPieceMassFractions (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer with mass fractions of a specific fluid for a range of lattice points
held by the current processor.

Parameters

out buffer Single-precision floating-point array with fluid mass fractions at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in iprop Number of fluid for required mass fractions
in swapbit Flag for swapping bits of each data point

fPieceMassFractionsSwift()

void fPieceMassFractionsSwift (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer with mass fractions of a specific fluid for a range of lattice points
held by the current processor when using Swift free-energy interactions.

Parameters

out buffer Single-precision floating-point array with fluid mass fractions at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in iprop Number of fluid for required mass fractions
in swapbit Flag for swapping bits of each data point

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 253

DL_MESO Technical Manual, Release 2.7

fPiecePhaseField()

void fPiecePhaseField (int * buffer,
int * start,
int * end,
int param,
bool swapbit)

Fills an integer data buffer with boundary condition values (phase fields) for a range of lattice points held by the
current processor.

Parameters

out buffer Integer array with boundary conditions (phase fields) at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in param Dummy parameter (used for calls to data gathering routines)
in swapbit Flag for swapping bits of each data point

fPiecePhaseFieldFloat()

void fPiecePhaseFieldFloat (float * buffer,
int * start,
int * end,
int param,
bool swapbit)

Fills a single-precision floating-point data buffer with boundary condition values (phase fields) for a range of
lattice points held by the current processor.

Parameters

out buffer Single-precision floating-point array with boundary conditions (phase fields) at specified lat-
tice points

in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in param Dummy parameter (used for calls to data gathering routines)
in swap-

bit
Flag for swapping bits of each data point

fPieceRangeGlobal()

void fPieceRangeGlobal (int * myStart, int * myEnd)

Works out the extent of the subdomain (section of lattice) covered by the current processor in global coordinates,
considering any surrounding boundary halos as input parameters for the subroutine. The inner boundary halos
between processors in a gathered group can either be switched on or off: these are usually switched off for inner
processors.

Parameters

out myStart Starting global coordinates of the lattice section (bottom-left-back corner)
out myEnd Ending global coordinates of the lattice section (top-right-front corner)

254 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fPieceRangeLocal()

void fPieceRangeLocal (int * start,
int * end,
bool * includeInnerHalos)

Works out the extent of the subdomain (section of lattice) covered by the current processor in local coordinates,
considering any surrounding boundary halos as input parameters for the subroutine. The inner boundary halos
between processors in a gathered group can either be switched on or off: these are usually switched off for inner
processors.

Parameters

out start Starting local coordinates of the lattice section (bottom-left-back corner)
out end Ending local coordinates of the lattice section (top-right-front corner)
in includeInner-

Halos
Switch for each dimension to include boundary halos in processors not at the edges of
the simulation box

fPieceSoluteConcentrations()

void fPieceSoluteConcentrations (float * buffer,
int * start,
int * end,
int iprop,
bool swapbit)

Fills a single-precision floating-point data buffer with concentrations of a specific solute for a range of lattice
points held by the current processor.

Parameters

out buffer Single-precision floating-point array with solute concentrations at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in iprop Number of solute for required concentrations
in swapbit Flag for swapping bits of each data point

fPieceTemperatures()

void fPieceTemperatures (float * buffer,
int * start,
int * end,
int param,
bool swapbit)

Fills a single-precision floating-point data buffer with temperatures for a range of lattice points held by the current
processor.

Parameters

out buffer Single-precision floating-point array with temperatures at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in param Dummy parameter (used for calls to data gathering routines)
in swapbit Flag for swapping bits of each data point

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 255

DL_MESO Technical Manual, Release 2.7

fPieceVelocities()

void fPieceVelocities (float * buffer,
int * start,
int * end,
int param,
bool swapbit)

Fills a single-precision floating-point data buffer with all three components of fluid velocities for a range of lattice
points held by the currentl processor.

Parameters

out buffer Single-precision floating-point array with fluid velocities at specified lattice points
in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in param Dummy parameter (used for calls to data gathering routines)
in swapbit Flag for swapping bits of each data point

fPieceVelocity()

void fPieceVelocity (float * buffer,
int * start,
int * end,
int comp,
bool swapbit)

Fills a single-precision floating-point data buffer with a specified component of fluid velocities for a range of
lattice points held by the current processor.

Parameters

out buffer Single-precision floating-point array with specified component of fluid velocities at specified
lattice points

in start Starting (local) coordinates of the lattice section (bottom-left-back corner)
in end Ending (local) coordinates of the lattice section (front-right-front corner)
in comp Required velocity components (0 = x, 1 = y, 2 = z)
in swap-

bit
Flag for swapping bits of each data point

fReadRestart()

int fReadRestart (const char * filename)

Opens a restart file created during a previous DL_MESO_LBE calculation, reads in the positions for each lattice
point and the distribution functions and local relaxation frequencies at that point, and assigns the data to the
appropriate arrays in the processor that includes that lattice point. Some important simulation properties (lattice
scheme, grid size, numbers of fluids, solutes, temperature scalars and phase fields, flag for incompressible fluids)
are checked prior to reading in simulation data.

Parameters

in filename Name of restart file to be read

256 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fWriteLegacyVTKFloatANSIData()

int fWriteLegacyVTKFloatANSIData (float * buffer,
int bufflen,
bool vec,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes a single-precision floating-point array of data (gathered among an I/O group) to an ANSI/text Legacy VTK
structured grid file, including any required text before and/or after the data stream as a header and/or a footer. If
running in serial or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are
written using the previously-opened text filestream for the I/O group by its root processor; if combining data in
all dimensions, all root processors in all I/O groups write their data concurrently (at the same time) to the file at a
specific position using MPI-IO. The specified position for writing data to the file is advanced by how much data
(in total, including headers and footers) is written to the file.

Parameters

in buffer Single-precision floating-point array of data to be written to structured-grid Legacy VTK file
in bufflen Number of values in data array to write to output file
in vec Flag indicating whether or not data is supplied as vectors (if so, writes three values per line

instead of one for scalar properties)
in,out start-

pos
Position to start writing data to output file (as number of bytes from beginning)

in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in header-

size
Size of text header in bytes

in footer-
size

Size of text footer in bytes

in file Output filestream when not using MPI-IO

fWriteLegacyVTKFloatBinaryData()

int fWriteLegacyVTKFloatBinaryData (float * buffer,
int bufflen,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes a single-precision floating-point array of data (gathered among an I/O group) to a big endian binary Legacy
VTK structured grid file, including any required text before and/or after the data stream as a header and/or a footer.
If running in serial or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are
written using the previously-opened binary filestream for the I/O group by its root processor; if combining data in
all dimensions, all root processors in all I/O groups write their data concurrently (at the same time) to the file at a
specific position using MPI-IO. The specified position for writing data to the file is advanced by how much data
(in total, including headers and footers) is written to the file.

Parameters

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 257

DL_MESO Technical Manual, Release 2.7

in buffer Single-precision floating-point array of data to be written to structured-grid Legacy VTK
file

in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in header-

size
Size of text header in bytes

in footersize Size of text footer in bytes
in file Output filestream when not using MPI-IO

fWriteLegacyVTKIntegerANSIData()

int fWriteLegacyVTKIntegerANSIData (int * buffer,
int bufflen,
bool vec,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes an integer array of data (gathered among an I/O group) to an ANSI/text Legacy VTK structured grid file,
including any required text before and/or after the data stream as a header and/or a footer. If running in serial
or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are written using the
previously-opened text filestream for the I/O group by its root processor; if combining data in all dimensions, all
root processors in all I/O groups write their data concurrently (at the same time) to the file at a specific position
using MPI-IO. The specified position for writing data to the file is advanced by how much data (in total, including
headers and footers) is written to the file.

Parameters

in buffer Integer array of data to be written to structured-grid Legacy VTK file
in bufflen Number of values in data array to write to output file
in vec Flag indicating whether or not data is supplied as vectors (if so, writes three values per line

instead of one for scalar properties)
in,out start-

pos
Position to start writing data to output file (as number of bytes from beginning)

in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in header-

size
Size of text header in bytes

in footer-
size

Size of text footer in bytes

in file Output filestream when not using MPI-IO

258 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fWriteLegacyVTKIntegerBinaryData()

int fWriteLegacyVTKIntegerBinaryData (int * buffer,
int bufflen,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes an integer array of data (gathered among an I/O group) to a big endian binary Legacy VTK structured grid
file, including any required text before and/or after the data stream as a header and/or a footer. If running in serial
or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are written using the
previously-opened binary filestream for the I/O group by its root processor; if combining data in all dimensions,
all root processors in all I/O groups write their data concurrently (at the same time) to the file at a specific position
using MPI-IO. The specified position for writing data to the file is advanced by how much data (in total, including
headers and footers) is written to the file.

Parameters

in buffer Integer array of data to be written to structured-grid Legacy VTK file
in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in headersize Size of text header in bytes
in footersize Size of text footer in bytes
in file Output filestream when not using MPI-IO

fWritePlot3DGridFloatANSIData()

int fWritePlot3DGridFloatANSIData (float * buffer,
int bufflen,
unsigned long & startpos,
ofstream & file)

Writes a single-precision floating-point array of data (gathered among an I/O group) to an ANSI/text Plot3D
solution file. If running in serial or writing multiple files per snapshot (i.e. not combining data in all dimensions),
the data are written using the previously-opened text filestream for the I/O group by its root processor; if combining
data in all dimensions, all root processors in all I/O groups write their data concurrently at the same time) to the
file at a specific position using MPI-IO. The specified position for writing data to the file is advanced by how much
data (in total) is written to the file.

Parameters

in buffer Single-precision floating-point array of data to be written to structured-grid Legacy VTK
file

in bufflen Number of values in data array to write to output file
in,out start-

pos
Position to start writing data to output file (as number of bytes from beginning)

in file Output filestream when not using MPI-IO

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 259

DL_MESO Technical Manual, Release 2.7

fWritePlot3DGridFloatBinaryData()

int fWritePlot3DGridFloatBinaryData (float * buffer,
int bufflen,
unsigned long & startpos,
ofstream & file)

Writes a single-precision floating-point array of data (gathered among an I/O group) to a binary Plot3D solution
file (using the native endianness of the computer running the simulation). If running in serial or writing multiple
files per snapshot (i.e. not combining data in all dimensions), the data are written using the previously-opened
binary filestream for the I/O group by its root processor; if combining data in all dimensions, all root processors
in all I/O groups write their data concurrently at the same time) to the file at a specific position using MPI-IO. The
specified position for writing data to the file is advanced by how much data (in total) is written to the file.

Parameters

in buffer Single-precision floating-point array of data to be written to structured-grid Legacy VTK
file

in bufflen Number of values in data array to write to output file
in,out start-

pos
Position to start writing data to output file (as number of bytes from beginning)

in file Output filestream when not using MPI-IO

fWritePlot3DGridIntegerANSIData()

int fWritePlot3DGridIntegerANSIData (int * buffer,
int bufflen,
unsigned long & startpos,
ofstream & file)

Writes an integer array of data (gathered among an I/O group) to an ANSI/text Plot3D solution file. If running in
serial or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are written using
the previously-opened text filestream for the I/O group by its root processor; if combining data in all dimensions,
all root processors in all I/O groups write their data concurrently at the same time) to the file at a specific position
using MPI-IO. The specified position for writing data to the file is advanced by how much data (in total) is written
to the file.

Parameters

in buffer Integer array of data to be written to structured-grid Legacy VTK file
in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in file Output filestream when not using MPI-IO

fWritePlot3DGridIntegerBinaryData()

int fWritePlot3DGridIntegerBinaryData (int * buffer,
int bufflen,
unsigned long & startpos,
ofstream & file)

Writes an integer array of data (gathered among an I/O group) to a binary Plot3D solution file (using the native
endianness of the computer running the simulation). If running in serial or writing multiple files per snapshot (i.e.
not combining data in all dimensions), the data are written using the previously-opened binary filestream for the
I/O group by its root processor; if combining data in all dimensions, all root processors in all I/O groups write
their data concurrently at the same time) to the file at a specific position using MPI-IO. The specified position for
writing data to the file is advanced by how much data (in total) is written to the file.

260 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters

in buffer Integer array of data to be written to structured-grid Legacy VTK file
in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in file Output filestream when not using MPI-IO

fWriteRestart()

int fWriteRestart (const char * filename = "lbout")

Opens a binary file and writes basic simulation properties (lattice scheme, grid size, numbers of fluids, solutes,
temperature scalars and phase fields, flag for incompressible fluids), constant fluid densities (if using fully in-
compressible fluids), one-dimensional grid positions (on global basis), distribution functions and local relaxation
frequencies for every lattice point. The parallel version of this routine exploits the I/O groups created for simu-
lation output files, with each group’s root processor writing data concurrently (at the same time) to the file using
MPI-IO with displacements to avoid overlap (even if the simulation output files do not use MPI-IO). The serial
version of this routine directly writes the processor’s data to the file. The filename used as a parameter for this
subroutine automatically has ‘.dump’ appended to the end.

Parameters

in filename Name of restart file to be written (default: lbout.dump)

fWriteVTKFloatANSIData()

int fWriteVTKFloatANSIData (float * buffer,
int bufflen,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes a single-precision floating-point array of data (gathered among an I/O group) to an ANSI/text XML-based
VTK structured grid file, including any required XML tags as a header and/or a footer to the data stream. If
running in serial or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are
written using the previously-opened text filestream for the I/O group by its root processor; if combining data in
all dimensions, all root processors in all I/O groups write their data concurrently (at the same time) to the file at a
specific position using MPI-IO. The specified position for writing data to the file is advanced by how much data
(in total, including headers and footers) is written to the file.

Parameters

in buffer Single-precision floating-point array of data to be written to XML-based structured-grid
VTK file

in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in header-

size
Size of text header in bytes

in footer-
size

Size of text footer in bytes

in file Output filestream when not using MPI-IO

5.20. lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp 261

DL_MESO Technical Manual, Release 2.7

fWriteVTKFloatBinaryData()

int fWriteVTKFloatBinaryData (float * buffer,
int bufflen,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes a single-precision floating-point array of data (gathered among an I/O group) to a big endian binary XML-
based VTK structured grid file, including any required XML tags as a header and/or a footer to the data stream.
If running in serial or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are
written using the previously-opened binary filestream for the I/O group by its root processor; if combining data in
all dimensions, all root processors in all I/O groups write their data concurrently (at the same time) to the file at a
specific position using MPI-IO. The specified position for writing data to the file is advanced by how much data
(in total, including headers and footers) is written to the file.

Parameters

in buffer Single-precision floating-point array of data to be written to XML-based structured-grid
VTK file

in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in header-

size
Size of text header in bytes

in footer-
size

Size of text footer in bytes

in file Output filestream when not using MPI-IO

fWriteVTKIntegerANSIData()

int fWriteVTKIntegerANSIData (int * buffer,
int bufflen,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes an integer array of data (gathered among an I/O group) to an ANSI/text XML-based VTK structured grid
file, including any required XML tags as a header and/or a footer to the data stream. If running in serial or
writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are written using the
previously-opened text filestream for the I/O group by its root processor; if combining data in all dimensions, all
root processors in all I/O groups write their data concurrently (at the same time) to the file at a specific position
using MPI-IO. The specified position for writing data to the file is advanced by how much data (in total, including
headers and footers) is written to the file.

Parameters

262 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in buffer Integer array of data to be written to XML-based structured-grid VTK file
in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in headersize Size of text header in bytes
in footersize Size of text footer in bytes
in file Output filestream when not using MPI-IO

fWriteVTKIntegerBinaryData()

int fWriteVTKIntegerBinaryData (int * buffer,
int bufflen,
unsigned long & startpos,
const char * header,
const char * footer,
unsigned long headersize,
unsigned long footersize,
ofstream & file)

Writes an integer array of data (gathered among an I/O group) to a big endian binary XML-based VTK structured
grid file, including any required XML tags as a header and/or a footer to the data stream. If running in serial
or writing multiple files per snapshot (i.e. not combining data in all dimensions), the data are written using the
previously-opened binary filestream for the I/O group by its root processor; if combining data in all dimensions,
all root processors in all I/O groups write their data concurrently (at the same time) to the file at a specific position
using MPI-IO. The specified position for writing data to the file is advanced by how much data (in total, including
headers and footers) is written to the file.

Parameters

in buffer Integer array of data to be written to XML-based structured-grid VTK file
in bufflen Number of values in data array to write to output file
in,out startpos Position to start writing data to output file (as number of bytes from beginning)
in header Text header to include in output file before writing data array
in footer Text footer to include in output file after writing data array
in headersize Size of text header in bytes
in footersize Size of text footer in bytes
in file Output filestream when not using MPI-IO

5.21 lbpIOVTK.cpp

Module with routines to write calculation output files in structured grid XML-based VTK format. (Header file
available as lbpIOVTK.hpp.)

Subroutines to write big endian binary and ANSI/text XML-based VTK files in structured grid format for LBE
outputs, including fluid velocities. densities, mass fractions, solute concentrations, temperatures and boundary
conditions (phase fields), as simulation snapshots. The binary form of these files uses XML tags to identify the
datasets and indicates where each set starts in a raw stream of binary data appended near the end of the file. The
ANSI/text form of these files places the values of properties inside their XML tags.

5.21. lbpIOVTK.cpp 263

DL_MESO Technical Manual, Release 2.7

5.21.1 Functions

• int fOutputVTK()

Writes binary simulation output file with all system data in XML-based VTK structured grid format.

• int fsOutputVTK()

Writes ANSI text simulation output file with all system data in XML-based VTK structured grid format.

• int fOutputVTKP()

Writes binary simulation output file with density of specified fluid in XML-based VTK structured grid
format.

• int fsOutputVTKP()

Writes ANSI text simulation output file with density of specified fluid in XML-based VTK structured grid
format.

• int fOutputVTKCA()

Writes binary simulation output file with mass fraction of specified fluid in XML-based VTK structured
grid format.

• int fsOutputVTKCA()

Writes ANSI text simulation output file with mass fraction of specified fluid in XML-based VTK structured
grid format.

• int fOutputVTKCB()

Writes binary simulation output file with concentration of specified solute in XML-based VTK structured
grid format.

• int fsOutputVTKCB()

Writes ANSI text simulation output file with concentration of specified solute in XML-based VTK struc-
tured grid format.

• int fOutputVTKT()

Writes binary simulation output file with temperatures in XML-based VTK structured grid format.

• int fsOutputVTKT()

Writes ANSI text simulation output file with temperatures in XML-based VTK structured grid format.

5.21.2 Function Documentation

fOutputVTK()

int fOutputVTK (const char * filename = "lbout")

Writes a structured grid XML-based VTK output file (*.vts) in big endian binary that includes all possible prop-
erties at each lattice point: fluid densities and mass fractions, solute concentrations, temperatures, velocities,
boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the entire
lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according to
the number of frames and (if more than one file is written per snapshot) the lattice section for combining together
after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

264 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fOutputVTKCA()

int fOutputVTKCA (const char * filename = "lbout", int iprop = 0)

Writes a structured grid XML-based VTK output file (*.vts) in big endian binary that includes the mass fraction
of a specified fluid, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can
either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is
numbered according to the number of frames and (if more than one file is written per snapshot) the lattice section
for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required mass fraction (default: 0)

fOutputVTKCB()

int fOutputVTKCB (const char * filename = "lbout", int iprop = 0)

Writes a structured grid XML-based VTK output file (*.vts) in big endian binary that includes the concentration
of a specified solute, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can
either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is
numbered according to the number of frames and (if more than one file is written per snapshot) the lattice section
for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of solute for required concentration (default: 0)

fOutputVTKP()

int fOutputVTKP (const char * filename = "lbout", int iprop = 0)

Writes a structured grid XML-based VTK output file (*.vts) in big endian binary that includes the density of a
specified fluid, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can
either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is
numbered according to the number of frames and (if more than one file is written per snapshot) the lattice section
for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

5.21. lbpIOVTK.cpp 265

DL_MESO Technical Manual, Release 2.7

fOutputVTKT()

int fOutputVTKT (const char * filename = "lbout")

Writes a structured grid XML-based VTK output file (*.vts) in big endian binary that includes the temperatures,
velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the
entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according
to the number of frames and (if more than one file is written per snapshot) the lattice section for combining together
after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

fsOutputVTK()

int fsOutputVTK (const char * filename = "lbout")

Writes a structured grid XML-based VTK output file (*.vts) in ANSI/text that includes all possible properties at
each lattice point: fluid densities and mass fractions, solute concentrations, temperatures, velocities, boundary
conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the entire lattice (if
running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according to the number
of frames and (if more than one file is written per snapshot) the lattice section for combining together after the end
of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

fsOutputVTKCA()

int fsOutputVTKCA (const char * filename = "lbout", int iprop = 0)

Writes a structured grid XML-based VTK output file (*.vts) in ANSI/text that includes the mass fraction of a
specified fluid, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can
either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is
numbered according to the number of frames and (if more than one file is written per snapshot) the lattice section
for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required mass fraction (default: 0)

fsOutputVTKCB()

int fsOutputVTKCB (const char * filename = "lbout", int iprop = 0)

Writes a structured grid XML-based VTK output file (*.vts) in ANSI/text that includes the concentration of a
specified solute, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can
either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is
numbered according to the number of frames and (if more than one file is written per snapshot) the lattice section
for combining together after the end of the simulation.

Parameters

266 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in filename Beginning of filename for output file (default: lbout)
in iprop Number of solute for required concentration (default: 0)

fsOutputVTKP()

int fsOutputVTKP (const char * filename = "lbout", int iprop = 0)

Writes a structured grid XML-based VTK output file (*.vts) in ANSI/text that includes the density of a specified
fluid, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent
the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered
according to the number of frames and (if more than one file is written per snapshot) the lattice section for
combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

fsOutputVTKT()

int fsOutputVTKT (const char * filename = "lbout")

Writes a structured grid XML-based VTK output file (*.vts) in ANSI/text that includes the temperatures, veloci-
ties, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the entire
lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according to
the number of frames and (if more than one file is written per snapshot) the lattice section for combining together
after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

5.22 lbpIOLegacyVTK.cpp

Module with routines to write calculation output files in structured grid Legacy VTK format. (Header file available
as lbpIOLegacyVTK.cpp.)

Subroutines to write big endian binary and ANSI/text Legacy VTK files in structured grid format for LBE outputs,
including fluid velocities. densities, mass fractions, solute concentrations, temperatures and boundary conditions
(phase fields), as simulation snapshots.

5.22.1 Functions

• int fOutputLegacyVTK()

Writes binary simulation output file with all system data in Legacy VTK structured grid format.

• int fsOutputLegacyVTK()

Writes ANSI text simulation output file with all system data in Legacy VTK structured grid format.

• int fOutputLegacyVTKP()

Writes binary simulation output file with density of specified fluid in Legacy VTK structured grid format.

5.22. lbpIOLegacyVTK.cpp 267

DL_MESO Technical Manual, Release 2.7

• int fsOutputLegacyVTKP()

Writes ANSI text simulation output file with density of specified fluid in Legacy VTK structured grid format.

• int fOutputLegacyVTKCA()

Writes binary simulation output file with mass fraction of specified fluid in Legacy VTK structured grid
format.

• int fsOutputLegacyVTKCA()

Writes ANSI text simulation output file with mass fraction of specified fluid in Legacy VTK structured grid
format.

• int fOutputLegacyVTKCB()

Writes binary simulation output file with concentration of specified solute in Legacy VTK structured grid
format.

• int fsOutputLegacyVTKCB()

Writes ANSI text simulation output file with concentration of specified solute in Legacy VTK structured
grid format.

• int fOutputLegacyVTKT()

Writes binary simulation output file with temperatures in Legacy VTK structured grid format.

• int fsOutputLegacyVTKT3D()

Writes ANSI text simulation output file with temperatures in Legacy VTK structured grid format.

5.22.2 Function Documentation

fOutputLegacyVTK()

int fOutputLegacyVTK (const char * filename = "lbout")

Writes a structured grid Legacy VTK output file (*.vtk) in big endian binary that includes all possible properties
at each lattice point: fluid densities and mass fractions, solute concentrations, temperatures, velocities, boundary
conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the entire lattice (if
running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according to the number
of frames and (if more than one file is written per snapshot) the lattice section for combining together after the end
of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

fOutputLegacyVTKCA()

int fOutputLegacyVTKCA (const char * filename = "lbout", int iprop = 0)

Writes a structured grid Legacy VTK output file (*.vtk) in big endian binary that includes the mass fraction of
a specified fluid, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can
either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is
numbered according to the number of frames and (if more than one file is written per snapshot) the lattice section
for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required mass fraction (default: 0)

268 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fOutputLegacyVTKCB()

int fOutputLegacyVTKCB (const char * filename = "lbout", int iprop = 0)

Writes a structured grid Legacy VTK output file (*.vtk) in big endian binary that includes the concentration of
a specified solute, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can
either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is
numbered according to the number of frames and (if more than one file is written per snapshot) the lattice section
for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of solute for required concentration (default: 0)

fOutputLegacyVTKP()

int fOutputLegacyVTKP (const char * filename = "lbout", int iprop = 0)

Writes a structured grid Legacy VTK output file (*.vtk) in big endian binary that includes the density of a specified
fluid, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent
the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered
according to the number of frames and (if more than one file is written per snapshot) the lattice section for
combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

fOutputLegacyVTKT()

int fOutputLegacyVTKT (const char * filename = "lbout")

Writes a structured grid Legacy VTK output file (*.vtk) in big endian binary that includes the temperatures,
velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the
entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according
to the number of frames and (if more than one file is written per snapshot) the lattice section for combining together
after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

fsOutputLegacyVTK()

int fsOutputLegacyVTK (const char * filename = "lbout")

Writes a structured grid Legacy VTK output file (*.vtk) in ANSI/text that includes all possible properties at
each lattice point: fluid densities and mass fractions, solute concentrations, temperatures, velocities, boundary
conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the entire lattice (if
running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according to the number
of frames and (if more than one file is written per snapshot) the lattice section for combining together after the end
of the simulation.

5.22. lbpIOLegacyVTK.cpp 269

DL_MESO Technical Manual, Release 2.7

Parameters

in filename Beginning of filename for output file (default: lbout)

fsOutputLegacyVTKCA()

int fsOutputLegacyVTKCA (const char * filename = "lbout", int iprop = 0)

Writes a structured grid Legacy VTK output file (*.vtk) in ANSI/text that includes the mass fraction of a specified
fluid, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent
the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered
according to the number of frames and (if more than one file is written per snapshot) the lattice section for
combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required mass fraction (default: 0)

fsOutputLegacyVTKCB()

int fsOutputLegacyVTKCB (const char * filename = "lbout", int iprop = 0)

Writes a structured grid Legacy VTK output file (*.vtk) in ANSI/text that includes the concentration of a speci-
fied solute, velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either
represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is num-
bered according to the number of frames and (if more than one file is written per snapshot) the lattice section for
combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of solute for required concentration (default: 0)

fsOutputLegacyVTKP()

int fsOutputLegacyVTKP (const char * filename = "lbout", int iprop = 0)

Writes a structured grid Legacy VTK output file (*.vtk) in ANSI/text that includes the density of a specified fluid,
velocities, boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the
entire lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according
to the number of frames and (if more than one file is written per snapshot) the lattice section for combining together
after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

270 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fsOutputLegacyVTKT3D()

int fsOutputLegacyVTKT3D (const char * filename = "lbout")

Writes a structured grid Legacy VTK output file (*.vtk) in ANSI/text that includes the temperatures, velocities,
boundary conditions (phase fields) and grid points in ‘real-life’ units. This file can either represent the entire
lattice (if running in serial or using MPI-IO in parallel) or a section of the lattice, and is numbered according to
the number of frames and (if more than one file is written per snapshot) the lattice section for combining together
after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

5.23 lbpIOPlot3D.cpp

Module with routines to write calculation output files in Plot3D format. (Header file available as lbpIO-
Plot3D.hpp.)

Subroutines to write binary and ANSI/text grid and solution files in Plot3D format for LBE outputs, including fluid
velocities. densities, mass fractions, solute concentrations, temperatures and boundary conditions (phase fields),
as simulation snapshots.

5.23.1 Functions

• int fOutputQ()

Writes binary simulation output files with all system data in Plot3D format.

• int fsOutputQ()

Writes ANSI text simulation output files with all system data in Plot3D format.

• int fOutputGrid()

Writes binary simulation grid files with all system data in Plot3D format.

• int fsOutputGrid()

Writes ANSI text simulation grid files with all system data in Plot3D format.

• int fOutputQP()

Writes binary simulation output file with density of specified fluid in Plot3D format.

• int fsOutputQP()

Writes ANSI text simulation output file with density of specified fluid in Plot3D format.

• int fOutputQCA()

Writes binary simulation output file with mass fraction of specified fluid in Plot3D format.

• int fsOutputQCA()

Writes ANSI text simulation output file with mass fraction of specified fluid in Plot3D format.

• int fOutputQCB()

Writes binary simulation output file with concentration of specified solute in Plot3D format.

• int fsOutputQCB()

Writes ANSI text simulation output file with concentration of specified solute in Plot3D format.

5.23. lbpIOPlot3D.cpp 271

DL_MESO Technical Manual, Release 2.7

• int fOutputQT()

Writes binary simulation output file with temperature in Plot3D format.

• int fsOutputQT()

Writes ANSI text simulation output file with temperature in Plot3D format.

5.23.2 Function Documentation

fOutputGrid()

int fOutputGrid (const char * filename = "lbout")

Writes a Plot3D grid file (*.xyz or *.xy) in binary that includes lattice points in ‘real-life’ units, with each com-
ponent in a data block. These files can either represent the entire lattice (if running in serial or using MPI-IO
in parallel) or a section of the lattice, and, if more than one file is written, are numbered according to the lattice
section for combining together after the end of the simulation. This subroutine only needs to be called once per
simulation as the lattice grid does not change.

Parameters

in filename Beginning of filename for output grid file(s) (default: lbout)

fOutputQ()

int fOutputQ (const char * filename = "lbout")

Writes Plot3D solution files (*.q) in binary that include all possible properties at each lattice point: fluid densities
and mass fractions, solute concentrations, temperatures, velocities and boundary conditions (phase fields). These
files can either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of the
lattice, and are numbered according to the number of frames, (if more than one file is written per snapshot) the
lattice section for combining together after the end of the simulation, and the property (fluid density, mass fraction,
solute concentration, temperature) included in the file.

Parameters

in filename Beginning of filename for output files (default: lbout)

fOutputQCA()

int fOutputQCA (const char * filename = "lbout", int iprop = 0)

Writes a Plot3D solution file (*.q) in binary that includes the mass fractions of a specified fluid, velocities and
boundary conditions (phase fields). This file can either represent the entire lattice (if running in serial or using
MPI-IO in parallel) or a section of the lattice, and is numbered according to the number of frames and (if more
than one file is written per snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

272 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fOutputQCB()

int fOutputQCB (const char * filename = "lbout", int iprop = 0)

Writes a Plot3D solution file (*.q) in binary that includes the concentrations of a specified solute, velocities and
boundary conditions (phase fields). This file can either represent the entire lattice (if running in serial or using
MPI-IO in parallel) or a section of the lattice, and is numbered according to the number of frames and (if more
than one file is written per snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

fOutputQP()

int fOutputQP (const char * filename = "lbout", int iprop = 0)

Writes a Plot3D solution file (*.q) in binary that includes the densities of a specified fluid, velocities and boundary
conditions (phase fields). This file can either represent the entire lattice (if running in serial or using MPI-IO in
parallel) or a section of the lattice, and is numbered according to the number of frames and (if more than one file
is written per snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

fOutputQT()

int fOutputQT (const char * filename = "lbout")

Writes a Plot3D solution file (*.q) in binary that includes the temperatures, velocities and boundary conditions
(phase fields). This file can either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a
section of the lattice, and is numbered according to the number of frames and (if more than one file is written per
snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

fsOutputGrid()

int fsOutputGrid (const char * filename = "lbout")

Writes a Plot3D grid file (*.xyz or *.xy) in ANSI/text that includes lattice points in ‘real-life’ units, with each
component in a data block. These files can either represent the entire lattice (if running in serial or using MPI-IO
in parallel) or a section of the lattice, and, if more than one file is written, are numbered according to the lattice
section for combining together after the end of the simulation. This subroutine only needs to be called once per
simulation as the lattice grid does not change.

Parameters

in filename Beginning of filename for output grid file(s) (default: lbout)

5.23. lbpIOPlot3D.cpp 273

DL_MESO Technical Manual, Release 2.7

fsOutputQ()

int fsOutputQ (const char * filename = "lbout")

Writes Plot3D solution files (*.q) in ANSI/text that include all possible properties at each lattice point: fluid den-
sities and mass fractions, solute concentrations, temperatures, velocities and boundary conditions (phase fields).
These files can either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a section of
the lattice, and are numbered according to the number of frames, (if more than one file is written per snapshot)
the lattice section for combining together after the end of the simulation, and the property (fluid density, mass
fraction, solute concentration, temperature) included in the file.

Parameters

in filename Beginning of filename for output solution files (default: lbout)

fsOutputQCA()

int fsOutputQCA (const char * filename = "lbout", int iprop = 0)

Writes a Plot3D solution file (*.q) in ANSI/text that includes the mass fractions of a specified fluid, velocities and
boundary conditions (phase fields). This file can either represent the entire lattice (if running in serial or using
MPI-IO in parallel) or a section of the lattice, and is numbered according to the number of frames and (if more
than one file is written per snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

fsOutputQCB()

int fsOutputQCB (const char * filename = "lbout", int iprop = 0)

Writes a Plot3D solution file (*.q) in ANSI/text that includes the concentrations of a specified solute, velocities
and boundary conditions (phase fields). This file can either represent the entire lattice (if running in serial or using
MPI-IO in parallel) or a section of the lattice, and is numbered according to the number of frames and (if more
than one file is written per snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

fsOutputQP()

int fsOutputQP (const char * filename = "lbout", int iprop = 0)

Writes a Plot3D solution file (*.q) in ANSI/text that includes the densities of a specified fluid, velocities and
boundary conditions (phase fields). This file can either represent the entire lattice (if running in serial or using
MPI-IO in parallel) or a section of the lattice, and is numbered according to the number of frames and (if more
than one file is written per snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)
in iprop Number of fluid for required density (default: 0)

274 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fsOutputQT()

int fsOutputQT (const char * filename = "lbout")

Writes a Plot3D solution file (*.q) in ANSI/text that includes the temperatures, velocities and boundary conditions
(phase fields). This file can either represent the entire lattice (if running in serial or using MPI-IO in parallel) or a
section of the lattice, and is numbered according to the number of frames and (if more than one file is written per
snapshot) the lattice section for combining together after the end of the simulation.

Parameters

in filename Beginning of filename for output file (default: lbout)

5.24 lbpBOUND.cpp

Module for applying boundary conditions. (Header file available as lbpBOUND.hpp.)

5.24.1 Functions

• long fNextStep()

Find position at next lattice site along given lattice link.

• int fMoveNonzeroAway()

Moves non-zero distribution functions along all lattice links.

• int fBounceBackF()

Performs on-grid bounce-back on fluid distribution functions.

• int fBounceBackC()

Performs on-grid bounce-back on solute distribution functions.

• int fBounceBackT()

Performs on-grid bounce-back on temperature field distribution functions.

• int fMidBounceBackF()

Performs mid-grid bounce-back on fluid distribution functions.

• int fMidBounceBackC()

Performs mid-grid bounce-back on solute distribution functions.

• int fMidBounceBackT()

Performs mid-grid bounce-back on temperature field distribution functions.

• int fSiteBlankF()

Zeros distribution functions for fluids at given lattice site.

• int fSiteBlankC()

Zeros distribution functions for solutes at given lattice site.

• int fSiteBlankT()

Zeros distribution functions for temperature field at given lattice site.

• int fD2CCFracSite()

Calculates mass fractions of fluids in concave corner of two-dimensional system.

5.24. lbpBOUND.cpp 275

DL_MESO Technical Manual, Release 2.7

• double fD2CCSwiftPhi()

Calculates fluid concentration in concave corner of two-dimensional system with Swift free-energy interac-
tions.

• int fD3CECCFracSite()

Calculates mass fractions of fluids in concave edge or corner of three-dimensional system.

• double fD3CECCSwiftPhi()

Calculates fluid concentration in concave edge or corner of three-dimensional system with Swift free-energy
interactions.

• int fD2Q9CEFracSite()

Calculates mass fractions of fluids at concave edge of two-dimensional system with D2Q9 lattice.

• double fD2Q9CESwiftPhi()

Calculates fluid concentration at concave edge of two-dimensional system with Swift free-energy interac-
tions and D2Q9 lattice.

• int fD2Q9BoundaryForceVelocity()

Calculates forces required at a constant velocity boundary point for a D2Q9 lattice.

• int fD2Q9BoundaryForceDensity()

Calculates forces required at a constant density boundary point for a D2Q9 lattice.

• int fD2Q9OF1()

Applies first-order outflow boundary condition for a D2Q9 lattice.

• int fD2Q9OF2()

Applies second-order outflow boundary condition for a D2Q9 lattice.

• int fD3Q15PSFracSite()

Calculates mass fractions of fluids at planar surface of three-dimensional system with D3Q15 lattice.

• double fD3Q15PSSwiftPhi()

Calculates fluid concentration at planar surface of three-dimensional system with Swift free-energy interac-
tions and D3Q15 lattice.

• int fD3Q15BoundaryForceVelocity()

Calculates forces required at a constant velocity boundary point for a D3Q15 lattice.

• int fD3Q15BoundaryForceDensity()

Calculates forces required at a constant density boundary point for a D3Q15 lattice.

• int fD3Q15OF1()

Applies first-order outflow boundary condition for a D3Q15 lattice.

• int fD3Q15OF2()

Applies second-order outflow boundary condition for a D3Q15 lattice.

• int fD3Q19PSFracSite()

Calculates mass fractions of fluids at planar surface of three-dimensional system with D3Q19 lattice.

• double fD3Q19PSSwiftPhi()

Calculates fluid concentration at planar surface of three-dimensional system with Swift free-energy interac-
tions and D3Q19 lattice.

• int fD3Q19BoundaryForceVelocity()

Calculates forces required at a constant velocity boundary point for a D3Q19 lattice.

276 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fD3Q19BoundaryForceDensity()

Calculates forces required at a constant density boundary point for a D3Q19 lattice.

• int fD3Q19OF1()

Applies first-order outflow boundary condition for a D3Q19 lattice.

• int fD3Q19OF2()

Applies second-order outflow boundary condition for a D3Q19 lattice.

• int fD3Q27PSFracSite()

Calculates mass fractions of fluids at planar surface of three-dimensional system with D3Q27 lattice.

• int fD3Q27BoundaryForceVelocity()

Calculates forces required at a constant velocity boundary point for a D3Q27 lattice.

• int fD3Q27BoundaryForceDensity()

Calculates forces required at a constant density boundary point for a D3Q27 lattice.

• int fD3Q27OF1()

Applies first-order outflow boundary condition for a D3Q27 lattice.

• int fD3Q27OF2()

Applies second-order outflow boundary condition for a D3Q27 lattice.

• int fFixedSpeedFluid()

Calculates distribution functions for a fixed-speed boundary grid point.

• int fFixedDensityFluid()

Calculates distribution functions for a fixed fluid density boundary grid point.

• int fFixedSoluteConcen()

Calculates distribution functions for a fixed solute concentration boundary grid point.

• int fFixedTemperature()

Calculates distribution functions for a fixed temperature boundary grid point.

• int fOutFlow()

Calculates distribution functions for an outflow boundary grid point.

• int fPostCollBoundary()

Calculates distribution functions at boundary lattice points after collsions (before propagation).

• int fPostPropBoundary()

Calculates distribution functions at boundary lattice points after propagation.

• int fNeighbourBoundary()

Determines which neighbouring lattice points are boundary points, assigns flags for gradient calculations
and calculates boundary normals.

• int fsPeriodic()

Applies periodic boundary conditions on distribution functions for serial simulations with non-zero bound-
ary halos.

• int fsBoundPeriodic()

Applies periodic boundary conditions on boundary information for serial simulations with non-zero bound-
ary halos.

5.24. lbpBOUND.cpp 277

DL_MESO Technical Manual, Release 2.7

• int fsForcePeriodic()

Applies periodic boundary conditions on interfacial forces for serial simulations with non-zero boundary
halos.

• int fsIndexPeriodic()

Applies periodic boundary conditions on phase indices for serial simulations with non-zero boundary halos.

• int fsPeriodic2D()

Applies periodic boundary conditions on distribution functions for two-dimensional serial simulations with
non-zero boundary halos.

• int fsPeriodic3D()

Applies periodic boundary conditions on distribution functions for three-dimensional serial simulations with
non-zero boundary halos.

• int fsBoundPeriodic2D()

Applies periodic boundary conditions on boundary information for two-dimensional serial simulations with
non-zero boundary halos.

• int fsBoundPeriodic3D()

Applies periodic boundary conditions on boundary information for three-dimensional serial simulations
with non-zero boundary halos.

• int fsForcePeriodic2D()

Applies periodic boundary conditions on interfacial forces for two-dimensional serial simulations with non-
zero boundary halos.

• int fsForcePeriodic3D()

Applies periodic boundary conditions on interfacial forces for three-dimensional serial simulations with
non-zero boundary halos.

• int fsIndexPeriodic2D()

Applies periodic boundary conditions on phase indices for two-dimensional serial simulations with non-zero
boundary halos.

• int fsIndexPeriodic3D()

Applies periodic boundary conditions on phase indices for three-dimensional serial simulations with non-
zero boundary halos.

5.24.2 Function Documentation

fBounceBackC()

int fBounceBackC (long tpos)

At the current lattice site, apply an on-grid bounce-back boundary condition on solute distribution functions, i.e.
swap distribution functions between conjugate lattice links.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

278 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fBounceBackF()

int fBounceBackF (long tpos)

At the current lattice site, apply an on-grid bounce-back boundary condition on fluid distribution functions, i.e.
swap distribution functions between conjugate lattice links.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

fBounceBackT()

int fBounceBackT (long tpos)

At the current lattice site, apply an on-grid bounce-back boundary condition on temperature distribution functions,
i.e. swap distribution functions between conjugate lattice links.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

fD2CCFracSite()

int fD2CCFracSite (double * frac, long tpos)

Determines mass fractions of all fluids at a concave corner of a two-dimensional system from the fluid densities of
a neighbouring lattice site. This can be applied to any corner if the neighbouring lattice site is specified (normally
one site away diagonally from the corner).

Parameters

out frac Mass fractions of all fluid at corner lattice site
in tpos Position of neighbouring lattice site (in one-dimensional form)

fD2CCSwiftPhi()

double fD2CCSwiftPhi (long tpos,
double dx,
double dy,
double dpdx,
double dpdy)

Determines the fluid concentration of two fluids at a concave corner of a two-dimensional system using the value
of a neighbouring lattice site when Swift free-energy interactions are in use and its concentration gradients. This
is specified for a bottom-left concave corner site (CCTRF), but can be used for any corner by specifying positive
or negative values for changes in position and concentration gradients.

Parameters

in tpos Position of neighbouring lattice site (in one-dimensional form)
in dx Change in x-position between corner site and neighbouring site
in dy Change in y-position between corner site and neighbouring site
in dpdx Concentration gradient in x-direction
in dpdy Concentration gradient in y-direction

5.24. lbpBOUND.cpp 279

DL_MESO Technical Manual, Release 2.7

fD2Q9BoundaryForceDensity()

int fD2Q9BoundaryForceDensity (double * force,
long tpos,
double * p0,
int prop)

Based on the type of boundary (concave edge or corner) and its direction, calculates the forces (interaction,
buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application of a
constant density boundary condition for a two-dimensional D2Q9 lattice. If the simulation is equilibrating, the
constant/oscilliating body forces are not applied.

Parameters

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in p0 Fixed fluid densities at boundary site
in prop Boundary condition code indicating type and direction

fD2Q9BoundaryForceVelocity()

int fD2Q9BoundaryForceVelocity (double * force,
long tpos,
long tpos1,
double dx,
double dy,
double * uwall,
int prop)

Based on the type of boundary (concave edge or corner) and its direction, calculates the forces (interaction,
buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application of a
constant velocity boundary condition for a two-dimensional D2Q9 lattice. If the simulation is equilibrating, the
constant/oscilliating body forces are not applied.

Parameters

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form)
in dx Change in x-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in dy Change in y-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in uwall Fixed velocity at boundary site
in prop Boundary condition code indicating type and direction

fD2Q9CEFracSite()

int fD2Q9CEFracSite (double * frac,
double vy,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines mass fractions of all fluids at a concave edge of a two-dimensional system using known distribution
functions at the lattice site for a D2Q9 lattice. The fluid densities are calculated from mass and momentum

280 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

conservation in the orthogonal direction to the boundary, e.g.

𝜌 (1 − 𝑢𝑦) = 𝑓0 + 𝑓2 + 𝑓6 + 2 (𝑓3 + 𝑓4 + 𝑓5)

The expression in this subroutine is for bottom concave edges (CETF) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for a (different) velocity
component.

Parameters

out frac Mass fractions of all fluid at edge lattice site
in vy Velocity component orthogonal to concave edge (y-component for bottom edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site

fD2Q9CESwiftPhi()

double fD2Q9CESwiftPhi (double vy,
double g0, double g1, double g2,
double g3, double g4, double g5,
double g6, double g7, double g8)

Determines concentration of two fluids at a concave edge of a two-dimensional system using known concen-
tration distribution functions at the lattice site for a D2Q9 lattice. The fluid concentrations are calculated from
concentration and momentum conservation in the orthogonal direction to the boundary, e.g.

𝜑 (1 − 𝑢𝑦) = 𝑔0 + 𝑔2 + 𝑔6 + 2 (𝑔3 + 𝑔4 + 𝑔5)

The expression in this subroutine is for bottom concave edges (CETF) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for a (different) velocity
component.

Parameters

in vy Velocity component orthogonal to concave edge (y-component for bottom edge)
in g0 Concentration distribution function for link 0 at edge lattice site
in g1 Concentration distribution function for link 1 at edge lattice site
in g2 Concentration distribution function for link 2 at edge lattice site
in g3 Concentration distribution function for link 3 at edge lattice site
in g4 Concentration distribution function for link 4 at edge lattice site
in g5 Concentration distribution function for link 5 at edge lattice site
in g6 Concentration distribution function for link 6 at edge lattice site
in g7 Concentration distribution function for link 7 at edge lattice site
in g8 Concentration distribution function for link 8 at edge lattice site

5.24. lbpBOUND.cpp 281

DL_MESO Technical Manual, Release 2.7

fD2Q9OF1()

int fD2Q9OF1 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a first-order outflow (zero-gradient) condition to a
boundary lattice point for a two-dimensional D2Q9 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
using distribution function values at the nearest neighbouring lattice point orthogonal to the boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

fD2Q9OF2()

int fD2Q9OF2 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a second-order outflow (zero-gradient) condition to
a boundary lattice point for a two-dimensional D2Q9 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 2𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
− 𝑓𝑖

(︀
𝑥⃗𝑤 + 2∆𝑥, 𝑡+

)︀
using distribution function values at the nearest and next-nearest neighbouring lattice points orthogonal to the
boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

fD3CECCFracSite()

int fD3CECCFracSite (double * frac, long tpos)

Determines mass fractions of all fluids at a concave edge or corner of a three-dimensional system from the fluid
densities of a neighbouring lattice site. This can be applied to any edge or corner if the neighbouring lattice site is
specified (normally one site away diagonally from the edge or corner).

Parameters

out frac Mass fractions of all fluid at corner lattice site
in tpos Position of neighbouring lattice site (in one-dimensional form)

282 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3CECCSwiftPhi()

double fD3CECCSwiftPhi (long tpos,
double dx,
double dy,
double dz,
double dpdx,
double dpdy,
double dpdz)

Determines the fluid concentration of two fluids at a concave edge or corner of a three-dimensional system using
the value of a neighbouring lattice site when Swift free-energy interactions are in use and its concentration gradi-
ents. This is specified for a bottom-left-back concave corner site (CCTRF), but can be used for any edge or corner
by specifying zero, positive or negative values for changes in position and concentration gradients.

Parameters

in tpos Position of neighbouring lattice site (in one-dimensional form)
in dx Change in x-position between corner site and neighbouring site
in dy Change in y-position between corner site and neighbouring site
in dz Change in z-position between corner site and neighbouring site
in dpdx Concentration gradient in x-direction
in dpdy Concentration gradient in y-direction
in dpdz Concentration gradient in z-direction

fD3Q15BoundaryForceDensity()

int fD3Q15BoundaryForceDensity (double * force,
long tpos,
double * p0,
int prop)

Based on the type of boundary (planar surface, concave edge or corner) and its direction, calculates the forces in-
teraction, buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application
of a constant density boundary condition for a three-dimensional D3Q15 lattice. If the simulation is equilibrating,
the constant/oscilliating body forces are not applied.

Parameters

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in p0 Fixed fluid densities at boundary site
in prop Boundary condition code indicating type and direction

fD3Q15BoundaryForceVelocity()

int fD3Q15BoundaryForceVelocity (double * force,
long tpos,
long tpos1,
double dx,
double dy,
double dz,
double * uwall,
int prop)

Based on the type of boundary (planar surface, concave edge or corner) and its direction, calculates the forces (in-
teraction, buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application

5.24. lbpBOUND.cpp 283

DL_MESO Technical Manual, Release 2.7

of a constant velocity boundary condition for a three-dimensional D3Q15 lattice. If the simulation is equilibrating,
the constant/oscilliating body forces are not applied.

Parameters

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form)
in dx Change in x-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in dy Change in y-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in dz Change in z-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in uwall Fixed velocity at boundary site
in prop Boundary condition code indicating type and direction

fD3Q15OF1()

int fD3Q15OF1 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a first-order outflow (zero-gradient) condition to a
boundary lattice point for a three-dimensional D3Q15 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
using distribution function values at the nearest neighbouring lattice point orthogonal to the boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

fD3Q15OF2()

int fD3Q15OF2 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a second-order outflow (zero-gradient) condition to a
boundary lattice point for a three-dimensional D3Q15 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 2𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
− 𝑓𝑖

(︀
𝑥⃗𝑤 + 2∆𝑥, 𝑡+

)︀
using distribution function values at the nearest and next-nearest neighbouring lattice points orthogonal to the
boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

284 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15PSFracSite()

int fD3Q15PSFracSite (double * frac,
double vy,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines mass fractions of all fluids at a planar surface of a three-dimensional system using known distribution
functions at the lattice site for a D3Q15 lattice. The fluid densities are calculated from mass and momentum
conservation in the orthogonal direction to the boundary, e.g.

𝜌 (1 − 𝑢𝑦) = 𝑓0 + 𝑓1 + 𝑓3 + 𝑓8 + 𝑓10 + 2 (𝑓2 + 𝑓4 + 𝑓5 + 𝑓13 + 𝑓14)

The expression in this subroutine is for bottom planar surfaces (PST) but can be used for any planar surface
by selecting different distribution functions and applying positive or negative values for a (different) velocity
component.

Parameters

out frac Mass fractions of all fluid at edge lattice site
in vy Velocity component orthogonal to planar surface (y-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

fD3Q15PSSwiftPhi()

double fD3Q15PSSwiftPhi (double vy,
double g0, double g1, double g2,
double g3, double g4, double g5,
double g6, double g7, double g8,
double g9, double g10, double g11,
double g12, double g13, double g14)

Determines concentration of two fluids at a planar surfae of a three-dimensional system using known concen-
tration distribution functions at the lattice site for a D3Q15 lattice. The fluid concentrations are calculated from
concentration and momentum conservation in the orthogonal direction to the boundary, e.g.

𝜑 (1 − 𝑢𝑦) = 𝑔0 + 𝑔1 + 𝑔3 + 𝑔8 + 𝑔10 + 2 (𝑔2 + 𝑔4 + 𝑔5 + 𝑔13 + 𝑔14)

The expression in this subroutine is for bottom planar surfaces (PST) but can be used for any planar surface
by selecting different distribution functions and applying positive or negative values for a (different) velocity
component.

5.24. lbpBOUND.cpp 285

DL_MESO Technical Manual, Release 2.7

Parameters

in vy Velocity component orthogonal to concave edge (y-component for bottom edge)
in g0 Concentration distribution function for link 0 at edge lattice site
in g1 Concentration distribution function for link 1 at edge lattice site
in g2 Concentration distribution function for link 2 at edge lattice site
in g3 Concentration distribution function for link 3 at edge lattice site
in g4 Concentration distribution function for link 4 at edge lattice site
in g5 Concentration distribution function for link 5 at edge lattice site
in g6 Concentration distribution function for link 6 at edge lattice site
in g7 Concentration distribution function for link 7 at edge lattice site
in g8 Concentration distribution function for link 8 at edge lattice site
in g9 Concentration distribution function for link 9 at edge lattice site
in g10 Concentration distribution function for link 10 at edge lattice site
in g11 Concentration distribution function for link 11 at edge lattice site
in g12 Concentration distribution function for link 12 at edge lattice site
in g13 Concentration distribution function for link 13 at edge lattice site
in g14 Concentration distribution function for link 14 at edge lattice site

fD3Q19BoundaryForceDensity()

int fD3Q19BoundaryForceDensity (double * force,
long tpos,
double * p0,
int prop)

Based on the type of boundary (planar surface, concave edge or corner) and its direction, calculates the forces in-
teraction, buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application
of a constant density boundary condition for a three-dimensional D3Q19 lattice. If the simulation is equilibrating,
the constant/oscilliating body forces are not applied.

Parameters

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in p0 Fixed fluid densities at boundary site
in prop Boundary condition code indicating type and direction

fD3Q19BoundaryForceVelocity()

int fD3Q19BoundaryForceVelocity (double * force,
long tpos,
long tpos1,
double dx,
double dy,
double dz,
double * uwall,
int prop)

Based on the type of boundary (planar surface, concave edge or corner) and its direction, calculates the forces (in-
teraction, buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application
of a constant velocity boundary condition for a three-dimensional D3Q19 lattice. If the simulation is equilibrating,
the constant/oscilliating body forces are not applied.

Parameters

286 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form)
in dx Change in x-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in dy Change in y-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in dz Change in z-position between boundary site and neighbouring site for Swift free-energy inter-

actions
in uwall Fixed velocity at boundary site
in prop Boundary condition code indicating type and direction

fD3Q19OF1()

int fD3Q19OF1 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a first-order outflow (zero-gradient) condition to a
boundary lattice point for a three-dimensional D3Q19 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
using distribution function values at the nearest neighbouring lattice point orthogonal to the boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

fD3Q19OF2()

int fD3Q19OF2 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a second-order outflow (zero-gradient) condition to a
boundary lattice point for a three-dimensional D3Q19 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 2𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
− 𝑓𝑖

(︀
𝑥⃗𝑤 + 2∆𝑥, 𝑡+

)︀
using distribution function values at the nearest and next-nearest neighbouring lattice points orthogonal to the
boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

5.24. lbpBOUND.cpp 287

DL_MESO Technical Manual, Release 2.7

fD3Q19PSFracSite()

int fD3Q19PSFracSite (double * frac,
double vy,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines mass fractions of all fluids at a planar surface of a three-dimensional system using known distribution
functions at the lattice site for a D3Q19 lattice. The fluid densities are calculated from mass and momentum
conservation in the orthogonal direction to the boundary, e.g.

𝜌 (1 − 𝑢𝑦) = 𝑓0 + 𝑓1 + 𝑓3 + 𝑓6 + 𝑓7 + 𝑓10 + 𝑓12 + 𝑓15 + 𝑓16 + 2 (𝑓2 + 𝑓4 + 𝑓8 + 𝑓9 + 𝑓14)

The expression in this subroutine is for bottom planar surfaces (PST) but can be used for any planar surface
by selecting different distribution functions and applying positive or negative values for a (different) velocity
component.

Parameters

out frac Mass fractions of all fluid at edge lattice site
in vy Velocity component orthogonal to planar surface (y-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
in f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site

fD3Q19PSSwiftPhi()

double fD3Q19PSSwiftPhi (double vy,
double g0, double g1, double g2,
double g3, double g4, double g5,
double g6, double g7, double g8,
double g9, double g10, double g11,
double g12, double g13, double g14,
double g15, double g16, double g17,
double g18)

288 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Determines concentration of two fluids at a planar surfae of a three-dimensional system using known concen-
tration distribution functions at the lattice site for a D3Q19 lattice. The fluid concentrations are calculated from
concentration and momentum conservation in the orthogonal direction to the boundary, e.g.

𝜑 (1 − 𝑢𝑦) = 𝑔0 + 𝑔1 + 𝑔3 + 𝑔6 + 𝑔7 + 𝑔12 + 𝑔15 + 𝑔16 + 2 (𝑔2 + 𝑔4 + 𝑔8 + 𝑔9 + 𝑔14)

The expression in this subroutine is for bottom planar surfaces (PST) but can be used for any planar surface
by selecting different distribution functions and applying positive or negative values for a (different) velocity
component.

Parameters

in vy Velocity component orthogonal to concave edge (y-component for bottom edge)
in g0 Concentration distribution function for link 0 at edge lattice site
in g1 Concentration distribution function for link 1 at edge lattice site
in g2 Concentration distribution function for link 2 at edge lattice site
in g3 Concentration distribution function for link 3 at edge lattice site
in g4 Concentration distribution function for link 4 at edge lattice site
in g5 Concentration distribution function for link 5 at edge lattice site
in g6 Concentration distribution function for link 6 at edge lattice site
in g7 Concentration distribution function for link 7 at edge lattice site
in g8 Concentration distribution function for link 8 at edge lattice site
in g9 Concentration distribution function for link 9 at edge lattice site
in g10 Concentration distribution function for link 10 at edge lattice site
in g11 Concentration distribution function for link 11 at edge lattice site
in g12 Concentration distribution function for link 12 at edge lattice site
in g13 Concentration distribution function for link 13 at edge lattice site
in g14 Concentration distribution function for link 14 at edge lattice site
in g15 Concentration distribution function for link 15 at edge lattice site
in g16 Concentration distribution function for link 16 at edge lattice site
in g17 Concentration distribution function for link 17 at edge lattice site
in g18 Concentration distribution function for link 18 at edge lattice site

fD3Q27BoundaryForceDensity()

int fD3Q27BoundaryForceDensity (double * force,
long tpos,
double * p0,
int prop)

Based on the type of boundary (planar surface, concave edge or corner) and its direction, calculates the forces in-
teraction, buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application
of a constant density boundary condition for a three-dimensional D3Q27 lattice. If the simulation is equilibrating,
the constant/oscilliating body forces are not applied.

Parameters

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in p0 Fixed fluid densities at boundary site
in prop Boundary condition code indicating type and direction

5.24. lbpBOUND.cpp 289

DL_MESO Technical Manual, Release 2.7

fD3Q27BoundaryForceVelocity()

int fD3Q27BoundaryForceVelocity (double * force,
long tpos,
long tpos1,
double * uwall,
int prop)

Based on the type of boundary (planar surface, concave edge or corner) and its direction, calculates the forces (in-
teraction, buoyancy-driven thermal and constant/oscillating) acting on a given boundary grid point for application
of a constant velocity boundary condition for a three-dimensional D3Q27 lattice. If the simulation is equilibrating,
the constant/oscilliating body forces are not applied.

Parameters

out force Overall forces acting on fluids at boundary point
in tpos Position of boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form)
in uwall Fixed velocity at boundary site
in prop Boundary condition code indicating type and direction

fD3Q27OF1()

int fD3Q27OF1 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a first-order outflow (zero-gradient) condition to a
boundary lattice point for a three-dimensional D3Q27 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
using distribution function values at the nearest neighbouring lattice point orthogonal to the boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

fD3Q27OF2()

int fD3Q27OF2 (long tpos, int prop)

Based on the direction of the boundary (only edges), applies a second-order outflow (zero-gradient) condition to a
boundary lattice point for a three-dimensional D3Q27 lattice. This subroutine applies the following to lattice links
pointing back into the lattice:

𝑓𝑖
(︀
𝑥⃗𝑤, 𝑡

+
)︀

= 2𝑓𝑖
(︀
𝑥⃗𝑤 + ∆𝑥, 𝑡+

)︀
− 𝑓𝑖

(︀
𝑥⃗𝑤 + 2∆𝑥, 𝑡+

)︀
using distribution function values at the nearest and next-nearest neighbouring lattice points orthogonal to the
boundary.

Parameters

tpos Position of boundary lattice site (in one-dimensional form)
prop Boundary condition code indicating type and direction

290 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27PSFracSite()

int fD3Q27PSFracSite (double * frac,
double vy,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines mass fractions of all fluids at a planar surface of a three-dimensional system using known distribution
functions at the lattice site for a D3Q27 lattice. The fluid densities are calculated from mass and momentum
conservation in the orthogonal direction to the boundary, e.g.

𝜌 (1 − 𝑢𝑦) = 𝑓0 + 𝑓1 + 𝑓3 + 𝑓6 + 𝑓7 + 𝑓14 + 𝑓16 + 𝑓19 + 𝑓20 + 2 (𝑓2 + 𝑓4 + 𝑓8 + 𝑓9 + 𝑓10 + 𝑓11 + 𝑓18 + 𝑓25 + 𝑓26)

The expression in this subroutine is for bottom planar surfaces (PST) but can be used for any planar surface
by selecting different distribution functions and applying positive or negative values for a (different) velocity
component.

Parameters

out frac Mass fractions of all fluid at edge lattice site
in vy Velocity component orthogonal to planar surface (y-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
in f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
in f21 Distribution functions for link 21 at surface lattice site
in f22 Distribution functions for link 22 at surface lattice site
in f23 Distribution functions for link 23 at surface lattice site
in f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

5.24. lbpBOUND.cpp 291

DL_MESO Technical Manual, Release 2.7

fFixedDensityFluid()

int fFixedDensityFluid (long tpos,
int prop,
int type,
double * uwall)

Apply a boundary condition at a given lattice point to give constant fluid densities. Four boundary condition
schemes are available - Zou-He [158], Inamuro [63], regularised [74] and kinetic [5] - and can be applied at
planar surfaces, concave edges and concave corners. The fluid velocity output by this routine is used for solute
concentration and temperature boundary conditions, set according to values obtained from applying constant den-
sity conditions. The boundary condition type is used to determine the boundary temperature required for Swift
free-energy interactions (either a fixed system-wide temperature, the value at a neighbouring lattice point or the
specified value for the boundary).

Parameters

in tpos Position of boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type (planar surface, concave edge, concave corner) and

direction
in type Boundary condition type indicating forms of solute and temperature conditions
out uwall Resulting fluid velocity at boundary site

fFixedSoluteConcen()

int fFixedSoluteConcen (long tpos,
int prop,
double * uwall)

Apply a boundary condition at a given lattice point to give constant solute concentrations. Two boundary condition
schemes are available - Zou-He [158] and Inamuro [63] - and can be applied at planar surfaces, concave edges
and concave corners. The fluid velocity input into this routine originates from fixed velocity or fixed fluid density
boundaries.

Parameters

in tpos Position of boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type (planar surface, concave edge, concave cor-

ner) and direction
in uwall Fluid velocity at boundary site

fFixedSpeedFluid()

int fFixedSpeedFluid (long tpos,
int prop,
int type,
double * uwall)

Apply a boundary condition at a given lattice point to give a constant fluid velocity. Four boundary condition
schemes are available - Zou-He [158], Inamuro [63], regularised [74] and kinetic [5] - and can be applied at planar
surfaces, concave edges and concave corners. The constant fluid velocity output by this routine is used for solute
concentration and temperature boundary conditions, set according to required constant or oscillating values. The
boundary condition type is used to determine the boundary temperature required for Swift free-energy interactions
(either a fixed system-wide temperature, the value at a neighbouring lattice point or the specified value for the
boundary).

Parameters

292 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in tpos Position of boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type (planar surface, concave edge, concave corner) and

direction
in type Boundary condition type indicating forms of solute and temperature conditions
out uwall Fixed fluid velocity at boundary site

fFixedTemperature()

int fFixedTemperature (long tpos,
int prop,
double * uwall)

Apply a boundary condition at a given lattice point to give a constant temperature. Two boundary condition
schemes are available - Zou-He [158] and Inamuro [63] - and can be applied at planar surfaces, concave edges
and concave corners. The fluid velocity input into this routine originates from fixed velocity or fixed fluid density
boundaries.

Parameters

in tpos Position of boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type (planar surface, concave edge, concave cor-

ner) and direction
in uwall Fluid velocity at boundary site

fMidBounceBackC()

int fMidBounceBackC (long tpos)

At the current lattice site, apply a mid-grid bounce-back boundary condition on solute distribution functions, i.e.
assign conjugate post-collisional distribution functions from neighbouring lattice sites.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

fMidBounceBackF()

int fMidBounceBackF (long tpos)

At the current lattice site, apply a mid-grid bounce-back boundary condition on fluid distribution functions, i.e.
assign conjugate post-collisional distribution functions from neighbouring lattice sites.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

5.24. lbpBOUND.cpp 293

DL_MESO Technical Manual, Release 2.7

fMidBounceBackT()

int fMidBounceBackT (long tpos)

At the current lattice site, apply a mid-grid bounce-back boundary condition on temperature distribution functions,
i.e. assign conjugate post-collisional distribution functions from neighbouring lattice sites.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

fMoveNonzeroAway()

int fMoveNonzeroAway (long tpos)

Move any non-zero distribution functions at the current grid point along each and every lattice link, before zeroing
values at that grid point. This subroutine is currently not used but may be useful for certain boundary conditions.

Parameters

tpos Position of current lattice site (in one-dimensional form)

fNeighbourBoundary()

int fNeighbourBoundary ()

At each lattice point, neighbouring lattice points are checked to see if any are some kind of boundary point: if so,
a number is assigned to an array to indicate how derivatives of fluid properties (e.g. to calculate interaction forces)
can be calculated for each lattice point. This value is an integer with the hundreds indicating x-dimension, tens
indicating y-dimension and units indicating z-dimension:

• 0 = no restriction in any direction,

• 1 = no restriction in given dimension

• 2 = only one fluid point in positive direction for dimension

• 3 = two fluid points in positive direction for dimension

• 4 = only one fluid point in negative direction for dimension

• 5 = two fluid points in positive direction for dimension

• 6 = no fluid points available in either direction for given dimension

Depending on the number of fluid points available in each direction and dimension, all-neighbour stencils, central
difference schemes or one-sided difference schemes may be used to calculate derivatives. The boundary normals
are also determined to find directions to apply surface tension forces on multiple fluids. This routine only needs
to be called once if boundary conditions do not change during calculations.

294 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fNextStep()

long fNextStep (int dx, int dy, int dz, long tpos)
long fNextStep (int q, int xpos, int ypos)
long fNextStep (int q, int xpos, int ypos, int zpos)

Starting from a given lattice site, find the next lattice site along a given vector or lattice link, taking any periodic
boundaries into account.

Parameters

in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)
in tpos Position of current lattice site (in one-dimensional form)
in q Lattice link to move along
in xpos Position of current lattice site (x-coordinate)
in ypos Position of current lattice site (y-coordinate)
in zpos Position of current lattice site (z-coordinate)

fOutFlow()

int fOutFlow (long tpos, int prop)

Apply a boundary condition at a given lattice point to give an outflow condition (a Neumann boundary condition
with zero gradients in velocity, density, concentration and/or temperature [82]. This type of condition can only
be applied along concave edges in two dimensions or planar surfaces in three dimensions, and can either be first-
order or second-order based on the number of lattice points used to obtain the required distribution functions at
the boundary lattice point.

Parameters

in tpos Position of boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type (planar surface, concave edge, concave corner) and di-

rection

fPostCollBoundary()

int fPostCollBoundary ()

Applies any boundary conditions that need to be applied immediately after collisions but before propagation: the
only type of boundary condition that currently needs to be applied at this stage is mid-grid bounce-back.

fPostPropBoundary()

int fPostPropBoundary ()

Applies any boundary conditions that need to be applied after propagation: most boundary conditions (blank sites,
on-grid bounce-back, constant fluid velocity or density, solute concentration and temperature) are applied at this
stage.

5.24. lbpBOUND.cpp 295

DL_MESO Technical Manual, Release 2.7

fsBoundPeriodic()

int fsBoundPeriodic ()

Applies periodic boundary conditions for customised serial LBE calculations that use boundary halos by copying
boundary type values from the edges of fluid points. This is the serial equivalent of an MPI communication used
in parallel calculations, and is not generally used in the standard serial version of DL_MESO_LBE (which does
not use a boundary halo).

fsBoundPeriodic2D()

int fsBoundPeriodic2D ()

Applies periodic boundary conditions for customised two-dimensional serial LBE calculations that use bound-
ary halos by copying boundary type values from the edges of fluid points. This is the serial equivalent of an
MPI communication used in parallel calculations, and is not generally used in the standard serial version of
DL_MESO_LBE.

fsBoundPeriodic3D()

int fsBoundPeriodic3D ()

Applies periodic boundary conditions for customised three-dimensional serial LBE calculations that use bound-
ary halos by copying boundary type values from the edges of fluid points. This is the serial equivalent of an
MPI communication used in parallel calculations, and is not generally used in the standard serial version of
DL_MESO_LBE.

fsForcePeriodic()

int fsForcePeriodic ()

Applies periodic boundary conditions for customised serial LBE calculations that use boundary halos by copying
interfacial forces from the edges of fluid points. This is the serial equivalent of an MPI communication used in
parallel calculations, and is not generally used in the standard serial version of DL_MESO_LBE (which does not
use a boundary halo).

fsForcePeriodic2D()

int fsForcePeriodic2D ()

Applies periodic boundary conditions for customised two-dimensional serial LBE calculations that use boundary
halos by copying interfacial forces from the edges of fluid points. This is the serial equivalent of an MPI commu-
nication used in parallel calculations, and is not generally used in the standard serial version of DL_MESO_LBE.

296 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fsForcePeriodic3D()

int fsForcePeriodic3D ()

Applies periodic boundary conditions for customised three-dimensional serial LBE calculations that use boundary
halos by copying interfacial forces from the edges of fluid points. This is the serial equivalent of an MPI commu-
nication used in parallel calculations, and is not generally used in the standard serial version of DL_MESO_LBE.

fsIndexPeriodic()

int fsIndexPeriodic ()

Applies periodic boundary conditions for customised serial LBE calculations that use boundary halos by copy-
ing phase indices (for Lishchuk interactions) from the edges of fluid points. This is the serial equivalent of
an MPI communication used in parallel calculations, and is not generally used in the standard serial version of
DL_MESO_LBE (which does not use a boundary halo).

fsIndexPeriodic2D()

int fsIndexPeriodic2D ()

Applies periodic boundary conditions for customised two-dimensional serial LBE calculations that use boundary
halos by copying phase indices from the edges of fluid points. This is the serial equivalent of an MPI communica-
tion used in parallel calculations, and is not generally used in the standard serial version of DL_MESO_LBE.

fsIndexPeriodic3D()

int fsIndexPeriodic3D ()

Applies periodic boundary conditions for customised three-dimensional serial LBE calculations that use boundary
halos by copying phase indices from the edges of fluid points. This is the serial equivalent of an MPI communica-
tion used in parallel calculations, and is not generally used in the standard serial version of DL_MESO_LBE.

fSiteBlankC()

int fSiteBlankC (long tpos)

At the current lattice site, set all distribution function values (along all lattice links) for all solutes to zero. This
will ensure e.g. solute diffusion inside a bulk solid is negligible.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

5.24. lbpBOUND.cpp 297

DL_MESO Technical Manual, Release 2.7

fSiteBlankF()

int fSiteBlankF (long tpos)

At the current lattice site, set all distribution function values (along all lattice links) for all fluids to zero. This will
ensure e.g. flows inside solid boundaries are negligible.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

fSiteBlankT()

int fSiteBlankT (long tpos)

At the current lattice site, set all distribution function values (along all lattice links) for the temperature field to
zero. This will ensure e.g. negligible heat transfer through an insulator.

Parameters

in tpos Position of current lattice site (in one-dimensional form)

fsPeriodic()

int fsPeriodic ()

Applies periodic boundary conditions for customised serial LBE calculations that use boundary halos by copying
distribution functions from the edges of fluid points. This is the serial equivalent of an MPI communication used
in parallel calculations, and is not generally used in the standard serial version of DL_MESO_LBE (which does
not use a boundary halo).

fsPeriodic2D()

int fsPeriodic2D ()

Applies periodic boundary conditions for customised two-dimensional serial LBE calculations that use bound-
ary halos by copying distribution functions from the edges of fluid points. This is the serial equivalent of an
MPI communication used in parallel calculations, and is not generally used in the standard serial version of
DL_MESO_LBE.

fsPeriodic3D()

int fsPeriodic3D ()

Applies periodic boundary conditions for customised three-dimensional serial LBE calculations that use bound-
ary halos by copying distribution functions from the edges of fluid points. This is the serial equivalent of an
MPI communication used in parallel calculations, and is not generally used in the standard serial version of
DL_MESO_LBE.

298 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.25 lbpBOUNDZouHe.cpp

Module for applying Zou-He boundary conditions. (Header file available as lbpBOUNDZouHe.hpp.)

Applies Zou-He [158] boundary conditions at specified lattice points to give flxed fluid velocities or densities,
solute concentrations and temperatures. This scheme uses non-equilibrium bounce-back reflection for ‘missing’
distribution functions re-entering the simulation box, i.e.

𝑓𝑖 − 𝑓𝑒𝑞𝑖 = 𝑓𝑗 − 𝑓𝑒𝑞𝑗

where 𝑖 and 𝑗 are conjugate links (i.e. 𝑒𝑖 = −𝑒𝑗). The standard Zou-He boundary condition applies this non-
equilibrium bounce-back condition unmodified to the orthogonal lattice link only for velocity and density condi-
tions, while the other missing distribution functions are obtained to ensure the overall density and momentum are
correct to satisfy the following summations:

𝜌 =
∑︁
𝑖

𝑓𝑖,

𝜌𝑢𝛼 =
∑︁
𝑖

𝑓𝑖𝑒𝑖,𝛼.

In two dimensions, these conditions are sufficient to find the remaining missing distribution functions. For three-
dimensional systems, the non-equilibrium bounce-back condition is applied to the other missing distribution func-
tions along with transverse momentum corrections for tangential directions to provide sufficient unknown quanti-
ties for available equations.

The simplified implementation of the Zou-He boundary conditions (for velocity and density conditions only) uses
non-equilibrium bounce-back for all ‘active’ missing distribution functions: as such, the above summations are
not necessarily achieved for two-dimensional concave edges and three-dimensional planar surfaces.

For solute concentration and temperature conditions, an ‘inverse’ approach is taken by using the non-equilibrium
bounce-back condition on all missing distribution functions other than the orthogonal lattice link, whose distri-
bution function is determined to ensure correct solute concentration or temperature (in a similar manner to fluid
density).

For boundaries other than concave edges in two dimensions or planar surfaces in three dimensions where ‘buried’
links that neither enter nor leave the simulation box are included, the non-buried ‘active’ links make use of non-
equilibrium bounce-back, while the buried links re obtained by ensuring the overall density and momentum are
correct. In cases where there are more unknown buried links than density and momentum equations, each buried
link is expressed as a combination of terms for these three or four components, which are solved to give the correct
density and momentum at the lattice point.

5.25.1 Functions

• int fD2Q9VCEZouHe()

Applies Zou-He constant velocity boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9VCCZouHe()

Applies Zou-He constant velocity or density boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9VCECLBEZouHe()

Applies Zou-He constant velocity boundary condition to concave edge for D2Q9 lattice with cascaded LBE
collisions.

• int fD2Q9VCCCLBEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave corner for D2Q9 lattice with
cascaded LBE collisions.

• int fD2Q9VCESimpleZouHe()

Applies simple Zou-He constant velocity boundary condition to concave edge for D2Q9 lattice.

5.25. lbpBOUNDZouHe.cpp 299

DL_MESO Technical Manual, Release 2.7

• int fD2Q9VCCSimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9VCECLBESimpleZouHe()

Applies simple Zou-He constant velocity boundary condition to concave edge for D2Q9 lattice with cas-
caded LBE collisions.

• int fD2Q9VCCCLBESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave corner for D2Q9 lattice
with cascaded LBE collisions.

• int fD2Q9VFZouHe()

Applies constant velocity Zou-He boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9VFSimpleZouHe()

Applies constant velocity simple Zou-He boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9PCEZouHe()

Applies Zou-He constant density boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9PCESwiftZouHe()

Applies Zou-He constant density boundary condition to concave edge for D2Q9 lattice with Swift free-
energy interactions.

• int fD2Q9PFZouHe()

Applies constant density Zou-He boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9PFSimpleZouHe()

Applies constant density simple Zou-He boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9CCEZouHe()

Applies Zou-He constant solute concentration boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9CCCZouHe()

Applies Zou-He constant solute concentration boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9PCZouHe()

Applies constant solute concentration Zou-He boundary condition to lattice point using D2Q9 lattice
scheme.

• int fD2Q9TCEZouHe()

Applies Zou-He constant temperature boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9TCCZouHe()

Applies Zou-He constant temperature boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9PTZouHe()

Applies constant temperature Zou-He boundary condition to lattice point using D2Q9 lattice scheme.

• int fD3Q15VPSZouHe()

Applies Zou-He constant velocity boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15VCEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15VCCZouHe()

Applies Zou-He constant velocity or density boundary condition to concave corner for D3Q15 lattice.

300 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fD3Q15VPSSimpleZouHe()

Applies simple Zou-He constant velocity boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15VCESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15VCCSimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15VFZouHe()

Applies constant velocity Zou-He boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15VFSimpleZouHe()

Applies constant velocity simple Zou-He boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15PPSZouHe()

Applies Zou-He constant density boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15PPSSwiftZouHe()

Applies Zou-He constant density boundary condition to planar surface for D3Q15 lattice with Swift free-
energy interactions.

• int fD3Q15PFZouHe()

Applies constant density Zou-He boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15PFSimpleZouHe()

Applies constant density simple Zou-He boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15CPSZouHe()

Applies Zou-He constant solute concentration boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15CCEZouHe()

Applies Zou-He constant solute concentration boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15CCCZouHe()

Applies Zou-He constant solute concentration boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15PCZouHe()

Applies constant solute concentration Zou-He boundary condition to lattice point using D3Q15 lattice
scheme.

• int fD3Q15TPSZouHe()

Applies Zou-He constant temperature boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15TCEZouHe()

Applies Zou-He constant temperature boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15TCCZouHe()

Applies Zou-He constant temperature boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15PTZouHe()

Applies constant temperature Zou-He boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q19VPSZouHe()

Applies Zou-He constant velocity boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19VCEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave edge for D3Q19 lattice.

5.25. lbpBOUNDZouHe.cpp 301

DL_MESO Technical Manual, Release 2.7

• int fD3Q19VCCZouHe()

Applies Zou-He constant velocity or density boundary condition to concave corner for D3Q19 lattice.

• int fD3Q19VPSCLBEZouHe()

Applies Zou-He constant velocity boundary condition to planar surface for D3Q19 lattice with cascaded
LBE collisions.

• int fD3Q19VCECLBEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave edge for D3Q19 lattice with
cascaded LBE collisions.

• int fD3Q19VCCCLBEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave corner for D3Q19 lattice with
cascaded LBE collisions.

• int fD3Q19VPSSimpleZouHe()

Applies simple Zou-He constant velocity boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19VCESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19VCCSimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave corner for D3Q19 lattice.

• int fD3Q19VPSCLBESimpleZouHe()

Applies simple Zou-He constant velocity boundary condition to planar surface for D3Q19 lattice with cas-
caded LBE collisions.

• int fD3Q19VCECLBESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave edge for D3Q19 lattice
with cascaded LBE collisions.

• int fD3Q19VCCCLBESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave corner for D3Q19 lattice
with cascaded LBE collisions.

• int fD3Q19VFZouHe()

Applies constant velocity Zou-He boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q19VFSimpleZouHe()

Applies constant velocity simple Zou-He boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q19PPSZouHe()

Applies Zou-He constant density boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19PPSSwiftZouHe()

Applies Zou-He constant density boundary condition to planar surface for D3Q19 lattice with Swift free-
energy interactions.

• int fD3Q19PFZouHe()

Applies constant density Zou-He boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q19PFSimpleZouHe()

Applies constant density simple Zou-He boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q19CPSZouHe()

Applies Zou-He constant solute concentration boundary condition to planar surface for D3Q19 lattice.

302 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fD3Q19CCEZouHe()

Applies Zou-He constant solute concentration boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19CCCZouHe()

Applies Zou-He constant solute concentration boundary condition to concave corner for D3Q15 lattice.

• int fD3Q19PCZouHe()

Applies constant solute concentration Zou-He boundary condition to lattice point using D3Q19 lattice
scheme.

• int fD3Q19TPSZouHe()

Applies Zou-He constant temperature boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19TCEZouHe()

Applies Zou-He constant temperature boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19TCCZouHe()

Applies Zou-He constant temperature boundary condition to concave corner for D3Q19 lattice.

• int fD3Q19PTZouHe()

Applies constant temperature Zou-He boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q27VPSZouHe()

Applies Zou-He constant velocity boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27VCEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27VCCZouHe()

Applies Zou-He constant velocity or density boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27VPSCLBEZouHe()

Applies Zou-He constant velocity boundary condition to planar surface for D3Q27 lattice with cascaded
LBE collisions.

• int fD3Q27VCECLBEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave edge for D3Q27 lattice with
cascaded LBE collisions.

• int fD3Q27VCCCLBEZouHe()

Applies Zou-He constant velocity or density boundary condition to concave corner for D3Q27 lattice with
cascaded LBE collisions.

• int fD3Q27VPSSimpleZouHe()

Applies simple Zou-He constant velocity boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27VCESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27VCCSimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27VPSCLBESimpleZouHe()

Applies simple Zou-He constant velocity boundary condition to planar surface for D3Q27 lattice with cas-
caded LBE collisions.

5.25. lbpBOUNDZouHe.cpp 303

DL_MESO Technical Manual, Release 2.7

• int fD3Q27VCECLBESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave edge for D3Q27 lattice
with cascaded LBE collisions.

• int fD3Q27VCCCLBESimpleZouHe()

Applies simple Zou-He constant velocity or density boundary condition to concave corner for D3Q27 lattice
with cascaded LBE collisions.

• int fD3Q27VFZouHe()

Applies constant velocity Zou-He boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27VFSimpleZouHe()

Applies constant velocity simple Zou-He boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27PPSZouHe()

Applies Zou-He constant density boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27PFZouHe()

Applies constant density Zou-He boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27PFSimpleZouHe()

Applies constant density simple Zou-He boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27CPSZouHe()

Applies Zou-He constant solute concentration boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27CCEZouHe()

Applies Zou-He constant solute concentration boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27CCCZouHe()

Applies Zou-He constant solute concentration boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27PCZouHe()

Applies constant solute concentration Zou-He boundary condition to lattice point using D3Q27 lattice
scheme.

• int fD3Q27TPSZouHe()

Applies Zou-He constant temperature boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27TCEZouHe()

Applies Zou-He constant temperature boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27TCCZouHe()

Applies Zou-He constant temperature boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27PTZouHe()

Applies constant temperature Zou-He boundary condition to lattice point using D3Q27 lattice scheme.

304 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.25.2 Function Documentation

fD2Q9CCCZouHe()

int fD2Q9CCCZouHe (double * p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave corner using the two-dimensional D2Q9 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for the bottom-left concave corner (CCCTRF) but can be used for any
concave corner by selecting different distribution functions.

Parameters

in p Solute concentrations for boundary lattice point
in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9CCEZouHe()

int fD2Q9CCEZouHe (double * p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave edge using the two-dimensional D2Q9 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom concave edges (CCETF) but can be used for any concave
edge by selecting different distribution functions.

Parameters

5.25. lbpBOUNDZouHe.cpp 305

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9PCESwiftZouHe()

int fD2Q9PCESwiftZouHe (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double & vel)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed fluid densities
at a concave edge using the two-dimensional D2Q9 lattice and Swift free-energy interactions. The resulting
orthogonal velocity component is calculated using the density distribution functions: this value is subsequently
used for concentration distribution functions (if required for two-fluid systems) as well as solute concentration
and temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in
this subroutine are for bottom concave edges (PCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for density/concentration gradients (which may be
swapped around).

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

306 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD2Q9PCEZouHe()

int fD2Q9PCEZouHe (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double & vel)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed fluid densities
at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can also be
used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these (with zero
tangential velocity) result in the same expressions for missing distribution functions. The resulting orthogonal
velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine
are for bottom concave edges (PCETF) but can be used for any concave edge by selecting different distribution
functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD2Q9PCZouHe()

int fD2Q9PCZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant solute concentrations based on direction (concave
edges and corners) for a two-dimensional D2Q9 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

5.25. lbpBOUNDZouHe.cpp 307

DL_MESO Technical Manual, Release 2.7

fD2Q9PFSimpleZouHe()

int fD2Q9PFSimpleZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate simple Zou-He boundary condition for constant fluid densities based on types of colli-
sions, interactions and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for
cascaded LBE collisions, Swift free-energy interactions, as well as concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying simple Zou-He boundary condition

fD2Q9PFZouHe()

int fD2Q9PFZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant fluid densities based on types of collisions, inter-
actions and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded
LBE collisions, Swift free-energy interactions, as well as concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Zou-He boundary condition

fD2Q9PTZouHe()

int fD2Q9PTZouHe (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for a constant temperature based on direction (concave edges
and corners) for a two-dimensional D2Q9 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

308 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD2Q9TCCZouHe()

int fD2Q9TCCZouHe (double p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed temperature
at a concave corner using the two-dimensional D2Q9 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for the bottom-left concave corner (TCCTRF) but can be used for any concave
corner by selecting different distribution functions.

Parameters

in p Temperature for boundary lattice point
in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9TCEZouHe()

int fD2Q9TCEZouHe (double p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed temperature
at a concave edge using the two-dimensional D2Q9 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom concave edges (TCETF) but can be used for any concave edge by
selecting different distribution functions.

Parameters

in p Temperature for boundary lattice point
in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

5.25. lbpBOUNDZouHe.cpp 309

DL_MESO Technical Manual, Release 2.7

fD2Q9VCCCLBESimpleZouHe()

int fD2Q9VCCCLBESimpleZouHe (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave corner using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) col-
lisions. This routine can only be used for mildly compressible fluids using the extended local equilibrium distri-
bution functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave
corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions and ap-
plying positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9VCCCLBEZouHe()

int fD2Q9VCCCLBEZouHe (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave corner using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave corners (VCCTRF)
but can be used for any concave corner by selecting different distribution functions and applying positive or
negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

310 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9VCCSimpleZouHe()

int fD2Q9VCCSimpleZouHe (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave corner using the two-dimensional D2Q9 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, includ-
ing those with Swift free-energy interactions as the differences between local equiibrium distribution functions for
conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this
subroutine are for bottom-left concave corners (VCCTRF) but can be used for any concave corner by selecting
different distribution functions and applying positive or negative values for velocity components (which may be
swapped around). Since fluid densities at the boundary point are required, this subroutine can be used for both
constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

5.25. lbpBOUNDZouHe.cpp 311

DL_MESO Technical Manual, Release 2.7

fD2Q9VCCZouHe()

int fD2Q9VCCZouHe (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave corner using the two-dimensional D2Q9 lattice. This routine can be used for mildly com-
pressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, including
those with Swift free-energy interactions as the differences between local equiibrium distribution functions for
conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this
subroutine are for bottom-left concave corners (VCCTRF) but can be used for any concave corner by selecting
different distribution functions and applying positive or negative values for velocity components (which may be
swapped around). Since fluid densities at the boundary point are required, this subroutine can be used for both
constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9VCECLBESimpleZouHe()

int fD2Q9VCECLBESimpleZouHe (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity at a concave edge using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom concave edges (VCETF) but
can be used for any concave edge by selecting different distribution functions and applying positive or negative
values for velocity components (which may be swapped around).

Parameters

312 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCECLBEZouHe()

int fD2Q9VCECLBEZouHe (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This routine can
only be used for mildly compressible fluids using the extended local equilibrium distribution functions obtained
from CLBE collisions. The expressions in this subroutine are for bottom concave edges (VCETF) but can be
used for any concave edge by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCESimpleZouHe()

int fD2Q9VCESimpleZouHe (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly com-
pressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, including
those with Swift free-energy interactions as the differences between local equiibrium distribution functions for

5.25. lbpBOUNDZouHe.cpp 313

DL_MESO Technical Manual, Release 2.7

conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this
subroutine are for bottom concave edges (VCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCEZouHe()

int fD2Q9VCEZouHe (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions, including those with
Swift free-energy interactions as the differences between local equiibrium distribution functions for conjugate
links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this subroutine
are for bottom concave edges (VCETF) but can be used for any concave edge by selecting different distribution
functions and applying positive or negative values for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

314 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD2Q9VFSimpleZouHe()

int fD2Q9VFSimpleZouHe (long tpos,
long tpos1,
int prop,
double * uwall,
double dx,
double dy)

Applies the appropriate simple Zou-He boundary condition for a constant velocity based on types of collisions and
direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded LBE collisions
as well as concave edges and corners.) For corners with Swift free-energy interactions, the vector between the
boundary lattice point and sampling point for densities can be specified to correct fluid density/concentration using
gradients of those properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)

fD2Q9VFZouHe()

int fD2Q9VFZouHe (long tpos,
long tpos1,
int prop,
double * uwall,
double dx,
double dy)

Applies the appropriate Zou-He boundary condition for a constant velocity based on types of collisions and di-
rection for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded LBE collisions
as well as concave edges and corners.) For corners with Swift free-energy interactions, the vector between the
boundary lattice point and sampling point for densities can be specified to correct fluid density/concentration using
gradients of those properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)

5.25. lbpBOUNDZouHe.cpp 315

DL_MESO Technical Manual, Release 2.7

fD3Q15CCCZouHe()

int fD3Q15CCCZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave corner using the three-dimensional D3Q15 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left-back concave corners (CCCTRF) but can be used for
any concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15CCEZouHe()

int fD3Q15CCEZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave edge using the three-dimensional D3Q15 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left concave edges (CCETR) but can be used for any
concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

316 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15CPSZouHe()

int fD3Q15CPSZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute concen-
trations at a planar surface using the three-dimensional D3Q15 lattice. This routine uses the simplified local equi-
librium distribution functions for diffusive systems to represent solutes with concentration analogous to density.
The expressions in this subroutine are for bottom planar surfaces (CPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

5.25. lbpBOUNDZouHe.cpp 317

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

fD3Q15PCZouHe()

int fD3Q15PCZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant solute concentrations based on direction (planar
surface, concave edges and corners) for a three-dimensional D3Q15 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q15PFSimpleZouHe()

int fD3Q15PFSimpleZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate simple Zou-He boundary condition for constant fluid densities based on types of collisions,
interactions and direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for Swift
free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying simple Zou-He boundary condition

318 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15PFZouHe()

int fD3Q15PFZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant fluid densities based on types of collisions, in-
teractions and direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for Swift
free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Zou-He boundary condition

fD3Q15PPSSwiftZouHe()

int fD3Q15PPSSwiftZouHe (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double & vel)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q15 lattice and Swift free-energy interactions. The resulting
orthogonal velocity component is calculated using the density distribution functions: this value is subsequently
used for concentration distribution functions (if required for two-fluid systems) as well as solute concentration
and temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in
this subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different
distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

5.25. lbpBOUNDZouHe.cpp 319

DL_MESO Technical Manual, Release 2.7

fD3Q15PPSZouHe()

int fD3Q15PPSZouHe (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double & vel)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed fluid densities at
a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions. The resulting orthogonal
velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine
are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different distribution
functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q15PTZouHe()

int fD3Q15PTZouHe (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant temperature based on direction (planar surface,
concave edges and corners) for a three-dimensional D3Q15 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Temperature for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

320 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15TCCZouHe()

int fD3Q15TCCZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature at
a concave corner using the three-dimensional D3Q15 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left-back concave corners (TCCTRF) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around).

Parameters

in p Temperature at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15TCEZouHe()

int fD3Q15TCEZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature
at a concave edge using the three-dimensional D3Q15 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left concave edges (TCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

5.25. lbpBOUNDZouHe.cpp 321

DL_MESO Technical Manual, Release 2.7

in p Temperature at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15TPSZouHe()

int fD3Q15TPSZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature
at a planar surface using the three-dimensional D3Q15 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom planar surfaces (TPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

322 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Temperature for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

fD3Q15VCCSimpleZouHe()

int fD3Q15VCCSimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave corner using the three-dimensional D3Q15 lattice. This routine can be used
for mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution func-
tions, including those with Swift free-energy interactions as the differences between local equiibrium distribution
functions for conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

5.25. lbpBOUNDZouHe.cpp 323

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15VCCZouHe()

int fD3Q15VCCZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q15 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, includ-
ing those with Swift free-energy interactions as the differences between local equiibrium distribution functions
for conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in
this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave corner by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be used for
both constant velocity and constant density boundaries.

Parameters

324 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15VCESimpleZouHe()

int fD3Q15VCESimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q15 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions,
including those with Swift free-energy interactions as the differences between local equiibrium distribution func-
tions for conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expres-
sions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be used for
both constant velocity and constant density boundaries.

Parameters

5.25. lbpBOUNDZouHe.cpp 325

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15VCEZouHe()

int fD3Q15VCEZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q15 lattice. This routine can be used for mildly com-
pressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, including
those with Swift free-energy interactions as the differences between local equiibrium distribution functions for
conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this
subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around). Since fluid densities at the boundary point are required, this subroutine can be used for both constant
velocity and constant density boundaries.

Parameters

326 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15VFSimpleZouHe()

int fD3Q15VFSimpleZouHe (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz)

Applies the appropriate simple Zou-He boundary condition for a constant velocity based on direction for a three-
dimensional D3Q15 lattice. (In this case, there are boundary options for planar surfaces, concave edges and
corners.) For edges and corners with Swift free-energy interactions, the vector between the boundary lattice point
and sampling point for densities can be specified to correct fluid density/concentration using gradients of those
properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)

5.25. lbpBOUNDZouHe.cpp 327

DL_MESO Technical Manual, Release 2.7

fD3Q15VFZouHe()

int fD3Q15VFZouHe (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz)

Applies the appropriate Zou-He boundary condition for a constant velocity based on direction for a three-
dimensional D3Q15 lattice. (In this case, there are boundary options for planar surfaces, concave edges and
corners.) For edges and corners with Swift free-energy interactions, the vector between the boundary lattice point
and sampling point for densities can be specified to correct fluid density/concentration using gradients of those
properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)

fD3Q15VPSSimpleZouHe()

int fD3Q15VPSSimpleZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly com-
pressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, including
those with Swift free-energy interactions as the differences between local equiibrium distribution functions for
conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this
subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

328 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

fD3Q15VPSZouHe()

int fD3Q15VPSZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions, including those with
Swift free-energy interactions as the differences between local equiibrium distribution functions for conjugate
links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this subroutine
are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different distribution
functions and applying positive or negative values for velocity components (which may be swapped around).

Parameters

5.25. lbpBOUNDZouHe.cpp 329

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

fD3Q19CCCZouHe()

int fD3Q19CCCZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave corner using the three-dimensional D3Q15 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left-back concave corners (CCCTRF) but can be used for
any concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

330 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19CCEZouHe()

int fD3Q19CCEZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave edge using the three-dimensional D3Q19 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left concave edges (CCETR) but can be used for any
concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

5.25. lbpBOUNDZouHe.cpp 331

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19CPSZouHe()

int fD3Q19CPSZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute concen-
trations at a planar surface using the three-dimensional D3Q19 lattice. This routine uses the simplified local equi-
librium distribution functions for diffusive systems to represent solutes with concentration analogous to density.
The expressions in this subroutine are for bottom planar surfaces (CPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

332 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19PCZouHe()

int fD3Q19PCZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant solute concentrations based on direction (planar
surface, concave edges and corners) for a three-dimensional D3Q19 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q19PFSimpleZouHe()

int fD3Q19PFSimpleZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate simple Zou-He boundary condition for constant fluid densities based on types of collisions,
interactions and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for
cascaded LBE collisions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

5.25. lbpBOUNDZouHe.cpp 333

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying simple Zou-He boundary condition

fD3Q19PFZouHe()

int fD3Q19PFZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant fluid densities based on types of collisions, inter-
actions and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for cascaded
LBE collisions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Zou-He boundary condition

fD3Q19PPSSwiftZouHe()

int fD3Q19PPSSwiftZouHe (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double & vel)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q19 lattice and Swift free-energy interactions. The resulting
orthogonal velocity component is calculated using the density distribution functions: this value is subsequently
used for concentration distribution functions (if required for two-fluid systems) as well as solute concentration
and temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in
this subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different
distribution functions.

Parameters

334 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q19PPSZouHe()

int fD3Q19PPSZouHe (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double & vel)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed fluid densities at
a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can also be
used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these (with zero
tangential velocity) result in the same expressions for missing distribution functions. The resulting orthogonal
velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine
are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different distribution
functions.

Parameters

5.25. lbpBOUNDZouHe.cpp 335

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q19PTZouHe()

int fD3Q19PTZouHe (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant temperature based on direction (planar surface,
concave edges and corners) for a three-dimensional D3Q19 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Temperature for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q19TCCZouHe()

int fD3Q19TCCZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature at
a concave corner using the three-dimensional D3Q19 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The

336 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

expressions in this subroutine are for bottom-left-back concave corners (TCCTRF) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around).

Parameters

in p Temperature at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19TCEZouHe()

int fD3Q19TCEZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature
at a concave edge using the three-dimensional D3Q19 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left concave edges (TCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

5.25. lbpBOUNDZouHe.cpp 337

DL_MESO Technical Manual, Release 2.7

in p Temperature at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19TPSZouHe()

int fD3Q19TPSZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature
at a planar surface using the three-dimensional D3Q19 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom planar surfaces (TPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

338 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Temperature for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VCCCLBESimpleZouHe()

int fD3Q19VCCCLBESimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave corner using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE)
collisions. This routine can only be used for mildly compressible fluids using the extended local equilibrium
distribution functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back
concave corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions
and applying positive or negative values for velocity components (which may be swapped around). Since fluid
densities at the boundary point are required, this subroutine can be used for both constant velocity and constant
density boundaries.

Parameters

5.25. lbpBOUNDZouHe.cpp 339

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCCLBEZouHe()

int fD3Q19VCCCLBEZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back concave
corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions and ap-
plying positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

340 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCSimpleZouHe()

int fD3Q19VCCSimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave corner using the three-dimensional D3Q19 lattice. This routine can be used
for mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution func-
tions, including those with Swift free-energy interactions as the differences between local equiibrium distribution
functions for conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

5.25. lbpBOUNDZouHe.cpp 341

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCZouHe()

int fD3Q19VCCZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q19 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, includ-
ing those with Swift free-energy interactions as the differences between local equiibrium distribution functions
for conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in
this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave corner by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be used for
both constant velocity and constant density boundaries.

Parameters

342 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCECLBESimpleZouHe()

int fD3Q19VCECLBESimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE)
collisions. This routine can only be used for mildly compressible fluids using the extended local equilibrium dis-
tribution functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave
edges (VCETR) but can be used for any concave edge by selecting different distribution functions and apply-
ing positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

5.25. lbpBOUNDZouHe.cpp 343

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCECLBEZouHe()

int fD3Q19VCECLBEZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges
(VCETR) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

344 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCESimpleZouHe()

int fD3Q19VCESimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q19 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions,
including those with Swift free-energy interactions as the differences between local equiibrium distribution func-
tions for conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expres-
sions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be used for
both constant velocity and constant density boundaries.

Parameters

5.25. lbpBOUNDZouHe.cpp 345

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCEZouHe()

int fD3Q19VCEZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice. This routine can be used for mildly com-
pressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, including
those with Swift free-energy interactions as the differences between local equiibrium distribution functions for
conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this
subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around). Since fluid densities at the boundary point are required, this subroutine can be used for both constant
velocity and constant density boundaries.

Parameters

346 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VFSimpleZouHe()

int fD3Q19VFSimpleZouHe (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz)

Applies the appropriate simple Zou-He boundary condition for a constant velocity based on types of collisions
and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for cascaded LBE
collsions as well as planar surfaces, concave edges and corners.) For edges and corners with Swift free-energy
interactions, the vector between the boundary lattice point and sampling point for densities can be specified to
correct fluid density/concentration using gradients of those properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)

5.25. lbpBOUNDZouHe.cpp 347

DL_MESO Technical Manual, Release 2.7

fD3Q19VFZouHe()

int fD3Q19VFZouHe (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz)

Applies the appropriate Zou-He boundary condition for a constant velocity based on types of collisions and direc-
tion for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for cascaded LBE collsions
as well as planar surfaces, concave edges and corners.) For edges and corners with Swift free-energy interactions,
the vector between the boundary lattice point and sampling point for densities can be specified to correct fluid
density/concentration using gradients of those properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)

fD3Q19VPSCLBESimpleZouHe()

int fD3Q19VPSCLBESimpleZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can
be used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

348 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VPSCLBEZouHe()

int fD3Q19VPSCLBEZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions. This routine
can only be used for mildly compressible fluids using the extended local equilibrium distribution functions ob-
tained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can be
used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

5.25. lbpBOUNDZouHe.cpp 349

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VPSSimpleZouHe()

int fD3Q19VPSSimpleZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly com-
pressible and fully incompressible fluids with the appropriate local equilibrium distribution functions, including
those with Swift free-energy interactions as the differences between local equiibrium distribution functions for
conjugate links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this
subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

350 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VPSZouHe()

int fD3Q19VPSZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions, including those with
Swift free-energy interactions as the differences between local equiibrium distribution functions for conjugate
links eliminate all density/concentration gradient and Galilean invariance terms. The expressions in this subroutine
are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different distribution
functions and applying positive or negative values for velocity components (which may be swapped around).

Parameters

5.25. lbpBOUNDZouHe.cpp 351

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q27CCCZouHe()

int fD3Q27CCCZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave corner using the three-dimensional D3Q27 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left-back concave corners (CCCTRF) but can be used for
any concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site

continues on next page

352 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.6 – continued from previous page
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27CCEZouHe()

int fD3Q27CCEZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute con-
centrations at a concave edge using the three-dimensional D3Q27 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left concave edges (CCETR) but can be used for any
concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site

continues on next page

5.25. lbpBOUNDZouHe.cpp 353

DL_MESO Technical Manual, Release 2.7

Table 5.7 – continued from previous page
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27CPSZouHe()

int fD3Q27CPSZouHe (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed solute concen-
trations at a planar surface using the three-dimensional D3Q27 lattice. This routine uses the simplified local equi-
librium distribution functions for diffusive systems to represent solutes with concentration analogous to density.
The expressions in this subroutine are for bottom planar surfaces (CPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site

continues on next page

354 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.8 – continued from previous page
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

fD3Q27PCZouHe()

int fD3Q27PCZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant solute concentrations based on direction (planar
surface, concave edges and corners) for a three-dimensional D3Q27 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q27PFSimpleZouHe()

int fD3Q27PFSimpleZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate simple Zou-He boundary condition for constant fluid densities based on types of collisions
and direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collisions as well as planar surfaces, concave edges and corners.)

Parameters

5.25. lbpBOUNDZouHe.cpp 355

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying simple Zou-He boundary condition

fD3Q27PFZouHe()

int fD3Q27PFZouHe (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant fluid densities based on types of collisions and
direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collisions as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Zou-He boundary condition

fD3Q27PPSZouHe()

int fD3Q27PPSZouHe (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26,
double & vel)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can also
be used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these (with
zero tangential velocity) result in the same expressions for missing distribution functions. The expressions in this
subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different
distribution functions.

Parameters

356 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q27PTZouHe()

int fD3Q27PTZouHe (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Zou-He boundary condition for constant temperature based on direction (planar surface,
concave edges and corners) for a three-dimensional D3Q27 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Temperature for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

5.25. lbpBOUNDZouHe.cpp 357

DL_MESO Technical Manual, Release 2.7

fD3Q27TCCZouHe()

int fD3Q27TCCZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature at
a concave corner using the three-dimensional D3Q27 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left-back concave corners (TCCTRF) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around).

Parameters

in p Temperature at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

358 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27TCEZouHe()

int fD3Q27TCEZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature
at a concave edge using the three-dimensional D3Q27 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left concave edges (TCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in p Temperature at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

5.25. lbpBOUNDZouHe.cpp 359

DL_MESO Technical Manual, Release 2.7

fD3Q27TPSZouHe()

int fD3Q27TPSZouHe (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for fixed temperature
at a planar surface using the three-dimensional D3Q27 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom planar surfaces (TPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in p Temperature for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

360 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27VCCCLBESimpleZouHe()

int fD3Q27VCCCLBESimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave corner using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE)
collisions. This routine can only be used for mildly compressible fluids using the extended local equilibrium
distribution functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back
concave corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions
and applying positive or negative values for velocity components (which may be swapped around). Since fluid
densities at the boundary point are required, this subroutine can be used for both constant velocity and constant
density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site

continues on next page

5.25. lbpBOUNDZouHe.cpp 361

DL_MESO Technical Manual, Release 2.7

Table 5.12 – continued from previous page
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCCCLBEZouHe()

int fD3Q27VCCCLBEZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back concave
corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions and ap-
plying positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site

continues on next page

362 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.13 – continued from previous page
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCCSimpleZouHe()

int fD3Q27VCCSimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave corner using the three-dimensional D3Q27 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any
concave corner by selecting different distribution functions and applying positive or negative values for veloc-
ity components (which may be swapped around). Since fluid densities at the boundary point are required, this
subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

continues on next page

5.25. lbpBOUNDZouHe.cpp 363

DL_MESO Technical Manual, Release 2.7

Table 5.14 – continued from previous page
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCCZouHe()

int fD3Q27VCCZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid veloc-
ity or density at a concave corner using the three-dimensional D3Q27 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site

continues on next page

364 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.15 – continued from previous page
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCECLBESimpleZouHe()

int fD3Q27VCECLBESimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE)
collisions. This routine can only be used for mildly compressible fluids using the extended local equilibrium dis-
tribution functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave
edges (VCETR) but can be used for any concave edge by selecting different distribution functions and apply-
ing positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site

continues on next page

5.25. lbpBOUNDZouHe.cpp 365

DL_MESO Technical Manual, Release 2.7

Table 5.16 – continued from previous page
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VCECLBEZouHe()

int fD3Q27VCECLBEZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges
(VCETR) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site

continues on next page

366 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.17 – continued from previous page
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VCESimpleZouHe()

int fD3Q27VCESimpleZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q27 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site

continues on next page

5.25. lbpBOUNDZouHe.cpp 367

DL_MESO Technical Manual, Release 2.7

Table 5.18 – continued from previous page
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VCEZouHe()

int fD3Q27VCEZouHe (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q27 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site

continues on next page

368 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.19 – continued from previous page
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VFSimpleZouHe()

int fD3Q27VFSimpleZouHe (long tpos,
long rpos,
int prop,
double * uwall)

Applies the appropriate simple Zou-He boundary condition for a constant velocity based on types of collisions
and direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collsions as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site

fD3Q27VFZouHe()

int fD3Q27VFZouHe (long tpos,
long rpos,
int prop,
double * uwall)

Applies the appropriate Zou-He boundary condition for a constant velocity based on types of collisions and direc-
tion for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE collsions
as well as planar surfaces, concave edges and corners.)

Parameters

5.25. lbpBOUNDZouHe.cpp 369

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site

fD3Q27VPSCLBESimpleZouHe()

int fD3Q27VPSCLBESimpleZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can
be used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site

continues on next page

370 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.20 – continued from previous page
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

fD3Q27VPSCLBEZouHe()

int fD3Q27VPSCLBEZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions. This routine
can only be used for mildly compressible fluids using the extended local equilibrium distribution functions ob-
tained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can be
used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site

continues on next page

5.25. lbpBOUNDZouHe.cpp 371

DL_MESO Technical Manual, Release 2.7

Table 5.21 – continued from previous page
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

fD3Q27VPSSimpleZouHe()

int fD3Q27VPSSimpleZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a simple Zou-He boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site

continues on next page

372 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.22 – continued from previous page
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

fD3Q27VPSZouHe()

int fD3Q27VPSZouHe (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a Zou-He boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site

continues on next page

5.25. lbpBOUNDZouHe.cpp 373

DL_MESO Technical Manual, Release 2.7

Table 5.23 – continued from previous page
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

5.26 lbpBOUNDInamuro.cpp

Module for applying Inamuro boundary conditions. (Header file available as lbpBOUNDInamuro.hpp.)

Applies Inamuro [63] boundary conditions at specified lattice points to give flxed fluid velocities or densities,
solute concentrations and temperatures. This scheme uses local equilibrium distribution functions for ‘missing’
distribution functions re-entering the simulation box with enhanced densities 𝜌′ and additional tangential slip
velocities 𝑢⃗𝑠 added on to required fluid velocities (with non-zero values for directions tangential to the boundary
and zero for orthogonal directions). Values for these properties can be obtained by using these local equilibrium
distribution functions along with the following summations to conserve fluid mass and momentum:

𝜌 =
∑︁
𝑖

𝑓𝑖,

𝜌𝑢𝛼 =
∑︁
𝑖

𝑓𝑖𝑒𝑖,𝛼.

Rearrangement of these expressions for concave edges in two dimensions or planar surfaces in three dimensions
can provide the wall density or orthogonal velocity component, depending on which type of boundary condition
is required, as well as the adjusted density and slip velocity to ensure the specified boundary condition can be
fulfilled. In the cases of constant solute concentrations and/or temperatures, only the adjusted density 𝜌′ (as an
analogue for solute concentration or temperature) is required in local equilibrium distribution functions along with
the known fluid velocity. For boundaries other than concave edges in two dimensions or planar surfaces in three
dimensions, the same procedure with fewer adjusted properties can be used (e.g. only using the adjusted density
for concave corners), although both fluid velocities and densities are required: for constant velocity boundaries,
the fluid densities can be sampled from a nearby lattice point, while for constant density boundaries the fluid
velocity can be assumed to be zero.

5.26.1 Functions

• int fD2Q9VCEInamuro()

Applies Inamuro constant velocity boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9VCCInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9VCECLBEInamuro()

Applies Inamuro constant velocity boundary condition to concave edge for D2Q9 lattice with cascaded LBE
collisions.

• int fD2Q9VCCCLBEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D2Q9 lattice with
cascaded LBE collisions.

• int fD2Q9VCESwiftInamuro()

Applies Inamuro constant velocity boundary condition to concave edge for D2Q9 lattice with Swift free-
energy interactions.

• int fD2Q9VCCSwiftInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D2Q9 lattice with
Swift free-energy interactions.

374 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fD2Q9VFInamuro()

Applies constant velocity Inamuro boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9PCEInamuro()

Applies Inamuro constant density boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9PCECLBEInamuro()

Applies Inamuro constant density boundary condition to concave edge for D2Q9 lattice with cascaded LBE
collisions.

• int fD2Q9PCESwiftInamuro()

Applies Inamuro constant density boundary condition to concave edge for D2Q9 lattice with Swift free-
energy interactions.

• int fD2Q9PFInamuro()

Applies constant density Inamuro boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9CCEInamuro()

Applies Inamuro constant solute concentration boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9CCCInamuro()

Applies Inamuro constant solute concentration boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9PCInamuro()

Applies constant solute concentration Inamuro boundary condition to lattice point using D2Q9 lattice
scheme.

• int fD2Q9TCEInamuro()

Applies Inamuro constant temperature boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9TCCInamuro()

Applies Inamuro constant temperature boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9PTInamuro()

Applies constant temperature Inamuro boundary condition to lattice point using D2Q9 lattice scheme.

• int fD3Q15VPSInamuro()

Applies Inamuro constant velocity boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15VCEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15VCCInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15VPSSwiftInamuro()

Applies Inamuro constant velocity boundary condition to planar surface for D3Q15 lattice with Swift free-
energy interactions.

• int fD3Q15VCESwiftInamuro()

Applies Inamuro constant velocity or density boundary condition to concave edge for D3Q15 lattice with
Swift free-energy interactions.

• int fD3Q15VCCSwiftInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D3Q15 lattice with
Swift free-energy interactions.

5.26. lbpBOUNDInamuro.cpp 375

DL_MESO Technical Manual, Release 2.7

• int fD3Q15VFInamuro()

Applies constant velocity Inamuro boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15PPSInamuro()

Applies Inamuro constant density boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15PPSSwiftInamuro()

Applies Inamuro constant density boundary condition to planar surface for D3Q15 lattice with Swift free-
energy interactions.

• int fD3Q15PFInamuro()

Applies constant density Inamuro boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15CPSInamuro()

Applies Inamuro constant solute concentration boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15CCEInamuro()

Applies Inamuro constant solute concentration boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15CCCInamuro()

Applies Inamuro constant solute concentration boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15PCInamuro()

Applies constant solute concentration Inamuro boundary condition to lattice point using D3Q15 lattice
scheme.

• int fD3Q15TPSInamuro()

Applies Inamuro constant temperature boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15TCEInamuro()

Applies Inamuro constant temperature boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15TCCInamuro()

Applies Inamuro constant temperature boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15PTInamuro()

Applies constant temperature Inamuro boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q19VPSInamuro()

Applies Inamuro constant velocity boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19VCEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19VCCInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D3Q19 lattice.

• int fD3Q19VPSCLBEInamuro()

Applies Inamuro constant velocity boundary condition to planar surface for D3Q19 lattice with cascaded
LBE collisions.

• int fD3Q19VCECLBEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave edge for D3Q19 lattice with
cascaded LBE collisions.

• int fD3Q19VCCCLBEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D3Q19 lattice with
cascaded LBE collisions.

376 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fD3Q19VPSSwiftInamuro()

Applies Inamuro constant velocity boundary condition to planar surface for D3Q19 lattice with Swift free-
energy interactions.

• int fD3Q19VCESwiftInamuro()

Applies Inamuro constant velocity or density boundary condition to concave edge for D3Q19 lattice with
Swift free-energy interactions.

• int fD3Q19VCCSwiftInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D3Q19 lattice with
Swift free-energy interactions.

• int fD3Q19VFInamuro()

Applies constant velocity Inamuro boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q19PPSInamuro()

Applies Inamuro constant density boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19PPSCLBEInamuro()

Applies Inamuro constant density boundary condition to planar surface for D3Q19 lattice with cascaded
LBE collisions.

• int fD3Q19PPSSwiftInamuro()

Applies Inamuro constant density boundary condition to planar surface for D3Q19 lattice with Swift free-
energy interactions.

• int fD3Q19PFInamuro()

Applies constant density Inamuro boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q19CPSInamuro()

Applies Inamuro constant solute concentration boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19CCEInamuro()

Applies Inamuro constant solute concentration boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19CCCInamuro()

Applies Inamuro constant solute concentration boundary condition to concave corner for D3Q15 lattice.

• int fD3Q19PCInamuro()

Applies constant solute concentration Inamuro boundary condition to lattice point using D3Q19 lattice
scheme.

• int fD3Q19TPSInamuro()

Applies Inamuro constant temperature boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19TCEInamuro()

Applies Inamuro constant temperature boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19TCCInamuro()

Applies Inamuro constant temperature boundary condition to concave corner for D3Q19 lattice.

• int fD3Q19PTInamuro()

Applies constant temperature Inamuro boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q27VPSInamuro()

Applies Inamuro constant velocity boundary condition to planar surface for D3Q27 lattice.

5.26. lbpBOUNDInamuro.cpp 377

DL_MESO Technical Manual, Release 2.7

• int fD3Q27VCEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27VCCInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27VPSCLBEInamuro()

Applies Inamuro constant velocity boundary condition to planar surface for D3Q27 lattice with cascaded
LBE collisions.

• int fD3Q27VCECLBEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave edge for D3Q27 lattice with
cascaded LBE collisions.

• int fD3Q27VCCCLBEInamuro()

Applies Inamuro constant velocity or density boundary condition to concave corner for D3Q27 lattice with
cascaded LBE collisions.

• int fD3Q27VFInamuro()

Applies constant velocity Inamuro boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27PPSInamuro()

Applies Inamuro constant density boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27PPSCLBEInamuro()

Applies Inamuro constant density boundary condition to planar surface for D3Q27 lattice with cascaded
LBE collisions.

• int fD3Q27PFInamuro()

Applies constant density Inamuro boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27CPSInamuro()

Applies Inamuro constant solute concentration boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27CCEInamuro()

Applies Inamuro constant solute concentration boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27CCCInamuro()

Applies Inamuro constant solute concentration boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27PCInamuro()

Applies constant solute concentration Inamuro boundary condition to lattice point using D3Q27 lattice
scheme.

• int fD3Q27TPSInamuro()

Applies Inamuro constant temperature boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27TCEInamuro()

Applies Inamuro constant temperature boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27TCCInamuro()

Applies Inamuro constant temperature boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27PTInamuro()

Applies constant temperature Inamuro boundary condition to lattice point using D3Q27 lattice scheme.

378 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.26.2 Function Documentation

fD2Q9CCCInamuro()

int fD2Q9CCCInamuro (double * p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave corner using the two-dimensional D2Q9 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for the bottom-left concave corner (CCCTRF) but can be used for any
concave corner by selecting different distribution functions.

Parameters

in p Solute concentrations for boundary lattice point
in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9CCEInamuro()

int fD2Q9CCEInamuro (double * p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave edge using the two-dimensional D2Q9 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom concave edges (CCETF) but can be used for any concave
edge by selecting different distribution functions.

Parameters

5.26. lbpBOUNDInamuro.cpp 379

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9PCECLBEInamuro()

int fD2Q9PCECLBEInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a concave edge using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This routine can
only be used for mildly compressible fluids using the extended local equilibrium distribution functions obtained
from CLBE collisions. The resulting orthogonal velocity component is subsequently used to specify the fluid
velocity for solute concentration and temperature boundaries, while the tangential velocity component is assumed
to be zero. The expressions in this subroutine are for bottom concave edges (PCETF) but can be used for any
concave edge by selecting different distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

380 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD2Q9PCEInamuro()

int fD2Q9PCEInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions. The resulting orthogonal
velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine
are for bottom concave edges (PCETF) but can be used for any concave edge by selecting different distribution
functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD2Q9PCESwiftInamuro()

int fD2Q9PCESwiftInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a concave edge using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This routine can
only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). (The tangential
velocity component is assumed equal to zero.) The expressions in this subroutine are for bottom concave edges
(PCETF) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for density/concentration gradients (which may be swapped around).

Parameters

5.26. lbpBOUNDInamuro.cpp 381

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD2Q9PCInamuro()

int fD2Q9PCInamuro (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant solute concentrations based on direction (con-
cave edges and corners) for a two-dimensional D2Q9 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD2Q9PFInamuro()

int fD2Q9PFInamuro (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate Inamuro boundary condition for constant fluid densities based on types of collisions, in-
teractions and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded
LBE collisions and Swift free-energy interactions, as well as concave edges and corners.)

Parameters

382 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Inamuro boundary condition
in T Temperature at boundary grid point

fD2Q9PTInamuro()

int fD2Q9PTInamuro (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for a constant temperature based on direction (concave edges
and corners) for a two-dimensional D2Q9 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD2Q9TCCInamuro()

int fD2Q9TCCInamuro (double p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed temperature
at a concave corner using the two-dimensional D2Q9 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for the bottom-left concave corner (TCCTRF) but can be used for any concave
corner by selecting different distribution functions.

Parameters

in p Temperature for boundary lattice point
in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

5.26. lbpBOUNDInamuro.cpp 383

DL_MESO Technical Manual, Release 2.7

fD2Q9TCEInamuro()

int fD2Q9TCEInamuro (double p,
double v0, double v1,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed temperature
at a concave edge using the two-dimensional D2Q9 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom concave edges (TCETF) but can be used for any concave edge by
selecting different distribution functions.

Parameters

in p Temperature for boundary lattice point
in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCCCLBEInamuro()

int fD2Q9VCCCLBEInamuro (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave corner using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave corners (VCCTRF)
but can be used for any concave corner by selecting different distribution functions and applying positive or
negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

384 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9VCCInamuro()

int fD2Q9VCCInamuro (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid veloc-
ity or density at a concave corner using the two-dimensional D2Q9 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

5.26. lbpBOUNDInamuro.cpp 385

DL_MESO Technical Manual, Release 2.7

fD2Q9VCCSwiftInamuro()

int fD2Q9VCCSwiftInamuro (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave corner using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies
for fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures.
The expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this
is zero, the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions
by zero). The expressions in this subroutine are for bottom-left concave corners (VCCTRF) but can be used
for any concave corner by selecting different distribution functions and applying positive or negative values for
velocity components and density/concentration gradients (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

386 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD2Q9VCECLBEInamuro()

int fD2Q9VCECLBEInamuro (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This routine can
only be used for mildly compressible fluids using the extended local equilibrium distribution functions obtained
from CLBE collisions. The expressions in this subroutine are for bottom concave edges (VCETF) but can be
used for any concave edge by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCEInamuro()

int fD2Q9VCEInamuro (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in this
subroutine are for bottom concave edges (VCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

5.26. lbpBOUNDInamuro.cpp 387

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCESwiftInamuro()

int fD2Q9VCESwiftInamuro (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This routine can
only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). The expressions in
this subroutine are for bottom concave edges (VCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components and density/concentration
gradients (which may be swapped around).

Parameters

388 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD2Q9VFInamuro()

int fD2Q9VFInamuro (long tpos,
long tpos1,
int prop,
double * uwall,
double dx,
double dy,
double T)

Applies the appropriate Inamuro boundary condition for a constant velocity based on types of collisions, interac-
tions and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded LBE
collisions and Swift free-energy interactions, as well as concave edges and corners.) For corners with Swift free-
energy interactions, the vector between the boundary lattice point and sampling point for densities can be specified
to correct fluid density/concentration using gradients of those properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in T Temperature at boundary grid point

5.26. lbpBOUNDInamuro.cpp 389

DL_MESO Technical Manual, Release 2.7

fD3Q15CCCInamuro()

int fD3Q15CCCInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave corner using the three-dimensional D3Q15 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left-back concave corners (CCCTRF) but can be used for
any concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15CCEInamuro()

int fD3Q15CCEInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave edge using the three-dimensional D3Q15 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left concave edges (CCETR) but can be used for any
concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

390 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15CPSInamuro()

int fD3Q15CPSInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a planar surface using the three-dimensional D3Q15 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom planar surfaces (CPST) but can be used for any planar
surface by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around).

Parameters

5.26. lbpBOUNDInamuro.cpp 391

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

fD3Q15PCInamuro()

int fD3Q15PCInamuro (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant solute concentrations based on direction (planar
surface, concave edges and corners) for a three-dimensional D3Q15 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q15PFInamuro()

int fD3Q15PFInamuro (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate Inamuro boundary condition for constant fluid densities based on types of collisions,
interactions and direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for
Swift free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Inamuro boundary condition
in T Temperature at boundary grid point

392 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15PPSInamuro()

int fD3Q15PPSInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The resulting orthog-
onal velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine are
for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different distribution func-
tions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q15PPSSwiftInamuro()

int fD3Q15PPSSwiftInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This routine can

5.26. lbpBOUNDInamuro.cpp 393

DL_MESO Technical Manual, Release 2.7

only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). (The tangential
velocity component is assumed equal to zero.) The expressions in this subroutine are for bottom planar surfaces
(PPST) but can be used for any planar surface by selecting different distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q15PTInamuro()

int fD3Q15PTInamuro (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant temperature based on direction (planar surface,
concave edges and corners) for a three-dimensional D3Q15 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Temperature for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

394 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15TCCInamuro()

int fD3Q15TCCInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a concave corner using the three-dimensional D3Q15 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left-back concave corners (TCCTRF) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around).

Parameters

in p Temperature at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15TCEInamuro()

int fD3Q15TCEInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a concave edge using the three-dimensional D3Q15 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left concave edges (TCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

5.26. lbpBOUNDInamuro.cpp 395

DL_MESO Technical Manual, Release 2.7

in p Temperature at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15TPSInamuro()

int fD3Q15TPSInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a planar surface using the three-dimensional D3Q15 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom planar surfaces (TPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

396 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Temperature for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

fD3Q15VCCInamuro()

int fD3Q15VCCInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid ve-
locity or density at a concave corner using the three-dimensional D3Q15 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any
concave corner by selecting different distribution functions and applying positive or negative values for veloc-
ity components (which may be swapped around). Since fluid densities at the boundary point are required, this
subroutine can be used for both constant velocity and constant density boundaries.

Parameters

5.26. lbpBOUNDInamuro.cpp 397

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15VCCSwiftInamuro()

int fD3Q15VCCSwiftInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave cprmer using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies
for fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures.
The expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is
zero, the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by
zero). The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used
for any concave corner by selecting different distribution functions and applying positive or negative values for
velocity components and density/concentration gradients (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

398 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
in f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q15VCEInamuro()

int fD3Q15VCEInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q15 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

5.26. lbpBOUNDInamuro.cpp 399

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15VCESwiftInamuro()

int fD3Q15VCESwiftInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-
energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is zero,
the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero).
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
and density/concentration gradients (which may be swapped around). Since fluid densities at the boundary point
are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

400 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q15VFInamuro()

int fD3Q15VFInamuro (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz,
double T)

Applies the appropriate Inamuro boundary condition for a constant velocity based on types of interactions and
direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for Swift free-energy
interactions, as well as planar surfaces, concave edges and corners.) For edges and corners with Swift free-energy
interactions, the vector between the boundary lattice point and sampling point for densities can be specified to
correct fluid density/concentration using gradients of those properties evalulated at the boundary point.

Parameters

5.26. lbpBOUNDInamuro.cpp 401

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)
in T Temperature at boundary grid point

fD3Q15VPSInamuro()

int fD3Q15VPSInamuro (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

402 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15VPSSwiftInamuro()

int fD3Q15VPSSwiftInamuro (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This routine can
only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

5.26. lbpBOUNDInamuro.cpp 403

DL_MESO Technical Manual, Release 2.7

fD3Q19CCCInamuro()

int fD3Q19CCCInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave corner using the three-dimensional D3Q19 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left-back concave corners (CCCTRF) but can be used for
any concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19CCEInamuro()

int fD3Q19CCEInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

404 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave edge using the three-dimensional D3Q19 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left concave edges (CCETR) but can be used for any
concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19CPSInamuro()

int fD3Q19CPSInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a planar surface using the three-dimensional D3Q19 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom planar surfaces (CPST) but can be used for any planar
surface by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around).

Parameters

5.26. lbpBOUNDInamuro.cpp 405

DL_MESO Technical Manual, Release 2.7

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19PCInamuro()

int fD3Q19PCInamuro (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant solute concentrations based on direction (planar
surface, concave edges and corners) for a three-dimensional D3Q19 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q19PFInamuro()

int fD3Q19PFInamuro (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate Inamuro boundary condition for constant fluid densities based on types of collisions,
interactions and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for
cascaded LBE collisions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

406 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Inamuro boundary condition
in T Temperature at boundary grid point

fD3Q19PPSCLBEInamuro()

int fD3Q19PPSCLBEInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collsions. This routine
can only be used for mildly compressible using the extended local equilibrium distribution functions obtained from
CLBE collisions.The resulting orthogonal velocity component is subsequently used to specify the fluid velocity
for solute concentration and temperature boundaries, while the tangential velocity component is assumed to be
zero. The expressions in this subroutine are for bottom planar surfaces (PPST) but can be used for any planar
surface by selecting different distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

5.26. lbpBOUNDInamuro.cpp 407

DL_MESO Technical Manual, Release 2.7

fD3Q19PPSInamuro()

int fD3Q19PPSInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The resulting orthog-
onal velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine are
for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different distribution func-
tions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q19PPSSwiftInamuro()

int fD3Q19PPSSwiftInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,

(continues on next page)

408 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This routine can
only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). (The tangential
velocity component is assumed equal to zero.) The expressions in this subroutine are for bottom planar surfaces
(PPST) but can be used for any planar surface by selecting different distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

5.26. lbpBOUNDInamuro.cpp 409

DL_MESO Technical Manual, Release 2.7

fD3Q19PTInamuro()

int fD3Q19PTInamuro (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant temperature based on direction (planar surface,
concave edges and corners) for a three-dimensional D3Q19 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Temperature for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q19TCCInamuro()

int fD3Q19TCCInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a concave corner using the three-dimensional D3Q19 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left-back concave corners (TCCTRF) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around).

Parameters

410 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Temperature at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19TCEInamuro()

int fD3Q19TCEInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a concave edge using the three-dimensional D3Q19 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left concave edges (TCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

5.26. lbpBOUNDInamuro.cpp 411

DL_MESO Technical Manual, Release 2.7

in p Temperature at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19TPSInamuro()

int fD3Q19TPSInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a planar surface using the three-dimensional D3Q19 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom planar surfaces (TPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

412 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Temperature for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VCCCLBEInamuro()

int fD3Q19VCCCLBEInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back concave
corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions and ap-
plying positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

5.26. lbpBOUNDInamuro.cpp 413

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCInamuro()

int fD3Q19VCCInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid ve-
locity or density at a concave corner using the three-dimensional D3Q19 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any
concave corner by selecting different distribution functions and applying positive or negative values for veloc-
ity components (which may be swapped around). Since fluid densities at the boundary point are required, this
subroutine can be used for both constant velocity and constant density boundaries.

Parameters

414 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCSwiftInamuro()

int fD3Q19VCCSwiftInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies
for fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures.
The expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is
zero, the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by
zero). The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used
for any concave corner by selecting different distribution functions and applying positive or negative values for
velocity components and density/concentration gradients (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

5.26. lbpBOUNDInamuro.cpp 415

DL_MESO Technical Manual, Release 2.7

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q19VCECLBEInamuro()

int fD3Q19VCECLBEInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges (VCETR)
but can be used for any concave edge by selecting different distribution functions and applying positive or negative
values for velocity components (which may be swapped around). Since fluid densities at the boundary point are

416 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCEInamuro()

int fD3Q19VCEInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

5.26. lbpBOUNDInamuro.cpp 417

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCESwiftInamuro()

int fD3Q19VCESwiftInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-
energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is zero,
the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero).
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
and density/concentration gradients (which may be swapped around). Since fluid densities at the boundary point
are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

418 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q19VFInamuro()

int fD3Q19VFInamuro (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz,
double T)

Applies the appropriate Inamuro boundary condition for a constant velocity based on types of collisions, interac-
tions and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for cascaded
LBE collsions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.) For edges
and corners with Swift free-energy interactions, the vector between the boundary lattice point and sampling point
for densities can be specified to correct fluid density/concentration using gradients of those properties evalulated
at the boundary point.

Parameters

5.26. lbpBOUNDInamuro.cpp 419

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)
in T Temperature at boundary grid point

fD3Q19VPSCLBEInamuro()

int fD3Q19VPSCLBEInamuro (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid ve-
locity at a planar surface using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can
be used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

420 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q19VPSInamuro()

int fD3Q19VPSInamuro (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VPSSwiftInamuro()

int fD3Q19VPSSwiftInamuro (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,

(continues on next page)

5.26. lbpBOUNDInamuro.cpp 421

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This routine can
only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

422 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27CCCInamuro()

int fD3Q27CCCInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave corner using the three-dimensional D3Q27 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left-back concave corners (CCCTRF) but can be used for
any concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

5.26. lbpBOUNDInamuro.cpp 423

DL_MESO Technical Manual, Release 2.7

fD3Q27CCEInamuro()

int fD3Q27CCEInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a concave edge using the three-dimensional D3Q27 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom-left concave edges (CCETR) but can be used for any
concave edge by selecting different distribution functions and applying positive or negative values for velocity
components (which may be swapped around).

Parameters

in p Solute concentrations at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

424 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27CPSInamuro()

int fD3Q27CPSInamuro (double * p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed solute con-
centrations at a planar surface using the three-dimensional D3Q27 lattice. This routine uses the simplified local
equilibrium distribution functions for diffusive systems to represent solutes with concentration analogous to den-
sity. The expressions in this subroutine are for bottom planar surfaces (CPST) but can be used for any planar
surface by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around).

Parameters

in p Solute concentrations for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

5.26. lbpBOUNDInamuro.cpp 425

DL_MESO Technical Manual, Release 2.7

fD3Q27PCInamuro()

int fD3Q27PCInamuro (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant solute concentrations based on direction (planar
surface, concave edges and corners) for a three-dimensional D3Q27 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Solute concentrations for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

fD3Q27PFInamuro()

int fD3Q27PFInamuro (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant fluid densities based on types of collisions and
direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collisions as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying Inamuro boundary condition

fD3Q27PPSCLBEInamuro()

int fD3Q27PPSCLBEInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collsions. This routine
can only be used for mildly compressible using the extended local equilibrium distribution functions obtained from
CLBE collisions.The resulting orthogonal velocity component is subsequently used to specify the fluid velocity
for solute concentration and temperature boundaries, while the tangential velocity component is assumed to be
zero. The expressions in this subroutine are for bottom planar surfaces (PPST) but can be used for any planar
surface by selecting different distribution functions.

426 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q27PPSInamuro()

int fD3Q27PPSInamuro (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26,
double & vel)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The resulting orthog-
onal velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine are
for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different distribution func-
tions.

Parameters

5.26. lbpBOUNDInamuro.cpp 427

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q27PTInamuro()

int fD3Q27PTInamuro (long tpos,
int prop,
double p0,
double * uwall)

Applies the appropriate Inamuro boundary condition for constant temperature based on direction (planar surface,
concave edges and corners) for a three-dimensional D3Q27 lattice.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Temperature for boundary lattice point
in uwall Velocity at boundary site determined from applying constant velocity/density boundary condition

428 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27TCCInamuro()

int fD3Q27TCCInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a concave corner using the three-dimensional D3Q27 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left-back concave corners (TCCTRF) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around).

Parameters

in p Temperature at concave corner
in v0 Velocity component at concave corner (x-component for bottom-left-back corner)
in v1 Velocity component at concave corner (y-component for bottom-left-back corner)
in v2 Velocity component at concave corner (z-component for bottom-left-back corner)
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

5.26. lbpBOUNDInamuro.cpp 429

DL_MESO Technical Manual, Release 2.7

fD3Q27TCEInamuro()

int fD3Q27TCEInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a concave edge using the three-dimensional D3Q27 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom-left concave edges (TCETR) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in p Temperature at concave edge
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

430 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27TPSInamuro()

int fD3Q27TPSInamuro (double p,
double v0, double v1, double v2,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for fixed temperature
at a planar surface using the three-dimensional D3Q27 lattice. This routine uses the simplified local equilibrium
distribution function for diffusive systems to represent heat transfers with temperature analogous to density. The
expressions in this subroutine are for bottom planar surfaces (TPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in p Temperature for boundary lattice point
in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

5.26. lbpBOUNDInamuro.cpp 431

DL_MESO Technical Manual, Release 2.7

fD3Q27VCCCLBEInamuro()

int fD3Q27VCCCLBEInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back concave
corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions and ap-
plying positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site

continues on next page

432 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.34 – continued from previous page
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCCInamuro()

int fD3Q27VCCInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid ve-
locity or density at a concave corner using the three-dimensional D3Q27 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any
concave corner by selecting different distribution functions and applying positive or negative values for veloc-
ity components (which may be swapped around). Since fluid densities at the boundary point are required, this
subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site

continues on next page

5.26. lbpBOUNDInamuro.cpp 433

DL_MESO Technical Manual, Release 2.7

Table 5.35 – continued from previous page
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCECLBEInamuro()

int fD3Q27VCECLBEInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges (VCETR)
but can be used for any concave edge by selecting different distribution functions and applying positive or negative
values for velocity components (which may be swapped around). Since fluid densities at the boundary point are
required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site

continues on next page

434 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.36 – continued from previous page
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VCEInamuro()

int fD3Q27VCEInamuro (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q27 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site

continues on next page

5.26. lbpBOUNDInamuro.cpp 435

DL_MESO Technical Manual, Release 2.7

Table 5.37 – continued from previous page
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VFInamuro()

int fD3Q27VFInamuro (long tpos,
long rpos,
int prop,
double * uwall)

Applies the appropriate Inamuro boundary condition for a constant velocity based on types of collisions and
direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collsions as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site

fD3Q27VPSCLBEInamuro()

int fD3Q27VPSCLBEInamuro (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid ve-
locity at a planar surface using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can
be used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)

continues on next page

436 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.38 – continued from previous page
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

fD3Q27VPSInamuro()

int fD3Q27VPSInamuro (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete an Inamuro boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)

continues on next page

5.26. lbpBOUNDInamuro.cpp 437

DL_MESO Technical Manual, Release 2.7

Table 5.39 – continued from previous page
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

5.27 lbpBOUNDRegular.cpp

Module for applying regularised boundary conditions.

Applies regularised [74] boundary conditions at specified lattice points to give flxed fluid velocities or densi-
ties. This scheme calculates non-equilibrium momentum flux tensors that are then used to calculate replacement
distribution functions. The non-equilibrium momentum flux tensors can be calculated using original values for
distribution functions:

Π𝑛𝑒𝑞
𝛼𝛽 = Π𝛼𝛽 − Π𝑒𝑞

𝛼𝛽 =
∑︁
𝑖

𝑒𝑖,𝛼𝑒𝑖,𝛽 (𝑓𝑖 − 𝑓𝑒𝑞𝑖) .

Any unknown distribution functions are obtained by using reflection of non-equilibrium contributions (similar to
Zou-He boundary conditions):

𝑓𝑖 − 𝑓𝑒𝑞𝑖 = 𝑓𝑗 − 𝑓𝑒𝑞𝑗 .

The replacement distribution functions are constructed from local equilibrium distribution values and additional
terms dependent on the non-equilibrium momentum flux tensor:

𝑓𝑖 = 𝑓𝑒𝑞𝑖 (𝜌𝑤, 𝑢⃗𝑤) +
𝑤𝑖

2𝑐2𝑠

(︀
𝑒𝑖𝑒𝑖 − 𝑐2𝑠I

)︀
: Π𝑛𝑒𝑞

For boundaries other than concave edges in two dimensions or planar surfaces in three dimensions where ‘buried’
links that neither enter nor leave the simulation box are included, all non-buried (‘active’) links re-entering the
system are determined using non-equilibrium reflection and the buried ones are obtained by ensuring the overall
density and momentum are correct, as obtained using the following summations:

𝜌 =
∑︁
𝑖

𝑓𝑖,

438 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

𝜌𝑢𝛼 =
∑︁
𝑖

𝑓𝑖𝑒𝑖,𝛼.

In cases where there are more unknown buried links than density and momentum equations, each buried link is
expressed as a combination of terms for these three or four components, which are solved to give the correct
density and momentum at the lattice point.

5.27.1 Functions

• int fD2Q9VCERegular()

Applies regularised constant velocity boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9VCCRegular()

Applies regularised constant velocity or density boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9VCECLBERegular()

Applies regularised constant velocity boundary condition to concave edge for D2Q9 lattice with cascaded
LBE collisions.

• int fD2Q9VCCCLBERegular()

Applies regularised constant velocity or density boundary condition to concave corner for D2Q9 lattice with
cascaded LBE collisions.

• int fD2Q9VCESwiftRegular()

Applies regularised constant velocity boundary condition to concave edge for D2Q9 lattice with Swift free-
energy interactions.

• int fD2Q9VCCSwiftRegular()

Applies regularised constant velocity or density boundary condition to concave corner for D2Q9 lattice with
Swift free-energy interactions.

• int fD2Q9VFRegular()

Applies constant velocity regularised boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9PCERegular()

Applies regularised constant density boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9PCESwiftRegular()

Applies regularised constant density boundary condition to concave edge for D2Q9 lattice with Swift free-
energy interactions.

• int fD2Q9PFRegular()

Applies constant density regularised boundary condition to lattice point using D2Q9 lattice scheme.

• int fD3Q15VPSRegular()

Applies regularised constant velocity boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15VCERegular()

Applies regularised constant velocity or density boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15VCCRegular()

Applies regularised constant velocity or density boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15VPSSwiftRegular()

Applies regularised constant velocity boundary condition to planar surface for D3Q15 lattice with Swift
free-energy interactions.

5.27. lbpBOUNDRegular.cpp 439

DL_MESO Technical Manual, Release 2.7

• int fD3Q15VCESwiftRegular()

Applies regularised constant velocity or density boundary condition to concave edge for D3Q15 lattice with
Swift free-energy interactions.

• int fD3Q15VCCSwiftRegular()

Applies regularised constant velocity or density boundary condition to concave corner for D3Q15 lattice
with Swift free-energy interactions.

• int fD3Q15VFRegular()

Applies constant velocity regularised boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15PPSRegular()

Applies regularised constant density boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15PPSSwiftRegular()

Applies regularised constant density boundary condition to planar surface for D3Q15 lattice with Swift
free-energy interactions.

• int fD3Q15PFRegular()

Applies constant density regularised boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q19VPSRegular()

Applies regularised constant velocity boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19VCERegular()

Applies regularised constant velocity or density boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19VCCRegular()

Applies regularised constant velocity or density boundary condition to concave corner for D3Q19 lattice.

• int fD3Q19VPSCLBERegular()

Applies regularised constant velocity boundary condition to planar surface for D3Q19 lattice with cascaded
LBE collisions.

• int fD3Q19VCECLBERegular()

Applies regularised constant velocity or density boundary condition to concave edge for D3Q19 lattice with
cascaded LBE collisions.

• int fD3Q19VCCCLBERegular()

Applies regularised constant velocity or density boundary condition to concave corner for D3Q19 lattice
with cascaded LBE collisions.

• int fD3Q19VPSSwiftRegular()

Applies regularised constant velocity boundary condition to planar surface for D3Q19 lattice with Swift
free-energy interactions.

• int fD3Q19VCESwiftRegular()

Applies regularised constant velocity or density boundary condition to concave edge for D3Q19 lattice with
Swift free-energy interactions.

• int fD3Q19VCCSwiftRegular()

Applies regularised constant velocity or density boundary condition to concave corner for D3Q19 lattice
with Swift free-energy interactions.

• int fD3Q19VFRegular()

Applies constant velocity regularised boundary condition to lattice point using D3Q19 lattice scheme.

440 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fD3Q19PPSRegular()

Applies regularised constant density boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19PPSSwiftRegular()

Applies regularised constant density boundary condition to planar surface for D3Q19 lattice with Swift
free-energy interactions.

• int fD3Q19PFRegular()

Applies constant density regularised boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q27VPSRegular()

Applies regularised constant velocity boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27VCERegular()

Applies regularised constant velocity or density boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27VCCRegular()

Applies regularised constant velocity or density boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27VPSCLBERegular()

Applies regularised constant velocity boundary condition to planar surface for D3Q27 lattice with cascaded
LBE collisions.

• int fD3Q27VCECLBERegular()

Applies regularised constant velocity or density boundary condition to concave edge for D3Q27 lattice with
cascaded LBE collisions.

• int fD3Q27VCCCLBERegular()

Applies regularised constant velocity or density boundary condition to concave corner for D3Q27 lattice
with cascaded LBE collisions.

• int fD3Q27VFRegular()

Applies constant velocity regularised boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27PPSRegular()

Applies regularised constant density boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27PFRegular()

Applies constant density regularised boundary condition to lattice point using D3Q27 lattice scheme.

5.27.2 Function Documentation

fD2Q9PCERegular()

int fD2Q9PCERegular (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double & vel)

Determines the required distribution functions to complete a regularised boundary condition for fixed fluid densi-
ties at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can also
be used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these result in
the same non-equilibrium momentum stress tensors and expressions for replacement distribution functions. The
resulting orthogonal velocity component is subsequently used to specify the fluid velocity for solute concentration

5.27. lbpBOUNDRegular.cpp 441

DL_MESO Technical Manual, Release 2.7

and temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in
this subroutine are for bottom concave edges (PCETF) but can be used for any concave edge by selecting different
distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
in,out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD2Q9PCESwiftRegular()

int fD2Q9PCESwiftRegular (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete a regularised boundary condition for fixed fluid den-
sities at a concave edge using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This routine
can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The resulting
orthogonal velocity component is subsequently used to specify the fluid velocity for solute concentration and
temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in this
subroutine are for bottom concave edges (PCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for density/concentration gradients (which may be
swapped around).

Parameters

442 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
in,out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD2Q9PFRegular()

int fD2Q9PFRegular (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate regularised boundary condition for constant fluid densities based on types of collisions, in-
teractions and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded
LBE collisions, Swift free-energy interactions, as well as concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying regularised boundary condition
in T Temperature at boundary grid point

fD2Q9VCCCLBERegular()

int fD2Q9VCCCLBERegular (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid veloc-
ity or density at a concave corner using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave corners

5.27. lbpBOUNDRegular.cpp 443

DL_MESO Technical Manual, Release 2.7

(VCCTRF) but can be used for any concave corner by selecting different distribution functions and applying pos-
itive or negative values for velocity components (which may be swapped around). Since fluid densities at the
boundary point are required, this subroutine can be used for both constant velocity and constant density bound-
aries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9VCCRegular()

int fD2Q9VCCRegular (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid ve-
locity or density at a concave corner using the two-dimensional D2Q9 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

444 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD2Q9VCCSwiftRegular()

int fD2Q9VCCSwiftRegular (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid ve-
locity or density at a concave corner using the two-dimensional D2Q9 lattice and Swift free-energy interactions.
This routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expressions in this subroutine are for bottom-left concave corners (VCCTRF) but can be used for any concave cor-
ner by selecting different distribution functions and applying positive or negative values for velocity components
and density/concentration gradients (which may be swapped around). Since fluid densities at the boundary point
are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

5.27. lbpBOUNDRegular.cpp 445

DL_MESO Technical Manual, Release 2.7

fD2Q9VCECLBERegular()

int fD2Q9VCECLBERegular (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a concave edge using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom concave edges (VCETF) but
can be used for any concave edge by selecting different distribution functions and applying positive or negative
values for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
in,out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCERegular()

int fD2Q9VCERegular (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid ve-
locity at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom concave edges (VCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

446 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
in,out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCESwiftRegular()

int fD2Q9VCESwiftRegular (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a concave edge using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-
energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expressions in this subroutine are for bottom concave edges (VCETF) but can be used for any concave edge by
selecting different distribution functions and applying positive or negative values for velocity components and
density/concentration gradients (which may be swapped around).

Parameters

5.27. lbpBOUNDRegular.cpp 447

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
in,out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD2Q9VFRegular()

int fD2Q9VFRegular (long tpos,
long tpos1,
int prop,
double * uwall,
double dx,
double dy,
double T)

Applies the appropriate regularised boundary condition for a constant velocity based on types of collisions, inter-
actions and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded
LBE collisions and Swift free-energy interactions, as well as concave edges and corners.) For corners with Swift
free-energy interactions, the vector between the boundary lattice point and sampling point for densities can be
specified to correct fluid density/concentration using gradients of those properties evalulated at the boundary
point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in T Temperature at boundary grid point

448 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15PFRegular()

int fD3Q15PFRegular (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate regularised boundary condition for constant fluid densities based on types of collisions,
interactions and direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for
Swift free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying regularised boundary condition
in T Temperature at boundary grid point

fD3Q15PPSRegular()

int fD3Q15PPSRegular (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double & vel)

Determines the required distribution functions to complete a regularised boundary condition for fixed fluid densi-
ties at a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly compress-
ible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The resulting
orthogonal velocity component is subsequently used to specify the fluid velocity for solute concentration and
temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in this
subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different
distribution functions.

Parameters

5.27. lbpBOUNDRegular.cpp 449

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
in,out f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in,out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q15PPSSwiftRegular()

int fD3Q15PPSSwiftRegular (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete a regularised boundary condition for fixed fluid densi-
ties at a planar surface using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This routine
can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The resulting
orthogonal velocity component is subsequently used to specify the fluid velocity for solute concentration and
temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in this
subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different
distribution functions.

Parameters

450 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
in,out f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in,out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q15VCCRegular()

int fD3Q15VCCRegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid ve-
locity or density at a concave corner using the three-dimensional D3Q15 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any
concave corner by selecting different distribution functions and applying positive or negative values for veloc-
ity components (which may be swapped around). Since fluid densities at the boundary point are required, this
subroutine can be used for both constant velocity and constant density boundaries.

Parameters

5.27. lbpBOUNDRegular.cpp 451

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
in,out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15VCCSwiftRegular()

int fD3Q15VCCSwiftRegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid veloc-
ity or density at a concave cprmer using the three-dimensional D3Q15 lattice and Swift free-energy interactions.
This routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents and density/concentration gradients (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

452 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
in f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q15VCERegular()

int fD3Q15VCERegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q15 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

5.27. lbpBOUNDRegular.cpp 453

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
in,out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
in,out f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in,out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15VCESwiftRegular()

int fD3Q15VCESwiftRegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q15 lattice and Swift free-energy interactions.
This routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components and
density/concentration gradients (which may be swapped around). Since fluid densities at the boundary point are
required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

454 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
in,out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
in,out f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in,out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q15VFRegular()

int fD3Q15VFRegular (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz,
double T)

Applies the appropriate regularised boundary condition for a constant velocity based on types of interactions and
direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for Swift free-energy
interactions, as well as planar surfaces, concave edges and corners.) For edges and corners with Swift free-energy
interactions, the vector between the boundary lattice point and sampling point for densities can be specified to
correct fluid density/concentration using gradients of those properties evalulated at the boundary point.

Parameters

5.27. lbpBOUNDRegular.cpp 455

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)
in T Temperature at boundary grid point

fD3Q15VPSRegular()

int fD3Q15VPSRegular (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
in,out f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in,out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site

456 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q15VPSSwiftRegular()

int fD3Q15VPSSwiftRegular (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-
energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expressions in this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
in,out f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in,out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

5.27. lbpBOUNDRegular.cpp 457

DL_MESO Technical Manual, Release 2.7

fD3Q19PFRegular()

int fD3Q19PFRegular (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate regularised boundary condition for constant fluid densities based on types of collisions,
interactions and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for
cascaded LBE collisions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying regularised boundary condition
in T Temperature at boundary grid point

fD3Q19PPSRegular()

int fD3Q19PPSRegular (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double & vel)

Determines the required distribution functions to complete a regularised boundary condition for fixed fluid densi-
ties at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly compress-
ible and fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can
also be used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these
result in the same non-equilibrium momentum stress tensors and expressions for replacement distribution func-
tions. The resulting orthogonal velocity component is subsequently used to specify the fluid velocity for solute
concentration and temperature boundaries, while the tangential velocity component is assumed to be zero. The
expressions in this subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface by
selecting different distribution functions.

Parameters

458 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in,out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
in,out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q19PPSSwiftRegular()

int fD3Q19PPSSwiftRegular (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete a regularised boundary condition for fixed fluid densi-
ties at a planar surface using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This routine
can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The resulting
orthogonal velocity component is subsequently used to specify the fluid velocity for solute concentration and
temperature boundaries, while the tangential velocity component is assumed to be zero. The expressions in this
subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different
distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site

continues on next page

5.27. lbpBOUNDRegular.cpp 459

DL_MESO Technical Manual, Release 2.7

Table 5.40 – continued from previous page
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in,out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
in,out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q19VCCCLBERegular()

int fD3Q19VCCCLBERegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity or density at a concave corner using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE)
collisions. This routine can only be used for mildly compressible fluids using the extended local equilibrium
distribution functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back
concave corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions
and applying positive or negative values for velocity components (which may be swapped around). Since fluid
densities at the boundary point are required, this subroutine can be used for both constant velocity and constant
density boundaries.

Parameters

460 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCRegular()

int fD3Q19VCCRegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid ve-
locity or density at a concave corner using the three-dimensional D3Q19 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any
concave corner by selecting different distribution functions and applying positive or negative values for veloc-
ity components (which may be swapped around). Since fluid densities at the boundary point are required, this
subroutine can be used for both constant velocity and constant density boundaries.

Parameters

5.27. lbpBOUNDRegular.cpp 461

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
in,out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in,out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in,out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCSwiftRegular()

int fD3Q19VCCSwiftRegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid ve-
locity or density at a concave corner using the three-dimensional D3Q19 lattice and Swift free-energy interactions.
This routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents and density/concentration gradients (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

462 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
in,out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in,out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in,out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q19VCECLBERegular()

int fD3Q19VCECLBERegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid veloc-
ity or density at a concave edge using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges
(VCETR) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

5.27. lbpBOUNDRegular.cpp 463

DL_MESO Technical Manual, Release 2.7

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
in,out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
in,out f7 Distribution functions for link 7 at edge lattice site
in,out f8 Distribution functions for link 8 at edge lattice site
in,out f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in,out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCERegular()

int fD3Q19VCERegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q19 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

464 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
in,out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
in,out f7 Distribution functions for link 7 at edge lattice site
in,out f8 Distribution functions for link 8 at edge lattice site
in,out f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in,out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCESwiftRegular()

int fD3Q19VCESwiftRegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q19 lattice and Swift free-energy interactions.
This routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components and
density/concentration gradients (which may be swapped around). Since fluid densities at the boundary point are
required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

5.27. lbpBOUNDRegular.cpp 465

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
in,out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
in,out f7 Distribution functions for link 7 at edge lattice site
in,out f8 Distribution functions for link 8 at edge lattice site
in,out f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in,out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q19VFRegular()

int fD3Q19VFRegular (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz,
double T)

Applies the appropriate regularised boundary condition for a constant velocity based on types of collisions, inter-
actions and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for cascaded
LBE collsions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.) For edges
and corners with Swift free-energy interactions, the vector between the boundary lattice point and sampling point
for densities can be specified to correct fluid density/concentration using gradients of those properties evalulated
at the boundary point.

Parameters

466 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)
in T Temperature at boundary grid point

fD3Q19VPSCLBERegular()

int fD3Q19VPSCLBERegular (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can
be used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in,out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
in,out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

5.27. lbpBOUNDRegular.cpp 467

DL_MESO Technical Manual, Release 2.7

fD3Q19VPSRegular()

int fD3Q19VPSRegular (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in,out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
in,out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VPSSwiftRegular()

int fD3Q19VPSSwiftRegular (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,

(continues on next page)

468 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-
energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expressions in this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in,out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
in,out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

5.27. lbpBOUNDRegular.cpp 469

DL_MESO Technical Manual, Release 2.7

fD3Q27PFRegular()

int fD3Q27PFRegular (long tpos,
int prop,
double * p0,
double * uwall)

Applies the appropriate regularised boundary condition for constant fluid densities based on types of collisions
and direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collisions as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying regularised boundary condition

fD3Q27PPSRegular()

int fD3Q27PPSRegular (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26,
double & vel)

Determines the required distribution functions to complete a regularised boundary condition for fixed fluid densi-
ties at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly compress-
ible and fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can
also be used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these
result in the same same non-equilibrium momentum stress tensors and expressions for replacement distribution
functions. The resulting orthogonal velocity component is subsequently used to specify the fluid velocity for so-
lute concentration and temperature boundaries, while the tangential velocity component is assumed to be zero.
The expressions in this subroutine are for bottom planar surfaces (PPST) but can be used for any planar surface
by selecting different distribution functions.

Parameters

470 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
in,out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in,out f18 Distribution functions for link 18 at surface lattice site
in,out f19 Distribution functions for link 19 at surface lattice site
in,out f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in,out f25 Distribution functions for link 25 at surface lattice site
in,out f26 Distribution functions for link 26 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q27VCCCLBERegular()

int fD3Q27VCCCLBERegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity or density at a concave corner using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE)
collisions. This routine can only be used for mildly compressible fluids using the extended local equilibrium
distribution functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back
concave corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions
and applying positive or negative values for velocity components (which may be swapped around). Since fluid
densities at the boundary point are required, this subroutine can be used for both constant velocity and constant
density boundaries.

Parameters

5.27. lbpBOUNDRegular.cpp 471

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
in,out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in,out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in,out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in,out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCCRegular()

int fD3Q27VCCRegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid ve-
locity or density at a concave corner using the three-dimensional D3Q27 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any
concave corner by selecting different distribution functions and applying positive or negative values for veloc-
ity components (which may be swapped around). Since fluid densities at the boundary point are required, this
subroutine can be used for both constant velocity and constant density boundaries.

Parameters

472 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at corner lattice site
in,out f1 Distribution functions for link 1 at corner lattice site
in,out f2 Distribution functions for link 2 at corner lattice site
in,out f3 Distribution functions for link 3 at corner lattice site
in,out f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in,out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in,out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in,out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCECLBERegular()

int fD3Q27VCECLBERegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid veloc-
ity or density at a concave edge using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges
(VCETR) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

5.27. lbpBOUNDRegular.cpp 473

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
in,out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
in,out f7 Distribution functions for link 7 at edge lattice site
in,out f8 Distribution functions for link 8 at edge lattice site
in,out f9 Distribution functions for link 9 at edge lattice site
in,out f10 Distribution functions for link 10 at edge lattice site
in,out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in,out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VCERegular()

int fD3Q27VCERegular (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity or density at a concave edge using the three-dimensional D3Q27 lattice. This routine can be used for
mildly compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions.
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

474 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at edge lattice site
in,out f1 Distribution functions for link 1 at edge lattice site
in,out f2 Distribution functions for link 2 at edge lattice site
in,out f3 Distribution functions for link 3 at edge lattice site
in,out f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in,out f6 Distribution functions for link 6 at edge lattice site
in,out f7 Distribution functions for link 7 at edge lattice site
in,out f8 Distribution functions for link 8 at edge lattice site
in,out f9 Distribution functions for link 9 at edge lattice site
in,out f10 Distribution functions for link 10 at edge lattice site
in,out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in,out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VFRegular()

int fD3Q27VFRegular (long tpos,
long rpos,
int prop,
double * uwall)

Applies the appropriate regularised boundary condition for a constant velocity based on types of collisions and
direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collsions as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site

5.27. lbpBOUNDRegular.cpp 475

DL_MESO Technical Manual, Release 2.7

fD3Q27VPSCLBERegular()

int fD3Q27VPSCLBERegular (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can
be used for any planar surface by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
in,out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in,out f18 Distribution functions for link 18 at surface lattice site
in,out f19 Distribution functions for link 19 at surface lattice site
in,out f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in,out f25 Distribution functions for link 25 at surface lattice site
in,out f26 Distribution functions for link 26 at surface lattice site

476 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27VPSRegular()

int fD3Q27VPSRegular (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a regularised boundary condition for a fixed fluid
velocity at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by
selecting different distribution functions and applying positive or negative values for velocity components (which
may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in,out f0 Distribution functions for link 0 at surface lattice site
in,out f1 Distribution functions for link 1 at surface lattice site
in,out f2 Distribution functions for link 2 at surface lattice site
in,out f3 Distribution functions for link 3 at surface lattice site
in,out f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in,out f6 Distribution functions for link 6 at surface lattice site
in,out f7 Distribution functions for link 7 at surface lattice site
in,out f8 Distribution functions for link 8 at surface lattice site
in,out f9 Distribution functions for link 9 at surface lattice site
in,out f10 Distribution functions for link 10 at surface lattice site
in,out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in,out f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in,out f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in,out f18 Distribution functions for link 18 at surface lattice site
in,out f19 Distribution functions for link 19 at surface lattice site
in,out f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in,out f25 Distribution functions for link 25 at surface lattice site
in,out f26 Distribution functions for link 26 at surface lattice site

5.27. lbpBOUNDRegular.cpp 477

DL_MESO Technical Manual, Release 2.7

5.28 lbpBOUNDKinetic.cpp

Module for applying kinetic boundary conditions. (Header file available as lbpBOUNDKinetic.hpp.)

Applies kinetic [5] boundary conditions at specified lattice points to give flxed fluid velocities or densities. This
scheme uses local equilibrium distribution functions for ‘missing’ distribution functions re-entering the simulation
box with adjusted densities 𝜌′, which are obtained by ensuring mass conservation between distribution functions
leaving and entering the system, i.e. ∑︁

𝑖,𝑖𝑛

𝑓𝑒𝑞𝑖 (𝜌′, 𝑢⃗𝑤) =
∑︁
𝑖,𝑜𝑢𝑡

𝑓𝑖,

where rearranging the above expression leads to the required adjusted density. For boundaries other than concave
edges in two dimensions or planar surfaces in three dimensions where ‘buried’ links that neither enter nor leave
the simulation box are included, only the non-buried (‘active’) links are used for the mass conservation expression
to obtain 𝜌′. The buried links are obtained by ensuring the overall density and momentum are correct, as obtained
using the following summations:

𝜌 =
∑︁
𝑖

𝑓𝑖,

𝜌𝑢𝛼 =
∑︁
𝑖

𝑓𝑖𝑒𝑖,𝛼.

In cases where there are more unknown buried links than density and momentum equations, each buried link is
expressed as a combination of terms for these three or four components, which are solved to give the correct
density and momentum at the lattice point.

5.28.1 Functions

• int fD2Q9VCEKinetic()

Applies kinetic constant velocity boundary condition to concave edge for D2Q9 lattice.

• int fD2Q9VCCKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D2Q9 lattice.

• int fD2Q9VCECLBEKinetic()

Applies kinetic constant velocity boundary condition to concave edge for D2Q9 lattice with cascaded LBE
collisions.

• int fD2Q9VCCCLBEKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D2Q9 lattice with
cascaded LBE collisions.

• int fD2Q9VCESwiftKinetic()

Applies kinetic constant velocity boundary condition to concave edge for D2Q9 lattice with Swift free-
energy interactions.

• int fD2Q9VCCSwiftKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D2Q9 lattice with
Swift free-energy interactions.

• int fD2Q9VFKinetic()

Applies constant velocity kinetic boundary condition to lattice point using D2Q9 lattice scheme.

• int fD2Q9PCEKinetic()

Applies kinetic constant density boundary condition to concave edge for D2Q9 lattice.

478 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

• int fD2Q9PCESwiftKinetic()

Applies kinetic constant density boundary condition to concave edge for D2Q9 lattice with Swift free-energy
interactions.

• int fD2Q9PFKinetic()

Applies constant density kinetic boundary condition to lattice point using D2Q9 lattice scheme.

• int fD3Q15VPSKinetic()

Applies kinetic constant velocity boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15VCEKinetic()

Applies kinetic constant velocity or density boundary condition to concave edge for D3Q15 lattice.

• int fD3Q15VCCKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D3Q15 lattice.

• int fD3Q15VPSSwiftKinetic()

Applies kinetic constant velocity boundary condition to planar surface for D3Q15 lattice with Swift free-
energy interactions.

• int fD3Q15VCESwiftKinetic()

Applies kinetic constant velocity or density boundary condition to concave edge for D3Q15 lattice with
Swift free-energy interactions.

• int fD3Q15VCCSwiftKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D3Q15 lattice with
Swift free-energy interactions.

• int fD3Q15VFKinetic()

Applies constant velocity kinetic boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q15PPSKinetic()

Applies kinetic constant density boundary condition to planar surface for D3Q15 lattice.

• int fD3Q15PPSSwiftKinetic()

Applies kinetic constant density boundary condition to planar surface for D3Q15 lattice with Swift free-
energy interactions.

• int fD3Q15PFKinetic()

Applies constant density kinetic boundary condition to lattice point using D3Q15 lattice scheme.

• int fD3Q19VPSKinetic()

Applies kinetic constant velocity boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19VCEKinetic()

Applies kinetic constant velocity or density boundary condition to concave edge for D3Q19 lattice.

• int fD3Q19VCCKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D3Q19 lattice.

• int fD3Q19VPSCLBEKinetic()

Applies kinetic constant velocity boundary condition to planar surface for D3Q19 lattice with cascaded LBE
collisions.

• int fD3Q19VCECLBEKinetic()

Applies kinetic constant velocity or density boundary condition to concave edge for D3Q19 lattice with
cascaded LBE collisions.

5.28. lbpBOUNDKinetic.cpp 479

DL_MESO Technical Manual, Release 2.7

• int fD3Q19VCCCLBEKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D3Q19 lattice with
cascaded LBE collisions.

• int fD3Q19VPSSwiftKinetic()

Applies kinetic constant velocity boundary condition to planar surface for D3Q19 lattice with Swift free-
energy interactions.

• int fD3Q19VCESwiftKinetic()

Applies kinetic constant velocity or density boundary condition to concave edge for D3Q19 lattice with
Swift free-energy interactions.

• int fD3Q19VCCSwiftKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D3Q19 lattice with
Swift free-energy interactions.

• int fD3Q19VFKinetic()

Applies constant velocity kinetic boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q19PPSKinetic()

Applies kinetic constant density boundary condition to planar surface for D3Q19 lattice.

• int fD3Q19PPSSwiftKinetic()

Applies kinetic constant density boundary condition to planar surface for D3Q19 lattice with Swift free-
energy interactions.

• int fD3Q19PFKinetic()

Applies constant density kinetic boundary condition to lattice point using D3Q19 lattice scheme.

• int fD3Q27VPSKinetic()

Applies kinetic constant velocity boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27VCEKinetic()

Applies kinetic constant velocity or density boundary condition to concave edge for D3Q27 lattice.

• int fD3Q27VCCKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D3Q27 lattice.

• int fD3Q27VPSCLBEKinetic()

Applies kinetic constant velocity boundary condition to planar surface for D3Q27 lattice with cascaded LBE
collisions.

• int fD3Q27VCECLBEKinetic()

Applies kinetic constant velocity or density boundary condition to concave edge for D3Q27 lattice with
cascaded LBE collisions.

• int fD3Q27VCCCLBEKinetic()

Applies kinetic constant velocity or density boundary condition to concave corner for D3Q27 lattice with
cascaded LBE collisions.

• int fD3Q27VFKinetic()

Applies constant velocity kinetic boundary condition to lattice point using D3Q27 lattice scheme.

• int fD3Q27PPSKinetic()

Applies kinetic constant density boundary condition to planar surface for D3Q27 lattice.

• int fD3Q27PFKinetic()

Applies constant density kinetic boundary condition to lattice point using D3Q27 lattice scheme.

480 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.28.2 Function Documentation

fD2Q9PCEKinetic()

int fD2Q9PCEKinetic (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double & vel)

Determines the required distribution functions to complete a kinetic boundary condition for fixed fluid densities
at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can also be
used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these result in the
same adjusted densities 𝜌′. The resulting orthogonal velocity component is subsequently used to specify the fluid
velocity for solute concentration and temperature boundaries, while the tangential velocity component is assumed
to be zero. The expressions in this subroutine are for bottom concave edges (PCETF) but can be used for any
concave edge by selecting different distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD2Q9PCESwiftKinetic()

int fD2Q9PCESwiftKinetic (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete a kinetic boundary condition for fixed fluid densities
at a concave edge using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This routine can
only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). (The tangential
velocity component is assumed equal to zero.) The expressions in this subroutine are for bottom concave edges

5.28. lbpBOUNDKinetic.cpp 481

DL_MESO Technical Manual, Release 2.7

(PCETF) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for density/concentration gradients (which may be swapped around).

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD2Q9PFKinetic()

int fD2Q9PFKinetic (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate kinetic boundary condition for constant fluid densities based on types of collisions, inter-
actions and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded
LBE collisions, Swift free-energy interactions, as well as concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying kinetic boundary condition
in T Temperature at boundary grid point

482 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD2Q9VCCCLBEKinetic()

int fD2Q9VCCCLBEKinetic (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave corner using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This
routine can only be used for mildly compressible fluids using the extended local equilibrium distribution functions
obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave corners (VCCTRF)
but can be used for any concave corner by selecting different distribution functions and applying positive or
negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9VCCKinetic()

int fD2Q9VCCKinetic (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid veloc-
ity or density at a concave corner using the two-dimensional D2Q9 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

5.28. lbpBOUNDKinetic.cpp 483

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site

fD2Q9VCCSwiftKinetic()

int fD2Q9VCCSwiftKinetic (double * p,
double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave corner using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies
for fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures.
The expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this
is zero, the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions
by zero). The expressions in this subroutine are for bottom-left concave corners (VCCTRF) but can be used
for any concave corner by selecting different distribution functions and applying positive or negative values for
velocity components and density/concentration gradients (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

484 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left corner)
in v1 Velocity component at concave corner (y-component for bottom-left corner)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD2Q9VCECLBEKinetic()

int fD2Q9VCECLBEKinetic (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice and cascaded LBE (CLBE) collisions. This routine can
only be used for mildly compressible fluids using the extended local equilibrium distribution functions obtained
from CLBE collisions. The expressions in this subroutine are for bottom concave edges (VCETF) but can be
used for any concave edge by selecting different distribution functions and applying positive or negative values
for velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

5.28. lbpBOUNDKinetic.cpp 485

DL_MESO Technical Manual, Release 2.7

fD2Q9VCEKinetic()

int fD2Q9VCEKinetic (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in this
subroutine are for bottom concave edges (VCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site

fD2Q9VCESwiftKinetic()

int fD2Q9VCESwiftKinetic (double v0, double v1,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double drdx, double drdy,
double dpdx, double dpdy,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a concave edge using the two-dimensional D2Q9 lattice and Swift free-energy interactions. This routine can
only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). The expressions in
this subroutine are for bottom concave edges (VCETF) but can be used for any concave edge by selecting different
distribution functions and applying positive or negative values for velocity components and density/concentration
gradients (which may be swapped around).

Parameters

486 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in v0 Velocity component tangential to concave edge (x-component for bottom edge)
in v1 Velocity component orthogonal to concave edge (y-component for bottom edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
out f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD2Q9VFKinetic()

int fD2Q9VFKinetic (long tpos,
long tpos1,
int prop,
double * uwall,
double dx,
double dy,
double T)

Applies the appropriate kinetic boundary condition for a constant velocity based on types of collisions, interactions
and direction for a two-dimensional D2Q9 lattice. (In this case, there are boundary options for cascaded LBE
collisions and Swift free-energy interactions, as well as concave edges and corners.) For corners with Swift free-
energy interactions, the vector between the boundary lattice point and sampling point for densities can be specified
to correct fluid density/concentration using gradients of those properties evalulated at the boundary point.

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in tpos1 Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in T Temperature at boundary grid point

5.28. lbpBOUNDKinetic.cpp 487

DL_MESO Technical Manual, Release 2.7

fD3Q15PFKinetic()

int fD3Q15PFKinetic (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate kinetic boundary condition for constant fluid densities based on types of collisions, inter-
actions and direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for Swift
free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying kinetic boundary condition
in T Temperature at boundary grid point

fD3Q15PPSKinetic()

int fD3Q15PPSKinetic (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double & vel)

Determines the required distribution functions to complete a kinetic boundary condition for fixed fluid densities at
a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly compressible and
fully incompressible fluids with the appropriate local equilibrium distribution functions. The resulting orthogonal
velocity component is subsequently used to specify the fluid velocity for solute concentration and temperature
boundaries, while the tangential velocity component is assumed to be zero. The expressions in this subroutine
are for bottom planar surfaces (PPST) but can be used for any planar surface by selecting different distribution
functions.

Parameters

488 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q15PPSSwiftKinetic()

int fD3Q15PPSSwiftKinetic (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete a kinetic boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This routine
can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). (The tangential
velocity component is assumed equal to zero.) The expressions in this subroutine are for bottom planar surfaces
(PPST) but can be used for any planar surface by selecting different distribution functions.

Parameters

5.28. lbpBOUNDKinetic.cpp 489

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q15VCCKinetic()

int fD3Q15VCCKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid veloc-
ity or density at a concave corner using the three-dimensional D3Q15 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

490 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site

fD3Q15VCCSwiftKinetic()

int fD3Q15VCCSwiftKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave cprmer using the three-dimensional D3Q15 lattice and Swift free-energy interactions.
This routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies
for fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures.
The expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is
zero, the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by
zero). The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used
for any concave corner by selecting different distribution functions and applying positive or negative values for
velocity components and density/concentration gradients (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

5.28. lbpBOUNDKinetic.cpp 491

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
out f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
in f5 Distribution functions for link 5 at corner lattice site
out f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
out f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q15VCEKinetic()

int fD3Q15VCEKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q15 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

492 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site

fD3Q15VCESwiftKinetic()

int fD3Q15VCESwiftKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-
energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is zero,
the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero).
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
and density/concentration gradients (which may be swapped around). Since fluid densities at the boundary point
are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

5.28. lbpBOUNDKinetic.cpp 493

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
in f5 Distribution functions for link 5 at edge lattice site
out f6 Distribution functions for link 6 at edge lattice site
out f7 Distribution functions for link 7 at edge lattice site
out f8 Distribution functions for link 8 at edge lattice site
out f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q15VFKinetic()

int fD3Q15VFKinetic (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz,
double T)

Applies the appropriate kinetic boundary condition for a constant velocity based on types of interactions and
direction for a three-dimensional D3Q15 lattice. (In this case, there are boundary options for Swift free-energy
interactions, as well as planar surfaces, concave edges and corners.) For edges and corners with Swift free-energy
interactions, the vector between the boundary lattice point and sampling point for densities can be specified to
correct fluid density/concentration using gradients of those properties evalulated at the boundary point.

Parameters

494 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)
in T Temperature at boundary grid point

fD3Q15VPSKinetic()

int fD3Q15VPSKinetic (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q15 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site

5.28. lbpBOUNDKinetic.cpp 495

DL_MESO Technical Manual, Release 2.7

fD3Q15VPSSwiftKinetic()

int fD3Q15VPSSwiftKinetic (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q15 lattice and Swift free-energy interactions. This routine
can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
in f5 Distribution functions for link 5 at surface lattice site
out f6 Distribution functions for link 6 at surface lattice site
out f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
out f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
in f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

496 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q19PFKinetic()

int fD3Q19PFKinetic (long tpos,
int prop,
double * p0,
double * uwall,
double T)

Applies the appropriate kinetic boundary condition for constant fluid densities based on types of collisions, inter-
actions and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for cascaded
LBE collisions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying kinetic boundary condition
in T Temperature at boundary grid point

fD3Q19PPSKinetic()

int fD3Q19PPSKinetic (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double & vel)

Determines the required distribution functions to complete a kinetic boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can also
be used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these result
in the same adjusted densities 𝜌′. The resulting orthogonal velocity component is subsequently used to specify
the fluid velocity for solute concentration and temperature boundaries, while the tangential velocity component is
assumed to be zero. The expressions in this subroutine are for bottom planar surfaces (PPST) but can be used for
any planar surface by selecting different distribution functions.

Parameters

5.28. lbpBOUNDKinetic.cpp 497

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q19PPSSwiftKinetic()

int fD3Q19PPSSwiftKinetic (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T,
double & vel)

Determines the required distribution functions to complete a kinetic boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This routine
can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero.) (The tangential
velocity component is assumed equal to zero). The expressions in this subroutine are for bottom planar surfaces
(PPST) but can be used for any planar surface by selecting different distribution functions.

Parameters

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site

continues on next page

498 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.50 – continued from previous page
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q19VCCCLBEKinetic()

int fD3Q19VCCCLBEKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back concave
corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions and ap-
plying positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

5.28. lbpBOUNDKinetic.cpp 499

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCKinetic()

int fD3Q19VCCKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid veloc-
ity or density at a concave corner using the three-dimensional D3Q19 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

500 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site

fD3Q19VCCSwiftKinetic()

int fD3Q19VCCSwiftKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for
free-energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies
for fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures.
The expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is
zero, the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by
zero). The expressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used
for any concave corner by selecting different distribution functions and applying positive or negative values for
velocity components and density/concentration gradients (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

5.28. lbpBOUNDKinetic.cpp 501

DL_MESO Technical Manual, Release 2.7

Parameters

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
out f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q19VCECLBEKinetic()

int fD3Q19VCECLBEKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges
(VCETR) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for velocity components (which may be swapped around). Since fluid densities at the boundary

502 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCEKinetic()

int fD3Q19VCEKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

5.28. lbpBOUNDKinetic.cpp 503

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity bound-
aries, fixed values for constant density boundaries)

in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site

fD3Q19VCESwiftKinetic()

int fD3Q19VCESwiftKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,
double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This
routine can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-
energy calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for
fluids and the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The
expression for the adjusted densities 𝜌′ includes division by the sum of both velocity components: if this is zero,
the actual fluid density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero).
The expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave
edge by selecting different distribution functions and applying positive or negative values for velocity components
and density/concentration gradients (which may be swapped around). Since fluid densities at the boundary point
are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

504 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
out f10 Distribution functions for link 10 at edge lattice site
out f11 Distribution functions for link 11 at edge lattice site
in f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
out f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

fD3Q19VFKinetic()

int fD3Q19VFKinetic (long tpos,
long rpos,
int prop,
double * uwall,
double dx,
double dy,
double dz,
double T)

Applies the appropriate kinetic boundary condition for a constant velocity based on types of collisions, interactions
and direction for a three-dimensional D3Q19 lattice. (In this case, there are boundary options for cascaded LBE
collsions, Swift free-energy interactions, as well as planar surfaces, concave edges and corners.) For edges and
corners with Swift free-energy interactions, the vector between the boundary lattice point and sampling point for
densities can be specified to correct fluid density/concentration using gradients of those properties evalulated at
the boundary point.

Parameters

5.28. lbpBOUNDKinetic.cpp 505

DL_MESO Technical Manual, Release 2.7

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site
in dx Vector to move from current lattice site (x-component)
in dy Vector to move from current lattice site (y-component)
in dz Vector to move from current lattice site (z-component)
in T Temperature at boundary grid point

fD3Q19VPSCLBEKinetic()

int fD3Q19VPSCLBEKinetic (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity at
a planar surface using the three-dimensional D3Q19 lattice and cascaded LBE (CLBE) collisions. This routine can
only be used for mildly compressible fluids using the extended local equilibrium distribution functions obtained
from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can be used
for any planar surface by selecting different distribution functions and applying positive or negative values for
velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

506 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q19VPSKinetic()

int fD3Q19VPSKinetic (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q19 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site

fD3Q19VPSSwiftKinetic()

int fD3Q19VPSSwiftKinetic (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18,
double drdx, double drdy, double drdz,

(continues on next page)

5.28. lbpBOUNDKinetic.cpp 507

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

double dpdx, double dpdy, double dpdz,
double nabr, double nabp,
double * omega,
double T)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q19 lattice and Swift free-energy interactions. This routine
can only be used for mildly compressible fluids using the local equilibrium distribution functions for free-energy
calculations that incorporate density (and concentration) gradients: relaxation times or frequencies for fluids and
the site temperature are required to calculate Galilean invariance parameters and bulk pressures. The expression
for the adjusted densities 𝜌′ includes division by the orthogonal velocity component: if this is zero, the actual fluid
density or concentration is used instead to avoid numerical singularities (i.e. divisions by zero). The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
out f11 Distribution functions for link 11 at surface lattice site
in f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
in f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
out f18 Distribution functions for link 18 at surface lattice site
in drdx First-order derivative of fluid density at boundary grid point (x-component)
in drdy First-order derivative of fluid density at boundary grid point (y-component)
in drdz First-order derivative of fluid density at boundary grid point (z-component)
in dpdx First-order derivative of fluid concentration at boundary grid point (x-component)
in dpdy First-order derivative of fluid concentration at boundary grid point (y-component)
in dpdz First-order derivative of fluid concentration at boundary grid point (z-component)
in nabr Second-order derivative of fluid density at boundary grid point
in nabp Second-order derivative of fluid concentration at boundary grid point
in omega Relaxation frequencies (reciprocals of relaxation times) for fluids at boundary grid point
in T Temperature at boundary grid point

508 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27PFKinetic()

fD3Q27PFKinetic lbpBOUNDKinetic.cpp lbpBOUNDKinetic.cpp fD3Q27PFKinetic

int fD3Q27PFKinetic (long tpos, int prop, double * p0, double * uwall)

Applies the appropriate kinetic boundary condition for constant fluid densities based on types of collisions and
direction for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE
collisions as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in prop Boundary condition code indicating type and direction
in p0 Fluid densities for boundary lattice point
in,out uwall Velocity at boundary site determined from applying kinetic boundary condition

fD3Q27PPSKinetic()

int fD3Q27PPSKinetic (double * p,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26,
double & vel)

Determines the required distribution functions to complete a kinetic boundary condition for fixed fluid densities
at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions: this routine can also
be used for systems with cascaded LBE collisions as the local equilibrium distribution functions for these result
in the same adjusted densities 𝜌′. The resulting orthogonal velocity component is subsequently used to specify
the fluid velocity for solute concentration and temperature boundaries, while the tangential velocity component is
assumed to be zero. The expressions in this subroutine are for bottom planar surfaces (PPST) but can be used for
any planar surface by selecting different distribution functions.

Parameters

5.28. lbpBOUNDKinetic.cpp 509

DL_MESO Technical Manual, Release 2.7

in p Fluid densities for boundary lattice point
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site
out vel Resulting fluid velocity in direction orthogonal to boundary

fD3Q27VCCCLBEKinetic()

int fD3Q27VCCCLBEKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave corner using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left-back concave
corners (VCCTRF) but can be used for any concave corner by selecting different distribution functions and ap-
plying positive or negative values for velocity components (which may be swapped around). Since fluid densities
at the boundary point are required, this subroutine can be used for both constant velocity and constant density
boundaries.

Parameters

510 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCCKinetic()

int fD3Q27VCCKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid veloc-
ity or density at a concave corner using the three-dimensional D3Q27 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The ex-
pressions in this subroutine are for bottom-left-back concave corners (VCCTRF) but can be used for any concave
corner by selecting different distribution functions and applying positive or negative values for velocity compo-
nents (which may be swapped around). Since fluid densities at the boundary point are required, this subroutine
can be used for both constant velocity and constant density boundaries.

Parameters

5.28. lbpBOUNDKinetic.cpp 511

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave corner (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave corner (x-component for bottom-left edge)
in v1 Velocity component at concave corner (y-component for bottom-left edge)
in v2 Velocity component at concave corner (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at corner lattice site
in f1 Distribution functions for link 1 at corner lattice site
in f2 Distribution functions for link 2 at corner lattice site
in f3 Distribution functions for link 3 at corner lattice site
in f4 Distribution functions for link 4 at corner lattice site
out f5 Distribution functions for link 5 at corner lattice site
in f6 Distribution functions for link 6 at corner lattice site
out f7 Distribution functions for link 7 at corner lattice site
in f8 Distribution functions for link 8 at corner lattice site
out f9 Distribution functions for link 9 at corner lattice site
in f10 Distribution functions for link 10 at corner lattice site
out f11 Distribution functions for link 11 at corner lattice site
out f12 Distribution functions for link 12 at corner lattice site
out f13 Distribution functions for link 13 at corner lattice site
out f14 Distribution functions for link 14 at corner lattice site
out f15 Distribution functions for link 15 at corner lattice site
out f16 Distribution functions for link 16 at corner lattice site
out f17 Distribution functions for link 17 at corner lattice site
out f18 Distribution functions for link 18 at corner lattice site
out f19 Distribution functions for link 19 at corner lattice site
out f20 Distribution functions for link 20 at corner lattice site
out f21 Distribution functions for link 21 at corner lattice site
out f22 Distribution functions for link 22 at corner lattice site
out f23 Distribution functions for link 23 at corner lattice site
out f24 Distribution functions for link 24 at corner lattice site
out f25 Distribution functions for link 25 at corner lattice site
out f26 Distribution functions for link 26 at corner lattice site

fD3Q27VCECLBEKinetic()

int fD3Q27VCECLBEKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions.
This routine can only be used for mildly compressible fluids using the extended local equilibrium distribution
functions obtained from CLBE collisions. The expressions in this subroutine are for bottom-left concave edges
(VCETR) but can be used for any concave edge by selecting different distribution functions and applying positive
or negative values for velocity components (which may be swapped around). Since fluid densities at the boundary
point are required, this subroutine can be used for both constant velocity and constant density boundaries.

Parameters

512 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VCEKinetic()

int fD3Q27VCEKinetic (double * p,
double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
or density at a concave edge using the three-dimensional D3Q27 lattice. This routine can be used for mildly
compressible and fully incompressible fluids with the appropriate local equilibrium distribution functions. The
expressions in this subroutine are for bottom-left concave edges (VCETR) but can be used for any concave edge
by selecting different distribution functions and applying positive or negative values for velocity components
(which may be swapped around). Since fluid densities at the boundary point are required, this subroutine can be
used for both constant velocity and constant density boundaries.

Parameters

5.28. lbpBOUNDKinetic.cpp 513

DL_MESO Technical Manual, Release 2.7

in p Fluid densities at concave edge (sampled from nearby lattice point for constant velocity boundaries, fixed values for constant density boundaries)
in v0 Velocity component at concave edge (x-component for bottom-left edge)
in v1 Velocity component at concave edge (y-component for bottom-left edge)
in v2 Velocity component at concave edge (z-component for bottom-left edge)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at edge lattice site
in f1 Distribution functions for link 1 at edge lattice site
in f2 Distribution functions for link 2 at edge lattice site
in f3 Distribution functions for link 3 at edge lattice site
in f4 Distribution functions for link 4 at edge lattice site
out f5 Distribution functions for link 5 at edge lattice site
in f6 Distribution functions for link 6 at edge lattice site
in f7 Distribution functions for link 7 at edge lattice site
in f8 Distribution functions for link 8 at edge lattice site
in f9 Distribution functions for link 9 at edge lattice site
in f10 Distribution functions for link 10 at edge lattice site
in f11 Distribution functions for link 11 at edge lattice site
out f12 Distribution functions for link 12 at edge lattice site
out f13 Distribution functions for link 13 at edge lattice site
out f14 Distribution functions for link 14 at edge lattice site
out f15 Distribution functions for link 15 at edge lattice site
in f16 Distribution functions for link 16 at edge lattice site
out f17 Distribution functions for link 17 at edge lattice site
out f18 Distribution functions for link 18 at edge lattice site
out f19 Distribution functions for link 19 at edge lattice site
out f20 Distribution functions for link 20 at edge lattice site
out f21 Distribution functions for link 21 at edge lattice site
out f22 Distribution functions for link 22 at edge lattice site
out f23 Distribution functions for link 23 at edge lattice site
out f24 Distribution functions for link 24 at edge lattice site
out f25 Distribution functions for link 25 at edge lattice site
out f26 Distribution functions for link 26 at edge lattice site

fD3Q27VFKinetic()

int fD3Q27VFKinetic (long tpos,
long rpos,
int prop,
double * uwall)

Applies the appropriate kinetic boundary condition for a constant velocity based on types of collisions and direc-
tion for a three-dimensional D3Q27 lattice. (In this case, there are boundary options for cascaded LBE collsions
as well as planar surfaces, concave edges and corners.)

Parameters

in tpos Position of current boundary lattice site (in one-dimensional form)
in rpos Position of neighbouring lattice site (in one-dimensional form) for sampling fluid densities
in prop Boundary condition code indicating type and direction
in uwall Fixed velocity at boundary site

514 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fD3Q27VPSCLBEKinetic()

int fD3Q27VPSCLBEKinetic (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity at
a planar surface using the three-dimensional D3Q27 lattice and cascaded LBE (CLBE) collisions. This routine can
only be used for mildly compressible fluids using the extended local equilibrium distribution functions obtained
from CLBE collisions. The expressions in this subroutine are for bottom planar surfaces (VPST) but can be used
for any planar surface by selecting different distribution functions and applying positive or negative values for
velocity components (which may be swapped around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

5.28. lbpBOUNDKinetic.cpp 515

DL_MESO Technical Manual, Release 2.7

fD3Q27VPSKinetic()

int fD3Q27VPSKinetic (double v0, double v1, double v2,
double * force,
double * f0, double * f1, double * f2,
double * f3, double * f4, double * f5,
double * f6, double * f7, double * f8,
double * f9, double * f10, double * f11,
double * f12, double * f13, double * f14,
double * f15, double * f16, double * f17,
double * f18, double * f19, double * f20,
double * f21, double * f22, double * f23,
double * f24, double * f25, double * f26)

Determines the required distribution functions to complete a kinetic boundary condition for a fixed fluid velocity
at a planar surface using the three-dimensional D3Q27 lattice. This routine can be used for mildly compressible
and fully incompressible fluids with the appropriate local equilibrium distribution functions. The expressions in
this subroutine are for bottom planar surfaces (VPST) but can be used for any planar surface by selecting different
distribution functions and applying positive or negative values for velocity components (which may be swapped
around).

Parameters

in v0 Velocity component tangential to planar surface (x-component for bottom surface)
in v1 Velocity component orthogonal to planar surface (y-component for bottom surface)
in v2 Velocity component tangential to planar surface (z-component for bottom surface)
in force Forces acting at given boundary lattice point
in f0 Distribution functions for link 0 at surface lattice site
in f1 Distribution functions for link 1 at surface lattice site
in f2 Distribution functions for link 2 at surface lattice site
in f3 Distribution functions for link 3 at surface lattice site
in f4 Distribution functions for link 4 at surface lattice site
out f5 Distribution functions for link 5 at surface lattice site
in f6 Distribution functions for link 6 at surface lattice site
in f7 Distribution functions for link 7 at surface lattice site
in f8 Distribution functions for link 8 at surface lattice site
in f9 Distribution functions for link 9 at surface lattice site
in f10 Distribution functions for link 10 at surface lattice site
in f11 Distribution functions for link 11 at surface lattice site
out f12 Distribution functions for link 12 at surface lattice site
out f13 Distribution functions for link 13 at surface lattice site
in f14 Distribution functions for link 14 at surface lattice site
out f15 Distribution functions for link 15 at surface lattice site
in f16 Distribution functions for link 16 at surface lattice site
out f17 Distribution functions for link 17 at surface lattice site
in f18 Distribution functions for link 18 at surface lattice site
in f19 Distribution functions for link 19 at surface lattice site
in f20 Distribution functions for link 20 at surface lattice site
out f21 Distribution functions for link 21 at surface lattice site
out f22 Distribution functions for link 22 at surface lattice site
out f23 Distribution functions for link 23 at surface lattice site
out f24 Distribution functions for link 24 at surface lattice site
in f25 Distribution functions for link 25 at surface lattice site
in f26 Distribution functions for link 26 at surface lattice site

516 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.29 lbpUSER.cpp

Module for user-created subroutines and functions.

This is a blank module (along with a header file lbpUSER.hpp) that a user can populate with new subroutines and
functions for LBE simulations that expand on the default functionality available in DL_MESO_LBE.

5.29. lbpUSER.cpp 517

DL_MESO Technical Manual, Release 2.7

518 Chapter 5. DL_MESO_LBE Code Description

CHAPTER

SIX

DL_MESO_LBE INPUT AND OUTPUT FILE FORMATS

6.1 lbin.sys

This ANSI text input file consists of keywords and values (either numerical or additional keywords) separated by
spaces or tabs. The main keywords generally consist of a few words separated by underscore characters (_), which
must be specified precisely as shown here to work: no allowances are made by DL_MESO_LBE for typographical
errors or abbreviations.

Ten keywords are compulsory for all LBE simulations, as these determine the lattice scheme to be used, the
number of lattices to use, and the sizes of the system and boundary regions. If any of the following keywords are
not included, DL_MESO_LBE will abort running with an error message.

Table 6.1: Compulsory keywords in lbin.sys input file
keyword meaning
space_dimension sets the number of dimensions in the system (2 or 3)
discrete_speed sets the number of lattice links per grid point (9, 15, 19 or 27)
number_of_fluid sets the number of fluid lattices (𝑁𝑓) for the system (if modelling so-

lutes, this must be set to 1)
number_of_solute sets the number of solutes (𝑁𝑐) to be modelled
temperature_scalar determines whether or not a lattice is needed to model heat transfers

(𝑁𝑡, set to 1 if needed, 0 if not)
phase_field determines whether or not a lattice is needed to represent phase fields

(𝑁𝑝, set to 1 if needed, 0 if not)1

grid_number_x sets the number of grid points in the 𝑥-dimension
grid_number_y sets the number of grid points in the 𝑦-dimension
grid_number_z sets the number of grid points in the 𝑧-dimension (if a two-dimensional

system is modelled, this will be reset to 1)
domain_boundary_width sets the size of the boundary region (if running DL_MESO_LBE in

serial, this is usually reset to 0)

Additional keywords can be used to specify the algorithms for collisions, forcing and mesophase interactions, the
format and data type for output files, whether fluids are compressible or incompressible, and whether or not restart
files should be used. If these are omitted, DL_MESO_LBE will assume that a new simulation is to take place with
compressible fluids subjected to BGK (single-relaxation-time) collisions using standard forcing and no mesophase
interactions, producing VTK formatted files in big endian binary. If a customisable version of DL_MESO_LBE
are being used, all of these keywords may be omitted except for incompressible_fluids, which is required
to correctly calculate fluid velocities in initialisation and output files and apply boundary conditions. If all three
flags for combining data from processor cores are switched on for three-dimensional calculations (or the 𝑥- and
𝑦-components are both switched on for two-dimensional systems), MPI-IO will be used to put together data slices
in single output files.

1 No multiple fluid phase scheme included in DL_MESO currently requires this lattice.

519

DL_MESO Technical Manual, Release 2.7

Table 6.2: Algorithmic keywords in lbin.sys input file
keyword meaning
collision_type sets the type of collisions and forcing:

BGK (0), BGKEDM (1), BGKGuo (2), TRT (3), TRTEDM (4), TRTGuo
(5), MRT (6), MRTEDM (7), MRTGuo (8), CLBE (9), CLBEEDM (10) or
CLBEGuo (11)2

interaction_type sets the type of mesophase interactions3 :
ShanChen (1), ShanChenQuadratic (2), Lishchuk (10),
LishchukSpencer (11), LishchukSpencerTensor (12),
LishchukLocal (13) or Swift (20)

output_format sets the format for output files:
VTK (0), LegacyVTK (1), Plot3D (2)

output_type sets the data type for output files (Binary (0), Text or ANSI (1))
output_combine_x combines data from processor cores along the 𝑥-axis into single output

files (0 = off, 1 = on)
output_combine_y combines data from processor cores along the 𝑦-axis into single output

files (0 = off, 1 = on)
output_combine_z combines data from processor cores along the 𝑧-axis into single output

files (0 = off, 1 = on)
incompressible_fluids determines whether or not the fluids should be incompressible (set to 0

for compressible fluids, 1 for incompressible fluids)
restart_simulation determines whether or not the simulation should be restarted using the

lbout.dump restart file (0 for a new simulation, 1 to restart the simula-
tion)

The following keywords can be used to specify other information, such as fluid densities, velocities, relaxation
times or frequencies etc.: further details about possible values for several of these keywords, including default
values if they are not supplied, are given in Chapter 6 of the DL_MESO User Manual. For keywords describing
boundary conditions, 𝑄 in the keyword can be substituted with top, bot, lef, rig, fro, bac for the top,
bottom, left, right, front and back boundaries respectively. Superfluous parameters (e.g. boundary velocities when
constant density boundaries are in use) can be omitted.

Note that if there are duplicate entries for any keyword, the value associated with the last one in the file will be
used.

Table 6.3: Other available keywords in lbin.sys input file
keyword meaning
total_step sets total number of timesteps for the simulation
equilibration_step sets number of timesteps for equilibration of the simulation (without

solid boundary conditions or external forcing)
save_span sets interval for writing output files
dump_span sets interval for writing restart files
calculation_time sets available calculation time (in seconds) before closing down the

simulation
boundary_type sets type of boundary conditions for fluid flows
solute_boundary_type sets type of boundary conditions for solutes
thermal_boundary_type sets type of boundary conditions for thermal flows
noise_intensity gives maximum variation in initial fluid densities for multiple fluid sys-

tems
evaporation_limit gives minimum fluid density for non-continuous fluids when dealing

with edge or corner boundaries
trt_magic_number sets the TRT ‘magic number’ Λ𝑒𝑜

continues on next page

2 Either the keyword or the number can be used to specify the types.
3 If set to an unrecognised word or to 0, interactions will be switched off.

520 Chapter 6. DL_MESO_LBE Input and Output File Formats

DL_MESO Technical Manual, Release 2.7

Table 6.3 – continued from previous page
keyword meaning
gas_constant sets the universal gas constant 𝑅 for equations of state (Shan-Chen

pseudopotential and Swift free-energy interactions)
gradient_order sets the order of gradient approximations (i.e. number of neighbouring

grid points used) at boundary/near-boundary points
sound_speed sets speed of sound for fluid 0 in real-life (i.e. non-lattice-based) units
kinetic_viscosity sets kinematic viscosity for fluid 0 in real-life units
total_step sets total number of timesteps for the simulation
oscillating_freq sets frequency for sinusoidal oscillating forces across system
oscillating_period sets period (reciprocal of frequency) for sinusoidal oscillating forces

across system
oscillating_freq_𝑄 sets frequency for sinusoidal oscillating velocity at boundary 𝑄
oscillating_period_𝑄 sets period (reciprocal of frequency) for sinusoidal oscillating velocity

at boundary 𝑄
speed_ini_ 𝑛 sets initial velocity for all fluids (𝑛 = 0 for 𝑥-component, 𝑛 = 1 for

𝑦-component, 𝑛 = 2 for 𝑧-component)
speed_ 𝑄 _ 𝑛 sets constant velocity at boundary 𝑄 for all fluids (component 𝑛)
speed_oscil_ 𝑄 _𝑛 sets oscillating velocity amplitude at boundary𝑄 for all fluids (compo-

nent 𝑛)
density_ini_ 𝑓 sets initial density for fluid 𝑓 (between 0 and𝑁𝑓−1) throughout system
density_inc_ 𝑓 sets constant density for incompressible fluid 𝑓 (or parameter for

Shan/Chen 1994 pseudopotential)
density_ 𝑄 _ 𝑓 sets density for fluid 𝑓 at boundary 𝑄
rheology_fluid_ 𝑓 sets rheology model for fluid 𝑓 (see below)
rheology_parameter_a_ 𝑓 sets rheological model parameter 𝑎 for fluid 𝑓
rheology_parameter_b_ 𝑓 sets rheological model parameter 𝑏 for fluid 𝑓
rheology_parameter_c_ 𝑓 sets rheological model parameter 𝑐 for fluid 𝑓
rheology_parameter_d_ 𝑓 sets rheological model parameter 𝑑 for fluid 𝑓
rheology_power_ 𝑓 sets rheological model power index 𝑛 for fluid 𝑓
relaxation_fluid_ 𝑓 sets (initial) relaxation time (𝜏𝑓) for fluid 𝑓 (symmetric relaxation time

for TRT)
relax_freq_fluid_ 𝑓 sets (initial) relaxation frequency (𝜏−1

𝑓) for fluid 𝑓 (symmetric relax-
ation frequency for TRT)

bulk_relaxation_fluid_ 𝑓 sets bulk relaxation time (𝜏𝑓,𝑏𝑢𝑙𝑘) for fluid 𝑓
bulk_relax_freq_fluid_ 𝑓 sets bulk relaxation frequncy (𝜏−1

𝑓,𝑏𝑢𝑙𝑘) for fluid 𝑓
mrt_relax_ 𝑖 sets 𝑖th relaxation time for MRT scheme, applicable for all fluids
mrt_relax_freq_ 𝑖 sets 𝑖th relaxation frequency for MRT scheme, applicable for all fluids
clbe3_relaxation_fluid_ 𝑓 sets CLBE third-order relaxation time (𝜏3) for fluid 𝑓
clbe3_relax_freq_fluid_ 𝑓 sets CLBE third-order relaxation frequency (𝜔3 = 𝜏−1

3) for fluid 𝑓
clbe4_relaxation_fluid_ 𝑓 sets CLBE fourth-order relaxation time (𝜏4) for fluid 𝑓
clbe4_relax_freq_fluid_ 𝑓 sets CLBE fourth-order relaxation frequency (𝜔4 = 𝜏−1

4) for fluid 𝑓
relax_mobility sets mobility relaxation time (𝜏𝜑) for two-fluid Swift free-energy inter-

actions
relax_freq_mobility sets mobility relaxation frequency (𝜏−1

𝜑) for two-fluid Swift free-
energy interactions

mobility_parameter sets mobility parameter Γ for two-fluid Swift free-energy interactions
surface_tension_parameter sets the surface tension parameter 𝜅 for Swift free-energy interactions

(both one and two fluid systems)
solute_ini_ 𝑐 sets initial concentration for solute 𝑐 throughout system (𝑐 between 0

and 𝑁𝑐 − 1)
solute_ 𝑄 _ 𝑐 sets concentration for solute 𝑐 at boundary 𝑄
relax_solute_ 𝑐 sets relaxation time (𝜏𝑐) for solute 𝑐
relax_freq_solute_ 𝑐 sets relaxation frequency (𝜏−1

𝑐) for solute 𝑐
temperature_ini sets initial temperature throughout system

continues on next page

6.1. lbin.sys 521

DL_MESO Technical Manual, Release 2.7

Table 6.3 – continued from previous page
keyword meaning
temperature_ 𝑄 sets temperature at boundary 𝑄
temperature_system sets temperature of entire system if using equations of state and no

temperature scalar
heating_rate_sys sets rate of change in temperature (with time based on real-life units)

throughout system
heating_rate_ 𝑄 sets rate of change in temperature at boundary 𝑄
relax_thermal sets thermal relaxation time (𝜏𝑡)
relax_freq_thermal sets thermal relaxation frequency (𝜏−1

𝑡)
body_force_ 𝑛 sets constant external body force on fluid 𝑓 : 𝑛 = 3𝑓 for 𝑥-component,

𝑛 = 3𝑓 + 1 for 𝑦-component, 𝑛 = 3𝑓 + 2 for 𝑧-component
body_force_x_ 𝑓 sets 𝑥-component of constant external body force on fluid 𝑓
body_force_y_ 𝑓 sets 𝑦-component of constant external body force on fluid 𝑓
body_force_z_ 𝑓 sets 𝑧-component of constant external body force on fluid 𝑓
oscillating_force_ 𝑛 sets amplitude of sinusoidal oscillating body force on fluid 𝑓 : 𝑛 = 3𝑓

for 𝑥-component, 𝑛 = 3𝑓 + 1 for 𝑦-component, 𝑛 = 3𝑓 + 2 for 𝑧-
component

oscillating_force_x_ 𝑓 sets 𝑥-component of amplitude of sinusoidal oscillating body force on
fluid 𝑓

oscillating_force_y_ 𝑓 sets 𝑦-component of amplitude of sinusoidal oscillating body force on
fluid 𝑓

oscillating_force_z_ 𝑓 sets 𝑧-component of amplitude of sinusoidal oscillating body force on
fluid 𝑓

boussinesq_force_ 𝑛 sets Boussinesq force constant (𝑔⃗𝛽) for fluid 𝑓 : 𝑛 = 3𝑓 for 𝑥-
component, 𝑛 = 3𝑓+1 for 𝑦-component, 𝑛 = 3𝑓+2 for 𝑧-component

boussinesq_force_x_ 𝑓 sets 𝑥-component of Boussinesq force constant (𝑔⃗𝛽) for fluid 𝑓
boussinesq_force_y_ 𝑓 sets 𝑦-component of Boussinesq force constant (𝑔⃗𝛽) for fluid 𝑓
boussinesq_force_z_ 𝑓 sets 𝑧-component of Boussinesq force constant (𝑔⃗𝛽) for fluid 𝑓
boussinesq_boussinesq_high sets high reference temperature for Boussinesq convection (𝑇ℎ)
boussinesq_boussinesq_low sets low reference temperature for Boussinesq convection (𝑇𝑙)
interaction_ 𝑛 sets interaction parameter between fluids 𝑓1 and 𝑓2: 𝑛 = 𝑁𝑓 × 𝑓1 + 𝑓2
interaction_ 𝑓1 _ 𝑓2 sets interaction parameter between fluids 𝑓1 and 𝑓2
quadratic_weight sets Shan-Chen quadratic term weighting parameter 𝛽 between all pairs

of fluid species
quadratic_weight_ 𝑛 sets Shan-Chen quadratic term weighting parameter 𝛽 between fluids

𝑓1 and 𝑓2: 𝑛 = 𝑁𝑓 × 𝑓1 + 𝑓2
quadratic_weight_ 𝑓1 _ 𝑓2 sets Shan-Chen quadratic term weighting parameter 𝛽 between fluids

𝑓1 and 𝑓2
potential_type sets the pseudopotential type for Shan-Chen interactions (see below)

for all fluid species or chemical potential type for Swift free-energy
interactions

potential_type_ 𝑓 sets the pseudopotential type for Shan-Chen interactions (see below)
for fluid 𝑓

equation_of_state sets equation of state for all fluids with Swift free-energy interactions
eos_parameter_a sets equation-of-state parameter 𝑎 for all fluid species
eos_parameter_a_ 𝑓 sets equation of state parameter 𝑎 for fluid 𝑓
eos_parameter_b sets equation of state parameter 𝑏 for all fluid species
eos_parameter_b_ 𝑓 sets equation of state parameter 𝑏 for fluid 𝑓
potential_parameter_a sets chemical potential parameter 𝑎 for all fluid species (Swift free-

energy interactions)
potential_parameter_b sets chemical potential parameter 𝑏 for all fluid species (Swift free-

energy interactions)
shanchen_psi0_ 𝑓 sets Shan-Chen pseudopotential parameter 𝜓0 for fluid 𝑓
critical_temperature_ 𝑓 sets critical temperature 𝑇𝑐 for fluid 𝑓
critical_pressure_ 𝑓 sets critical pressure 𝑃𝑐 for fluid 𝑓

continues on next page

522 Chapter 6. DL_MESO_LBE Input and Output File Formats

DL_MESO Technical Manual, Release 2.7

Table 6.3 – continued from previous page
keyword meaning
acentric_factor_ 𝑓 sets acentric factor 𝜔 for fluid 𝑓
segregation sets fluid segregation parameter between all fluids species
segregation_ 𝑛 sets fluid segregation parameter between fluids 𝑓1 and 𝑓2: 𝑛 = 𝑁𝑓 ×

𝑓1 + 𝑓2
segregation_ 𝑓1 _ 𝑓2 sets fluid segregation parameter between fluids 𝑓1 and 𝑓2
wetting_type sets the basis for wetting interactions between solid points and all fluid

species for Shan-Chen interactions or for Swift free-energy interactions
wetting_type_ 𝑓 sets the basis for Shan-Chen wetting interactions between solid points

and fluid species 𝑓
wall_interaction_ 𝑓 sets Shan-Chen interaction parameter between fluid 𝑓 and solid walls
wetting_parameter_rho_ 𝑛 sets Swift wetting potential parameter for fluid density (𝑎𝑛, 𝑛 = 0 or

1)
wetting_parameter_phi_ 𝑛 sets Swift wetting potential parameter for fluid concentration (𝑏𝑛, 𝑛 =

0 or 1)

This file is compulsory for a DL_MESO_LBE calculation and must be supplied in the same directory where
DL_MESO_LBE is run. It can be created or modified by hand using a text editor, but use of the DL_MESO GUI
for this file is recommended, particularly when starting to use DL_MESO_LBE.

6.2 lbin.spa

This ANSI text input file consists of lines, each of which includes the Cartesian coordinates of a grid point and a
boundary code for that grid point, all separated by white space (spaces or tab characters), i.e.

x y z [boundary code]

DL_MESO_LBE assumes a boundary code of 0 for all grid points by default (representing fluid sites), which
gives periodic boundaries for points at the outer edges of a lattice. Other categories of boundary condition can be
obtained by using different values, as shown in Table 6.4.

Table 6.4: Boundary condition categories
value meaning
0 liquid
10 domain boundary
11 inside solid (blank site)
12 on-grid bounce back boundary
13 mid-link bounce back boundary
21–99 outflow boundary
100–199 constant velocity, composition and temperature boundary
200–299 constant velocity, Neumann composition and temperature boundary
300–399 constant velocity and composition, Neumann temperature boundary
400–499 constant velocity and temperature, Neumann composition boundary
500–599 constant pressure (density), composition and temperature boundary
600–699 constant pressure (density), Neumann composition and temperature boundary
700–799 constant pressure (density) and composition, Neumann temperature boundary
800–899 constant pressure (density) and temperature, Neumann composition boundary

In the case of outflow and constant velocity/density boundary conditions, the value of the boundary code also
incorporates the direction in which the condition acts (i.e. the location of the nearest fluid point relative to the
boundary grid point), which is given in the last two digits. To simplify understanding of these boundary codes,
words of up to eight letters in length can be used to describe a boundary condition. Table 6.5 includes the categories
for boundary condition words, which have the letters given in the following order:

1. Type of boundary condition: either outflow or a combination of fluid, solute and temperature properties

6.2. lbin.spa 523

DL_MESO Technical Manual, Release 2.7

1. Fluid property: constant speed or constant pressure/density.

2. Solute property: constant composition or bounce back boundary.

3. Temperature property: isothermal (constant temperature) or heat bath (bounce back boundary).

2. Geometric property: planar surface, concave edge4 or concave corner.

3. Boundary orientation: one letter for planar surface, two letters for concave edges or three letters for concave
corners.

For example, a shearing planar surface facing downwards along the 𝑦-axis with constant composition and temper-
ature (i.e. isothermal) is represented as VCBPSD. (More details of the available boundary condition codes and
words can be found in Chapter 6 of the DL_MESO User Manual.)

Table 6.5: Boundary condition categories
letter meaning
O Outflow
V Constant Velocity
P Constant Pressure (Density)
C Constant Solute Composition
T Constant Temperature
B Bounce-back Boundary Condition (Solute Composition or Temperature)
PS Planar Surface
CE Concave Edge
CC Concave Corner
T Normal Vector Pointing to Top
D Normal Vector Pointing Downwards
L Normal Vector Pointing to Left
R Normal Vector Pointing to Right
F Normal Vector Pointing to Front
B Normal Vector Pointing to Back

The directional part of the words used to describe boundary conditions (the last letter or letters) are deciphered by
the enumeration array BoundaryType in lbe.hpp. These are used directly in the modules for boundary condition
schemes to identify the directions given by boundary codes and apply the subroutines using the correct orientation.

This file is compulsory for a DL_MESO_LBE calculation - even if all boundaries are intended to be periodic, a
blank lbin.spa file must be supplied - and must be in the same directory where DL_MESO_LBE is run. Use of
the DL_MESO GUI to create this file is highly recommended, especially for simulations with large grids and/or
many non-fluid points (e.g. for porous media).

6.3 lbin.init

This ANSI text input file consists of lines, each of which includes the Cartesian coordinates of a grid point and all
the macroscopic properties that can be specified - velocity, fluid densities, solute concentrations and temperature -
all separated by white space (spaces or tab characters):

x y z u_x u_y u_z rho_0 ... c_0 ... T

The property values specified at each grid point subsequently replace the default values given in the lbin.sys
file (given with the keywords speed_ini, density_ini, solute_ini and temperature_ini) that
ordinarily apply to all grid points in the lattice. These values are then used to calculate replacement distribution
functions for the specified grid points, thus providing users with a way to initialise LBE simulations.

Note that only the properties needed for the simulation (as defined by the numbers of fluids, solutes and tem-
perature fields) need to be specified in each line of this file, although all of these properties need to be included.

4 When defining boundary conditions for two-dimensional simulations, only front-facing concave edges and corners are available.

524 Chapter 6. DL_MESO_LBE Input and Output File Formats

DL_MESO Technical Manual, Release 2.7

Incorrect numbers of values per line might cause DL_MESO_LBE to crash while attempting to read this file or
initialise the simulation in an unexpected way.

This file is entirely optional for a DL_MESO_LBE calculation, but if it is to be used, it must be in the directory
where DL_MESO_LBE is launched. It can be created by hand, although the use of a utility is recommended:
lbeinitcreate.cpp can create one for a new simulation and use the lbin.sys file to specify default fluid densities,
concentrations and temperature, while lbedumpinit.cpp can create a file from a lbout.dump simulation restart file.

6.4 lbout.dump

This binary file consists of information required for DL_MESO_LBE to restart and extend a LBE simulation,
which can be read in if the value for restart_simulation in lbin.sys is set to 1.

The file consists of a header made up of 12 integers with the following properties:

• The number of dimensions

• The number of lattice speeds

• The number of grid points in the 𝑥-dimension

• The number of grid points in the 𝑦-dimension

• The number of grid points in the 𝑧-dimension

• The number of fluids (𝑁𝑓)

• The number of solutes (𝑁𝑐)

• The switch for temperature field (𝑁𝑡)

• The (currently unused) switch for phase field (𝑁𝑝)

• The timestep at the point when the file was created

• The number of snapshot output files previously written

• The switch for incompressible fluids

If incompressible fluids were in use, the constant densities 𝜌0 used for the calculation then follow as double
precision floating-point numbers. (These are not included if compressible fluids were used.)

A block of integers then follows, consisting of triples with Cartesian coordinates (𝑥, 𝑦 and 𝑧) for all of the grid
points in the calculation. These are not necessarily written to the file in any particular order, but their ordering
corresponds to the data written for each grid point that follows this integer block: this enables DL_MESO_LBE
to determine which set of data belongs to which grid point and (for the parallel version) whether or not the grid
point exists in a processor core’s lattice subdomain.

The data for the grid points given in the order indicated by the previous block of integers then follow as a block
of double precision floating-point numbers. For each grid point, the distribution functions - in the same order
as stored in the lbf array (in blocks ordered by lattice link, with each block giving the distribution functions for
the various fluids, solutes and temperature field) - and the relaxation frequencies for all fluids are provided, all
as double precision numbers. These enable DL_MESO_LBE to read in the data for each grid point and copy it
directly into the corresponding arrays.

This file is automatically generated by DL_MESO_LBE during a simulation and either at the very end once all the
timesteps have been completed or when the calculation time specified in lbin.sys has run out. The endianness (big
or small) of the file corresponds to that of the computer used to run the calculation: it can be used to restart the
simulation on another machine provided the two computers have the same endianness. The lbedumpinit.cpp utility
can be used to generate a lbin.init file from this file as a starting point for a new simulation, while lbedumpvtk.cpp
can generate an XML-formatted Structured Grid VTK file to visualise the system at the point when this file was
created.

6.4. lbout.dump 525

DL_MESO Technical Manual, Release 2.7

6.5 lbout*.vts

By default, DL_MESO_LBE will generate a series of these files in XML-based Structured Grid VTK format5

containing snapshots of the simulation with macroscopic properties (grid point locations given in ‘real-life’ units,
boundary codes, velocities, fluid densities, mass fractions for fluids, solute concentrations, temperature) at each
grid point every lbsave timesteps after any equilibration timesteps (lbequstep). With the exception of the boundary
codes, all of the data are provided as single-precision floating-point numbers.

Two options for this format exist in DL_MESO_LBE: big endian binary (default) and ANSI text. Both use XML
tags - <DataArray> - to define the data sets (including their unique names), although while the text version of
the file puts the values directly between the relevant tags with spaces between the values, the binary version uses
the tags to indicate the starting location of the data in a stream of binary numbers inside an <AppendedData>
tag.

If running DL_MESO_LBE in serial (or using MPI-IO in parallel to combine data), a single file per snapshot is
produced with the name lboutyyyyyy .vts, where yyyyyy is the snapshot number (starting from 000000). By
default for a parallel run of DL_MESO_LBE, each processor core will generate its own file for each snapshot
with the name lboutxxxxxxatyyyyyy.vts, where xxxxxx is the processor core number. The number of files
per snapshot can be reduced by using the output_combine keywords in the lbin.sys file: switching on each
of these options combines data from processor cores along the given Cartesian (𝑥, 𝑦 or 𝑧) axis. If these options
are selected for all dimensions in the simulation, DL_MESO_LBE gathers the data in all but one dimension and
then uses MPI-IO to write each data group concurrently and contiguously to a single file for the snapshot. A
parallel run of DL_MESO_LBE will also produce a lbout.info file and, if multiple files per snapshot are produced,
a lbout.ext file to provide the grid extents covered by each file (each value of xxxxxx): this can be used by the
lbevtkgather.cpp utility to generate Parallel Structured Grid XML VTK files (lbtoutyyyyyy.pvts) that can be
opened in Paraview and used to pull together data from multiple files per snapshot. (Note that the original *.vts
files need to be retained as the parallel files are merely used to link these together.)

6.6 lbout*.vtk

If selected in the lbin.sys input file, DL_MESO_LBE will generate a series of these files in Legacy Structured
Grid VTK format5 containing snapshots of the simulation with macroscopic properties (grid point locations given
in ‘real-life’ units, boundary codes, velocities, fluid densities, mass fractions for fluids, solute concentrations,
temperature) at each grid point every lbsave timesteps after any equilibration timesteps (lbequstep). With the
exception of the boundary codes, all of the data are provided as single-precision floating-point numbers.

Two options for this format exist in DL_MESO_LBE: big endian binary (default) and ANSI text. Both formats
consist of text lines (headers) indicating the data to follow, which is then written either as single values for scalars
(e.g. densities, concentrations) or as triples for vector properties (velocities, grid coordinates): in the case of text
formatting, each line following the header represents an individual grid point.

If running DL_MESO_LBE in serial (or using MPI-IO in parallel to combine data), a single file per snapshot is
produced with the name lboutyyyyyy .vtk, where yyyyyy is the snapshot number (starting from 000000). By
default for a parallel run of DL_MESO_LBE, each processor core will generate its own file for each snapshot
with the name lboutxxxxxxatyyyyyy.vtk, where xxxxxx is the processor core number. The number of files
per snapshot can be reduced by using the output_combine keywords in the lbin.sys file: switching on each
of these options combines data from processor cores along the given Cartesian (𝑥, 𝑦 or 𝑧) axis. If these options
are selected for all dimensions in the simulation, DL_MESO_LBE gathers the data in all but one dimension and
then uses MPI-IO to write each data group concurrently and contiguously to a single file for the snapshot. A
parallel run of DL_MESO_LBE will also produce a lbout.info file and, if multiple files per snapshot are produced,
a lbout.ext file to provide the grid extents covered by each file (each value of xxxxxx). To date, no utility has yet
been written to combine or link together multiple Legacy VTK files per snapshot.

5 Full details of this file format can be found in File Formats for VTK Version 4.2.

526 Chapter 6. DL_MESO_LBE Input and Output File Formats

https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf

DL_MESO Technical Manual, Release 2.7

6.7 lbout*.q

If selected in the lbin.sys input file, DL_MESO_LBE will generate a series of these files in Plot3D format6 con-
taining snapshots of the simulation with macroscopic properties (grid point locations given in ‘real-life’ units,
boundary codes, velocities, fluid densities, mass fractions for fluids, solute concentrations, temperature) at each
grid point every lbsave timesteps after any equilibration timesteps (lbequstep). All of the data, including boundary
codes, are provided as single-precision floating-point numbers.

The format for Plot3D solution files (*.q) starts with three integers providing the extent of the lattice covered by
the file, followed by four single-precision floating-point numbers with:

• Fluid 0’s speed of sound in real-life units (lbsoundv)

• The freestream angle of attack (always given as 1)

• The flow Reynolds number (always set to 0)

• The timestep number less the number of equilibration steps (converted to a floating point number)

These are then followed by blocks of floating-point numbers:

• The property being written to the file (a fluid density, a fluid mass fraction, a solute concentration, tempera-
ture)

• 𝑥-components of velocity

• 𝑦-components of velocity

• 𝑧-components of velocity (only for three-dimensional simulations)

• Boundary codes (converted to floating point numbers)

for the available grid points. It should be noted that only a single property can be written to each file, and as such
DL_MESO_LBE (by default) writes a series of Plot3D solution files for each property modelled in the simulation,
starting with:

• lboutzzdens - for densities of fluid zz

• lboutzzfrac - for mass fractions of fluid zz

• lboutzzconc - for concentrations of solute zz

• lbouttemp - for temperatures

The locations of the grid points are written to Plot3D grid files (*.xyz for three-dimensional simulations, *.xy for
two-dimensional simulations), which start with three integers providing the extent of the lattice covered by the file
(the numbers of points in each Cartesian direction), followed by blocks of floating-point numbers:

• 𝑥-components of the grid point locations (in real-life units)

• 𝑦-components of the grid point locations (in real-life units)

• 𝑧-components of the grid point locations (in real-life units, only for three-dimensional simulations)

Both solution and grid files can either be written in big endian binary (default) or in ANSI text formats: in the
case of text formatting, spaces are placed between values in data blocks (e.g. lattice extent, property values) and a
carriage return follows each block.

If running DL_MESO_LBE in serial (or using MPI-IO in parallel to combine data), a single solution file per snap-
shot per property is produced. For the example of the density of fluid 0, these files are named lbout00densyyyyyy.q,
where yyyyyy is the snapshot number (starting from 000000). Similarly, a single grid file called lbout.xyz or
lbout.xy is produced at the start of the simulation.

By default for a parallel run of DL_MESO_LBE, each processor core will generate its own file for each snapshot
and property, e.g. for densities of fluid 0, these will be called lbout00densxxxxxxatyyyyyy.q, where xxxxxx is the
processor core number. A series of grid files called lboutxxxxxx.xyz or lboutxxxxxx.xy will also be created at the
start of the simulation. The number of files per snapshot and the number of grid files can be reduced by using

6 Some details of this file format, given as Fortran code, can be found here.

6.7. lbout*.q 527

https://www.grc.nasa.gov/www/wind/valid/plot3d.html

DL_MESO Technical Manual, Release 2.7

the output_combine keywords in the lbin.sys file: switching on each of these options combines data from
processor cores along the given Cartesian (𝑥, 𝑦 or 𝑧) axis. If these options are selected for all dimensions in the
simulation, DL_MESO_LBE gathers the data in all but one dimension and then uses MPI-IO to write each data
group concurrently and contiguously to a single file for the snapshot. A parallel run of DL_MESO_LBE will
also produce a lbout.info file and, if multiple files per snapshot are produced, a lbout.ext file to provide the grid
extents covered by each file (each value of xxxxxx). The lbout.info file can be used by the lbeplot3dgather.cpp
utility to create combined grid (lbtout.xyz or lbtout.xy) and solution (lbtout*yyyyyy.q) files that pull together the
data from the original files and can be opened in Paraview. (Since these combined files contain all the data, the
files originally created by DL_MESO_LBE can later be deleted.)

6.8 lbout.info

When running DL_MESO_LBE in parallel, this small ANSI text file is produced to provide some of the post-
processinig utilities the necessary information to pull simulation data together from multiple files per snapshot. It
consists of the following keywords with integer values for each described property on the same line, separated by
white space:

numberofDimensions
numberofFluids
numberofSolutes
numberofTemperature
sizeofSystem
sizeofInteger
sizeofFloat

The numbers of dimensions, fluids, solutes and temperature are specific to the system being simulated (and are
originally provided in lbin.sys), the size of the system here gives the number of files per snapshot (either the total
number of processor cores or the number of I/O groups used to gather and write data to snapshot files), while the
sizes of integers and (single-precision) floats are given in bytes and are equal to the standard sizes used in C++.

This file is used by the lbeplot3dgather.cpp and lbevtkgather.cpp utilities to determine information needed to gather
together Plot3D and XML-based Structured Grid VTK files respectively.

6.9 lbout.ext

When running DL_MESO_LBE in parallel and generating multiple files per snapshot (i.e. when not using MPI-
IO), this small ANSI text file is produced to provide the extents of each lattice subdomain (either for individual
processor cores or for I/O groups gathering data together). The file consists of lines for each core or I/O group
identified by a number in the format extent_xxxxx (where xxxxxx is the core or group number) and followed
by the minimum and maximum cordinates for each dimension of the subdomain for the core or group, with white
space between each value, e.g.

extent_000000 0 50 0 50 0 50
extent_000001 50 100 0 50 0 50
extent_000002 0 50 50 100 0 50
extent_000003 50 100 50 100 0 50
extent_000004 0 50 0 50 50 100
extent_000005 50 100 0 50 50 100
extent_000006 0 50 50 100 50 100
extent_000007 50 100 50 100 50 100

This file is used by the lbevtkgather.cpp utility to determine the extent of each file written per simulation snapshot
and how the files fit together, which is subsequently written to the parallel VTK files linking the data together. (If
MPI-IO is in use, this file is not produced as the data files do not need to be processed after the simulation has
finished.)

528 Chapter 6. DL_MESO_LBE Input and Output File Formats

CHAPTER

SEVEN

ADVICE ON DEVELOPING DL_MESO_LBE

DL_MESO_LBE has been written to allow users to either use the code as-is for their LBE simulations and/or to
expand the code to implement their new functionalities and run simulations in a highly-scalable manner. In order
to expand upon DL_MESO_LBE’s feature set, this chapter provides some advice on what changes need to be
made to the code and how these could be carried out.

7.1 User module: lbpUSER.cpp

A blank code module for DL_MESO_LBE - lbpUSER.cpp - has been provided for users to place their own sub-
routines and functions. This module and its header file (lbpUSER.hpp) are automatically linked into the header
files for the parallel and serial versions of DL_MESO_LBE, plbe.hpp and slbe.hpp: as these are used by both the
mainline and customisable versions of the codes, this enables user-developers to both test out their new features in
a streamlined code and to incorporate their own new features into their own copy of the main code (both parallel
and serial versions) later on. Keeping these changes separate from the main modules (at least to begin with) also
enables the user-developer to take immediate advantage of any bug fixes subsequently made to the main code
without requiring major changes to their own subroutines or functions.

7.2 Use of customisable codes

The customisable codes supplied with DL_MESO_LBE - plbecustom.cpp, slbecustom.cpp and slbecombine.cpp
- are effectively stripped down versions of the main code with the main calculation loop incorporated in them (as
opposed to the separate modules with these loops in the mainline codes). These codes allow the user to ‘hardcode’
their new subroutines and functions as a temporary measure to check whether and how they work, bypassing the
need to add new options and/or keywords to the various input files (which can be carried out later).

Both main custom codes - plbecustom.cpp and slbecustom.cpp - are initially set up to carry out the main parts
required for a lattice Boltzmann equation simulation. These include reading input files, setting up arrays, calculat-
ing initial distribution functions etc. at the start, the main calculation loop with options for file writing, calculating
interaction forces (given as Shan-Chen but with comments on how to use other interaction types) and applying
BGK collisions, and closing down the simulation at the end. Unlike the main codes, no check on calculation
time is made during the main loop to close down the simulation before all of the specified timesteps have been
completed.

In the case of the parallel custom code (plbecustom.cpp), calls to communication subroutines have been included
at the appropriate points to ensure data in the boundary halo is available when they are needed (e.g. distribution
functions before interaction force calculations, interaction forces before collisions). If the user-developer wishes
to try out calculations with boundary halos on a smaller scale, possibly before coding up MPI communication rou-
tines, the serial custom code with boundary halos (slbecombine.cpp) can be used to check when communications
would be needed for parallel running.

529

DL_MESO Technical Manual, Release 2.7

7.3 New collision operators

The user-developer is advised to follow a similar structure to the pre-existing collison modules - lbpBGK.cpp,
lbpTRT.cpp, lbpMRT.cpp and lbpCLBE.cpp - when creating their own collision subroutines. This involves two
types of subroutine:

• Collisions on a single lattice site (e.g. fSiteFluidCollisionBGK()), taking in the pointer for the first distri-
bution function in lbf and calculated properties for the grid point (e.g. velocity, fluid relaxation times and
densities, forces)

• Loops over all grid points (e.g. fCollisionBGK()), calculating properties and calling the site collision sub-
routine for each grid point

The latter subroutine is the one that can exploit OpenMP multithreading and include options for compressible
and/or incompressible fluids.

7.4 New interaction forces

The general approach taken in lbpFORCE.cpp for calculating interaction forces on (and between) fluids based on
gradients of a given property is advisable when devising new interaction models. This includes:

• Subroutines to calculate gradients or gradient-based properties at a single grid point

– Separate versions for grid points away from and near edges of lattice subdomains, latter requiring
modulo functions to find neighbouring points beyond periodic boundaries

• Subroutines to run through grid points and calculate gradients or related properties

– Version of this subroutine for parallel running only needs to look at grid points away from edge of
lattice subdomain, i.e. those not inside the boundary halo

– Version of this subroutine for serial running needs two separate loops: one for grid points at edge of
lattice subdomaiin, one for grid points away from edge

It should be noted that the parallel running version of the subroutine to calculate gradients or related properties at
all grid points inside the subdomain (excluding the boundary halo) would need to be followed by a communication
subroutine to copy values into the boundary halo. This is particularly important for interaction force calculations,
as these values will be used for subsequent collisions.

If the user-developer wishes to try out e.g. a new pseudopotential for Shan-Chen interactions, they can start by
creating their own custom copy of fCalcPotential_ShanChen() but removing the switch block inside the loop
for fluids and directly calculating their new pseudopotential for each lattice site and fluid. After testing, the user-
developer can later add their pseudopotential as a new option inside fCalcPotential_ShanChen() itself by copying
and modifying a case block. A similar approach can be taken for e.g. new wall-fluid (wetting) interaction types.

7.5 New rheological models

If the user-developer wishes to add a new rheological model, this can be added to the fGetRelaxationFrequency()
subroutine in the lbpRHEOLOGY.cpp module, either directly or in a modified copy of the subroutine that can be
called by the customisable version of the code. Unless a new collision operator has also been added (necessitating
new subroutines to calculate shear rates), no other major modifications need to be made to this module.

530 Chapter 7. Advice on developing DL_MESO_LBE

DL_MESO Technical Manual, Release 2.7

7.6 New boundary conditions

The approach to coding up a new boundary condition scheme will depend on whether or not the scheme has to be
applied in specific directions. If it does not or only a limited number of directions need to be considered, a similar
approach to bounce back boundary conditions can be taken, e.g. fMidBounceBackF(): a single subroutine with
a one-dimensional grid coordinate number as an input can be written to apply the condition either in all or in a
limited number of directions.

If direction needs to be specified for the boundary condition, a similar approach to the main schemes (e.g. Zou-
He, Inamuro) is recommended. This takes the form of coding up each type of boundary (planar surface, concave
edge, concave corner) for a single direction (e.g. fD3Q15VPSZouHe() etc.) and using this implementation for
all other directions by selecting different permutations of distribution functions, velocity components etc. (e.g.
fD3Q15VFZouHe()). The selected boundary directions used in the existing schemes (i.e. upwards from bottom
planar surface, upwards-rightwards from bottom-left concave edge, upwards-rightwards-forwards from bottom-
left-back concave corner) is highly recommended to avoid needing to work out a different set of permutations.

It should be noted for direction-based boundary schemes that:

1. each lattice scheme (e.g. D2Q9, D3Q15) requires its own implementation of the new boundary condition
scheme, and

2. different versions may be required for each lattice scheme if the boundary scheme involves local equilibrium
distribution functions: in DL_MESO_LBE, these will include variations for incompressible fluids, Swift
free-energy interactions and cascaded LBE collisions.

If the user-developer requires more directional boundary types, e.g. convex edges and corners, additional bound-
ary codes will need to be added to BoundaryType to identify the directions as well as subroutines to implement one
direction for each type and additional calls in subroutines for lattice schemes to implement them in different direc-
tions. This is a more substantial modification to make, particularly if the new directions need to be implemented
for all the current boundary condition schemes.

7.7 New lattice model

DL_MESO_LBE is designed to be as agnostic as possible when it comes to lattice schemes, i.e. very few subrou-
tines require specific versions for different lattices, and all arrays with lattice-dependent parameters (e.g. lbw) can
be used regardless of the lattice scheme in use. The subroutines in lbpMODEL.cpp are used to define values for
the following lattice-dependent variables and arrays:

• lbcs, lbcssq and lbrcssq - lattice speed of sound (𝑐𝑠), its square and the reciprocal of the square

• lbw - lattice link weighting parameters 𝑤𝑖 used for local equilibrium distribution function calculations and
calculating gradients for interaction forces

• lbwi, lbw0, lbwpt, lbwxx, lbwyy, lbwzz, lbwxy, lbwxy, lbwyz, lbwgam and lbwdel - lattice link weight-
ing parameters for local equilibrium distribution functions with Swift free-energy interactions (if model is
available for lattice scheme)

• lbvx, lbvy and lbvz - lattice link vectors 𝑒𝑖

• lbfevx, lbfevy and lbfevz - lattice vectors for gradient calculation stencil used in Swift free-energy interactions
(if applicable)

• lbopv - conjugate lattice links

• lbvwx, lbvwy and lbvwz - product of lattice link vectors and weighting parameters (i.e. product of lbw and
lbvx etc.), used in gradient calculations

• lbtr - moment tranformation matrix T for Multiple Relaxation Time (MRT) collisions (if available for lattice
scheme)

• lbtrinv - inverse of moment tranformation matrix T−1 for MRT collisions (if available)

• lbmrtw - moment parameters for some MRT collision schemes

7.6. New boundary conditions 531

DL_MESO Technical Manual, Release 2.7

The main substantial modifications that might be necessary for new lattice schemes could include:

• New local equilibrium distribution functions (in place of e.g. fGetEquilibriumF()) if the new lattice is not
square

• Changing the arrays lbvx, lbvy and lbvz from integers to double precision floating-point if the link vectors
are no longer integers (e.g. when using triangular lattices)

7.8 New or modified output file format

The simplest type of new output file to create is one that reports on system-wide values of a property. Noting that
obtaining these values in parallel running might require a global communication step, e.g. summation over all
processor cores using fGlobalValue(), the results can be printed to a file by a single processor core. By convention
and to ensure compatibility for serial running, this core should be numbered 0. (Examples of this approach can be
seen in fPrintSystemMass() and fPrintSystemMomentum().)

If an additional grid-point-dependent property needs to be reported in the snapshot output files currently cre-
ated by DL_MESO_LBE, much of this can be achieved by creating new subroutines similar to those found in
lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp and lbpGET.cpp:

• A subroutine to calculate the property for a single lattice site, e.g. fGetOneMassSite() for a single fluid
density

• A subroutine to wrap the above subroutine calculating the property at the lattice site, e.g. fGetOneMass-
SiteWrap()

• A subroutine to put together values of the property into an array for each processor core by calling fFill-
Buffer() with the above wrapped subroutine as an input, e.g. fPieceDensities()

• A subroutine that gathers values of the property from all processor cores in the current I/O group into a
single array for the group’s root core, calling fGroupGatherFloatData() or fGroupGatherIntData() using
the piece subroutine as an input, e.g. fGroupDensities()

The last subroutine here is then called by the subroutine creating the output file itself, before it goes on to write
the data to the file. Taking the above example of fluid densities, for XML-based VTK files, the subroutine fOut-
putVTK() calls fGroupDensities() for each fluid before calling fWriteVTKFloatBinaryData() to add it to the output
file. (Note that if the property can be calculated directly from values already stored in memory, only the piece and
group subroutines are needed as the former would be able to fill the core’s buffer directly.)

A new file format for grid-based data can be implemented by taking the existing file formats and their corre-
sponding modules - lbpIOVTK.cpp, lbpIOLegacyVTK.cpp and lbpIOPlot3D.cpp - and using the same principles
of gathering data among I/O groups and writing the data to either a single file (in serial or using MPI-IO in parallel)
or an individual file per I/O group.

7.9 Modifications to input file reading

If the new feature has been tested and the user-developer wishes to implement it more fully into DL_MESO_LBE,
they will need to make modifications to reading input files - most frequently lbin.sys - to read in options and
parameters for the new feature. The main subroutine to modify in this case is fInputParameters(), which reads
keywords and values in individual lines.

Once the user-developer has devised the new keywords for the lbin.sys file, they can then add them to the main
while loop going through each line of the file. If the value can be given as a string (or word), this needs to be
used immediately after reading the value to convert it into a number that can be assigned to an array or variable.

When comparing strings (either the word or the value) with possible values, the C++ compare function can be
used, although care should be taken in its use: the inclusion of integers in the call indicating the starting character
and length to compare strings can give a match even if the string being tested is longer. For keywords with
variations that extend to allow specific circumstances to be specified, if a default value is meant to be applied for

532 Chapter 7. Advice on developing DL_MESO_LBE

DL_MESO Technical Manual, Release 2.7

the unextended keyword, the starting character and string length for comparison must not be included in the call
for compare to ensure only an exact match can be detected.

7.9. Modifications to input file reading 533

DL_MESO Technical Manual, Release 2.7

534 Chapter 7. Advice on developing DL_MESO_LBE

CHAPTER

EIGHT

LATTICE SCHEMES

This chapter gives details of the various lattice schemes implemented in DL_MESO_LBE code: D2Q9, D3Q15,
D3Q19 and D3Q27. These include details of the defined lattice vectors, weight factors used in local equilibrium
distribution functions (including those for Swift free-energy interactions), the transformation matrices, moments,
relaxation frequencies and forcing terms used for MRT and cascaded LBE collisions.

8.1 D2Q9

Table 8.1: Lattice vectors for D2Q9
𝑖 𝑒𝑖,𝑥 𝑒𝑖,𝑦
0 0 0
1 -1 1
2 -1 0
3 -1 -1
4 0 -1
5 1 -1
6 1 0
7 1 1
8 0 1

Table 8.2: Weight factors for D2Q9
𝑖 𝑤𝑖

0 4
9

2,4,6,8 1
9

1,3,5,7 1
36

Table 8.3: Swift free-energy weight factors for D2Q9
𝑖 𝑤𝑖 𝑤00

𝑖 𝛾𝑖 𝛿𝑖 𝑤𝑝
𝑖 𝑤𝑡

𝑖 𝑤𝑥𝑥
𝑖 𝑤𝑦𝑦

𝑖 𝑤𝑧𝑧
𝑖 𝑤𝑥𝑦

𝑖 𝑤𝑥𝑧
𝑖 𝑤𝑦𝑧

𝑖

0 4
3 1 0 − 21

8 − 5
3 − 5

3 − 1
6 − 1

6 0 0 0 0
1,5 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24 − 1
24 0 − 1

4 0 0
2,6 1

3 0 3
2 − 3

2
1
3

1
3

1
3 − 1

6 0 0 0 0
3,7 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24 − 1
24 0 1

4 0 0
4,8 1

3 0 3
2 − 3

2
1
3

1
3 − 1

6
1
3 0 0 0 0

535

DL_MESO Technical Manual, Release 2.7

8.1.1 Multiple relaxation time scheme

Definition of transformation matrix based on [73]:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 2 −1 2 −1 2 −1 2 −1
4 1 −2 1 −2 1 −2 1 −2
0 −1 −1 −1 0 1 1 1 0
0 −1 2 −1 0 1 −2 1 0
0 1 0 −1 −1 −1 0 1 1
0 1 0 −1 2 −1 0 1 −2
0 0 1 0 −1 0 1 0 −1
0 −1 0 1 0 −1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incompress-
ible fluids as:

𝑀⃗𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝑒𝑒𝑞

𝜖𝑒𝑞

𝑗𝑥
𝑞𝑒𝑞𝑥
𝑗𝑦
𝑞𝑒𝑞𝑦
𝑝𝑒𝑞𝑥𝑥
𝑝𝑒𝑞𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
−2𝜌+ 3

𝜌0

(︀
𝑗2𝑥 + 𝑗2𝑦

)︀
𝑤𝜖𝜌+

𝑤𝜖𝑗

𝜌0
(𝑗2𝑥 + 𝑗2𝑦)

𝑗𝑥
−𝑗𝑥
𝑗𝑦
−𝑗𝑦
𝑗2𝑥−𝑗2𝑦
𝜌0

𝑗𝑥𝑗𝑦
𝜌0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝜌 is used in place of 𝜌0 for mildly compressible fluids, 𝑗𝑥 = 𝜌0𝑢𝑥, 𝑗𝑦 = 𝜌0𝑢𝑦 and, by default, 𝑤𝜖 = 1 and
𝑤𝜖𝑗 = −3. If using Swift free-energy interactions, the equilibrium moments are expressed as:

𝑀⃗𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝑒𝑒𝑞

𝜖𝑒𝑞

𝑗𝑥
𝑞𝑒𝑞𝑥
𝑗𝑦
𝑞𝑒𝑞𝑦
𝑝𝑒𝑞𝑥𝑥
𝑝𝑒𝑞𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
−4𝜌+ 3

𝜌

(︀
𝑗2𝑥 + 𝑗2𝑦

)︀
+ 6(𝑃0 − 𝜅(𝜌∇2𝜌+ 𝜑∇2𝜑)) + 15𝜆

𝜌 (𝑝 · ∇𝜌)

4𝜌− 3
𝜌 (𝑗2𝑥 + 𝑗2𝑦) − 9(𝑃0 − 𝜅(𝜌∇2𝜌+ 𝜑∇2𝜑)) − 3

2𝜅
(︀
|∇𝜌|2 + |∇𝜑|2

)︀
− 33𝜆

2𝜌 (𝑝 · ∇𝜌)

𝑗𝑥
−𝑗𝑥
𝑗𝑦
−𝑗𝑦

𝑗2𝑥−𝑗2𝑦
𝜌 + 𝜅((𝜕𝑥𝜌)2 − (𝜕𝑦𝜌)2 + (𝜕𝑥𝜑)2 − (𝜕𝑦𝜑)2) + 2𝜆

𝜌 (𝑝𝑥𝜕𝑥𝜌− 𝑝𝑦𝜕𝑦𝜌)
𝑗𝑥𝑗𝑦
𝜌 + 𝜅(𝜕𝑥𝜌𝜕𝑦𝜌+ 𝜕𝑥𝜑𝜕𝑦𝜑) + 𝜆

𝜌 (𝑝𝑥𝜕𝑦𝜌+ 𝑝𝑦𝜕𝑥𝜌)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

𝑠⃗ = diag
(︁

1, 𝜏−1
𝑓,𝑏𝑢𝑙𝑘, 𝑠2, 1, 𝑠4, 1, 𝑠4, 𝜏

−1
𝑓 , 𝜏−1

𝑓

)︁
where the bulk viscosity can be related to the associated relaxation time by:

𝜈′ =
1

6

(︂
𝜏𝑓,𝑏𝑢𝑙𝑘 − 1

2

)︂
(∆𝑥)

2

∆𝑡
.

Recommended default values for the two variable relaxation frequencies 𝑠2 and 𝑠4 are 1.14 and 1.92 respectively
for standard simulations, while both can be set to 1 for simulations with Swift free-energy interactions [103].

Guo forcing can be applied using the following moment transformations of the associated source terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
6(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦)
−6(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦)

𝐹𝑥

−𝐹𝑥

𝐹𝑦

−𝐹𝑦

2(𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦)
𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

536 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

and He forcing can be applied using these moment terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
6(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦)
−6(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦)

𝐹𝑥

−𝐹𝑥(1 − 3𝑣2𝑦) + 6𝑣𝑥𝑣𝑦𝐹𝑦

𝐹𝑦

−𝐹𝑦(1 − 3𝑣2𝑥) + 6𝑣𝑥𝑣𝑦𝐹𝑥

2(𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦)
𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

8.1.2 Cascaded LBE scheme

Definitions of transformation and shift matrices based on [35]:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 −1 −1 −1 0 1 1 1 0
0 1 0 −1 −1 −1 0 1 1
0 1 1 1 0 1 1 1 0
0 1 0 1 1 1 0 1 1
0 −1 0 1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1 0
0 1 0 −1 0 1 0 1 0
0 −1 0 1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
−𝑢𝑥 1 0 0 0 0 0 0 0
−𝑢𝑦 0 1 0 0 0 0 0 0
𝑢2𝑥 −2𝑢𝑥 0 1 0 0 0 0 0
𝑢2𝑦 0 −2𝑢𝑦 0 1 0 0 0 0
𝑢𝑥𝑢𝑦 −𝑢𝑦 −𝑢𝑥 0 0 1 0 0 0
−𝑢2𝑥𝑢𝑦 .2𝑢𝑥𝑢𝑦 𝑢2𝑥 −𝑢𝑦 0 −2𝑢𝑥 1 0 0
−𝑢𝑥𝑢2𝑦 𝑢2𝑦 2𝑢𝑥𝑢𝑦 0 −𝑢𝑥 −2𝑢𝑦 0 1 0
𝑢2𝑥𝑢

2
𝑦 −2𝑢𝑥𝑢

2
𝑦 −2𝑢2𝑥𝑢𝑦 𝑢2𝑦 𝑢2𝑥 4𝑢𝑥𝑢𝑦 −2𝑢𝑦 −2𝑢𝑥 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The equilibrium central moments are expressed as follows:

⃗̃𝑀𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑀̃𝑒𝑞
00

𝑀̃𝑒𝑞
10

𝑀̃𝑒𝑞
01

𝑀̃𝑒𝑞
20

𝑀̃𝑒𝑞
02

𝑀̃𝑒𝑞
11

𝑀̃𝑒𝑞
21

𝑀̃𝑒𝑞
12

𝑀̃𝑒𝑞
22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
0
0
1
3𝜌
1
3𝜌
0
0
0
1
9𝜌

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8.1. D2Q9 537

DL_MESO Technical Manual, Release 2.7

and transformation of the above leads to the following expressions for the local equilibrium distribution functions:

𝑓𝑒𝑞0 =
4

9
𝜌− 2

3
𝜌𝑢2𝑥 − 2

3
𝜌𝑢2𝑦 + 𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞1 =
1

36
𝜌− 1

12
𝜌𝑢𝑥 +

1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 −

1

4
𝜌𝑢𝑥𝑢𝑦 +

1

4
𝜌𝑢2𝑥𝑢𝑦 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞2 =
1

9
𝜌− 1

3
𝜌𝑢𝑥 +

1

3
𝜌𝑢2𝑥 − 1

6
𝜌𝑢2𝑦 +

1

2
𝜌𝑢𝑥𝑢

2
𝑦 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞3 =
1

36
𝜌− 1

12
𝜌𝑢𝑥 − 1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 +

1

4
𝜌𝑢𝑥𝑢𝑦 −

1

4
𝜌𝑢2𝑥𝑢𝑦 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞4 =
1

9
𝜌− 1

3
𝜌𝑢𝑦 −

1

6
𝜌𝑢2𝑥 +

1

3
𝜌𝑢2𝑦 +

1

2
𝜌𝑢2𝑥𝑢𝑦 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞5 =
1

36
𝜌+

1

12
𝜌𝑢𝑥 − 1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 −

1

4
𝜌𝑢𝑥𝑢𝑦 −

1

4
𝜌𝑢2𝑥𝑢𝑦 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞6 =
1

9
𝜌+

1

3
𝜌𝑢𝑥 +

1

3
𝜌𝑢2𝑥 − 1

6
𝜌𝑢2𝑦 −

1

2
𝜌𝑢𝑥𝑢

2
𝑦 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞7 =
1

36
𝜌+

1

12
𝜌𝑢𝑥 +

1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 +

1

4
𝜌𝑢𝑥𝑢𝑦 +

1

4
𝜌𝑢2𝑥𝑢𝑦 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞8 =
1

9
𝜌+

1

3
𝜌𝑢𝑦 −

1

6
𝜌𝑢2𝑥 +

1

3
𝜌𝑢2𝑦 −

1

2
𝜌𝑢2𝑥𝑢𝑦 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦

The relaxation frequencies can be expressed by the following block diagonal matrix:

Λ = diag

(︂
1, 1, 1,

[︂
𝑠+ 𝑠−
𝑠− 𝑠+

]︂
𝜏−1
𝑓 , 𝜔3, 𝜔3, 𝜔4

)︂
where 𝑠+ = 1

2

(︁
𝜏−1
𝑓,𝑏𝑢𝑙𝑘 + 𝜏−1

𝑓

)︁
and 𝑠− = 1

2

(︁
𝜏−1
𝑓,𝑏𝑢𝑙𝑘 − 𝜏−1

𝑓

)︁
. The bulk viscosity can be related to the associated

relaxation time by:

𝜈′ =
1

3

(︂
𝜏𝑓,𝑏𝑢𝑙𝑘 − 1

2

)︂
(∆𝑥)

2

∆𝑡
.

Guo forcing can be applied using the following central moment transformations of the associated source terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

0
0
0(︀

1
3 − 𝑣2𝑥

)︀
𝐹𝑦 − 2𝑣𝑥𝑣𝑦𝐹𝑥(︀

1
3 − 𝑣2𝑦

)︀
𝐹𝑥 − 2𝑣𝑥𝑣𝑦𝐹𝑦

4𝑣𝑥𝑣𝑦 (𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and He forcing can be applied using these central moment terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

0
0
0

1
3𝐹𝑦
1
3𝐹𝑥

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

538 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

8.2 D3Q15

Table 8.4: Lattice vectors for D3Q15
𝑖 𝑒𝑖,𝑥 𝑒𝑖,𝑦 𝑒𝑖,𝑧
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 -1
5 -1 -1 1
6 -1 1 -1
7 -1 1 1
8 1 0 0
9 0 1 0
10 0 0 1
11 1 1 1
12 1 1 -1
13 1 -1 1
14 1 -1 -1

Table 8.5: Weight factors for D3Q15
𝑖 𝑤𝑖

0 2
9

1–3, 8–10 1
9

4–7, 11–14 1
72

Table 8.6: Swift free-energy weight factors for D3Q15
𝑖 𝑤𝑖 𝑤00

𝑖 𝛾𝑖 𝛿𝑖 𝑤𝑝
𝑖 𝑤𝑡

𝑖 𝑤𝑥𝑥
𝑖 𝑤𝑦𝑦

𝑖 𝑤𝑧𝑧
𝑖 𝑤𝑥𝑦

𝑖 𝑤𝑥𝑧
𝑖 𝑤𝑦𝑧

𝑖 .
0 2

3 1 0 − 13
2 − 7

3 − 7
3

1
6

1
6

1
6 0 0 0

1,8 1
3 0 0 1 1

3
1
3

1
3 − 1

6 − 1
6 0 0 0

2,9 1
3 0 0 1 1

3
1
3 − 1

6
1
3 − 1

6 0 0 0
3,10 1

3 0 0 1 1
3

1
3 − 1

6 − 1
6

1
3 0 0 0

4,11 1
24 0 0 -2 1

24
1
24 − 1

48 − 1
48 − 1

48
1
8

1
8

1
8

5,12 1
24 0 0 -2 1

24
1
24 − 1

48 − 1
48 − 1

48
1
8 − 1

8 − 1
8

6,13 1
24 0 0 -2 1

24
1
24 − 1

48 − 1
48 − 1

48 − 1
8

1
8 − 1

8

7,14 1
24 0 0 -2 1

24
1
24 − 1

48 − 1
48 − 1

48 − 1
8 − 1

8
1
8

8.2. D3Q15 539

DL_MESO Technical Manual, Release 2.7

8.2.1 Multiple relaxation time scheme

Definition of transformation matrix based on [159]:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−2 −1 −1 −1 1 1 1 1 −1 −1 −1 1 1 1 1
16 −4 −4 −4 1 1 1 1 −4 −4 −4 1 1 1 1
0 −1 0 0 −1 −1 −1 −1 1 0 0 1 1 1 1
0 4 0 0 −1 −1 −1 −1 −4 0 0 1 1 1 1
0 0 −1 0 −1 −1 1 1 0 1 0 1 1 −1 −1
0 0 4 0 −1 −1 1 1 0 −4 0 1 1 −1 −1
0 0 0 −1 −1 1 −1 1 0 0 1 1 −1 1 −1
0 0 0 4 −1 1 −1 1 0 0 −4 1 −1 1 −1
0 2 −1 −1 0 0 0 0 2 −1 −1 0 0 0 0
0 0 1 −1 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 1 1 −1 −1
0 0 0 0 1 −1 −1 1 0 0 0 1 −1 −1 1
0 0 0 0 1 −1 1 −1 0 0 0 1 −1 1 −1
0 0 0 0 −1 1 1 −1 0 0 0 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incompress-
ible fluids as:

𝑀⃗𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝑒𝑒𝑞

𝜖𝑒𝑞

𝑗𝑥
𝑞𝑒𝑞𝑥
𝑗𝑦
𝑞𝑒𝑞𝑦
𝑗𝑧
𝑞𝑒𝑞𝑧

3𝑝𝑒𝑞𝑥𝑥
𝑝𝑒𝑞𝑤𝑤

𝑝𝑒𝑞𝑥𝑦
𝑝𝑒𝑞𝑦𝑧
𝑝𝑒𝑞𝑧𝑥
𝑚𝑒𝑞

𝑥𝑦𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌

−𝜌+
(𝑗2𝑥+𝑗2𝑦+𝑗2𝑧)

𝜌0

𝑤𝜖𝜌+
𝑤𝜖𝑗

𝜌0
(𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧)

𝑗𝑥
− 7

3𝑗𝑥
𝑗𝑦

− 7
3𝑗𝑦
𝑗𝑧

− 7
3𝑗𝑧

2𝑗2𝑥−𝑗2𝑦−𝑗2𝑧
𝜌0

𝑗2𝑦−𝑗2𝑧
𝜌0

𝑗𝑥𝑗𝑦
𝜌0

𝑗𝑦𝑗𝑧
𝜌0

𝑗𝑧𝑗𝑥
𝜌0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝜌 is used in place of 𝜌0 for mildly compressible fluids, 𝑗𝑥 = 𝜌0𝑢𝑥, 𝑗𝑦 = 𝜌0𝑢𝑦 , 𝑗𝑧 = 𝜌0𝑢𝑧 and, by default,
𝑤𝜖 = 1 and 𝑤𝜖𝑗 = −5. If using Swift free-energy interactions, the equilibrium moments are expressed as:

𝑀⃗𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
−2𝜌+ 3

𝜌

(︀
𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧

)︀
+ 3(𝑃0 − 𝜅(𝜌∇2𝜌+ 𝜑∇2𝜑)) − 1

2𝜅
(︀
|∇𝜌|2 + |∇𝜑|2

)︀
+ 5𝜆

𝜌 (𝑝 · ∇𝜌)

16𝜌− 5
𝜌 (𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧) − 45(𝑃0 − 𝜅(𝜌∇2𝜌+ 𝜑∇2𝜑)) + 5

2𝜅
(︀
|∇𝜌|2 + |∇𝜑|2

)︀
− 85𝜆

𝜌 (𝑝 · ∇𝜌)

𝑗𝑥
− 7

3𝑗𝑥
𝑗𝑦

− 7
3𝑗𝑦
𝑗𝑧

− 7
3𝑗𝑧

2𝑗2𝑥−𝑗2𝑦−𝑗2𝑧
𝜌 + 𝜅(2(𝜕𝑥𝜌)2 − (𝜕𝑦𝜌)2 − (𝜕𝑧𝜌)2 + 2(𝜕𝑥𝜑)2 − (𝜕𝑦𝜑)2 − (𝜕𝑧𝜑)2) + 2𝜆

𝜌 (2𝑝𝑥𝜕𝑥𝜌− 𝑝𝑦𝜕𝑦𝜌− 𝑝𝑧𝜕𝑧𝜌)
𝑗2𝑦−𝑗2𝑧

𝜌 + 𝜅((𝜕𝑦𝜌)2 − (𝜕𝑧𝜌)2 + (𝜕𝑦𝜑)2 − (𝜕𝑧𝜑)2) + 2𝜆
𝜌 (𝑝𝑦𝜕𝑦𝜌− 𝑝𝑧𝜕𝑧𝜌)

𝑗𝑥𝑗𝑦
𝜌 + 𝜅(𝜕𝑥𝜌𝜕𝑦𝜌+ 𝜕𝑥𝜑𝜕𝑦𝜑) + 𝜆

𝜌 (𝑝𝑥𝜕𝑦𝜌+ 𝑝𝑦𝜕𝑥𝜌)
𝑗𝑦𝑗𝑧
𝜌 + 𝜅(𝜕𝑦𝜌𝜕𝑧𝜌+ 𝜕𝑦𝜑𝜕𝑧𝜑) + 𝜆

𝜌 (𝑝𝑦𝜕𝑧𝜌+ 𝑝𝑧𝜕𝑦𝜌)
𝑗𝑥𝑗𝑧
𝜌 + 𝜅(𝜕𝑥𝜌𝜕𝑧𝜌+ 𝜕𝑥𝜑𝜕𝑧𝜑) + 𝜆

𝜌 (𝑝𝑥𝜕𝑧𝜌+ 𝑝𝑧𝜕𝑥𝜌)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
540 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

𝑠⃗ = diag
(︁

1, 𝜏−1
𝑓,𝑏𝑢𝑙𝑘, 𝑠2, 1, 𝑠4, 1, 𝑠4, 1, 𝑠4, 𝜏

−1
𝑓 , 𝜏−1

𝑓 , 𝜏−1
𝑓 , 𝜏−1

𝑓 , 𝜏−1
𝑓 , 𝑠14

)︁
where the bulk viscosity can be related to the associated relaxation time by:

𝜈′ =
2

9

(︂
𝜏𝑓,𝑏𝑢𝑙𝑘 − 1

2

)︂
(∆𝑥)

2

∆𝑡

Recommended default values for the three variable relaxation frequencies 𝑠2, 𝑠4 and 𝑠14 are 1.2, 1.6 and 1.2
respectively.

Guo forcing can be applied using the following moment transformations of the associated source terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

−10(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
𝐹𝑥

− 7
3𝐹𝑥

𝐹𝑦

− 7
3𝐹𝑦

𝐹𝑧

− 7
3𝐹𝑧

2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥

𝑣𝑦𝐹𝑧 + 𝑣𝑧𝐹𝑦

𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and He forcing can be applied using these moment terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

−10(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
𝐹𝑥(︀

− 7
3 + 5𝑣2𝑦 + 5𝑣2𝑧

)︀
𝐹𝑥 + 10𝑣𝑥𝑣𝑦𝐹𝑦 + 10𝑣𝑥𝑣𝑧𝐹𝑧

𝐹𝑦(︀
− 7

3 + 5𝑣2𝑥 + 5𝑣2𝑧
)︀
𝐹𝑦 + 10𝑣𝑥𝑣𝑦𝐹𝑥 + 10𝑣𝑦𝑣𝑧𝐹𝑧

𝐹𝑧(︀
− 7

3 + 5𝑣2𝑥 + 5𝑣2𝑦
)︀
𝐹𝑧 + 10𝑣𝑥𝑣𝑧𝐹𝑥 + 10𝑣𝑦𝑣𝑧𝐹𝑦

2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥

𝑣𝑦𝐹𝑧 + 𝑣𝑧𝐹𝑦

𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧

3𝑣𝑦𝑣𝑧𝐹𝑥 + 3𝑣𝑥𝑣𝑧𝐹𝑦 + 3𝑣𝑥𝑣𝑦𝐹𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

8.2. D3Q15 541

DL_MESO Technical Manual, Release 2.7

8.3 D3Q19

Table 8.7: Lattice vectors for D3Q19
𝑖 𝑒𝑖,𝑥 𝑒𝑖,𝑦 𝑒𝑖,𝑧
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 0
5 -1 1 0
6 -1 0 -1
7 -1 0 1
8 0 -1 -1
9 0 -1 1
10 1 0 0
11 0 1 0
12 0 0 1
13 1 1 0
14 1 -1 0
15 1 0 1
16 1 0 -1
17 0 1 1
18 0 1 -1

Table 8.8: Weight factors for D3Q19
𝑖 𝑤𝑖

0 1
3

1–3, 10–12 1
18

4–9, 13–18 1
36

Table 8.9: Swift free-energy weight factors for D3Q19
𝑖 𝑤𝑖 𝑤00

𝑖 𝛾𝑖 𝛿𝑖 𝑤𝑝
𝑖 𝑤𝑡

𝑖 𝑤𝑥𝑥
𝑖 𝑤𝑦𝑦

𝑖 𝑤𝑧𝑧
𝑖 𝑤𝑥𝑦

𝑖 𝑤𝑥𝑧
𝑖 𝑤𝑦𝑧

𝑖 .
0 1 1 0 − 9

2 -2 -2 1
2

1
2

1
2 0 0 0

1,10 1
6 0 3

2 − 3
2

1
6

1
6

5
12 − 1

3 − 1
3 0 0 0

2,11 1
6 0 3

2 − 3
2

1
6

1
6 − 1

3
5
12 − 1

3 0 0 0
3,12 1

6 0 3
2 − 3

2
1
6

1
6 − 1

3 − 1
3

5
12 0 0 0

4,13 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24 − 1
24

1
12

1
4 0 0

5,14 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24 − 1
24

1
12 − 1

4 0 0
6,15 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24
1
12 − 1

24 0 1
4 0

7,16 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24
1
12 − 1

24 0 − 1
4 0

8,17 1
12 0 3

2 − 3
2

1
12

1
12

1
12 − 1

24 − 1
24 0 0 1

4

9,18 1
12 0 3

2 − 3
2

1
12

1
12

1
12 − 1

24 − 1
24 0 0 − 1

4

542 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

8.3.1 Multiple relaxation time scheme

Definition of transformation matrix based on [159]:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 8 8 8 8 8 8 −11 −11 −11 8 8 8 8 8 8
12 −4 −4 −4 1 1 1 1 1 1 −4 −4 −4 1 1 1 1 1 1
0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0
0 4 0 0 −1 −1 −1 −1 0 0 −4 0 0 1 1 1 1 0 0
0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1
0 0 4 0 −1 1 0 0 −1 −1 0 −4 0 1 −1 0 0 1 1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1
0 0 0 4 0 0 −1 1 −1 1 0 0 −4 0 0 1 −1 1 −1
0 2 −1 −1 1 1 1 1 −2 −2 2 −1 −1 1 1 1 1 −2 −2
0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2
0 0 1 −1 1 1 −1 −1 0 0 0 1 −1 1 1 −1 −1 0 0
0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0
0 0 0 0 1 −1 0 0 −1 −1 0 0 0 −1 1 0 0 1 1
0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incompress-
ible fluids as:

𝑀⃗𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
𝑒𝑒𝑞

𝜖𝑒𝑞

𝑗𝑥
𝑞𝑒𝑞𝑥
𝑗𝑦
𝑞𝑒𝑞𝑦
𝑗𝑧
𝑞𝑒𝑞𝑧

3𝑝𝑒𝑞𝑥𝑥
3𝜋𝑒𝑞

𝑥𝑥

𝑝𝑒𝑞𝑤𝑤

𝜋𝑒𝑞
𝑤𝑤

𝑝𝑒𝑞𝑥𝑦
𝑝𝑒𝑞𝑦𝑧
𝑝𝑒𝑞𝑧𝑥
𝑚𝑒𝑞

𝑥

𝑚𝑒𝑞
𝑦

𝑚𝑒𝑞
𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
−11𝜌+ 19

𝜌0

(︀
𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧

)︀
𝑤𝜖𝜌+

𝑤𝜖𝑗

𝜌0
(𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧)

𝑗𝑥
− 2

3𝑗𝑥
𝑗𝑦

− 2
3𝑗𝑦
𝑗𝑧

− 2
3𝑗𝑧

2𝑗2𝑥−𝑗2𝑦−𝑗2𝑧
𝜌0

𝑤𝑥𝑥

𝜌0

(︀
2𝑗2𝑥 − 𝑗2𝑦 − 𝑗2𝑧

)︀
𝑗2𝑦−𝑗2𝑧
𝜌0

𝑤𝑥𝑥

𝜌0

(︀
𝑗2𝑦 − 𝑗2𝑧

)︀
𝑗𝑥𝑗𝑦
𝜌0

𝑗𝑦𝑗𝑧
𝜌0

𝑗𝑧𝑗𝑥
𝜌0

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝜌 is used in place of 𝜌0 for mildly compressible fluids, 𝑗𝑥 = 𝜌0𝑢𝑥, 𝑗𝑦 = 𝜌0𝑢𝑦 , 𝑗𝑧 = 𝜌0𝑢𝑧 and, by default,
𝑤𝜖 = 1, 𝑤𝜖𝑗 = − 11

2 and 𝑤𝑥𝑥 = 1
2 . If using Swift free-energy interactions, the equilibrium moments are expressed

8.3. D3Q19 543

DL_MESO Technical Manual, Release 2.7

as:

𝑀⃗𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
−30𝜌+ 19

𝜌

(︀
𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧

)︀
+ 57(𝑃0 − 𝜅(𝜌∇2𝜌+ 𝜑∇2𝜑)) − 19

2 𝜅
(︀
|∇𝜌|2 + |∇𝜑|2

)︀
+ 152𝜆

𝜌 (𝑝 · ∇𝜌)

12𝜌− 11
2𝜌 (𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧) − 27(𝑃0 − 𝜅(𝜌∇2𝜌+ 𝜑∇2𝜑)) + 8𝜅

(︀
|∇𝜌|2 + |∇𝜑|2

)︀
− 109𝜆

2𝜌 (𝑝 · ∇𝜌)

𝑗𝑥
− 2

3𝑗𝑥
𝑗𝑦

− 2
3𝑗𝑦
𝑗𝑧

− 2
3𝑗𝑧

2𝑗2𝑥−𝑗2𝑦−𝑗2𝑧
𝜌 + 𝜅(2(𝜕𝑥𝜌)2 − (𝜕𝑦𝜌)2 − (𝜕𝑧𝜌)2 + 2(𝜕𝑥𝜑)2 − (𝜕𝑦𝜑)2 − (𝜕𝑧𝜑)2) + 2𝜆

𝜌 (2𝑝𝑥𝜕𝑥𝜌− 𝑝𝑦𝜕𝑦𝜌− 𝑝𝑧𝜕𝑧𝜌

− 2𝑗2𝑥−𝑗2𝑦−𝑗2𝑧
2𝜌 − 7

2𝜅(2(𝜕𝑥𝜌)2 − (𝜕𝑦𝜌)2 − (𝜕𝑧𝜌)2 + 2(𝜕𝑥𝜑)2 − (𝜕𝑦𝜑)2 − (𝜕𝑧𝜑)2) − 𝜆
𝜌 (2𝑝𝑥𝜕𝑥𝜌− 𝑝𝑦𝜕𝑦𝜌− 𝑝𝑧𝜕𝑧𝜌)

𝑗2𝑦−𝑗2𝑧
𝜌 + 𝜅((𝜕𝑦𝜌)2 − (𝜕𝑧𝜌)2 + (𝜕𝑦𝜑)2 − (𝜕𝑧𝜑)2) + 2𝜆

𝜌 (𝑝𝑦𝜕𝑦𝜌− 𝑝𝑧𝜕𝑧𝜌)

− 𝑗2𝑦−𝑗2𝑧
2𝜌 − 7

2𝜅((𝜕𝑦𝜌)2 − (𝜕𝑧𝜌)2 + (𝜕𝑦𝜑)2 − (𝜕𝑧𝜑)2) − 𝜆
𝜌 (𝑝𝑦𝜕𝑦𝜌− 𝑝𝑧𝜕𝑧𝜌)

(︀
𝑗2𝑦 − 𝑗2𝑧

)︀
𝑗𝑥𝑗𝑦
𝜌 + 𝜅(𝜕𝑥𝜌𝜕𝑦𝜌+ 𝜕𝑥𝜑𝜕𝑦𝜑) + 𝜆

𝜌 (𝑝𝑥𝜕𝑦𝜌+ 𝑝𝑦𝜕𝑥𝜌)
𝑗𝑦𝑗𝑧
𝜌 + 𝜅(𝜕𝑦𝜌𝜕𝑧𝜌+ 𝜕𝑦𝜑𝜕𝑧𝜑) + 𝜆

𝜌 (𝑝𝑦𝜕𝑧𝜌+ 𝑝𝑧𝜕𝑦𝜌)
𝑗𝑥𝑗𝑧
𝜌 + 𝜅(𝜕𝑥𝜌𝜕𝑧𝜌+ 𝜕𝑥𝜑𝜕𝑧𝜑) + 𝜆

𝜌 (𝑝𝑥𝜕𝑧𝜌+ 𝑝𝑧𝜕𝑥𝜌)

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

𝑠⃗ = diag
(︁

1, 𝜏−1
𝑓,𝑏𝑢𝑙𝑘, 𝑠2, 1, 𝑠4, 1, 𝑠4, 1, 𝑠4, 𝜏

−1
𝑓 , 𝑠4, 𝜏

−1
𝑓 , 𝑠4, 𝜏

−1
𝑓 , 𝜏−1

𝑓 , 𝜏−1
𝑓 , 𝑠16, 𝑠16, 𝑠16

)︁
where the bulk viscosity can be related to the associated relaxation time by:

𝜈′ =
2

9

(︂
𝜏𝑓,𝑏𝑢𝑙𝑘 − 1

2

)︂
(∆𝑥)

2

∆𝑡

Recommended default values for the three variable relaxation frequencies 𝑠2, 𝑠4 and 𝑠16 are 1.4, 1.4 and 1.98
respectively.

Guo forcing can be applied using the following moment transformations of the associated source terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
38(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
−11(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

𝐹𝑥

− 2
3𝐹𝑥

𝐹𝑦

− 2
3𝐹𝑦

𝐹𝑧

− 2
3𝐹𝑧

2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)

2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥

𝑣𝑦𝐹𝑧 + 𝑣𝑧𝐹𝑦

𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

544 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

and He forcing can be applied using these moment terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
38(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
−11(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

𝐹𝑥(︀
− 2

3 + 5
2𝑣

2
𝑦 + 5

2𝑣
2
𝑧

)︀
𝐹𝑥 + 5𝑣𝑥𝑣𝑦𝐹𝑦 + 5𝑣𝑥𝑣𝑧𝐹𝑧

𝐹𝑦(︀
− 2

3 + 5
2𝑣

2
𝑥 + 5

2𝑣
2
𝑧

)︀
𝐹𝑦 + 5𝑣𝑥𝑣𝑦𝐹𝑥 + 5𝑣𝑦𝑣𝑧𝐹𝑧

𝐹𝑧(︀
− 2

3 + 5
2𝑣

2
𝑥 + 5

2𝑣
2
𝑦

)︀
𝐹𝑧 + 5𝑣𝑥𝑣𝑧𝐹𝑥 + 5𝑣𝑦𝑣𝑧𝐹𝑦

2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)

2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥

𝑣𝑦𝐹𝑧 + 𝑣𝑧𝐹𝑦

𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧
3
2

(︀
𝑣2𝑦 − 𝑣2𝑧

)︀
𝐹𝑥 + 3𝑣𝑥𝑣𝑦𝐹𝑦 − 3𝑣𝑥𝑣𝑧𝐹𝑧

3
2

(︀
𝑣2𝑧 − 𝑣2𝑥

)︀
𝐹𝑦 + 3𝑣𝑦𝑣𝑧𝐹𝑧 − 3𝑣𝑥𝑣𝑦𝐹𝑥

3
2

(︀
𝑣2𝑥 − 𝑣2𝑦

)︀
𝐹𝑧 + 3𝑣𝑥𝑣𝑧𝐹𝑥 − 3𝑣𝑦𝑣𝑧𝐹𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

8.3.2 Cascaded LBE scheme

Definitions of transformation and shift matrices based on [35]:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0
0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1
0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1
0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1
0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1
0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1 −1
0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.3. D3Q19 545

DL_MESO Technical Manual, Release 2.7

N
=

⎡ ⎢ ⎣

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−
𝑢
𝑥

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
𝑢
𝑦

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
𝑢
𝑧

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

𝑢
𝑥
𝑢
𝑦

−
𝑢
𝑦

−
𝑢
𝑥

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

𝑢
𝑥
𝑢
𝑧

−
𝑢
𝑧

0
−
𝑢
𝑥

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
𝑢
𝑦
𝑢
𝑧

0
−
𝑢
𝑧

−
𝑢
𝑦

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
𝑢
2 𝑥

−
2𝑢

𝑥
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

𝑢
2 𝑦

0
−

2𝑢
𝑦

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

𝑢
2 𝑧

0
0

−
2𝑢

𝑧
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

−
𝑢
𝑥
𝑢
2 𝑦

𝑢
2 𝑦

2
𝑢
𝑥
𝑢
𝑦

0
−

2𝑢
𝑦

0
0

0
−
𝑢
𝑥

0
1

0
0

0
0

0
0

0
0

−
𝑢
𝑥
𝑢
2 𝑧

𝑢
2 𝑧

0
2
𝑢
𝑥
𝑢
𝑧

0
−

2
𝑢
𝑧

0
0

0
−
𝑢
𝑥

0
1

0
0

0
0

0
0

0
−
𝑢
2 𝑥
𝑢
𝑦

2
𝑢
𝑥
𝑢
𝑦

𝑢
2 𝑥

0
−

2𝑢
𝑥

0
0

−
𝑢
𝑦

0
0

0
0

1
0

0
0

0
0

0
−
𝑢
2 𝑥
𝑢
𝑧

2𝑢
𝑥
𝑢
𝑧

0
𝑢
2 𝑥

0
−

2𝑢
𝑥

0
−
𝑢
𝑧

0
0

0
0

0
1

0
0

0
0

0
−
𝑢
𝑦
𝑢
2 𝑧

0
𝑢
2 𝑧

2𝑢
𝑦
𝑢
𝑧

0
0

−
2𝑢

𝑧
0

0
−
𝑢
𝑦

0
0

0
0

1
0

0
0

0
−
𝑢
2 𝑦
𝑢
𝑧

0
2𝑢

𝑦
𝑢
𝑧

𝑢
2 𝑦

0
0

−
2
𝑢
𝑦

0
−
𝑢
𝑧

0
0

0
0

0
0

1
0

0
0

𝑢
2 𝑥
𝑢
2 𝑦

−
2𝑢

𝑥
𝑢
2 𝑦

−
2𝑢

2 𝑥
𝑢
𝑦

0
4𝑢

𝑥
𝑢
𝑦

0
0

𝑢
2 𝑦

𝑢
2 𝑥

0
−

2𝑢
𝑥

0
−

2𝑢
𝑦

0
0

0
1

0
0

𝑢
2 𝑥
𝑢
2 𝑧

−
2𝑢

𝑥
𝑢
2 𝑧

0
−

2
𝑢
2 𝑥
𝑢
𝑧

0
4𝑢

𝑥
𝑢
𝑧

0
𝑢
2 𝑧

0
𝑢
2 𝑥

0
−

2𝑢
𝑥

0
−

2
𝑢
𝑧

0
0

0
1

0
𝑢
2 𝑦
𝑢
2 𝑧

0
−

2
𝑢
𝑦
𝑢
2 𝑧

−
2𝑢

2 𝑦
𝑢
𝑧

0
0

4𝑢
𝑦
𝑢
𝑧

0
𝑢
2 𝑧

𝑢
2 𝑦

0
0

0
0

−
2𝑢

𝑦
−

2
𝑢
𝑧

0
0

1

⎤ ⎥ ⎦.

546 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

The equilibrium central moments are expressed as follows:

⃗̃𝑀𝑒𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑀̃𝑒𝑞
000

𝑀̃𝑒𝑞
100

𝑀̃𝑒𝑞
010

𝑀̃𝑒𝑞
001

𝑀̃𝑒𝑞
110

𝑀̃𝑒𝑞
101

𝑀̃𝑒𝑞
011

𝑀̃𝑒𝑞
200

𝑀̃𝑒𝑞
020

𝑀̃𝑒𝑞
002

𝑀̃𝑒𝑞
120

𝑀̃𝑒𝑞
102

𝑀̃𝑒𝑞
210

𝑀̃𝑒𝑞
201

𝑀̃𝑒𝑞
012

𝑀̃𝑒𝑞
021

𝑀̃𝑒𝑞
220

𝑀̃𝑒𝑞
202

𝑀̃𝑒𝑞
022

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
0
0
0
0
0
0
1
3𝜌
1
3𝜌
1
3𝜌
0
0
0
0
0
0
1
9𝜌
1
9𝜌
1
9𝜌

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8.3. D3Q19 547

DL_MESO Technical Manual, Release 2.7

and transformation of the above leads to the following expressions for the local equilibrium distribution functions:

𝑓𝑒𝑞0 =
1

3
𝜌− 1

3
𝜌𝑢2𝑥 − 1

3
𝜌𝑢2𝑦 −

1

3
𝜌𝑢2𝑧 + 𝜌𝑢2𝑥𝑢

2
𝑦 + 𝜌𝑢2𝑥𝑢

2
𝑧 + 𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞1 =
1

18
𝜌− 1

6
𝜌𝑢𝑥 +

1

6
𝜌𝑢2𝑥 − 1

6
𝜌𝑢2𝑦 −

1

6
𝜌𝑢2𝑧 +

1

2
𝜌𝑢𝑥𝑢

2
𝑦 +

1

2
𝜌𝑢𝑥𝑢

2
𝑧 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑧

𝑓𝑒𝑞2 =
1

18
𝜌− 1

6
𝜌𝑢𝑦 −

1

6
𝜌𝑢2𝑥 +

1

6
𝜌𝑢2𝑦 −

1

6
𝜌𝑢2𝑧 +

1

2
𝜌𝑢2𝑥𝑢𝑦 +

1

2
𝜌𝑢𝑦𝑢

2
𝑧 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

2
𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞3 =
1

18
𝜌− 1

6
𝜌𝑢𝑧 −

1

6
𝜌𝑢2𝑥 − 1

6
𝜌𝑢2𝑦 +

1

6
𝜌𝑢2𝑧 +

1

2
𝜌𝑢2𝑥𝑢𝑧 +

1

2
𝜌𝑢2𝑦𝑢𝑧 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

2
𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞4 =
1

36
𝜌− 1

12
𝜌𝑢𝑥 − 1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 +

1

4
𝜌𝑢𝑥𝑢𝑦 −

1

4
𝜌𝑢2𝑥𝑢𝑦 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞5 =
1

36
𝜌− 1

12
𝜌𝑢𝑥 +

1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 −

1

4
𝜌𝑢𝑥𝑢𝑦 +

1

4
𝜌𝑢2𝑥𝑢𝑦 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞6 =
1

36
𝜌− 1

12
𝜌𝑢𝑥 − 1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑧 +

1

4
𝜌𝑢𝑥𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑧

𝑓𝑒𝑞7 =
1

36
𝜌− 1

12
𝜌𝑢𝑥 +

1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑧 −

1

4
𝜌𝑢𝑥𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑧

𝑓𝑒𝑞8 =
1

36
𝜌− 1

12
𝜌𝑢𝑦 −

1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑦 +

1

12
𝜌𝑢2𝑧 +

1

4
𝜌𝑢𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑦𝑢𝑧 −

1

4
𝜌𝑢𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞9 =
1

36
𝜌− 1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑦 +

1

12
𝜌𝑢2𝑧 −

1

4
𝜌𝑢𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑦𝑢𝑧 −

1

4
𝜌𝑢𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞10 =
1

18
𝜌+

1

6
𝜌𝑢𝑥 +

1

6
𝜌𝑢2𝑥 − 1

6
𝜌𝑢2𝑦 −

1

6
𝜌𝑢2𝑧 −

1

2
𝜌𝑢𝑥𝑢

2
𝑦 −

1

2
𝜌𝑢𝑥𝑢

2
𝑧 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑧

𝑓𝑒𝑞11 =
1

18
𝜌+

1

6
𝜌𝑢𝑦 −

1

6
𝜌𝑢2𝑥 +

1

6
𝜌𝑢2𝑦 −

1

6
𝜌𝑢2𝑧 −

1

2
𝜌𝑢2𝑥𝑢𝑦 −

1

2
𝜌𝑢𝑦𝑢

2
𝑧 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

2
𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞12 =
1

18
𝜌+

1

6
𝜌𝑢𝑧 −

1

6
𝜌𝑢2𝑥 − 1

6
𝜌𝑢2𝑦 +

1

6
𝜌𝑢2𝑧 −

1

2
𝜌𝑢2𝑥𝑢𝑧 −

1

2
𝜌𝑢2𝑦𝑢𝑧 −

1

2
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

2
𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞13 =
1

36
𝜌+

1

12
𝜌𝑢𝑥 +

1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 +

1

4
𝜌𝑢𝑥𝑢𝑦 +

1

4
𝜌𝑢2𝑥𝑢𝑦 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞14 =
1

36
𝜌+

1

12
𝜌𝑢𝑥 − 1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑦 −

1

4
𝜌𝑢𝑥𝑢𝑦 −

1

4
𝜌𝑢2𝑥𝑢𝑦 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦

𝑓𝑒𝑞15 =
1

36
𝜌+

1

12
𝜌𝑢𝑥 +

1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑧 +

1

4
𝜌𝑢𝑥𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑧

𝑓𝑒𝑞16 =
1

36
𝜌+

1

12
𝜌𝑢𝑥 − 1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑥 +

1

12
𝜌𝑢2𝑧 −

1

4
𝜌𝑢𝑥𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑧

𝑓𝑒𝑞17 =
1

36
𝜌+

1

12
𝜌𝑢𝑦 +

1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑦 +

1

12
𝜌𝑢2𝑧 +

1

4
𝜌𝑢𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑦𝑢𝑧 +

1

4
𝜌𝑢𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑦𝑢

2
𝑧

𝑓𝑒𝑞18 =
1

36
𝜌+

1

12
𝜌𝑢𝑦 −

1

12
𝜌𝑢𝑧 +

1

12
𝜌𝑢2𝑦 +

1

12
𝜌𝑢2𝑧 −

1

4
𝜌𝑢𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑦𝑢𝑧 +

1

4
𝜌𝑢𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑦𝑢

2
𝑧

The relaxation frequencies can be expressed by the following block diagonal matrix:

Λ = diag

⎛⎝1, 1, 1, 1, 𝜏−1
𝑓 , 𝜏−1

𝑓 , 𝜏−1
𝑓 ,

⎡⎣ 𝑠+ 𝑠− 𝑠−
𝑠− 𝑠+ 𝑠−
𝑠− 𝑠− 𝑠+

⎤⎦ , 𝜔3, 𝜔3, 𝜔3, 𝜔3, 𝜔3, 𝜔3, 𝜔4, 𝜔4, 𝜔4

⎞⎠
where 𝑠+ = 1

3

(︁
𝜏−1
𝑓,𝑏𝑢𝑙𝑘 + 2𝜏−1

𝑓

)︁
and 𝑠− = 1

3

(︁
𝜏−1
𝑓,𝑏𝑢𝑙𝑘 − 𝜏−1

𝑓

)︁
. The bulk viscosity can be related to the associated

relaxation time by:

𝜈′ =
2

9

(︂
𝜏𝑓,𝑏𝑢𝑙𝑘 − 1

2

)︂
(∆𝑥)

2

∆𝑡
.

548 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

Guo forcing can be applied using the following central moment transformations of the associated source terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

𝐹𝑧

0
0
0
0
0
0(︀

1
3 − 𝑣2𝑦

)︀
𝐹𝑥 − 2𝑣𝑥𝑣𝑦𝐹𝑦(︀

1
3 − 𝑣2𝑧

)︀
𝐹𝑥 − 2𝑣𝑥𝑣𝑧𝐹𝑧(︀

1
3 − 𝑣2𝑥

)︀
𝐹𝑦 − 2𝑣𝑥𝑣𝑦𝐹𝑥(︀

1
3 − 𝑣2𝑥

)︀
𝐹𝑧 − 2𝑣𝑥𝑣𝑧𝐹𝑥(︀

1
3 − 𝑣2𝑧

)︀
𝐹𝑦 − 2𝑣𝑦𝑣𝑧𝐹𝑧(︀

1
3 − 𝑣2𝑦

)︀
𝐹𝑧 − 2𝑣𝑦𝑣𝑧𝐹𝑦

4𝑣𝑥𝑣𝑦 (𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦) − 1
3𝑣𝑧𝐹𝑧

4𝑣𝑥𝑣𝑧 (𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧) − 1
3𝑣𝑦𝐹𝑦

4𝑣𝑦𝑣𝑧 (𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧) − 1
3𝑣𝑥𝐹𝑥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and He forcing can be applied using these central moment terms:

𝑆⃗𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

𝐹𝑧

0
0
0
0
0
0

1
3𝐹𝑥
1
3𝐹𝑥
1
3𝐹𝑦
1
3𝐹𝑧
1
3𝐹𝑦
1
3𝐹𝑧

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

8.3. D3Q19 549

DL_MESO Technical Manual, Release 2.7

8.4 D3Q27

Table 8.10: Lattice vectors for D3Q27
𝑖 𝑒𝑖,𝑥 𝑒𝑖,𝑦 𝑒𝑖,𝑧
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 0
5 -1 1 0
6 -1 0 -1
7 -1 0 1
8 0 -1 -1
9 0 -1 1
10 -1 -1 -1
11 -1 -1 1
12 -1 1 -1
13 -1 1 1
14 1 0 0
15 0 1 0
16 0 0 1
17 1 1 0
18 1 -1 0
19 1 0 1
20 1 0 -1
21 0 1 1
22 0 1 -1
23 1 1 1
24 1 1 -1
25 1 -1 1
26 1 -1 -1

Table 8.11: Weight factors for D3Q27
𝑖 𝑤𝑖

0 8
27

1–3, 14–16 2
27

4–9, 17–22 1
54

10–13, 23–26 1
216

8.4.1 Multiple relaxation time scheme

Definition of transformation matrix based on [134]:

550 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

T
=

⎡ ⎢ ⎣1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

−
1

0
0

−
1

−
1

−
1

−
1

0
0

−
1

−
1

−
1

−
1

1
0

0
1

1
1

1
0

0
1

1
1

1
0

0
−

1
0

−
1

1
0

0
−

1
−

1
−

1
−

1
1

1
0

1
0

1
−

1
0

0
1

1
1

1
−

1
−

1
0

0
−

1
0

0
0

−
1

1
−

1
1

−
1

1
−

1
1

0
0

1
0

0
1

−
1

1
−

1
1

−
1

1
−

1
−

2
−

1
−

1
−

1
0

0
0

0
0

0
1

1
1

1
−

1
−

1
−

1
0

0
0

0
0

0
1

1
1

1
0

2
−

1
−

1
1

1
1

1
−

2
−

2
0

0
0

0
2

−
1

−
1

1
1

1
1

−
2

−
2

0
0

0
0

0
0

1
−

1
1

1
−

1
−

1
0

0
0

0
0

0
0

1
−

1
1

1
−

1
−

1
0

0
0

0
0

0
0

0
0

0
1

−
1

0
0

0
0

1
1

−
1

−
1

0
0

0
1

−
1

0
0

0
0

1
1

−
1

−
1

0
0

0
0

0
0

0
0

1
−

1
1

−
1

−
1

1
0

0
0

0
0

0
0

1
−

1
1

−
1

−
1

1
0

0
0

0
0

0
1

−
1

0
0

1
−

1
1

−
1

0
0

0
0

0
1

−
1

0
0

1
−

1
1

−
1

0
4

0
0

1
1

1
1

0
0

−
2

−
2

−
2

−
2

−
4

0
0

−
1

−
1

−
1

−
1

0
0

2
2

2
2

0
0

4
0

1
−

1
0

0
1

1
−

2
−

2
2

2
0

−
4

0
−

1
1

0
0

−
1

−
1

2
2

−
2

−
2

0
0

0
4

0
0

1
−

1
1

−
1

−
2

2
−

2
2

0
0

−
4

0
0

−
1

1
−

1
1

2
−

2
2

−
2

0
−

4
0

0
2

2
2

2
0

0
−

1
−

1
−

1
−

1
4

0
0

−
2

−
2

−
2

−
2

0
0

1
1

1
1

0
0

−
4

0
2

−
2

0
0

2
2

−
1

−
1

1
1

0
4

0
−

2
2

0
0

−
2

−
2

1
1

−
1

−
1

0
0

0
−

4
0

0
2

−
2

2
−

2
−

1
1

−
1

1
0

0
4

0
0

−
2

2
−

2
2

1
−

1
1

−
1

4
0

0
0

−
1

−
1

−
1

−
1

−
1

−
1

1
1

1
1

0
0

0
−

1
−

1
−

1
−

1
−

1
−

1
1

1
1

1
−

8
4

4
4

−
2

−
2

−
2

−
2

−
2

−
2

1
1

1
1

4
4

4
−

2
−

2
−

2
−

2
−

2
−

2
1

1
1

1
0

−
4

2
2

1
1

1
1

−
2

−
2

0
0

0
0

−
4

2
2

1
1

1
1

−
2

−
2

0
0

0
0

0
0

−
2

2
1

1
−

1
−

1
0

0
0

0
0

0
0

−
2

2
1

1
−

1
−

1
0

0
0

0
0

0
0

0
0

0
−

2
2

0
0

0
0

1
1

−
1

−
1

0
0

0
−

2
2

0
0

0
0

1
1

−
1

−
1

0
0

0
0

0
0

0
0

−
2

2
1

−
1

−
1

1
0

0
0

0
0

0
0

−
2

2
1

−
1

−
1

1
0

0
0

0
0

0
−

2
2

0
0

1
−

1
1

−
1

0
0

0
0

0
−

2
2

0
0

1
−

1
1

−
1

0
0

0
0

−
1

−
1

1
1

0
0

0
0

0
0

0
0

0
1

1
−

1
−

1
0

0
0

0
0

0
0

0
0

0
1

−
1

0
0

−
1

−
1

0
0

0
0

0
0

0
−

1
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

−
1

1
1

−
1

0
0

0
0

0
0

0
0

0
1

−
1

−
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

1
1

1
−

1
0

0
0

0
0

0
0

0
0

1
−

1
−

1
1

⎤ ⎥ ⎦

8.4. D3Q27 551

DL_MESO Technical Manual, Release 2.7

For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incompress-
ible fluids as:

𝑀⃗𝑒𝑞 =

⎛⎜⎜⎝

𝜌
𝑗𝑥
𝑗𝑦
𝑗𝑧
𝑒𝑒𝑞

3𝑝𝑒𝑞𝑥𝑥
𝑝𝑒𝑞𝑤𝑤

𝑝𝑒𝑞𝑥𝑦
𝑝𝑒𝑞𝑦𝑧
𝑝𝑒𝑞𝑧𝑥
𝑞𝑒𝑞𝑥
𝑞𝑒𝑞𝑦
𝑞𝑒𝑞𝑧
𝜅𝑒𝑞𝑥
𝜅𝑒𝑞𝑦
𝜅𝑒𝑞𝑧
𝜖𝑒𝑞

𝑒𝑒𝑞3
3𝜋𝑒𝑞

𝑥𝑥

𝜋𝑒𝑞
𝑤𝑤

𝜋𝑒𝑞
𝑥𝑦

𝜋𝑒𝑞
𝑦𝑧

𝜋𝑒𝑞
𝑧𝑥

𝜏𝑒𝑞𝑥
𝜏𝑒𝑞𝑦
𝜏𝑒𝑞𝑧
𝑞𝑒𝑞𝑥𝑦𝑧

⎞⎟⎟⎠

=

⎛⎜⎜⎝

𝜌
𝑗𝑥
𝑗𝑦
𝑗𝑧

−𝜌+ 1
𝜌0

(𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧)
2𝑗2𝑥−𝑗2𝑦−𝑗2𝑧

𝜌0

𝑗2𝑦−𝑗2𝑧
𝜌0

𝑗𝑥𝑗𝑦
𝜌0

𝑗𝑦𝑗𝑧
𝜌0

𝑗𝑧𝑗𝑥
𝜌0

−2𝑗𝑥
−2𝑗𝑦
−2𝑗𝑧
𝑗𝑥
𝑗𝑦
𝑗𝑧

𝜌− 2
𝜌0

(𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧)

−𝜌+ 1
𝜌0

(𝑗2𝑥 + 𝑗2𝑦 + 𝑗2𝑧)

− 2𝑗2𝑥−𝑗2𝑦−𝑗2𝑧
𝜌0

− 𝑗2𝑦−𝑗2𝑧
𝜌0

− 𝑗𝑥𝑗𝑦
𝜌0

− 𝑗𝑦𝑗𝑧
𝜌0

− 𝑗𝑧𝑗𝑥
𝜌0

0
0
0
0

⎞⎟⎟⎠
where 𝜌 is used in place of 𝜌0 for mildly compressible fluids, 𝑗𝑥 = 𝜌0𝑢𝑥, 𝑗𝑦 = 𝜌0𝑢𝑦 and 𝑗𝑧 = 𝜌0𝑢𝑧 .

The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

𝑠⃗ = diag
(︁

1, 1, 1, 1, 𝜏−1
𝑓,𝑏𝑢𝑙𝑘, 𝜏

−1
𝑓 , 𝜏−1

𝑓 , 𝜏−1
𝑓 , 𝜏−1

𝑓 , 𝜏−1
𝑓 , 𝑠10, 𝑠10, 𝑠10, 𝑠13, 𝑠13, 𝑠13, 𝑠16, 𝑠17, 𝑠18, 𝑠18, 𝑠20, 𝑠20, 𝑠20, 𝑠23, 𝑠23, 𝑠23, 𝑠26

)︁
where the bulk viscosity can be related to the associated relaxation time by:

𝜈′ =
2

9

(︂
𝜏𝑓,𝑏𝑢𝑙𝑘 − 1

2

)︂
(∆𝑥)

2

∆𝑡
.

Recommended default values for the eight variable relaxation frequencies are: 𝑠10 = 1.5, 𝑠13 = 1.83, 𝑠16 = 1.4,
𝑠17 = 1.61, 𝑠18 = 𝑠20 = 1.98 and 𝑠23 = 𝑠26 = 1.74.

552 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

Guo forcing can be applied using the following moment transformations of the associated source terms:

𝑆⃗𝑚 =

⎛⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

𝐹𝑧

2(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)

2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦

𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧

𝑣𝑥𝐹𝑧 + 𝑣𝑧𝐹𝑥

−2𝐹𝑥

−2𝐹𝑦

−2𝐹𝑧

𝐹𝑥

𝐹𝑦

𝐹𝑧

−4(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
6(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

−2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−(𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦)
−(𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧)
−(𝑣𝑥𝐹𝑧 + 𝑣𝑧𝐹𝑥)

0
0
0
0

⎞⎟⎟⎠

,

and He forcing can be applied using these moment terms:

𝑆⃗𝑚 =

⎛⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

𝐹𝑧

2(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)

2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦

𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧

𝑣𝑥𝐹𝑧 + 𝑣𝑧𝐹𝑥(︀
−2 + 3𝑣2𝑦 + 3𝑣2𝑧

)︀
𝐹𝑥 + 6𝑣𝑥𝑣𝑦𝐹𝑦 + 6𝑣𝑥𝑣𝑧𝐹𝑧(︀

−2 + 3𝑣2𝑥 + 3𝑣2𝑧
)︀
𝐹𝑦 + 6𝑣𝑥𝑣𝑦𝐹𝑥 + 6𝑣𝑦𝑣𝑧𝐹𝑧(︀

−2 + 3𝑣2𝑥 + 3𝑣2𝑦
)︀
𝐹𝑧 + 6𝑣𝑥𝑣𝑦𝐹𝑥 + 6𝑣𝑦𝑣𝑧𝐹𝑦

𝐹𝑥

(︀
1 − 3𝑣2𝑦 − 3𝑣2𝑧

)︀
− 6𝑣𝑥𝑣𝑦𝐹𝑦 − 6𝑣𝑥𝑣𝑧𝐹𝑧

𝐹𝑦

(︀
1 − 3𝑣2𝑥 − 3𝑣2𝑧

)︀
− 6𝑣𝑥𝑣𝑦𝐹𝑥 − 6𝑣𝑦𝑣𝑧𝐹𝑧

𝐹𝑧

(︀
1 − 3𝑣2𝑥 − 3𝑣2𝑦

)︀
− 6𝑣𝑥𝑣𝑦𝐹𝑥 − 6𝑣𝑦𝑣𝑧𝐹𝑦

−4(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)
6(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

−2(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−2(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)
−(𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦)
−(𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧)
−(𝑣𝑥𝐹𝑧 + 𝑣𝑧𝐹𝑥)(︀

𝑣2𝑦 − 𝑣2𝑧
)︀
𝐹𝑥 + 2𝑣𝑥𝑣𝑦𝐹𝑦 − 2𝑣𝑥𝑣𝑧𝐹𝑧(︀

𝑣2𝑧 − 𝑣2𝑥
)︀
𝐹𝑦 + 2𝑣𝑦𝑣𝑧𝐹𝑧 − 2𝑣𝑥𝑣𝑦𝐹𝑥(︀

𝑣2𝑥 − 𝑣2𝑦
)︀
𝐹𝑧 + 2𝑣𝑥𝑣𝑧𝐹𝑥 − 2𝑣𝑦𝑣𝑧𝐹𝑦

𝑣𝑦𝑣𝑧𝐹𝑥 + 𝑣𝑥𝑣𝑧𝐹𝑦 + 𝑣𝑥𝑣𝑦𝐹𝑧

⎞⎟⎟⎠

.

8.4. D3Q27 553

DL_MESO Technical Manual, Release 2.7

8.4.2 Cascaded LBE scheme

Definitions of transformation and shift matrices based on [33]:

554 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

T
=

⎡ ⎢ ⎣1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

−
1

0
0

−
1

−
1

−
1

−
1

0
0

−
1

−
1

−
1

−
1

1
0

0
1

1
1

1
0

0
1

1
1

1
0

0
−

1
0

−
1

1
0

0
−

1
−

1
−

1
−

1
1

1
0

1
0

1
−

1
0

0
1

1
1

1
−

1
−

1
0

0
0

−
1

0
0

−
1

1
−

1
1

−
1

1
−

1
1

0
0

1
0

0
1

−
1

1
−

1
1

−
1

1
−

1
0

0
0

0
1

−
1

0
0

0
0

1
1

−
1

−
1

0
0

0
1

−
1

0
0

0
0

1
1

−
1

−
1

0
0

0
0

0
0

1
−

1
0

0
1

−
1

1
−

1
0

0
0

0
0

1
−

1
0

0
1

−
1

1
−

1
0

0
0

0
0

0
0

0
1

−
1

1
−

1
−

1
1

0
0

0
0

0
0

0
1

−
1

1
−

1
−

1
1

0
1

0
0

1
1

1
1

0
0

1
1

1
1

1
0

0
1

1
1

1
0

0
1

1
1

1
0

0
1

0
1

1
0

0
1

1
1

1
1

1
0

1
0

1
1

0
0

1
1

1
1

1
1

0
0

0
1

0
0

1
1

1
1

1
1

1
1

0
0

1
0

0
1

1
1

1
1

1
1

1
0

0
0

0
−

1
−

1
0

0
0

0
−

1
−

1
−

1
−

1
0

0
0

1
1

0
0

0
0

1
1

1
1

0
0

0
0

0
0

−
1

−
1

0
0

−
1

−
1

−
1

−
1

0
0

0
0

0
1

1
0

0
1

1
1

1
0

0
0

0
−

1
1

0
0

0
0

−
1

−
1

1
1

0
0

0
1

−
1

0
0

0
0

1
1

−
1

−
1

0
0

0
0

0
0

−
1

1
0

0
−

1
1

−
1

1
0

0
0

0
0

1
−

1
0

0
1

−
1

1
−

1
0

0
0

0
0

0
0

0
−

1
−

1
−

1
−

1
1

1
0

0
0

0
0

0
0

1
1

1
1

−
1

−
1

0
0

0
0

0
0

0
0

−
1

1
−

1
1

−
1

1
0

0
0

0
0

0
0

1
−

1
1

−
1

1
−

1
0

0
0

0
0

0
0

0
0

0
−

1
1

1
−

1
0

0
0

0
0

0
0

0
0

1
−

1
−

1
1

0
0

0
0

1
1

0
0

0
0

1
1

1
1

0
0

0
1

1
0

0
0

0
1

1
1

1
0

0
0

0
0

0
1

1
0

0
1

1
1

1
0

0
0

0
0

1
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

1
1

1
1

1
1

0
0

0
0

0
0

0
1

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
1

−
1

−
1

1
0

0
0

0
0

0
0

0
0

1
−

1
−

1
1

0
0

0
0

0
0

0
0

0
0

1
−

1
1

−
1

0
0

0
0

0
0

0
0

0
1

−
1

1
−

1
0

0
0

0
0

0
0

0
0

0
1

1
−

1
−

1
0

0
0

0
0

0
0

0
0

1
1

−
1

−
1

0
0

0
0

0
0

0
0

0
0

−
1

−
1

−
1

−
1

0
0

0
0

0
0

0
0

0
1

1
1

1
0

0
0

0
0

0
0

0
0

0
−

1
−

1
1

1
0

0
0

0
0

0
0

0
0

1
1

−
1

−
1

0
0

0
0

0
0

0
0

0
0

−
1

1
−

1
1

0
0

0
0

0
0

0
0

0
1

−
1

1
−

1
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

0
0

0
0

0
0

0
0

1
1

1
1

⎤ ⎥ ⎦

8.4. D3Q27 555

DL_MESO Technical Manual, Release 2.7

N
=

⎡ ⎢ ⎣

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−

𝑢
𝑥

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
𝑢
𝑦

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
𝑢
𝑧

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

𝑢
𝑥
𝑢
𝑦

−
𝑢
𝑦

−
𝑢
𝑥

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

𝑢
𝑥
𝑢
𝑧

−
𝑢
𝑧

0
−

𝑢
𝑥

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
𝑢
𝑦
𝑢
𝑧

0
−

𝑢
𝑧

−
𝑢
𝑦

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

𝑢
2 𝑥

−
2
𝑢
𝑥

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

𝑢
2 𝑦

0
−

2
𝑢
𝑦

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

𝑢
2 𝑧

0
0

−
2
𝑢
𝑧

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
𝑢
𝑥
𝑢
2 𝑦

𝑢
2 𝑦

2
𝑢
𝑥
𝑢
𝑦

0
−

2
𝑢
𝑦

0
0

0
−

𝑢
𝑥

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
𝑢
𝑥
𝑢
2 𝑧

𝑢
2 𝑧

0
2
𝑢
𝑥
𝑢
𝑧

0
−

2
𝑢
𝑧

0
0

0
−

𝑢
𝑥

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
𝑢
2 𝑥
𝑢
𝑦

2
𝑢
𝑥
𝑢
𝑦

𝑢
2 𝑥

0
−

2
𝑢
𝑥

0
0

−
𝑢
𝑦

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
𝑢
2 𝑥
𝑢
𝑧

2
𝑢
𝑥
𝑢
𝑧

0
𝑢
2 𝑥

0
−

2
𝑢
𝑥

0
−

𝑢
𝑧

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0

−
𝑢
𝑦
𝑢
2 𝑧

0
𝑢
2 𝑧

2
𝑢
𝑦
𝑢
𝑧

0
0

−
2
𝑢
𝑧

0
0

−
𝑢
𝑦

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0

−
𝑢
2 𝑦
𝑢
𝑧

0
2
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑦

0
0

−
2
𝑢
𝑦

0
−

𝑢
𝑧

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

−
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

𝑢
𝑦
𝑢
𝑧

𝑢
𝑥
𝑢
𝑧

𝑢
𝑥
𝑢
𝑦

−
𝑢
𝑧

−
𝑢
𝑦

−
𝑢
𝑥

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

𝑢
2 𝑥
𝑢
2 𝑦

−
2
𝑢
𝑥
𝑢
2 𝑦

−
2
𝑢
2 𝑥
𝑢
𝑦

0
4
𝑢
𝑥
𝑢
𝑦

0
0

𝑢
2 𝑦

𝑢
2 𝑥

0
−

2
𝑢
𝑥

0
−

2
𝑢
𝑦

0
0

0
0

1
0

0
0

0
0

0
0

0
0

𝑢
2 𝑥
𝑢
2 𝑧

−
2
𝑢
𝑥
𝑢
2 𝑧

0
−

2
𝑢
2 𝑥
𝑢
𝑧

0
4
𝑢
𝑥
𝑢
𝑧

0
𝑢
2 𝑧

0
𝑢
2 𝑥

0
−

2
𝑢
𝑥

0
−

2
𝑢
𝑧

0
0

0
0

1
0

0
0

0
0

0
0

0

𝑢
2 𝑦
𝑢
2 𝑧

0
−

2
𝑢
𝑦
𝑢
2 𝑧

−
2
𝑢
2 𝑦
𝑢
𝑧

0
0

4
𝑢
𝑦
𝑢
𝑧

0
𝑢
2 𝑧

𝑢
2 𝑦

0
0

0
0

−
2
𝑢
𝑦

−
2
𝑢
𝑧

0
0

0
1

0
0

0
0

0
0

0

𝑢
2 𝑥
𝑢
𝑦
𝑢
𝑧

−
2
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

−
𝑢
2 𝑥
𝑢
𝑧

−
𝑢
2 𝑥
𝑢
𝑦

2
𝑢
𝑥
𝑢
𝑧

2
𝑢
𝑥
𝑢
𝑦

𝑢
2 𝑥

𝑢
𝑦
𝑢
𝑧

0
0

0
0

−
𝑢
𝑧

−
𝑢
𝑦

0
0

−
2
𝑢
𝑥

0
0

0
1

0
0

0
0

0
0

𝑢
𝑥
𝑢
2 𝑦
𝑢
𝑧

−
𝑢
2 𝑦
𝑢
𝑧

−
2
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

−
𝑢
𝑥
𝑢
2 𝑦

2
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑦

2
𝑢
𝑥
𝑢
𝑦

0
𝑢
𝑥
𝑢
𝑧

0
−

𝑢
𝑧

0
0

0
0

−
𝑢
𝑥

−
2
𝑢
𝑦

0
0

0
0

1
0

0
0

0
0

𝑢
𝑥
𝑢
𝑦
𝑢
2 𝑧

−
𝑢
𝑦
𝑢
2 𝑧

−
𝑢
𝑥
𝑢
2 𝑧

−
2
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑧

2
𝑢
𝑦
𝑢
𝑧

2
𝑢
𝑥
𝑢
𝑧

0
0

𝑢
𝑥
𝑢
𝑦

0
−

𝑢
𝑦

0
0

−
𝑢
𝑥

0
−

2
𝑢
𝑧

0
0

0
0

0
1

0
0

0
0

−
𝑢
𝑥
𝑢
2 𝑦
𝑢
2 𝑧

𝑢
2 𝑦
𝑢
2 𝑧

2
𝑢
𝑥
𝑢
𝑦
𝑢
2 𝑧

2
𝑢
𝑥
𝑢
2 𝑦
𝑢
𝑧

−
2
𝑢
𝑦
𝑢
2 𝑧

−
2
𝑢
2 𝑦
𝑢
𝑧

−
4
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

0
−

𝑢
𝑥
𝑢
2 𝑧
−

𝑢
𝑥
𝑢
2 𝑦

𝑢
2 𝑧

𝑢
2 𝑦

0
0

2
𝑢
𝑥
𝑢
𝑦

2
𝑢
𝑥
𝑢
𝑧

4
𝑢
𝑦
𝑢
𝑧

0
0

−
𝑢
𝑥

0
−

2
𝑢
𝑧

−
2
𝑢
𝑦

1
0

0
0

−
𝑢
2 𝑥
𝑢
𝑦
𝑢
2 𝑧

2
𝑢
𝑥
𝑢
𝑦
𝑢
2 𝑧

𝑢
2 𝑥
𝑢
2 𝑧

2
𝑢
2 𝑥
𝑢
𝑦
𝑢
𝑧

−
2
𝑢
𝑥
𝑢
2 𝑧

−
4
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

−
2
𝑢
2 𝑥
𝑢
𝑧

−
𝑢
𝑦
𝑢
2 𝑧

0
−

𝑢
2 𝑥
𝑢
𝑦

0
2
𝑢
𝑥
𝑢
𝑦

𝑢
2 𝑧

2
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑥

0
4
𝑢
𝑥
𝑢
𝑧

0
−

𝑢
𝑦

0
−

2
𝑢
𝑧

0
−

2
𝑢
𝑥

0
1

0
0

−
𝑢
2 𝑥
𝑢
2 𝑦
𝑢
𝑧

2
𝑢
𝑥
𝑢
2 𝑦
𝑢
𝑧

2
𝑢
2 𝑥
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑥
𝑢
2 𝑦

−
4
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

−
2
𝑢
𝑥
𝑢
2 𝑦

−
2
𝑢
2 𝑥
𝑢
𝑦

−
𝑢
2 𝑦
𝑢
𝑧
−

𝑢
2 𝑥
𝑢
𝑧

0
2
𝑢
𝑥
𝑢
𝑧

0
2
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑦

0
𝑢
2 𝑥

4
𝑢
𝑥
𝑢
𝑦

−
𝑢
𝑧

0
0

−
2
𝑢
𝑦

−
2
𝑢
𝑥

0
0

0
1

0

𝑢
2 𝑧
𝑢
2 𝑦
𝑢
2 𝑧

−
2
𝑢
𝑥
𝑢
2 𝑦
𝑢
2 𝑧
−

2
𝑢
2 𝑥
𝑢
𝑦
𝑢
2 𝑧
−

2
𝑢
2 𝑥
𝑢
2 𝑦
𝑢
𝑧

4
𝑢
𝑥
𝑢
𝑦
𝑢
2 𝑧

4
𝑢
𝑥
𝑢
2 𝑦
𝑢
𝑧

4
𝑢
2 𝑥
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑦
𝑢
2 𝑧

𝑢
2 𝑥
𝑢
2 𝑧

𝑢
2 𝑥
𝑢
2 𝑦

−
2
𝑢
𝑥
𝑢
2 𝑧
−

2
𝑢
𝑥
𝑢
2 𝑦
−

2
𝑢
𝑦
𝑢
2 𝑧
−

2
𝑢
2 𝑦
𝑢
𝑧
−

2
𝑢
2 𝑥
𝑢
𝑦
−

2
𝑢
2 𝑥
𝑢
𝑧
−

8
𝑢
𝑥
𝑢
𝑦
𝑢
𝑧

𝑢
2 𝑧

𝑢
2 𝑦

𝑢
2 𝑥

4
𝑢
𝑦
𝑢
𝑧
4
𝑢
𝑥
𝑢
𝑧
4
𝑢
𝑥
𝑢
𝑦
−

2
𝑢
𝑥
−

2
𝑢
𝑦
−

2
𝑢
𝑧
1

⎤ ⎥ ⎦.

556 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

The equilibrium central moments are expressed as follows:

⃗̃𝑀𝑒𝑞 =

⎛⎜⎜⎜⎝

𝑀̃𝑒𝑞
000

𝑀̃𝑒𝑞
100

𝑀̃𝑒𝑞
010

𝑀̃𝑒𝑞
001

𝑀̃𝑒𝑞
110

𝑀̃𝑒𝑞
101

𝑀̃𝑒𝑞
011

𝑀̃𝑒𝑞
200

𝑀̃𝑒𝑞
020

𝑀̃𝑒𝑞
002

𝑀̃𝑒𝑞
120

𝑀̃𝑒𝑞
102

𝑀̃𝑒𝑞
210

𝑀̃𝑒𝑞
201

𝑀̃𝑒𝑞
012

𝑀̃𝑒𝑞
021

𝑀̃𝑒𝑞
111

𝑀̃𝑒𝑞
220

𝑀̃𝑒𝑞
202

𝑀̃𝑒𝑞
022

𝑀̃𝑒𝑞
211

𝑀̃𝑒𝑞
121

𝑀̃𝑒𝑞
112

𝑀̃𝑒𝑞
122

𝑀̃𝑒𝑞
212

𝑀̃𝑒𝑞
221

𝑀̃𝑒𝑞
222

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎝

𝜌
0
0
0
0
0
0
1
3𝜌
1
3𝜌
1
3𝜌
0
0
0
0
0
0
0
1
9𝜌
1
9𝜌
1
9𝜌
0
0
0
0
0
0
1
27𝜌

⎞⎟⎟⎠

8.4. D3Q27 557

DL_MESO Technical Manual, Release 2.7

and transformation of the above leads to the following expressions for the local equilibrium distribution functions:

𝑓𝑒𝑞0 =
8

27
𝜌− 4

9
𝜌𝑢2𝑥 − 4

9
𝜌𝑢2𝑦 −

4

9
𝜌𝑢2𝑧 +

2

3
𝜌𝑢2𝑥𝑢

2
𝑦 +

2

3
𝜌𝑢2𝑥𝑢

2
𝑧 +

2

3
𝜌𝑢2𝑦𝑢

2
𝑧 − 𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞1 =
2

27
𝜌− 2

9
𝜌𝑢𝑥 +

2

9
𝜌𝑢2𝑥 − 1

9
𝜌𝑢2𝑦 −

1

9
𝜌𝑢2𝑧 +

1

3
𝜌𝑢𝑥𝑢

2
𝑦 +

1

3
𝜌𝑢𝑥𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑦𝑢

2
𝑧

−1

2
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞2 =
2

27
𝜌− 2

9
𝜌𝑢𝑦 −

1

9
𝜌𝑢2𝑥 +

2

9
𝜌𝑢2𝑦 −

1

9
𝜌𝑢2𝑧 +

1

3
𝜌𝑢2𝑥𝑢𝑦 +

1

3
𝜌𝑢𝑦𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑦𝑢

2
𝑧

−1

2
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 +

1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞3 =
2

27
𝜌− 2

9
𝜌𝑢𝑧 −

1

9
𝜌𝑢2𝑥 − 1

9
𝜌𝑢2𝑦 +

2

9
𝜌𝑢2𝑧 +

1

3
𝜌𝑢2𝑥𝑢𝑧 +

1

3
𝜌𝑢2𝑦𝑢𝑧 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑦𝑢

2
𝑧

−1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞4 =
1

54
𝜌− 1

18
𝜌𝑢𝑥 − 1

18
𝜌𝑢𝑦 +

1

18
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 −

1

36
𝜌𝑢2𝑧 +

1

6
𝜌𝑢𝑥𝑢𝑦 −

1

6
𝜌𝑢𝑥𝑢

2
𝑦 −

1

6
𝜌𝑢2𝑥𝑢𝑦 +

1

12
𝜌𝑢𝑥𝑢

2
𝑧 +

1

12
𝜌𝑢𝑦𝑢

2
𝑧

+
1

6
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞5 =
1

54
𝜌− 1

18
𝜌𝑢𝑥 +

1

18
𝜌𝑢𝑦 +

1

18
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 −

1

36
𝜌𝑢2𝑧 −

1

6
𝜌𝑢𝑥𝑢𝑦 −

1

6
𝜌𝑢𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢𝑦 +

1

12
𝜌𝑢𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢𝑦𝑢

2
𝑧

+
1

6
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞6 =
1

54
𝜌− 1

18
𝜌𝑢𝑥 − 1

18
𝜌𝑢𝑧 +

1

18
𝜌𝑢2𝑥 − 1

36
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 +

1

6
𝜌𝑢𝑥𝑢𝑧 −

1

6
𝜌𝑢𝑥𝑢

2
𝑧 −

1

6
𝜌𝑢2𝑥𝑢𝑧 +

1

12
𝜌𝑢𝑥𝑢

2
𝑦 +

1

12
𝜌𝑢2𝑦𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞7 =
1

54
𝜌− 1

18
𝜌𝑢𝑥 +

1

18
𝜌𝑢𝑧 +

1

18
𝜌𝑢2𝑥 − 1

36
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 −

1

6
𝜌𝑢𝑥𝑢𝑧 −

1

6
𝜌𝑢𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑥𝑢𝑧 +

1

12
𝜌𝑢𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑦𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞8 =
1

54
𝜌− 1

18
𝜌𝑢𝑦 −

1

18
𝜌𝑢𝑧 −

1

36
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 +

1

6
𝜌𝑢𝑦𝑢𝑧 −

1

6
𝜌𝑢2𝑦𝑢𝑧 −

1

6
𝜌𝑢𝑦𝑢

2
𝑧 +

1

12
𝜌𝑢2𝑥𝑢𝑦 +

1

12
𝜌𝑢2𝑥𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞9 =
1

54
𝜌− 1

18
𝜌𝑢𝑦 +

1

18
𝜌𝑢𝑧 −

1

36
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 −

1

6
𝜌𝑢𝑦𝑢𝑧 +

1

6
𝜌𝑢2𝑦𝑢𝑧 −

1

6
𝜌𝑢𝑦𝑢

2
𝑧 +

1

12
𝜌𝑢2𝑥𝑢𝑦 −

1

12
𝜌𝑢2𝑥𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞10 =
1

216
𝜌− 1

72
𝜌𝑢𝑥 − 1

72
𝜌𝑢𝑦 −

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 +

1

24
𝜌𝑢𝑥𝑢𝑦 +

1

24
𝜌𝑢𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑦𝑢𝑧

− 1

24
𝜌𝑢2𝑥𝑢𝑦 −

1

24
𝜌𝑢2𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑦 −

1

24
𝜌𝑢2𝑦𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑧 −

1

24
𝜌𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

−1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞11 =
1

216
𝜌− 1

72
𝜌𝑢𝑥 − 1

72
𝜌𝑢𝑦 +

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 +

1

24
𝜌𝑢𝑥𝑢𝑦 −

1

24
𝜌𝑢𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑦𝑢𝑧

− 1

24
𝜌𝑢2𝑥𝑢𝑦 +

1

24
𝜌𝑢2𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑦𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑧 −

1

24
𝜌𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

+
1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

558 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

𝑓𝑒𝑞12 =
1

216
𝜌− 1

72
𝜌𝑢𝑥 +

1

72
𝜌𝑢𝑦 −

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 −

1

24
𝜌𝑢𝑥𝑢𝑦 +

1

24
𝜌𝑢𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢𝑦 −

1

24
𝜌𝑢2𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑦 −

1

24
𝜌𝑢2𝑦𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

−1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞13 =
1

216
𝜌− 1

72
𝜌𝑢𝑥 +

1

72
𝜌𝑢𝑦 +

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 −

1

24
𝜌𝑢𝑥𝑢𝑦 −

1

24
𝜌𝑢𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢𝑦 +

1

24
𝜌𝑢2𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑦𝑢𝑧 −

1

24
𝜌𝑢𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

+
1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞14 =
2

27
𝜌+

2

9
𝜌𝑢𝑥 +

2

9
𝜌𝑢2𝑥 − 1

9
𝜌𝑢2𝑦 −

1

9
𝜌𝑢2𝑧 −

1

3
𝜌𝑢𝑥𝑢

2
𝑦 −

1

3
𝜌𝑢𝑥𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑦𝑢

2
𝑧

+
1

2
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞15 =
2

27
𝜌+

2

9
𝜌𝑢𝑦 −

1

9
𝜌𝑢2𝑥 +

2

9
𝜌𝑢2𝑦 −

1

9
𝜌𝑢2𝑧 −

1

3
𝜌𝑢2𝑥𝑢𝑦 −

1

3
𝜌𝑢𝑦𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑦𝑢

2
𝑧

+
1

2
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 +

1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞16 =
2

27
𝜌+

2

9
𝜌𝑢𝑧 −

1

9
𝜌𝑢2𝑥 − 1

9
𝜌𝑢2𝑦 +

2

9
𝜌𝑢2𝑧 −

1

3
𝜌𝑢2𝑥𝑢𝑧 −

1

3
𝜌𝑢2𝑦𝑢𝑧 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

3
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

3
𝜌𝑢2𝑦𝑢

2
𝑧

+
1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

2
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞17 =
1

54
𝜌+

1

18
𝜌𝑢𝑥 +

1

18
𝜌𝑢𝑦 +

1

18
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 −

1

36
𝜌𝑢2𝑧 +

1

6
𝜌𝑢𝑥𝑢𝑦 +

1

6
𝜌𝑢𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢𝑦 −

1

12
𝜌𝑢𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢𝑦𝑢

2
𝑧

+
1

6
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞18 =
1

54
𝜌+

1

18
𝜌𝑢𝑥 − 1

18
𝜌𝑢𝑦 +

1

18
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 −

1

36
𝜌𝑢2𝑧 −

1

6
𝜌𝑢𝑥𝑢𝑦 +

1

6
𝜌𝑢𝑥𝑢

2
𝑦 −

1

6
𝜌𝑢2𝑥𝑢𝑦 −

1

12
𝜌𝑢𝑥𝑢

2
𝑧 +

1

12
𝜌𝑢𝑦𝑢

2
𝑧

+
1

6
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞19 =
1

54
𝜌+

1

18
𝜌𝑢𝑥 +

1

18
𝜌𝑢𝑧 +

1

18
𝜌𝑢2𝑥 − 1

36
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 +

1

6
𝜌𝑢𝑥𝑢𝑧 +

1

6
𝜌𝑢𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑥𝑢𝑧 −

1

12
𝜌𝑢𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑦𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞20 =
1

54
𝜌+

1

18
𝜌𝑢𝑥 − 1

18
𝜌𝑢𝑧 +

1

18
𝜌𝑢2𝑥 − 1

36
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 −

1

6
𝜌𝑢𝑥𝑢𝑧 +

1

6
𝜌𝑢𝑥𝑢

2
𝑧 −

1

6
𝜌𝑢2𝑥𝑢𝑧 −

1

12
𝜌𝑢𝑥𝑢

2
𝑦 +

1

12
𝜌𝑢2𝑦𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

6
𝜌𝑢2𝑥𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

4
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞21 =
1

54
𝜌+

1

18
𝜌𝑢𝑦 +

1

18
𝜌𝑢𝑧 −

1

36
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 +

1

6
𝜌𝑢𝑦𝑢𝑧 +

1

6
𝜌𝑢2𝑦𝑢𝑧 +

1

6
𝜌𝑢𝑦𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑥𝑢𝑦 −

1

12
𝜌𝑢2𝑥𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞22 =
1

54
𝜌+

1

18
𝜌𝑢𝑦 −

1

18
𝜌𝑢𝑧 −

1

36
𝜌𝑢2𝑥 +

1

18
𝜌𝑢2𝑦 +

1

18
𝜌𝑢2𝑧 −

1

6
𝜌𝑢𝑦𝑢𝑧 −

1

6
𝜌𝑢2𝑦𝑢𝑧 +

1

6
𝜌𝑢𝑦𝑢

2
𝑧 −

1

12
𝜌𝑢2𝑥𝑢𝑦 +

1

12
𝜌𝑢2𝑥𝑢𝑧

− 1

12
𝜌𝑢2𝑥𝑢

2
𝑦 −

1

12
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

6
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 +

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

4
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 −

1

4
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

8.4. D3Q27 559

DL_MESO Technical Manual, Release 2.7

𝑓𝑒𝑞23 =
1

216
𝜌+

1

72
𝜌𝑢𝑥 +

1

72
𝜌𝑢𝑦 +

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 +

1

24
𝜌𝑢𝑥𝑢𝑦 +

1

24
𝜌𝑢𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢𝑦 +

1

24
𝜌𝑢2𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑦𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

+
1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞24 =
1

216
𝜌+

1

72
𝜌𝑢𝑥 +

1

72
𝜌𝑢𝑦 −

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 +

1

24
𝜌𝑢𝑥𝑢𝑦 −

1

24
𝜌𝑢𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢𝑦 −

1

24
𝜌𝑢2𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑦 −

1

24
𝜌𝑢2𝑦𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

−1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞25 =
1

216
𝜌+

1

72
𝜌𝑢𝑥 − 1

72
𝜌𝑢𝑦 +

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 −

1

24
𝜌𝑢𝑥𝑢𝑦 +

1

24
𝜌𝑢𝑥𝑢𝑧 −

1

24
𝜌𝑢𝑦𝑢𝑧

− 1

24
𝜌𝑢2𝑥𝑢𝑦 +

1

24
𝜌𝑢2𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑦𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑧 −

1

24
𝜌𝑢𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

+
1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

𝑓𝑒𝑞26 =
1

216
𝜌+

1

72
𝜌𝑢𝑥 − 1

72
𝜌𝑢𝑦 −

1

72
𝜌𝑢𝑧 +

1

72
𝜌𝑢2𝑥 +

1

72
𝜌𝑢2𝑦 +

1

72
𝜌𝑢2𝑧 −

1

24
𝜌𝑢𝑥𝑢𝑦 −

1

24
𝜌𝑢𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑦𝑢𝑧

− 1

24
𝜌𝑢2𝑥𝑢𝑦 −

1

24
𝜌𝑢2𝑥𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑦 −

1

24
𝜌𝑢2𝑦𝑢𝑧 +

1

24
𝜌𝑢𝑥𝑢

2
𝑧 −

1

24
𝜌𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢𝑦𝑢𝑧

+
1

24
𝜌𝑢2𝑥𝑢

2
𝑦 +

1

24
𝜌𝑢2𝑥𝑢

2
𝑧 +

1

24
𝜌𝑢2𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢𝑥𝑢𝑦𝑢

2
𝑧

−1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢𝑧 −

1

8
𝜌𝑢2𝑥𝑢𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢𝑥𝑢

2
𝑦𝑢

2
𝑧 +

1

8
𝜌𝑢2𝑥𝑢

2
𝑦𝑢

2
𝑧

The relaxation frequencies can be expressed by the following block diagonal matrix:

Λ = diag

⎛⎝1, 1, 1, 1, 𝜏−1
𝑓 , 𝜏−1

𝑓 , 𝜏−1
𝑓 ,

⎡⎣ 𝑠+ 𝑠− 𝑠−
𝑠− 𝑠+ 𝑠−
𝑠− 𝑠− 𝑠+

⎤⎦𝜔3, 𝜔3, 𝜔3, 𝜔3, 𝜔3, 𝜔3, 1, 𝜔4, 𝜔4, 𝜔4, 1, 1, 1, 1, 1, 1, 1

⎞⎠
where 𝑠+ = 1

3

(︁
𝜏−1
𝑓,𝑏𝑢𝑙𝑘 + 2𝜏−1

𝑓

)︁
and 𝑠− = 1

3

(︁
𝜏−1
𝑓,𝑏𝑢𝑙𝑘 − 𝜏−1

𝑓

)︁
. The bulk viscosity can be related to the associated

relaxation time by:

𝜈′ =
2

9

(︂
𝜏𝑓,𝑏𝑢𝑙𝑘 − 1

2

)︂
(∆𝑥)

2

∆𝑡
.

560 Chapter 8. Lattice schemes

DL_MESO Technical Manual, Release 2.7

Guo forcing can be applied using the following central moment transformations of the associated source terms:

𝑆⃗𝑚 =

⎛⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

𝐹𝑧

0
0
0
0
0
0(︀

1
3 − 𝑣2𝑦

)︀
𝐹𝑥 − 2𝑣𝑥𝑣𝑦𝐹𝑦(︀

1
3 − 𝑣2𝑧

)︀
𝐹𝑥 − 2𝑣𝑥𝑣𝑧𝐹𝑧(︀

1
3 − 𝑣2𝑥

)︀
𝐹𝑦 − 2𝑣𝑥𝑣𝑦𝐹𝑥(︀

1
3 − 𝑣2𝑥

)︀
𝐹𝑧 − 2𝑣𝑥𝑣𝑧𝐹𝑥(︀

1
3 − 𝑣2𝑧

)︀
𝐹𝑦 − 2𝑣𝑦𝑣𝑧𝐹𝑧(︀

1
3 − 𝑣2𝑦

)︀
𝐹𝑧 − 2𝑣𝑦𝑣𝑧𝐹𝑦

−𝑣𝑦𝑣𝑧𝐹𝑥 + 𝑣𝑥𝑣𝑧𝐹𝑦 + 𝑣𝑥𝑣𝑦𝐹𝑧

4𝑣𝑥𝑣𝑦 (𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦)
4𝑣𝑥𝑣𝑧 (𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧)
4𝑣𝑦𝑣𝑧 (𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧)

2𝑣𝑥 (2𝑣𝑦𝑣𝑧𝐹𝑥 + 𝑣𝑥𝑣𝑧𝐹𝑦 + 𝑣𝑥𝑣𝑦𝐹𝑧)
2𝑣𝑦 (𝑣𝑦𝑣𝑧𝐹𝑥 + 2𝑣𝑥𝑣𝑧𝐹𝑦 + 𝑣𝑥𝑣𝑦𝐹𝑧)
2𝑣𝑧 (𝑣𝑦𝑣𝑧𝐹𝑥 + 𝑣𝑥𝑣𝑧𝐹𝑦 + 2𝑣𝑥𝑣𝑦𝐹𝑧)

𝐹𝑥

(︀
1
9 − 1

3𝑣
2
𝑦 − 1

3𝑣
2
𝑧 − 3𝑣2𝑦𝑣

2
𝑧

)︀
− (𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧)

(︀
2
3𝑣𝑥 + 6𝑣𝑥𝑣𝑦𝑣𝑧

)︀
𝐹𝑦

(︀
1
9 − 1

3𝑣
2
𝑥 − 1

3𝑣
2
𝑧 − 3𝑣2𝑥𝑣

2
𝑧

)︀
− (𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧)

(︀
2
3𝑣𝑦 + 6𝑣𝑥𝑣𝑦𝑣𝑧

)︀
𝐹𝑧

(︀
1
9 − 1

3𝑣
2
𝑥 − 1

3𝑣
2
𝑦 − 3𝑣2𝑥𝑣

2
𝑦

)︀
− (𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦)

(︀
2
3𝑣𝑧 + 6𝑣𝑥𝑣𝑦𝑣𝑧

)︀
4
3𝑣𝑥𝑣𝑦 (𝑣𝑦𝐹𝑥 + 𝑣𝑥𝐹𝑦) + 4

3𝑣𝑥𝑣𝑧 (𝑣𝑧𝐹𝑥 + 𝑣𝑥𝐹𝑧) + 4
3𝑣𝑦𝑣𝑧 (𝑣𝑧𝐹𝑦 + 𝑣𝑦𝐹𝑧) + 8𝑣𝑥𝑣𝑦𝑣𝑧 (𝑣𝑦𝑣𝑧𝐹𝑥 + 𝑣𝑥𝑣𝑧𝐹𝑦 + 𝑣𝑥𝑣𝑦𝐹𝑧)

⎞⎟⎟⎠

,

and He forcing can be applied using these central moment terms:

𝑆⃗𝑚 =

⎛⎜⎜⎝

0
𝐹𝑥

𝐹𝑦

𝐹𝑧

0
0
0
0
0
0

1
3𝐹𝑥
1
3𝐹𝑥
1
3𝐹𝑦
1
3𝐹𝑧
1
3𝐹𝑦
1
3𝐹𝑧

0
0
0
0
0
0
0

1
9𝐹𝑥
1
9𝐹𝑦
1
9𝐹𝑧

0

⎞⎟⎟⎠

.

8.4. D3Q27 561

DL_MESO Technical Manual, Release 2.7

562 Chapter 8. Lattice schemes

CHAPTER

NINE

DL_MESO_DPD PROGRAMMING BACKGROUND

9.1 Basic concepts

DL_MESO_DPD is a particle dynamics solver specialising in using pairwise thermostats (most notably Dissipa-
tive Particle Dynamics, DPD) to model systems of freely-moving spherical particles that interact with each other.
The governing equations for DPD are similar to those for classical molecular dynamics (MD):

𝑑𝑣⃗𝑖
𝑑𝑡

=
𝐹𝑖

𝑚𝑖

(9.1)

𝑑𝑟⃗𝑖
𝑑𝑡

= 𝑣⃗𝑖 (9.2)

where 𝑟⃗𝑖, 𝑣⃗𝑖 and 𝐹𝑖 are respectively the position, velocity and force for particle 𝑖, which has mass 𝑚𝑖. To evolve
these properties over time, numerical integration of (9.1) and (9.2) over a timestep ∆𝑡 is required. The most
frequently used integration scheme for DPD is Velocity Verlet, which is carried out over two stages. The first
stage advances the particle velocities by half a timestep and uses these values to advance the positions to the end
of the timestep:

𝑣⃗𝑖
(︀
𝑡+ 1

2∆𝑡
)︀

= 𝑣⃗𝑖 (𝑡) +
∆𝑡

2

𝐹𝑖 (𝑡)

𝑚𝑖

𝑟⃗𝑖 (𝑡+ ∆𝑡) = 𝑣⃗𝑖 (𝑡) + ∆𝑡𝑣⃗𝑖
(︀
𝑡+ 1

2∆𝑡
)︀

After adjusting them due to any boundary conditions, the new particle positions are used to calculate forces at the
end of the timestep, 𝐹𝑖 (𝑡+ ∆𝑡). These are then used to complete integration of particle velocities to the end of
the timestep in the second stage:

𝑣⃗𝑖 (𝑡+ ∆𝑡) = 𝑣⃗𝑖
(︀
𝑡+ 1

2∆𝑡
)︀

+
∆𝑡

2

𝐹𝑖 (𝑡+ ∆𝑡)

𝑚𝑖
.

The forces calculated for each particle in a DPD simulation are typically sums of pairwise forces:

𝐹𝑖 =

𝑁∑︁
𝑗 ̸=𝑖

(︁
𝐹𝐶
𝑖𝑗 + 𝐹𝐷

𝑖𝑗 + 𝐹𝑅
𝑖𝑗

)︁
(9.3)

where 𝐹𝐶
𝑖𝑗 , 𝐹𝐷

𝑖𝑗 and 𝐹𝑅
𝑖𝑗 are respectively the conservative (interaction), dissipative (drag) and random forces acting

on particle 𝑖 due to the presence of particle 𝑗. The dissipative force is defined as:

𝐹𝐷
𝑖𝑗 = −𝛾𝑖𝑗𝑤𝐷 (𝑟𝑖𝑗) (𝑟⃗𝑖𝑗 · 𝑣⃗𝑖𝑗)

𝑟⃗𝑖𝑗
𝑟2𝑖𝑗

(9.4)

where 𝑟⃗𝑖𝑗 is the vector between the two particles, 𝑤𝐷 is a distance-dependent switching function used to impose a
finite limit on the force’s value and 𝑣⃗𝑖𝑗 is the relative velocity between the particles1. Similarly, the random force
is defined as:

𝐹𝑅
𝑖𝑗 = 𝜎𝑖𝑗𝑤

𝑅 (𝑟𝑖𝑗) 𝜁𝑖𝑗∆𝑡
− 1

2
𝑟⃗𝑖𝑗
𝑟𝑖𝑗

(9.5)

1 The vector and relative velocity between a pair of particles is defined as differences in position and velocity respectively. Which particle’s
property is subtracted from the other’s does not matter, although that choice needs to be applied consistently.

563

DL_MESO Technical Manual, Release 2.7

where 𝑤𝑅 is another distance-dependent switching function and 𝜁𝑖𝑗 is a Gaussian random number with zero mean
and unit variance for the particle pair2. These two forces act as a momentum-conserving (Galilean invariant)
thermostat when:

𝜎2
𝑖𝑗 = 2𝛾𝑖𝑗𝑘𝐵𝑇

and

𝑤𝐷 (𝑟𝑖𝑗) =
[︀
𝑤𝐷 (𝑟𝑖𝑗)

]︀2
.

9.2 Parallelisation strategies

DL_MESO_DPD consists of two methods to divide computational work among the available processor cores and
threads:

• Equipartition domain decomposition

• Multithreading of force calculations

Domain decomposition involves the division of computational work among the available processor cores, with
each core carrying out a section of the calculation with as little input from other cores as possible. This strategy
is known to work well for particle dynamics calculations [124], since the most computational intensive parts
are typically calculation of interaction forces and integration of these forces to determine particle motion. As
such, each processor core is assigned its own section of the box volume - described as a subdomain - and carries
out force calculations primarily for and integration solely to the particles that exist in that subdomain. If any
particles leave the subdomain during force integration, these are deported to neighbouring processor cores via
MPI communication. Dividing the volume equally among the available processor cores - domain_decompose()
- normally ensures each core holds roughly the same number of particles and thus carries out the same amount
of computational work. This form of equipartition domain decomposition works well when the particle density
throughout the box volume is roughly equal and each processor core holds approximately the same numbers of
particles3.

The domain decomposition strategy underpinning DL_MESO_DPD is based on the link cell algorithm [57] for
calculating pairwise potentials and forces between particles with distances between them that are within a rela-
tively short cutoff value. Each subdomain is subsequently divided into smaller cells with sides no less than the
interaction cutoff distance and for each particles in each link cell, all other particles within the cutoff distance will
be found in either the same cell or a nearest-neighbouring cell but no further. Even with the need to construct lists
of particles in each cell before carrying out force calculations, this approach makes pairwise force calculations
scale linearly with the number of particles as opposed to quadratic scaling for a more naïve search through all
possible particle pairs.

To ensure the forces for all particles in a subdomain are calculated correctly, a boundary halo is defined to hold
data for particles in neighbouring subdomains that could be involved in interactions with the current subdomain’s
particles. The halo extends no less than the interaction cutoff distance beyond the current subdomain and the par-
ticles contained therein are also assigned into link cells: although these are not included in the main loop through
the link cells for a given subdomain, they are included and required as nearest-neighbour cells. (The boundary
halo size may be set larger than the cutoff distance to ensure bonded interactions are dealt with correctly, but only
one link cell is needed for pairwise force calculations.) An export step is carried out to fill the boundary halo: for
parallel running, this involves MPI communications with nearest neighbouring processor cores to exchange data
for particles close to the boundaries, while an equivalent for serial running copies data for particles close to the
simulation box edges into the same arrays. Both parallel and serial versions of DL_MESO_DPD therefore require
arrays for holding particle positions, velocities and forces (among other properties) to be large enough for both
each subdomain’s particles and those in the boundary halo.

2 The use of the Gaussian random number with the timestep size Δ𝑡 provides a means to calculate a Wiener increment needed for this force.
The Gaussian random number itself can either be generated using a transform process for uniformly-distributed random numbers 0 ≤ 𝑢𝑖𝑗 < 1

or approximated using the uniform random numbers directly: 𝜁𝑖𝑗 ≈
√
12

(︀
𝑢𝑖𝑗 − 1

2

)︀
[26].

3 A limited number of DPD simulations may be less well-suited to this form of domain decomposition due to very uneven particle distribu-
tions (e.g. those involving many-body DPD interactions). This does not prevent these calculations from being run in DL_MESO_DPD at all,
although they are less likely to perform or scale well due to greater communication latency and memory demands from some cores needing to
hold more particles at a time.

564 Chapter 9. DL_MESO_DPD Programming Background

DL_MESO Technical Manual, Release 2.7

When working through the link cells in a given subdomain, only half of the nearest-neighbour cells are normally
searched to avoid double-counting of interacting particle pairs. For link cells at the edge of the subdomain, this
search strategy can either (i) be maintained to ensure each pair is only ever counted once, or (ii) be modified
to include all pairs that involve particles in the boundary halo. In the case of the half-search strategy (i), forces
for particles in the boundary halo subsequently have to be sent back to originating processor cores using an
import communication step, while the full-search strategy (ii) does not require the communication as the forces for
boundary halo particles will be calculated correctly in their originating cores due to the double-counting involved.
In DL_MESO_DPD, the half-search strategy with import communication is used for the main force calculations
due to difficulties in calculating identical pairwise DPD random forces (or relative velocity corrections for other
thermostats) on multiple processor cores4, while the full-search strategy is used for deterministic calculations (i.e.
localised density calculations for many-body DPD, recalculations of dissipative forces for the DPD Velocity Verlet
scheme) and those where random forces can be calculated consistently on multiple cores (i.e. integration of DPD
dissipative and random forces for Shardlow splitting).

Additional acceleration of the main force calculations can be achieved in DL_MESO_DPD by dividing the sub-
domain’s link cells among available threads. This is achieved in the OpenMP versions of modules involved in
force calculations (e.g. field_module.F90) with OpenMP directives on the main loops over the link cells, which
use previously-created lists of link cells for the subdomain and their neighbours to avoid using nested loops rep-
resenting each Cartesian direction. Since different threads may attempt to update a particular particle’s force
simultaneously, two strategies are available in DL_MESO_DPD to avoid this kind of race condition:

1. Allocate temporary force arrays to enable each thread to assign forces to particles separately, which are
combined together afterwards (default); or

2. Use of a OpenMP critical section to only allow one thread at a time to assign forces to particles.

The first (default) option requires additional memory per thread for assigning forces, which can adversely impact
computational performance: DL_MESO_DPD can therefore restrict the number of OpenMP threads used in force
calculations based on available memory for the temporary arrays. The second option enables better scaling with
larger numbers of OpenMP threads at the cost of assigning forces one thread at a time: this option can be selected
using the openmp critical directive in the CONTROL file.

9.3 Data storage

DL_MESO_DPD uses two-dimensional arrays to store its main calculation properties:

• xxyyzz - Particle positions 𝑥⃗𝑖

• vxvyvz - Particle velocities 𝑣⃗𝑖

• fxfyfz - (Most) particle forces 𝐹𝑖

• vfxfyfz - Variable particle forces

• cfxfyfz - Corrective forces for frozen particles to remove reciprocal-space Ewald sum contributions

where the variable particle forces are used for force integration schemes or thermostats that require separate
contributions to other forces: dissipative forces 𝐹𝐷

𝑖 for DPD Velocity Verlet, dissipative and random forces 𝐹𝐷
𝑖 +

𝐹𝑅
𝑖 for DPD with Shardlow splitting, and pairwise Nosé-Hoover thermostatting forces 𝐹𝑇

𝑖 for the Stoyanov-Groot
thermostat. Each of the arrays are defined with the first index representing the Cartesian coordinates (1 = 𝑥, 2 = 𝑥,
3 = 𝑥), with the maximum size equal to the constant csize to improve cache usage when reading from or writing
values to memory for individual particles, and the second index defined with a maximum value of maxdim (the
calculated maximum number of particles per processor core). Each array is also associated with three pointers
that can be used to represent each individual Cartesian dimension as a one-dimensional array, e.g. xxx, yyy and
zzz for xxyyzz, the use of which helps make the code more readable. An additional array rhomb is also defined for
many-body DPD interactions and used to store localised densities for each particle on a species basis.

4 These are due to the choice of random number generator, whose state cannot often be synchronised on two or more processor cores to
generate identical random numbers for given particle pairs. Random number generators that can accept particle and timestep numbers as seeds
(e.g. Saru [1]) enable the full-search strategy to be used for these force calculations, but other calculations (e.g. bond interactions) have been
designed with the half-search strategy in mind and would require substantial modifications to full exploit this change.

9.3. Data storage 565

DL_MESO Technical Manual, Release 2.7

Other properties for individual particles are stored as one-dimensional integer arrays, each allocated to the size of
maxdim:

• lab - Global particle index (unique number to identify particle)

• ltp - Species (type) for particle

• ltm - Molecule type for particle

• lmp - Processor core currently holding particle

• loc - Local index for particle on processor core currently holding it

The global particle index is used to identify each unique particle and can range from 1 to nsyst: these are ordered to
put nusyst non-molecular (e.g. solvent) particles first before any particles involved in molecules, which is used to
distinguish between the two particle classifications. Each processor core holds nbeads particles often in a different
localised order, which can vary as particles move between cores’ subdomains: if any frozen particles exist in the
subdomain (which do not move), these occupy the first nfbeads entries in any particle property arrays and enables
them to be skipped easily in e.g. force integration.

The species types allow properties such as mass (amass), charge (chge), whether frozen or not (lfrzn), and name
(namspe) to be specified without needing to store them separately for each particle. The molecule types do the
same for molecule names (nammol) and potentially can identify other molecule properties (e.g. numbers of par-
ticles - nbdmol - or bonds per molecule, nbond), although only the names are used during a DL_MESO_DPD
simulation. The lmp and loc arrays are mainly used to identify particles in boundary halos for import communica-
tions when summing up contributions to particle forces and putting together lists of particle pairs used for pairwise
thermostats other than DPD (e.g. Lowe-Andersen).

Aside from indicating properties of individual particle species, arrays exist to identify parameters for interactions:

• vvv - Parameters for conservative interactions (other than bonds and electrostatics)

• vvsrf - Parameters for surface interactions

• aabond, bbbond, ccbond, ddbond - Parameters for (stretching) bond interactions

• aaang, bbang, ccang, ddang - Parameters for bond angle interactions

• aadhd, bbdhd, ccdhd, dddhd - Parameters for bond dihedral interactions

of which vvv is a two-dimensional array defined for a maximum number of parameters (mxprm) and the num-
ber of possible pairs of species (npot), vvsrf is a two-dimensional array for a maximum number of parameters
(:ref`mxsprm`) and the number of particle species (nspe), aabond etc. for the number of unique bond types
(nbonddef), aaang etc. for the number of unique angle types (nangdef), and aadhd etc. for the number of unique
dihedral types (ndhddef). The kinds of these interaction types can be found in ktype, srfktype, bdtype, angtype and
dhdtype respectively.

While the particle properties themselves can be used to determine the conservative, surface and electrostatic in-
teractions between pairs, book-keeping arrays (bndtbl, angtbl and dhdtbl) are required to keep track of which
particles are involved in bond, angle and dihedral interactions between pairs, triples and quadruples of particles
respectively. Derived from the molecule data specified in the FIELD file, these arrays are constructed to identify
the particles by global numbers. Each processor core can potentially hold every bond, angle and/or dihedral in the
simulation box, although this is less likely to happen if the default method of dealing with bonded interactions is
in use. An array lblclst is used to find local particle indices from global particle numbers.

566 Chapter 9. DL_MESO_DPD Programming Background

DL_MESO Technical Manual, Release 2.7

9.4 Communications

The three main types of communication in DL_MESO_DPD are:

• deport - Movement of particles to neighbouring processor cores after first Velocity Verlet integration stage

• export - Copying of particle data from neighbouring processor cores into boundary halo for force calcula-
tions

• import - Summation of all force contributions for particles in boundary halos

Each main communication type is invoked during calculations with the subroutines deportdata(), exportdata()
and importdata() respectively. Variations of exportdata() exist for many-body DPD localised density calculations
- exportdensitydata() - and to update particle velocities for Shardlow splitting and recalculation of dissipative
forces for DPD Velocity Verlet - exportvelocitydata() - while variations of importdata() are available for DPD
Velocity Verlet integration and the Stoyanov-Groot thermostat, importdata_dpdvv() and (importdata_stoyanov()
respectively, both of which require two separated sets of particle forces to be brought together.

These subroutines all represent common interfaces for parallel and serial running, where the contents of each
subroutine vary depending on the version of DL_MESO_DPD and the associated form of domain_module.F90
in use. While the parallel version of DL_MESO_DPD includes explicit subroutines to deport, export and import
particle data in a given direction, the serial version only requires subroutines for the export step (which copies
particles into the boundary halo from the opposite side of the box): both particle deport (i.e. adjusting positions
for particles moving across periodic boundaries) and force import in this case can be carried out using simple
loops over the required particles, which form the content of the serial versions of deportdata() and importdata()
respectively.

Each communication type consists of at least six MPI communications (or copying of particle data for serial
calculations) corresponding to Cartesian directions - −𝑥 (1), +𝑥 (2), −𝑦 (3), +𝑦 (4), −𝑧 (5) and +𝑧 (6) - and
carried out in pairs for each axis (e.g. −𝑥 and +𝑥). The numbers of the processor cores corresponding to these
directions are assigned to the array map by the domain_decompose() subroutine. Each set of communications
includes checks for all particles - including those already in the boundary halo5 - to see if they are in range for
being sent to the neighbouring processor core: checking particles already in the boundary halo ensures that the
edges and corners are also dealt with correctly, bringing in particles from cores with subdomains at diagonals to
the current one that are not directly involved in communications. If reflecting surfaces are required orthogonal to
particular axes, a switch is used with the single-direction subroutines, e.g. skip in export, to not send particles
in a particular direction. Variant subroutines are also available - e.g. export_shear() to apply the communication
for a Lees-Edwards shearing boundary: these enable particles to be shifted laterally by a time-dependent distance,
which leads to data being sent to and received by up to four other processor cores.

The MPI communications themselves involve the creation of buffer arrays to pack/send the particle data in the
given direction and to receive/unpack particle data coming from another processor core. While a standard com-
munication requires one buffer array to send data and another to receive, the shearing variants require four of each
(the maximum number of cores to which particles could be sent at a given timestep). All of these are defined using
the commsoutbuf and commsinbuf arrays, which are associated with pointers when the communication subrou-
tine starts that are nullified at the end. After packing the send arrays with the required particle data (converting
integers to double-precision real numbers as a single data type is normally required for an MPI communication),
unblocked MPI send and receive commands are used along with a message wait command near the very end of
the subroutine: these allow each processor core to unpack and process the data it receives while simultaneously
sending its own data and reduce latency (delays) as a result.

For the deport and export steps, the message wait command can include an enquiry about the size of the incoming
array to check the receiving core has enough space in memory to store the particle data. The main export sub-
routines (for particle data required to calculate forces) keep track of the numbers of particles received and use the
maximum value to determine if the buffer arrays need to be resized: the resizing by resize_buffer() can take place
if many-body DPD interactions and/or a barostat are in use or while the system is equilibrating.

All communication subroutines in domain_module.F90 use at least one unique message tag to identify the MPI
messages (data arrays) being sent and received. In the case of the variant subroutines to apply Lees-Edwards

5 When checking particle positions, the deport step uses a larger boundary halo size than the export and import steps - the size of the
subdomain in the particle direction - to ensure particles that have travelled further away than the usual boundary halo size in that timestep are

correctly dealt with. (This effectively sets a maximum possible particle velocity that DL_MESO_DPD can manage,
min(𝐿𝑥,𝐿𝑦,𝐿𝑧)

Δ𝑡
)

9.4. Communications 567

DL_MESO Technical Manual, Release 2.7

shearing, an additional ‘switch’ (shft) is used to enable the same subroutines to be called twice by processor
cores (for smaller systems with one core in the Cartesian axis of the shearing boundary) by using additional
message tags, avoiding conflicts in communications going in both directions.

The communication subroutines - deportdata(), exportdata(), importdata() etc. - all keep track of the changing
number of particles each processor core holds in memory as the integer variable nlimit. This number is used to
update the total number of particles in the processor core - nbeads - after the deport step, while it is also used after
the export step when constructing linked-cell lists in parlnk().

The deport step deportdata() sends all data for particles leaving the current subdomain: positions, velocities, global
particle indices, species and molecule types, plus all bonds, angles and dihedrals associated with each particle. (No
forces are required since these will shortly be updated.) The main export step exportdata() sends particle positions,
velocities, global particle indices, local particle indices in their original subdomains, species and molecule types,
plus localised densities if many-body DPD interactions are required. The export step before calculating localised
densities exportdensitydata() sends particle positions, global particle indices, local particle indices in their original
subdomains and species, while the export step to update velocities exportvelocitydata() sends particle positions,
velocities, global and local particle indices, species and molecule types. The main import step importdata() sends
particle positions, forces, global and local particle indices, and original processor core numbers: the variant import
steps for DPD Velocity Verlet and the Stoyanov-Groot thermostat additionally include the variable forces.

9.5 Linked-cell lists for pairwise force calculations

The subroutine parlnk() is used to construct the linked-cell lists required for pairwise force calculations. Three
sets of linked-cell lists are constructed by DL_MESO_DPD for different purposes:

• Main force calculations (e.g. conservative, dissipative and random DPD forces)

• Electrostatic (real-space Ewald sum) calculations with a larger cutoff distance

• Localised density calculations for many-body DPD with a smaller cutoff distance

with their parameters (e.g. numbers of cells in each direction for the subdomain) set and the required arrays
allocated in the subroutine domain_dimensions(). These include arrays listing the link cells included in each
subdomain (excluding the boundary halo), the neighbouring link cells for each link cell in all 27 possible directions
(including itself) and (for main force calculations only) whether or not the neighbouring cell crosses a Lees-
Edwards shearing boundary. A switch is also set for each set of linked-cell lists to determine if the simulation
is small enough to only have one link cell in any direction, which is used to apply more strigent conditions for
finding particle pairs to avoid double-counting.

Two arrays are assigned during the parlnk() subroutine: one indicating the first particle in each cell, and the other
giving subsequent particles in the current list’s cell (terminating with 0). The numbers of particles in each cell
are counted when these arrays are constructed and the maximum number reported, which is used when going
through the lists for force calculations. A switch is available (typ) to indicate that only charged particles should
be assigned for Ewald sum calculations. After the lists are constructed, each cell is checked to see if any infinite
loops have inadvertently been created, which are subsequently broken open.

The subroutines for calculating pairwise forces or localised densities start by allocating arrays to directly list the
particles in a given link cell (using the maximum number of particles per link cell to determine its size), to count
the numbers of particles in a current link cell and its neighbours, to identify the particles pairs that are within
the cutoff distance, and to store the vector and squared distance for each pair. The subroutines then loop through
all the link cells in the subdomain (excluding boundary halos), load in the particles in the current link cell - e.g.
loadpart() - and then loop through the neighbouring cells to load in their particles: the total numbers of particles
from all of these link cells are then used to check the arrays for pair data are sufficiently large enough (and resized
if not). All of the interacting pairs (excluding those where both particles are frozen) within required the cutoff
distance(s) are then found6 - using a subroutine, e.g. diff() - and the particle numbers and vectors are loaded
into their respective arrays, before the main subroutine goes through the list of pairs, calculates and assigns the
relevant forces or localised densities. (See above for details of how many neighbouring cells are searched and the
consequences of this choice.)

6 Since forces are divided by the scalar distance between a pair of particles, pairs that are closer than a minimum distance of 10−8 in DPD
length units are omitted to avoid divisions by zero.

568 Chapter 9. DL_MESO_DPD Programming Background

DL_MESO Technical Manual, Release 2.7

9.6 Force calculations

The main force calculations are carried out with subroutines in field_module.F90. Two main sets of subroutines
exist in this module: the routines dedicated to calculating the main pairwise forces - e.g. forces_mdvv() - and those
that apply core-to-core communications, set up linked-cell lists and launch the calculations, e.g. plcfor_mdvv().
Versions of each subroutine are available for the different thermostats and integrators - DPD with standard (MD)
Velocity Verlet, DPD with DPD Velocity Verlet, DPD with Shardlow splitting, Lowe-Andersen, Peters, Stoyanov-
Groot - which each calculate and assign particle forces differently.

The setup subroutines start by assigning local particle indices to the array loc and the current processor core
number to lmp: if a particle belongs to a defined molecule, the global and local particle indices are also added to
the list lblclst. If any many-body DPD calculations are required, the localised densities are then calculated. The
exportdata() subroutine is then called to create the required boundary halos before parlnk() constructs the required
linked-cell lists, using the maximum interaction cutoff distance rcut as the minimum cuboidal size and the arrays
lct and link to store the first particles in each cell and the subsequent particles in the current cell.

The pairwise force subroutine is then called, which calculates the main conservative forces on particle pairs within
the main interaction cutoff distance rcut and, if required, the dissipative and random forces for the DPD thermo-
stat for particle pairs within the cutoff distance rtcut. The conservativeforce() subroutine calculates the various
forms of conservative interaction forces and potentials7 available in DL_MESO_DPD for a particle pair: the

forces are expressed as the scalar quantity divided by the distance between the particles,
𝐹𝐶

𝑖𝑗

𝑟𝑖𝑗
, to reduce the num-

ber of divisions required for calculating the product of scalar force and unit vector. While all three forces are
assigned to the main force arrays in forces_mdvv(), the dissipative forces are assigned to the variable force arrays
in forces_dpdvv() as these are later recalculated by the dragforces_dpdvv() subroutine (which does not require an
import communication afterwards). The dissipative and random forces are not required for DPD with Shardlow
splitting as the random and dissipative forces are integrated separately in shardlow_integrate(), while other pair-
wise thermostats (Lowe-Andersen, Peters, Stoyanov-Groot) alternatively put together lists of particle pairs that
need their relative velocities modified during the second Velocity Verlet integration stage. The Stoyanov-Groot
thermostat also calculates additional pairwise Nosé-Hoover thermostatting forces for particle pairs not included
in the list that depend on the instantaneous temperature: this property is also calculated along with the pairwise
forces and used to modify the thermostatting forces afterwards in the variable force array. The forces are used
to calculate the stress tensors (separated into potential, dissipative and random components here) as well as the
system and instantaneous virials.

If many-body DPD interactions are involved, the self-energy potentials are then calculated. Any electrostatic
forces (via Ewald sums or SPME), bonded and surface/wall forces are subsequently calculated, before the import
communication step is applied to send force contributions for particles in boundary halos back to their original
processor cores in order to sum up the total forces on those particles. Any frozen particles have their forces and
velocities reset to zero.

When a simulation is initialised, the plcfor_initial() subroutine is used to carry out a similar set of communica-
tions and calculations as for the main simulation to calculate forces (if not supplied in a CONFIG file), potential
energies, virials, stress tensors etc. for the system at its initial state. The forces_mdvv() subroutine is called if
both the conservative and DPD thermostat (dissipative and random) forces are needed (for DPD with MD and
DPD Velocity Verlet integration), or the forces_shardlow() subroutine is called if only the conservative forces are
required, along with the standard subroutines to calculate electrostatic, bonded and surface/wall forces: if forces
are not required, alternative subroutines to calculate potentials etc. without the forces, e.g. potentials_initial(), are
used to obtain the remaining properties.

7 It should be noted that any thermostatting forces (e.g. dissipative and random forces for the DPD thermostat) do not contribute to the
system potential energy. They do contribute to the system virial and resulting pressure, but these are not included for the instantaneous values
used with barostats.

9.6. Force calculations 569

DL_MESO Technical Manual, Release 2.7

9.7 Many-body DPD

The main forces for many-body DPD interactions are calculated along with other conservative, dissipative and
random forces, although these require localised densities to be calculated for each particle. The local_density()
subroutine carries out a search for particle pairs within the many-body DPD cutoff distance rmbcut and adds values
of a weighting function - given in weight_rho() - to the localised densities for each particle in the pair, assigning
the contribution based on the other particle’s species. The search for particle pairs includes all pairs with particles
in the boundary halo and thus no import communication step afterwards is required.

The subroutine manybody_potential() calculates self-energies for particles with the specified many-body DPD
interactions. For the implemented many-body DPD model for vapour-liquid coexistence [142], the standard Groot-
Warren part of the potential is calculated in conservativeforce(), while this subroutine calculates the density-
dependent term for each particle and all pairs of particle species (except when both are frozen).

9.8 Intramolecular bond interactions

Forces and potentials due to bond stretching, angles and dihedrals are calculated in subroutines contained in
bond_module.F90, specifically in the bond_force(), angle_force() and dihedral_force() subroutines for each bond,
angle and dihedral respectively. Book-keeping arrays - bndtbl, angtbl and dhdtbl are constructed during simulation
setup by DL_MESO_DPD to store the global indices of particles involved in bonds, angles and dihedrals as well
as types with parameter sets identified from the FIELD file. To find each particle in the lists for bonds, angles
and dihedrals, each subdomain puts together the array lblclst as a list of global and local indices for all particles
involved in molecules: this list is sorted by global particle index by the subroutine shellsort_list() to enable the
global index of a given particle to be found using a binary search in search_list(), which returns the index in lblclst
to read off the local particle index or a negative number if the global particle index cannot be found.

The default approach for DL_MESO_DPD to deal with bonded interactions is for each processor core to only
hold bond/angle/dihedral data for particles found in its subdomain. One of the particles in each bonded interac-
tion - the first for bonds, the second for angles and dihedrals - is considered to ‘hold’ the interaction: whenever
a particle moves to another processor core’s subdomain during a deport communication, its associated entries
in the bond/angle/dihedral tables are sent with the particle and added to the new subdomain’s tables. The con-
tract_bndtbl(), contract_angtbl() and contract_dhdtbl() subroutines are used to remove any old bonds, angles and
dihedrals, marked during the deport step by setting the type to a negative value. The bondforceslocal() subroutine
goes through each list in turn, finding the particles involved in each bond/angle/dihedral, calculating the vectors
between the required particle pairs (using images() to obtain the minimum possible distance if the particles lie
on opposite sides of a periodic boundary) and then calculating and assigning the required forces, potential, virial
and stress tensors. Being able to complete these calculations is dependent on all the relevant particles’ positions
being known by the given processor core: as such, the boundary halo size can be adjusted by the user to ensure all
particle pairs (in bonds and for vectors used for angles and dihedrals) can be found. If any pairs of particles cannot
have their vector calculated due to one not being found in a subdomain and/or boundary halo, or the pair is too
long for particular bond interactions - e.g. greater than the maximum specified distance for a finitely-extensible
non-linear elastic (FENE) bond - DL_MESO_DPD will report the particle pairs and close down the simulation
with an error message. The bonded interaction forces assigned to particles in boundary halos need to be sent back
to the original processor cores holding those particles: this is carried out by the importdata() communication step
along with other interaction forces.

An option to ensure DL_MESO_DPD can calculate all bonded interactions is invoked using the global bonds
directive in the CONTROL file. This uses a replicated data approach: all processor cores hold the entire bond, angle
and dihedral tables, which bondforcesglobal() goes through. The positions of all particles involved in molecules
are shared among all processor cores and are used to calculate the particle vectors (using images() to obtain the
minimum possible distance) before calculating the forces and potentials. The forces are assigned to all particles
that exist in the current subdomain excluding any such particles in the boundary halo (achieved by not including
boundary halo particles in the searchable list of global/local particle indices): if the ‘holding’ particle exists in
that subdomain, the potential energy, virial and stress tensor are also assigned. While this approach requires
more memory per processor core and does not scale well with larger numbers of cores, it does guarantee that the
bonded interactions can be calculated regardless of the boundary halo size: it is mainly intended for simulation
equilibration, particularly if the molecules are not energy-minimised in the initial configuration.

570 Chapter 9. DL_MESO_DPD Programming Background

DL_MESO Technical Manual, Release 2.7

OpenMP can be used to speed up bonded interaction calculations using either approach by dividing the
bond/angle/dihedral tables among the avaiilable threads. As for pairwise force calculations, either temporary
arrays to store force contributions from each thread or a critical region to assign forces one thread at a time are
required to ensure the forces are accumulated correctly.

9.9 Surface interactions

The subroutines in surface_module.F90 deal with calculations of wall potentials, reflections of particles by hard
surfaces, settings for Lees-Edwards shearing boundaries and setup of frozen particle walls.

The surfacenodes() subroutine is used to identify which processor cores hold surfaces (Lees-Edwards boundaries
or hard walls), setting switches (srflgc) to indicate that no particle data at the nearest edges for the subdomain are
communicated in particular directions, especially during the export step. In the case of Lees-Edwards boundaries,
the normal communications in those directions are substituted with alternatives that can move particles tangentially
as well as orthogonally to the required axis. If hard surfaces are required, their locations are also determined
in local subdomain cooordinates: whiie they lie at the planar surfaces on the outside of the simulation box by
default, they can be shifted further inwards to accomodate frozen bead walls. This subroutine is only called once
for constant volume (NVT) simulations, but needs to be called again whenever the system volume changes due to
the use of a barostat.

The wall potentials and forces are calculated for all particles within a cutoff distance srfzcut from the hard surfaces
in the wallforces() subroutine, using the functional forms specified in surfaceforce(). As for pairwise forces, the
magnitudes of wall forces are divided by the distances from the surface, which are then multiplied by orthogonal
vectors from the wall to the particles to obtain the correct directions (e.g. repulsions away from the wall).

The hardreflect_specular() and hardreflect_bounceback() subroutines apply reflections to particles that would
otherwise pass through hard surfaces: these are called during the first Velocity Verlet stage of force integration
after the particle positions have been updated. Specular reflection only reverses the particle directions orthogonal
to the surface, maintaining tangential motion and providing a free-slip boundary, while bounce back reflection
reverses particle motion in all directions and provides a no-slip boundary. These reflections can be applied even if
no wall potentials are specified, which can be used to prevent particles from penetrating frozen particle walls.

The frozenbead() subroutine calculates the numbers of particles and their spacings required for walls made up of
frozen particles, which are added to the simulation box during initialisation. These are determined based on the
specified particle density and wall thickness (given in the FIELD file), assuming the particles form face-centred
cubic lattices on both sides of the box.

The shearslide() subroutine calculates the required tangential shift for particles passing through Lees-Edwards
shearing boundaries. The resulting vector is only non-zero from the first timestep specified for shearing to start
and depends on the time after that timestep and the specified wall velocity.

9.10 Electrostatic interactions

Electrostatic interactions in DL_MESO_DPD are currently supplied by Ewald summation, using either a standard
Ewald sum or Smooth Particle Mesh Ewald (SPME), and are calculated shortly after the main force calculations.
Both forms of Ewald sum require pairwise force and potential calculations in real-space for particle pairs up to
relec apart, which are carried out by one of the following subroutines:

• ewald_real_point() for point charges

• ewald_real_linear() for linearly-smeared charges

• ewald_real_slater_exact() when using the exact form of Slater charge smearing

• ewald_real_slater_approx() when using an approximate form of Slater charge smearing

• ewald_real_gauss() when using Gaussian charge smearing

• ewald_real_sinusoidal() when using sinusoidal charge smearing

9.9. Surface interactions 571

DL_MESO Technical Manual, Release 2.7

All of these use linked-cell lists with larger cell sizes to find charged particle pairs within the real-space cutoff
distance: only a single charge-smearing scheme and a single set of corresponding parameters can be used for a
given simulation, both of which are specified in the CONTROL file. (The pairwise calculations here can be sped
up using OpenMP to divide the link cells among the available threads.)

Standard Ewald sums calculate the reciprocal-space part analytically in the ewald_reciprocal() subroutine, which
is used regardless of charge smearing scheme (as this only affects the real-space part). The list of reciprocal-
space vectors is initially constructed in the ewald_reciprocal_map() subroutine, which takes any vacuum gaps and
Lees-Edwards shearing boundaries into account: this subroutine only needs to be called once for constant volume
(NVT) simulations without Lees-Edwards shearing boundaries, but otherwise has to be called every timestep after
the first Velocity Verlet stage. To obtain the full sums of products for particle charges and the required complex
exponentials, the first loop through the reciprocal vectors is followed by a global summation among all processor
cores: this is required to correctly calculate the potential and the forces acting on the particles. The calculations of
potentials and forces can be sped up using OpenMP by dividing the available reciprocal-space vectors for potential
calculations and the particles for force calculations among the available threads: the latter can be carried out safely
without other threads attempting to assign forces to each particle.

Smooth Particle Mesh Ewald (SPME) calculates the reciprocal-space part of the Ewald sum by assigning charges
to a grid using B-spline interpolation, finding the Fourier transform of the charge grid using Fast Fourier Trans-
forms (FFTs) and using the results to calculate the potential and forces on charged particles, the latter making use
of gradients for the B-splines originally used to construct the charge grid. The spme_ewald_reciprocal() subroutine
constructs the charge grid, setting up the B-splines for all charged particles in the spme_bspline_gen() subroutine
with the spline interpolation order mxspl, using the reciprocal-space vector list prepared in spme_reciprocal_map()
and global summing the grid if running in parallel. The subsequent inverse and forward FFTs are implemented
by default using fft3d(), the FFT solver supplied with DL_MESO_DPD, but compile-time options are available
to substitute in either the 3D FFT solver from the IBM Engineering and Scientific Subroutine Library (ESSL) or
the Fastest Fourier Transform in the West (FFTW)8. Since all cores have access to the full charge grid, they all
carry out the Fourier transforms autonomously and use the results to calculate the potential, virials, stress tensors
and particle forces: the latter normally do not quite sum to zero, so corrections to these forces are calculated and
applied to all charged particles. OpenMP can be used to speed up SPME calculations by dividing the particles
among available threads for force calculations and, if available, by applying it to the FFT solver (e.g. FFTW)
when calculating Fourier transforms of the charge grid.

A vacuum gap can be specified in the CONTROL file to extend the effective box volume in reciprocal-space
calculations for simulations with non-periodic boundary conditions (e.g. with hard surfaces or frozen particle
walls). Corrections are made to forces and potentials during reciprocal-space calculations due to charge dipoles
if hard surfaces are included or a vacuum gap is specified (which can be sped up by dividing the particles among
available OpenMP threads), as well as additional corrections to remove reciprocal space contributions for pairs of
frozen charged particles, calculated in the ewald_frozen() subroutine either once for constant volume calculations
without shear or during every timestep for other simulations. Standard corrections to potentials for self-energy
terms and for net-charged systems are also applied during reciprocal-space calculations.

9.11 Force integration and barostats

Integration of forces in DL_MESO_DPD is generally carried out with the two-stage Velocity Verlet (VV) algo-
rithm, using one of the following modules per simulation:

• integrate_dpd_mdvv.F90 to integrate interaction and DPD forces using the standard (MD) VV scheme

• integrate_dpd_dpdvv.F90 to integrate interaction and DPD forces using VV but recalculate DPD dissipative
forces, known as DPD Velocity Verlet

• integrate_dpd_shardlow.F90 to integrate interaction forces using VV and DPD forces using Shardlow split-
ting

• integrate_lowe.F90 to integrate interaction forces using VV and apply the Lowe-Andersen thermostat to at
least some particle pairs

8 The FFTW implementation requires the charge array to be allocated as a C double complex type and for ‘plans’ to be setup to carry out
the transforms: these are prepared in the spme_initialize() subroutine.

572 Chapter 9. DL_MESO_DPD Programming Background

DL_MESO Technical Manual, Release 2.7

• integrate_peters.F90 to integrate interaction forces using VV and apply the Peters thermostat to all particle
pairs within the thermostat cutoff distance

• integrate_stoyanov.F90 to integrate interaction and pairwise thermostat forces using VV and apply the
Lowe-Andersen thermostat to some particle pairs, known as Stoyanov-Groot

The subroutines in these modules take the stage number (1 or 2) as inputs and applies the appropriate stage:

• Stage 1 advances the particle velocities from time 𝑡 to 𝑡 + 1
2∆𝑡 and the particle positions from time 𝑡 to

𝑡+ ∆𝑡

• Stage 2 advances the particle velocities from time 𝑡+ 1
2∆𝑡 to 𝑡+ ∆𝑡

After advancing the particle positions in stage 1, the subroutines then apply any boundary conditions (e.g. re-
flections) and, if Lees-Edwards shearing and/or a barostat is in use, Ewald reciprocal-space vector maps for elec-
trostatic interactions are recalculated. If a barostat changes the box volume, the domain_dimensions() subroutine
is recalled to calculate new subdomain volume sizes and reallocate arrays for linked-cell lists if the numbers of
link cells have changed. Once the velocities have advanced during stage 2, the kinetic part of the stress tensor is
calculated. During both stages, any external forces - gravity and electric fields - are applied at the same time as
the particle forces to advance the velocities.

No modifications to the standard VV algorithm are made for the MD-VV option as the DPD thermostat (dissipative
and random) forces are included together with the conservative interaction forces. The DPD-VV option includes
a call to dragforces_dpdvv() to recalculate the dissipative forces at the end of the second VV stage. The Shardlow
splitting options include calls to shardlow_integrate() to integrate the DPD dissipative and random forces: first-
order Shardlow calls this subroutine once at the beginning of the first VV stage, while second-order Shardlow
also calls this subroutine again after the velocities are advanced during the second VV stage. (Both DPD-VV and
Shardlow splitting options require updates to velocities for particles in the boundary halo before these subroutines
are called, which is enabled with the exportvelocitydata() subroutine.)

The other non-DPD thermostats are applied after particle velocities have been advanced during the second VV
stage (which uses conservative interaction forces only apart from Stoyanov-Groot, which adds the pairwise Nosé-
Hoover thermostatting forces): these are implemented with thermostat-specific subroutines, e.g. lowe_correct(),
which apply the corrections to particle velocities using the lists of particle pairs constructed during force calcula-
tions, e.g. by forces_lowe(). Each entry in the lists includes a random number generated for the particle pair: after
the lists for all processor cores are put together, the combined list is sorted by these random numbers to give a
consistent order for the pairs for all processor cores to work through sequentially and apply corrections if either or
both particles in a pair belong to the given processor core. If the two particles in a pair belong to different cores,
the two cores will share information required to complete the velocity correction calculation (particle masses and
velocities) via a blocked MPI communication.

Two barostats are available to apply volume changes for pressure control - Langevin and Berendsen - each of
which can be used for isotropic constant pressure (NPT), constant normal pressure and surface volume (NP𝑛AT),
and constant normal pressure and surface tension (NP𝑛𝛾T) ensembles, with semi-isotropic and fully anisotropic
options for the latter. Both barostat types make use of instantaneous virial values obtained during force calculations
that do not include contributions from pairwise thermostats, stored for each Cartesian component in ivrl and used
to calculate the required pressure (either system-wide or by individual components). In the case of constant surface
volume (NP𝑛AT) ensembles, the box size is adjusted only in the 𝑧-direction, while the surface tension for NP𝑛𝛾T
ensembles is applied in the same direction: this quantity is measured and reported in both the OUTPUT and
CORREL files.

The Langevin barostats are implemented using an iterative procedure [64]. The first VV stage includes modifica-
tions to the mid-step particle velocities to incorporate the piston velocity at the start of the timestep and the new
particle positions are modified using scaling factors that depend on the mid-step piston velocity. During the second
VV stage, the changes to particle velocities due to interaction forces and the thermostat (without initially applying
the barostat) are kept in memory, before storing the mid-step piston velocity and estimating the value at the end of
the timestep by using the piston force at the start of the timestep and the velocity at the beginning of the previous
timestep (𝑡 − ∆𝑡). This estimate for the end-step piston velocity is used to calculate new particle velocities (also
taking the previously calculated changes into account), before using the velocities to calculate the pressure and the
end-step piston force. A new estimate for the end-step piston velocity is then calculated before the cycle repeats
from calculating new particle velocities: these and the piston force and velocity will be considered converged once
the mean squared change in particle velocity drops below a minimum value, langepsilon.

9.11. Force integration and barostats 573

DL_MESO Technical Manual, Release 2.7

The Berendsen barostats are implemented by applying changes to the particle positions during the first VV stage,
consisting of scaling factors applied to the positions before adjustments are made based on mid-step particle
velocities. The scaling factors are calculated during the second VV stage of the previous timestep, which are
based on the instantaneous pressures calculated after the end-step velocities have been obtained.

9.12 System initialisation

A DL_MESO_DPD simulation requires particle positions, velocities and forces to be defined, along with any bond
data, which is carried out by the start() subroutine. Starting with the molecule definitions in the FIELD file, an
array molstart is put together with the starting global particle numbers for each molecule in the system (initially
without applying any system duplication). This is then followed by obtaining the required particle positions and
velocities using one of three options:

• Creating a new configuration based on the contents of the CONTROL and FIELD files

• Reading a CONFIG file to use an initial configuration specified by the user

• Reading an export file either to restart a previous simulation or as a new simulation

The initialize() subroutine determines the positions of three broad types of particles: those in frozen particle
walls, those involved in molecules and those not involved in molecules (e.g. solvent). Both the frozen particle
walls and the non-molecular particles are assigned to face-centred cubic lattices, whose spacings in each Cartesian
dimension are determined from the available volume and the number of particles, with each particle given a unique
global particle number (index). In the case of the non-molecular particles, the volume in which the lattice has to fit
is given in the CONTROL file, although the lattice may be incomplete depending on the total number of particles
required. The one particle species for the frozen particle walls is readily assigned to the particles, while those for
non-molecular particles are assigned to distribute the available species (based on their total numbers) as evenly
as possible across the simulation box and randomly among particles in each processor core’s subdomain. The
required molecules are inserted into the simulation box, using the mini-configuration supplied in the FIELD file
for each molecule type and applying random translations and rotations (as well as inversions if permitted): if any
frozen particle walls or hard surfaces are included, the particle positions of each inserted molecule are checked
to ensure no bonds cross these boundaries and a new set of coordinates calculated if they do. A random number
generator with the same state across all processor cores is used to ensure the molecules are correctly assigned and
to avoid requiring communications among the cores: all cores work through all of the molecules in the system,
with each core only assigning particles that are found inside its subdomain.

If a CONFIG file is supplied, the read_config() subroutine is used to read the contents of the file and assign
particles to each processor core based on whether or not they are within its subdomain. If system duplication is
requested in the CONTROL file, this is applied in this subroutine: care is taken to ensure the particles in molecules
that cross between duplicated unit cells are numbered correctly for specifying bond data. If a frozen particle
wall is specified in the CONTROL and FIELD files, this is also added to the system (after any duplication) with
corresponding increases in system volume and total number of particles.

If a previous simulation is restarted or used as the basis for a new simulation, the read_export() subroutine is used
to read the contents of the supplied export file and assign particles to each processor core based on whether or
not they are within its subdomain. No system duplication or additional frozen particle walls can be applied in this
subroutine, although positions, velocities and forces are assigned for all particles. If the restart option selected in
the CONTROL file requests a temperature rescale, the particle velocities are adjusted by a scaling factor to give
the required system temperature (compared with the actual value given in the export file).

Once at least the particle positions, species and molecule types have been assigned to all processor cores,
the molstart array is adjusted for any system duplication. If the system is being initialised from scratch by
DL_MESO_DPD or the CONFIG file does not include particle velocities, these are set randomly by the ini-
tialvelocity() subroutine to give the required system temperature. Any electrostatic interactions are set up by the
ewald_reciprocal_map() or spme_reciprocal_map() subroutines, along with the ewald_frozen() subroutine to ap-
ply corrective forces, virials, stresses and potentials to remove interactions for pairs of charged frozen particles.
A sample of the initial configuration on processor core 0 is then printed to the OUTPUT file (or standard out-
put) before the write_history_header() subroutine is called to prepare a new HISTORY file (if requested). The
plcfor_initial() subroutine is called later to calculate any missing particle forces as well as the potential energy,
stress tensor etc. before the main simulation starts.

574 Chapter 9. DL_MESO_DPD Programming Background

DL_MESO Technical Manual, Release 2.7

Two subroutines are included in start_module.F90 to assist with system initialisation. The sort_beads() subrou-
tine re-orders the particles in each processor core to place the frozen particles at the beginning of the local arrays
for positions, velocities and forces. The assign_bonds() subroutine uses the molstart array to put together the
required bond, angle and dihedral book-keeping tables: if the global bonds approach is used, all proces-
sor cores are assigned all bonds/angles/dihedrals in the system, while the default (local) approach only assigns
bonds/angles/dihedrals for a given processor core if the ‘owning’ particle exists in its subdomain.

9.13 Reading input files

Up to five input files can be read by DL_MESO_DPD at the start of a simulation: CONTROL with simulation
parameters, FIELD with particle and interaction information, CONFIG with initial conditions, export with a sim-
ulation snapshot for restarting a previous simulation, and REVIVE with statistical accumulator and random number
generator states for simulation restart. The first three of these are (human-readable) text files, while export and
REVIVE are written in binary (see below).

The CONTROL and FIELD files are read by a single processor core (numbered 0), which then broadcasts the
results to all other cores. Each of these files is read at least twice: an initial scan of each file is carried out -
scan_control() and scan_field() - to find the most important simulation parameters and gauge how large arrays for
particle information, interaction parameters, bond connectivity etc. need to be. (If any vital information is missing,
DL_MESO_DPD will stop with an error message.) Once all arrays have been allocated in memory, each of the
files is then read in full - read_control() and read_field() - to enter the values into memory ready for initialising
and running the simulation.

A different approach is taken with the CONFIG file, which is often substantially larger than other input files.
After an initial scan for information about the simulation box size and the amount of data available per particle
- scan_config() - carried out by processor core 0, the main reading subroutine - read_config() - divides the file
as evenly as possible (based on the size in bytes) among the available processor cores. Each core reads in data
for approximately equal numbers of particles and assigns the data to arrays in derived data types, separating
particles out based on whether or not each one belongs to a molecule. If the nfold option in CONTROL is
invoked, the particles are duplicated with their positions adjusted to fit inside the expanded simulation box. (The
position adjustments for molecules are carried out to ensure the correct particles are joined together by bonds.)
MPI communications are then carried out by all processor cores to send their particle data to the appropriate cores
based on the particles’ positions.

Reading of binary export files is carried out using a similar basic approach to CONFIG files. After an initial scan
for simulation box size by processor core 0 - scan_export() - the reading of the file in read_export() starts with
the same core reading and broadcasting the shift in positions due to Lees-Edwards shearing boundaries as well
as a velocity scaling factor (as required for the restart scale option in CONTROL) and the total number of
particles in the file. The subroutine then divides up the particles among the available processor cores, with each
core reading its section of the block of integers with global particle numbers, species and molecule type numbers,
followed by the particle data itself. This information is then stored in arrays with a similar derived data type to that
used in read_config(), before the particle data is then communicated to the appropriate cores based on positions.

The REVIVE file is only read by read_revive() if the restart option is included in the CONTROL file, i.e.
resuming a previous simulation instead of starting a new one with a previous configuration. If the file is read by
DL_MESO_DPD, processor core 0 reads in nearly all of the simulation state data in the file before broadcasting
it to all other cores. The exception to this read/broadcast model are the available random number generator states,
which are each individually read by a processor core and overwrite those generated when DL_MESO_DPD starts
up.

9.13. Reading input files 575

DL_MESO Technical Manual, Release 2.7

9.14 Writing output files

The OUTPUT , CORREL and Stress_*.d files are ANSI text files all written by a single processor core (number 0).
These consist of information available among all processor cores, including values broadcast by processor core
0 to others and properties found by global summation among all cores. Other output files that rely on specific
information from each core - primarily HISTORY and export - are written in binary by a set of processor cores
designated to do so autonomously from other cores and simultaneously using MPI-IO (or stream I/O in serial)
with the endianness of the computer used to run the simulation.

The OUTPUT file includes information read in from input files and derived from simulation setup (printed by the
subroutines sysdef() and start() respectively), system-wide information about the simulation at periodic intervals
- written by write_output_summary() - and a summary of the calculation at the end with timings, average prop-
erties and fluctuations written by the subroutine write_output_result(). This file also shows any error or warning
messages printed by error() to help users diagnose any issues with the simulation. All of this information can
be redirected to the standard output (typically the screen for standalone computers) if the l_scr option in the
CONTROL file is invoked.

Statistical properties for the system - energies, pressure, temperature etc. - are written to the CORREL file by the
write_correl() subroutine as tabulated columns showing their variation as a function of time. This file is optional
and the frequency of writing is specified in the CONTROL file: the file is only written to after equilibration has
come to an end. Since the number of properties can vary from simulation to simulation based on the specified
interactions and ensemble, the number of columns of data in a CORREL file can vary: the first line in this file
consists of column headers to identify each property. Some data not printed in the OUTPUT file are included
here, e.g. time progression of pressure tensors, bond lengths.

If requested in the CONTROL file, the subroutine write_stress() will write pressure tensors to Stress_*.d files,
separated into interaction potential (Stress_pot.d), dissipative (Stress_diss.d), random (Stress_rn.d) and kinetic
(Stress_kin.d) components. These files follow a similar format to CORREL files: tabulated columns for time, the
nine tensor components and system volume (required to calculate stress tensors) with a header in the first line to
identify each column. The user can specify which files are created as well as the frequency and the first timestep
for writing to these files in the CONTROL file.

Writing to export and HISTORY files is reliant upon the creation of groups of processor cores. Each group gathers
together particle data for one processor core to write to a file using MPI-IO to enable multiple simultaneous write
operations. The init_output_groups() subroutine determines how many gathering groups of processor cores are
required based on the total number of particles and a maximum amount of data to be shared among each group
(set to 32 MiB) - albeit reset to a minimum of 4 or the total number of processor cores (whichever is smaller) -
before working out how many processor cores are needed per group and assigns the available cores to each group.
The first numbered core in each group is designated as the root to receive gathered particle data and write to files,
and MPI communicators are created to enable each group to gather together their data autonomously to the others.
The root cores for these groups are themselves put together as another group for writing to files and a set of MPI
communicators are created to enable these cores to write concurrently to each file using MPI-IO. (If running in
serial, a single data gathering group and a single file writing group are created with the single processor core in
both: no MPI communicators are actually created in this case.) The information about the gathering and writing
groups and their associated MPI communicators are stored in group_info, a derived data type in write_module.F90
used by the various file-writing routines.

The subroutine gather_write_data() is used to gather together particle data (positions, velocities, forces, global
identifying numbers etc.) among each data gathering group of processor cores. Each gathering group deter-
mines the total number of particles they hold to determine the sizes of arrays that the root core needs to allocate.
Regardless of which file is being written to, all of the particle data is then gathered onto the root core prior to
write_history() and/or write_export() being called to write the data to the HISTORY and/or export files respec-
tively (depending on which are required at the current timestep). These subroutines use the root cores for each
gathering group to write the data to the files concurrently with MPI-IO (or with stream I/O when running in serial):
all of the cores involved in writing to a file share the numbers of particles they each hold among themselves, which
are used to determine the byte number in the file at which each core starts to write. The data is written to the files as
continuous stream of values - integers for particle numbers, double-precision real numbers for positions, velocities
and forces - and no attempt is made to sort the particles numerically beforehand in order to save time in writing.
A small amount of system-wide data - e.g. box dimensions, timestep number - are also written to the file(s) by
processor core 0, which happens to be the root core for one of the gathering groups. In the case of the HISTORY

576 Chapter 9. DL_MESO_DPD Programming Background

DL_MESO Technical Manual, Release 2.7

file, the total file size, number of trajectory frames and timestep number for the last frame in the header - initially
written by the write_history_header() subroutine - are updated as additional trajectory frames are appended to the
end of the file, while the export file is overwritten each time.

The write_config() subroutine follows a slightly different strategy when creating a CFGINI file in the text-based
CONFIG format. After processor core 0 opens the file and writes the short header, each particle in the simulation
box is assigned to one of the file writing processor cores based on its global identifying number before its data
(particle number, position, veloocity and force) are sent to that core. Each file writing core then sorts its received
particle data based on particle number, before rendering the data as a string to write concurrently to the file. While
this gather/write process typically takes longer than that for HISTORY and export files, it is only intended to be
carried out once per simulation.

The write_revive() subroutine predominately uses processor core 0 to write simulation data at the current timestep
intended for a later restart to the REVIVE file, including the current timestep number and statistical stacks for
calculating rolling and final average values of system properties. The exceptions to this are the random number
generator states: each processor core writes its own generator state to the REVIVE file using MPI-IO, with the
starting position in the file determined using the core number.

9.14. Writing output files 577

DL_MESO Technical Manual, Release 2.7

578 Chapter 9. DL_MESO_DPD Programming Background

CHAPTER

TEN

DL_MESO_DPD CODE DESCRIPTION

This chapter lists and describes the subroutines, functions, variables, datatypes etc. in DL_MESO_DPD, based on
output generated using Doxygen with annotations in the code.

10.1 dlmesodpd.F90

10.1.1 Summary

Main program for DL_MESO_DPD: version with OpenMP multithreading available as dlmesodpd_omp.F90.

10.1.2 Function/Subroutine Documentation

dlmesodpd()

program dlmesodpd

Main DL_MESO_DPD program: starting off DPD calculation, reading input files, printing first messages (includ-
ing version/revision numbers, how many processors etc.), setting up initial (restarted) configuration, launching
calculation, printing final results and messages (including prompt to user to cite DL_MESO article and/or website)
and freeing up memory afterwards. (Version with OpenMP multithreading also adds initial message indicating
how many threads are in use.)

10.2 constants.F90

10.2.1 Summary

Module with commonly-used constants and parameters.

10.2.2 Variables

• integer, parameter dp

Real data kind for double precision.

• integer, parameter si

Integer kind for standard integers.

• integer, parameter li

Integer kind for long integers.

579

DL_MESO Technical Manual, Release 2.7

• integer, parameter mxword

Longest string (word) used for parsing numbers.

• integer, parameter nread

File input channel for reading input files.

• integer, parameter nprint

File output channel for writing OUTPUT file.

• integer, parameter nrtin

File input channel for reading restart data (export, REVIVE)

• integer, parameter nrtout

File output channel for writing restart data (export, REVIVE)

• integer, parameter nsave

File output channel for writing statistical properties (CORREL)

• integer, parameter nhist

File output channel for writing trajectory data (HISTORY)

• integer, parameter nstress

File output channel for writing stress tensors (Stress_*.d)

• integer, parameter csize

Number of entries (dimensions) per particle property.

• integer, parameter statsize

Number of statistical properties for averaging.

• integer, parameter stksize

Number of instantaneous properties for statistical stacks.

• real(kind=dp), parameter pi

Value of pi.

• real(kind=dp), parameter rtpi

Value of square root of pi.

• real(kind=dp), parameter sin60

Value of sine of 60 degrees (used for FFT solvers)

• real(kind=dp), parameter cos72

Value of cosine of 72 degrees (used for FFT solvers)

• real(kind=dp), parameter sin72

Value of sine of 72 degrees (used for FFT solvers)

• real(kind=dp), parameter degrad

Parameter to convert degrees to radians.

• real(kind=dp), parameter raddeg

Parameter to convert radians to degrees.

• real(kind=dp), parameter fkt

Parameter to convert kinetic energy to temperature.

580 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• real(kind=dp), parameter rt12

Square root of 12 used for approximation of Gaussian random numbers.

• real(kind=dp), parameter langepsilon

Convergence limit for iterative Langevin barostat.

• character(len=3) version

Major current version number of DL_MESO.

• integer revision

Revision number of DL_MESO.

• character(len=14) date

Date (month and year) for current DL_MESO version.

• character(len=4) year

Year for current DL_MESO version.

10.2.3 Variable Documentation

cos72

real(kind=dp), parameter constants::cos72 = 0.30901699437494742_dp

Value of the cosine of 72 degrees, cos
(︀
2𝜋
5

)︀
=

√
5−1
4 , used in Fast Fourier Transform (FFT) solver.

csize

integer, parameter constants::csize = 4

Number of entries (dimensions) for each main particle property (positions, velocities, forces), value set to exploit
cache when calling property from memory.

date

character(len=14) constants::date

String containing date (month and year) of current version of DL_MESO, used in printing messages in OUTPUT
file (or to standard output/screen).

degrad

real(kind=dp), parameter constants::degrad = pi/180.0_dp

Factor to convert angles in degrees to radians, 𝜋
180 .

10.2. constants.F90 581

DL_MESO Technical Manual, Release 2.7

dp

integer, parameter constants::dp = SELECTED_REAL_KIND (15, 307)

Fortran kind for a real data type that provides double precision (8 bytes in size).

fkt

real(kind=dp), parameter constants::fkt = 2.0_dp/3.0_dp

Factor to convert kinetic energy per particle to product of temperature and Boltzmann constant, 2
3 .

langepsilon

real(kind=dp), parameter constants::langepsilon = 1.0e-6_dp

Maximum squared change in particle speed between iterations of Langevin barostat required to indicate conver-
gence.

li

integer, parameter constants::li = SELECTED_INT_KIND (12)

Fortran kind for an integer data type that provides long precision (8 bytes in size).

mxword

integer, parameter constants::mxword = 20

Largest number of characters assumed for parsing a string (word) to find any numbers in a text-based input file
(CONTROL, FIELD, CONFIG).

nhist

integer, parameter constants::nhist = 10

Fortran data channel number used to write binary output file for trajectory data (HISTORY).

nprint

integer, parameter constants::nprint = 6

Fortran data channel number used to write simulation information to OUTPUT file (or to standard output/screen).

582 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nread

integer, parameter constants::nread = 5

Fortran data channel number used to read in text-based input files (CONTROL, FIELD, CONFIG).

nrtin

integer, parameter constants::nrtin = 7

Fortran data channel number used to read in binary input files for simulation restart (export, REVIVE).

nrtout

integer, parameter constants::nrtout = 8

Fortran data channel number used to write binary output files for simulation restart (export, REVIVE).

nsave

integer, parameter constants::nsave = 9

Fortran data channel number used to write text output file for statistical properties (CORREL).

nstress

integer, parameter constants::nstress = 11

Fortran data channel number used to write text output files for separated stress tensors (Stress_*.d).

pi

real(kind=dp), parameter constants::pi = 3.14159265358979323_dp

Fundamental constant 𝜋.

raddeg

real(kind=dp), parameter constants::raddeg = 180.0_dp/pi

Factor to convert angles in radians to degrees, 180
𝜋 .

10.2. constants.F90 583

DL_MESO Technical Manual, Release 2.7

revision

integer constants::revision

Integer with minor revision number for current version of DL_MESO, used in printing messages in OUTPUT file
(or to standard output/screen).

rt12

real(kind=dp), parameter constants::rt12 = 3.464101615377546_dp

Standard deviation of uniform random number generator,
√

12, used to give approximations of Gaussian random
numbers required for DPD random forces.

rtpi

real(kind=dp), parameter constants::rtpi = 1.77245385090551603_dp

Square root of fundamental constant
√
𝜋.

si

integer, parameter constants::si = SELECTED_INT_KIND (8)

Fortran kind for an integer data type that provides standard precision (4 bytes in size).

sin60

real(kind=dp), parameter constants::sin60 = 0.86602540378443865_dp

Value of the sine of 60 degrees, sin
(︀
𝜋
3

)︀
=

√
3
2 , used in Fast Fourier Transform (FFT) solver.

sin72

real(kind=dp), parameter constants::sin72 = 0.95105651629515357_dp

Value of the sine of 72 degrees, sin
(︀
2𝜋
5

)︀
=

√
10+2

√
5

4 , used in Fast Fourier Transform (FFT) solver.

statsize

integer, parameter constants::statsize = 51

Total number of statistical properties (energies per particle, system pressure, temperature etc.) collected for time-
averaged values and fluctuations during simulation (after equilibration).

584 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

stksize

integer, parameter constants::stksize = 15

Total number of statistical properties (energies per particle, system pressure, temperature etc.) collected for rolling
average values.

version

character(len=3) constants::version = '2.7'

String containing major version number for current version of DL_MESO, used in printing messages in OUTPUT
file (or to standard output/screen).

year

character(len=4) constants::year

String containing year for current version of DL_MESO, used in printing messages in OUTPUT file (or to standard
output/screen).

10.3 variables.F90

10.3.1 Summary

Module with globally accessible variables for DPD simulation.

10.3.2 Variables

• integer idnode

Number (rank) of current processor.

• integer nodes

Total number of processors.

• integer tnum

Total number of OpenMP threads.

• integer tnumuse

Total number of OpenMP threads in use.

• character(len=12) exportname

Name of file for restart simulation configuration.

• character(len=12) historyname

Name of file for simulation trajectories (default: HISTORY)

• logical ltemp

Equilibration temperature rescale switch.

• logical lconfzero

CONFIG file origin switch.

10.3. variables.F90 585

DL_MESO Technical Manual, Release 2.7

• logical lcorr

CORREL file writing switch.

• logical ltraj

Trajectory writing switch.

• logical lstrs

Separated stress tensor writing switch.

• logical, dimension(4) lstrss

Separated stress tensor file switches.

• logical lbond

Bond switch.

• logical langle

Angle switch.

• logical ldihed

Dihedral switch.

• logical lgbnd

Global bonds switch.

• logical lvarfc

Variable forces switch.

• logical lisoprs

Isotropic/semi-isotropic switch.

• logical ligindex

CONFIG ignore indices switch.

• logical lmb

Many-body DPD switch.

• logical ldpol

Charge dipole switch.

• logical lnfold

System duplication switch.

• logical ldyn

Dynamic system switch.

• logical lompcrit

OpenMP critical regions switch.

• logical l_scr

Divert output switch.

• integer nfoldx

Number of system duplications in x-direction.

• integer nfoldy

Number of system duplications in y-direction.

586 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• integer nfoldz

Number of system duplications in z-direction.

• integer nfold

Total number of system duplications.

• integer levcfg

CONFIG file data level.

• integer imcon

CONFIG file boundary condition key.

• integer outsel

OUTPUT file printing key.

• integer keytrj

HISTORY file data level.

• integer engunit

Energy unit selection.

• integer rndseed

Random number seed.

• integer maxdim

Maximum number of particles per processor.

• integer maxpair

Maximum number of particle pairs per processor.

• integer maxbfbd

Maximum number of particles in boundary halo for inter-processor communications.

• integer maxbuf

Maximum size of arrays for inter-processor communications.

• integer mxmolsize

Maximum number of particles per molecule.

• integer mxbonds

Maximum number of bonds per molecule.

• integer mxangles

Maximum number of angles per molecule.

• integer mxdiheds

Maximum number of dihedrals per molecule.

• integer mxprm

Maximum number of parameters per interaction.

• integer mxsprm

Maximum number of parameters per surface interaction.

• real(kind=dp) dvar

Density variation multiplier.

10.3. variables.F90 587

DL_MESO Technical Manual, Release 2.7

• character(len=80) text

CONTROL file header to name DPD simulation.

• integer nrun

Total number of DPD simulation timesteps.

• integer nsbpo

OUTPUT file printing frequency.

• integer iscorr

CORREL file writing frequency.

• integer ntraj

Trajectory file writing frequency.

• integer straj

Trajectory file writing start.

• integer ndump

Restart file writing frequency.

• integer nstrs

Stress tensor file writing frequency.

• integer sstrs

Stress tensor file writing start.

• integer nsbts

Equilibration temperature rescale frequency.

• integer nseql

Equilibration timesteps.

• integer kres

Simulation restart key.

• integer nspe

Number of particle species.

• integer npot

Number of interaction potentials between pairs of species.

• integer nmoldef

Number of defined molecule types.

• integer nbonddef

Number of defined bond types (based on functional form and parameters)

• integer nangdef

Number of defined angle types (based on functional form and parameters)

• integer ndhddef

Number of defined dihedral types (based on functional form and parameters)

• integer nstk

Statistical rolling average stack size.

588 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• integer nsyst

Total number of particles in simulation.

• integer nusyst

Total number of particles outside of molecules in simulation.

• integer nfsyst

Total number of frozen particles in simulation.

• integer nfwsyst

Total number of particles in frozen bead walls.

• integer nsystcell

Number of particles in unit cell.

• integer nusystcell

Number of particles outside of molecules in unit cell.

• integer nfsystcell

Number of frozen particles in unit cell.

• integer nummol

Total number of molecules in simulation.

• integer nummolcell

Number of molecules in unit cell.

• integer numbond

Total number of bonds in simulation.

• integer numang

Total number of angles in simulation.

• integer numdhd

Total number of dihedrals in simulation.

• integer numbondcell

Number of bonds in unit cell.

• integer numangcell

Number of angles in unit cell.

• integer numdhdcell

Number of dihedrals in unit cell.

• integer nstep

Current simulation timestep number.

• real(kind=dp) timfrc

Particle force calculation timer.

• real(kind=dp) timstp

Timestep calculation timer.

• real(kind=dp) temp

System temperature.

10.3. variables.F90 589

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) tstep

Timestep size.

• real(kind=dp) rtstep

Reciprocal of timestep size.

• real(kind=dp) rhalo

Specified size of boundary halo.

• real(kind=dp) rhalox1

Boundary halo size in -x direction.

• real(kind=dp) rhalox2

Boundary halo size in +x direction.

• real(kind=dp) rhaloy1

Boundary halo size in -y direction.

• real(kind=dp) rhaloy2

Boundary halo size in +y direction.

• real(kind=dp) rhaloz1

Boundary halo size in -z direction.

• real(kind=dp) rhaloz2

Boundary halo size in +z direction.

• real(kind=dp) rcut

Maximum interaction cutoff distance.

• real(kind=dp) rct2

Square of maximum interaction cutoff distance.

• real(kind=dp) rrct2

Squared reciprocal of maximum interaction cutoff distance.

• real(kind=dp) rtcut

Thermostat cutoff distance.

• real(kind=dp) rrtcut

Reciprocal of thermostat cutoff distance.

• real(kind=dp) rtct2

Square of thermostat cutoff distance.

• real(kind=dp) rmbcut

Many-body DPD interaction cutoff distance.

• real(kind=dp) rmbct2

Square of many-body DPD interaction cutoff distance.

• real(kind=dp) rrmbcut

Reciprocal of many-body DPD interaction cutoff distance.

• real(kind=dp) relec

Short-range (real-space) electrostatic interaction cutoff distance.

590 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) rel2

Square of short-range electrostatic interaction cutoff distance.

• real(kind=dp) srfzcut

Surface interaction cutoff distance.

• real(kind=dp) srfzct2

Square of surface interaction cutoff distance.

• real(kind=dp) timjob

Maximum available time for DPD calculation (in seconds)

• real(kind=dp) tclose

Calculation closedown time (in seconds)

• real(kind=dp) volm

Total system volume.

• real(kind=dp) dimx

Simulation box size in x-direction.

• real(kind=dp) dimy

Simulation box size in y-direction.

• real(kind=dp) dimz

Simulation box size in z-direction.

• real(kind=dp) dimxcell

Unit cell box size in x-direction.

• real(kind=dp) dimycell

Unit cell box size in y-direction given by CONFIG file.

• real(kind=dp) dimzcell

Unit cell box size in z-direction given by CONFIG file.

• integer npx

Total number of processors and subdomains in x-direction.

• integer npy

Total number of processors and subdomains in y-direction.

• integer npz

Total number of processors and subdomains in z-direction.

• integer, dimension(6) map

Mapping of neighbouring processors for current processor (1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z, 6 = +z)

• integer idx

Number of processor/subdomain in x-direction (between 0 and npx-1)

• integer idy

Number of processor/subdomain in y-direction (between 0 and npy-1)

• integer idz

Number of processor/subdomain in z-direction (between 0 and npz-1)

10.3. variables.F90 591

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) delx

Position of bottom left back corner of subdomain (x-dimension)

• real(kind=dp) dely

Position of bottom left back corner of subdomain (y-dimension)

• real(kind=dp) delz

Position of bottom left back corner of subdomain (z-dimension)

• real(kind=dp) sidex

Size of subdomain in x-direction.

• real(kind=dp) sidey

Size of subdomain in y-direction.

• real(kind=dp) sidez

Size of subdomain in z-direction.

• integer nbeads

Number of particles in current processor/subdomain.

• integer nfbeads

Number of frozen particles in current processor/subdomain.

• integer nlx

Number of interaction link cells in current subdomain (x-direction)

• integer nly

Number of interaction link cells in current subdomain (y-direction)

• integer nlz

Number of interaction link cells in current subdomain (z-direction)

• integer nlx2

Number of interaction link cells in current subdomain and boundary halo (x-direction)

• integer nly2

Number of interaction link cells in current subdomain and boundary halo (y-direction)

• integer nlz2

Number of interaction link cells in current subdomain and boundary halo (z-direction)

• integer mxpcell

Maximum number of particles per interaction link cell.

• real(kind=dp) wdthx

Size of interaction link cell in x-direction.

• real(kind=dp) wdthy

Size of interaction link cell in y-direction.

• real(kind=dp) wdthz

Size of interaction link cell in z-direction.

• integer, dimension(:), allocatable lct

Starting particles in interaction linked-cell lists.

592 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• integer, dimension(:), allocatable link

Array with subsequent particles in interaction linked-cell lists.

• integer, dimension(:), allocatable lcell

Interaction link cell numbers for subdomain.

• integer, dimension(:), allocatable lcell_neighbour

Neighbouring link cells for each interaction link cell in subdomain.

• integer, dimension(:), allocatable lcell_therm

Link cell thermostat switches.

• logical lnsmall

Small system interaction link cell switch.

• integer nlewx

Number of electrostatic link cells in current subdomain (x-direction)

• integer nlewy

Number of electrostatic link cells in current subdomain (y-direction)

• integer nlewz

Number of electrostatic link cells in current subdomain (z-direction)

• integer nlewx2

Number of electrostatic link cells in current subdomain and boundary halo (x-direction)

• integer nlewy2

Number of electrostatic link cells in current subdomain and boundary halo (y-direction)

• integer nlewz2

Number of electrostatic link cells in current subdomain and boundary halo (z-direction)

• real(kind=dp) wdthewx

Size of electrostatic link cell in x-direction.

• real(kind=dp) wdthewy

Size of electrostatic link cell in y-direction.

• real(kind=dp) wdthewz

Size of electrostatic link cell in z-direction.

• integer, dimension(:), allocatable lctew

Starting particles in electrostatic linked-cell lists.

• integer, dimension(:), allocatable linkew

Array with subsequent particles in electrostatic linked-cell lists.

• integer, dimension(:), allocatable lcellew

Electrostatic link cell numbers for subdomain.

• integer, dimension(:), allocatable lcellew_neighbour

Neighbouring link cells for each electrostatic link cell in subdomain.

• logical lnewsmall

Small system electrostatic link cell switch.

10.3. variables.F90 593

DL_MESO Technical Manual, Release 2.7

• integer nlmbx

Number of many-body DPD link cells in current subdomain (x-direction)

• integer nlmby

Number of many-body DPD link cells in current subdomain (y-direction)

• integer nlmbz

Number of many-body DPD link cells in current subdomain (z-direction)

• integer nlmbx2

Number of many-body DPD link cells in current subdomain and boundary halo (x-direction)

• integer nlmby2

Number of many-body DPD link cells in current subdomain and boundary halo (y-direction)

• integer nlmbz2

Number of many-body DPD link cells in current subdomain and boundary halo (z-direction)

• real(kind=dp) wdthmbx

Size of many-body DPD link cell in x-direction.

• real(kind=dp) wdthmby

Size of many-body DPD link cell in y-direction.

• real(kind=dp) wdthmbz

Size of many-body DPD link cell in z-direction.

• integer, dimension(:), allocatable lctmb

Starting particles in many-body DPD linked-cell lists.

• integer, dimension(:), allocatable linkmb

Array with subsequent particles in many-body DPD linked-cell lists.

• integer, dimension(:), allocatable lcellmb

Many-body DPD link cell numbers for subdomain.

• integer, dimension(:), allocatable lcellmb_neighbour

Neighbouring link cells for each many-body DPD link cell in subdomain.

• logical lnmbsmall

Small system many-body DPD link cell switch.

• character(len=8), dimension(:), allocatable, save namspe

Names of particle species.

• integer, dimension(:), allocatable ktype

Interaction potential types.

• real(kind=dp), dimension(:), allocatable amass

Particle masses for species.

• real(kind=dp), dimension(:), allocatable chge

Particle charges for species.

• real(kind=dp), dimension(:,:), allocatable vvv

Interaction parameters.

594 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• integer, dimension(:), allocatable lfrzn

Frozen particle switch for species.

• real(kind=dp), dimension(:), allocatable lsurf

Switch for species pairs counting as surface interactions.

• real(kind=dp), dimension(2) clr

Long-range corrections for potential energy and virial.

• real(kind=dp), dimension(:,:), allocatable, target cfxfyfz

Corrective forces on frozen particles to remove reciprocal-space Ewald sum contributions.

• real(kind=dp), dimension(:), pointer fcfx

Corrective electrostatic forces on frozen particles (x-component, pointer)

• real(kind=dp), dimension(:), pointer fcfy

Corrective electrostatic forces on frozen particles (y-component, pointer)

• real(kind=dp), dimension(:), pointer fcfz

Corrective electrostatic forces on frozen particles (z-component, pointer)

• real(kind=dp), dimension(36) strcfz

Corrective stress tensor to remove reciprocal-space Ewald sum contributions for frozen particles.

• real(kind=dp), dimension(3) vrlcfz

Corrective virial to remove reciprocal-space Ewald sum contributions for frozen particles.

• real(kind=dp) potcfz

Corrective potential energy to remove reciprocal-space Ewald sum contributions for frozen particles.

• integer itype

Selected thermostat and integration type.

• real(kind=dp), dimension(:), allocatable gamma

Dissipative force parameters/collision frequencies.

• real(kind=dp), dimension(:), allocatable sigma

Random force parameters/thermostat probabilities.

• real(kind=dp) alphasg

Stoyanov-Groot temperature coupling parameter.

• real(kind=dp), dimension(:), allocatable, save pldxyz

Alternative thermostat particle pair vectors.

• integer, dimension(:), allocatable, save plparti

Alternative thermostat first local particle numbers.

• integer, dimension(:), allocatable, save plpartj

Alternative thermostat second local particle numbers.

• integer, dimension(:), allocatable, save plproci

Alternative thermostat first processor/subdomain numbers.

• integer, dimension(:), allocatable, save plprocj

Alternative thermostat second processor/subdomain numbers.

10.3. variables.F90 595

DL_MESO Technical Manual, Release 2.7

• integer, dimension(:), allocatable, save plbound

Alternative thermostat boundary thermostatting keys.

• integer, dimension(:), allocatable, save plintij

Alternative thermostat particle pair identifiers.

• integer npair

Alternative thermostat pair list size.

• integer btype

Selected barostat and ensemble.

• real(kind=dp) prszero

Target system pressure for barostat.

• real(kind=dp) abaro

First barostat parameter.

• real(kind=dp) bbaro

Second barostat parameter.

• real(kind=dp) cbaro

Third barostat parameter.

• real(kind=dp) dbaro

Fourth barostat parameter.

• real(kind=dp) upx

Barostat piston velocity (x-component) at current timestep

• real(kind=dp) upy

Barostat piston velocity (y-component) at current timestep

• real(kind=dp) upz

Barostat piston velocity (z-component) at current timestep

• real(kind=dp) up1x

Barostat piston velocity (x-component) at previous timestep

• real(kind=dp) up1y

Barostat piston velocity (y-component) at previous timestep

• real(kind=dp) up1z

Barostat piston velocity (z-component) at previous timestep

• real(kind=dp) psmass

Barostat piston mass.

• real(kind=dp) rpsmass

Reciprocal of barostat piston mass.

• real(kind=dp) fpx

Barostat piston force (x-component)

• real(kind=dp) fpy

Barostat piston force (y-component)

596 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) fpz

Barostat piston force (z-component)

• real(kind=dp), dimension(3) ivrl

Instantaneous system virial.

• real(kind=dp) sigmalang

Barostat random parameter.

• integer etype

Selected electrostatic model and application method.

• real(kind=dp) gammaelec

Permittivity coefficient.

• real(kind=dp) bjerelec

Bjerrum length.

• real(kind=dp) qchg

Total system charge.

• real(kind=dp) alphaew

Ewald real-space convergence coefficient.

• real(kind=dp) ralphaew

Reciprocal of Ewald real-space convergence coefficient.

• integer kmax1

Maximum reciprocal-space vector or k-vector (x-component)

• integer kmax2

Maximum reciprocal-space vector or k-vector (y-component)

• integer kmax3

Maximum reciprocal-space vector or k-vector (z-component)

• real(kind=dp) engsic

Ewald sum self-interaction correction term to potential.

• real(kind=dp) qfixv

Ewald sum charged system correction term to potential.

• real(kind=dp) betaew

Charge smearing parameter.

• real(kind=dp) chglen

Charge smearing length.

• real(kind=dp), dimension(:,:), allocatable rkxyz

List of reciprocal space vectors within range for maximum k-vector.

• integer, dimension(:,:), allocatable kxyz

List of available reciprocal-space or k-vectors.

• integer nlistew

Number of available reciprocal-space or k-vectors.

10.3. variables.F90 597

DL_MESO Technical Manual, Release 2.7

• integer mxspl

B-spline interpolation order for SPME.

• real(kind=dp) vgapx

Vacuum gap for slab geometries (x-component)

• real(kind=dp) vgapy

Vacuum gap for slab geometries (y-component)

• real(kind=dp) vgapz

Vacuum gap for slab geometries (z-component)

• real(kind=dp) ewprec

Relative precision (maximum error) of Ewald sum or SPME calculations.

• real(kind=dp), dimension(:), allocatable aabond

First interaction parameters for bond interactions.

• real(kind=dp), dimension(:), allocatable bbbond

Second interaction parameters for bond interactions.

• real(kind=dp), dimension(:), allocatable ccbond

Third interaction parameters for bond interactions.

• real(kind=dp), dimension(:), allocatable ddbond

Fourth interaction parameters for bond interactions.

• real(kind=dp), dimension(:), allocatable aaang

First interaction parameters for angle interactions.

• real(kind=dp), dimension(:), allocatable bbang

Second interaction parameters for angle interactions.

• real(kind=dp), dimension(:), allocatable ccang

Third interaction parameters for angle interactions.

• real(kind=dp), dimension(:), allocatable ddang

Fourth interaction parameters for angle interactions.

• real(kind=dp), dimension(:), allocatable aadhd

First interaction parameters for dihedral interactions.

• real(kind=dp), dimension(:), allocatable bbdhd

Second interaction parameters for dihedral interactions.

• real(kind=dp), dimension(:), allocatable ccdhd

Third interaction parameters for dihedral interactions.

• real(kind=dp), dimension(:), allocatable dddhd

Fourth interaction parameters for dihedral interactions.

• integer, dimension(:), allocatable bdtype

Types (functional forms) of bond interactions.

• integer, dimension(:), allocatable angtype

Types (functional forms) of angle interactions.

598 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• integer, dimension(:), allocatable dhdtype

Types (functional forms) of dihedral interactions.

• logical, dimension(:), allocatable moliso

Molecular isomer switch.

• integer, dimension(:), allocatable nspec

Number of particles for each species not included in molecules.

• integer, dimension(:), allocatable nspecmol

Number of particles for each species included in molecules.

• integer, dimension(:), allocatable nmol

Number of molecules for each type.

• integer, dimension(:), allocatable nbdmol

Number of particles per molecule type.

• character(len=8), dimension(:), allocatable, save nammol

Names of molecule types.

• integer, dimension(:,:), allocatable, save mlstrtspe

Species for each particle in a specified molecule type.

• integer, dimension(:), allocatable, save nbond

Number of bonds for each molecule type.

• integer, dimension(:), allocatable, save nangle

Number of angles for each molecule type.

• integer, dimension(:), allocatable, save ndihed

Number of dihedrals for each molecule type.

• integer, dimension(:,:), allocatable, save bdinp1

Bond connectivity data for inserting molecule in system (first particle index)

• integer, dimension(:,:), allocatable, save bdinp2

Bond connectivity data for inserting molecule in system (second particle index)

• integer, dimension(:,:), allocatable, save bdinp3

Bond connectivity data for inserting molecule in system (bond type)

• integer, dimension(:,:), allocatable, save anginp1

Angle connectivity data for inserting molecule in system (first particle index)

• integer, dimension(:,:), allocatable, save anginp2

Angle connectivity data for inserting molecule in system (second particle index)

• integer, dimension(:,:), allocatable, save anginp3

Angle connectivity data for inserting molecule in system (third particle index)

• integer, dimension(:,:), allocatable, save anginp4

Angle connectivity data for inserting molecule in system (angle type)

• integer, dimension(:,:), allocatable, save dhdinp1

Dihedral connectivity data for inserting molecule in system (first particle index)

10.3. variables.F90 599

DL_MESO Technical Manual, Release 2.7

• integer, dimension(:,:), allocatable, save dhdinp2

Dihedral connectivity data for inserting molecule in system (second particle index)

• integer, dimension(:,:), allocatable, save dhdinp3

Dihedral connectivity data for inserting molecule in system (third particle index)

• integer, dimension(:,:), allocatable, save dhdinp4

Dihedral connectivity data for inserting molecule in system (fourth particle index)

• integer, dimension(:,:), allocatable, save dhdinp5

Dihedral connectivity data for inserting molecule in system (dihedral type)

• integer, dimension(:), allocatable, save molstart

Starting global particle indices for molecules inserted in system.

• real(kind=dp), dimension(:), allocatable, save mlszx

Maximum extent of molecule inserted in system (x-component)

• real(kind=dp), dimension(:), allocatable, save mlszy

Maximum extent of molecule inserted in system (y-component)

• real(kind=dp), dimension(:), allocatable, save mlszz

Maximum extent of molecule inserted in system (z-component)

• real(kind=dp), dimension(:,:), allocatable, save mlstrtxxx

Relative positions of particles in molecule inserted in system (x-component)

• real(kind=dp), dimension(:,:), allocatable, save mlstrtyyy

Relative positions of particles in molecule inserted in system (y-component)

• real(kind=dp), dimension(:,:), allocatable, save mlstrtzzz

Relative positions of particles in molecule inserted in system (z-component)

• integer, dimension(:,:), allocatable, save bndtbl

Bond book-keeping table.

• integer, dimension(:,:), allocatable, save angtbl

Angle book-keeping table.

• integer, dimension(:,:), allocatable, save dhdtbl

Dihedral book-keeping table.

• integer nbonds

Number of bonds in subdomain book-keeping table.

• integer nangles

Number of angles in subdomain book-keeping table.

• integer ndiheds

Number of dihedrals in subdomain book-keeping table.

• integer, dimension(:,:), allocatable, save lblclst

Look-up list of global and local particle indices.

• integer nlist

Number of particles in global/local index look-up list.

600 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• real(kind=dp), dimension(:, :), allocatable rhomb

Local densities for many-body DPD.

• integer srftype

Selected surface type.

• integer srfx

Switch for surface orthogonal to x-axis.

• integer srfy

Switch for surface orthogonal to y-axis.

• integer srfz

Switch for surface orthogonal to z-axis.

• logical, dimension(6) srflgc

Switches for surfaces in current processor/subdomain.

• real(kind=dp), dimension(:, :), allocatable vvsrf

Surface interaction parameters.

• integer, dimension(:), allocatable srfktype

Surface interaction potential types.

• real(kind=dp) srfpos

Distance between simulation box boundary and reflecting wall surfaces.

• real(kind=dp) srfxps1

Position of reflecting wall surface in processor with surface 1 (-x)

• real(kind=dp) srfxps2

Position of reflecting wall surface in processor with surface 2 (+x)

• real(kind=dp) srfyps1

Position of reflecting wall surface in processor with surface 3 (-y)

• real(kind=dp) srfyps2

Position of reflecting wall surface in processor with surface 4 (+y)

• real(kind=dp) srfzps1

Position of reflecting wall surface in processor with surface 5 (-z)

• real(kind=dp) srfzps2

Position of reflecting wall surface in processor with surface 6 (+z)

• integer frzwspe

Particle species for frozen bead wall.

• integer npxfwx

Number of particles in x-axis frozen bead walls (x-direction)

• integer npxfwy

Number of particles in x-axis frozen bead walls (y-direction)

• integer npxfwz

Number of particles in x-axis frozen bead walls (z-direction)

10.3. variables.F90 601

DL_MESO Technical Manual, Release 2.7

• integer npyfwx

Number of particles in y-axis frozen bead walls (x-direction)

• integer npyfwy

Number of particles in y-axis frozen bead walls (y-direction)

• integer npyfwz

Number of particles in y-axis frozen bead walls (z-direction)

• integer npzfwx

Number of particles in z-axis frozen bead walls (x-direction)

• integer npzfwy

Number of particles in z-axis frozen bead walls (y-direction)

• integer npzfwz

Number of particles in z-axis frozen bead walls (z-direction)

• real(kind=dp) frzwdens

Density of particles in frozen bead walls.

• real(kind=dp) frzwxwid

Width of frozen bead wall orthogonal to x-axis.

• real(kind=dp) frzwywid

Width of frozen bead wall orthogonal to y-axis.

• real(kind=dp) frzwzwid

Width of frozen bead wall orthogonal to z-axis.

• logical lfrzx

Switch for x-axis frozen bead walls.

• logical lfrzy

Switch for y-axis frozen bead walls.

• logical lfrzz

Switch for z-axis frozen bead walls.

• logical lfrzwall

Switch for frozen bead walls.

• real(kind=dp) shrvx

Velocity of Lees-Edwards shearing boundary (x-component)

• real(kind=dp) shrvy

Velocity of Lees-Edwards shearing boundary (y-component)

• real(kind=dp) shrvz

Velocity of Lees-Edwards shearing boundary (z-component)

• real(kind=dp) shrdx

Displacement of Lees-Edwards shearing boundary (x-component)

• real(kind=dp) shrdy

Displacement of Lees-Edwards shearing boundary (y-component)

602 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) shrdz

Displacement of Lees-Edwards shearing boundary (z-component)

• integer nshrs

Number of timesteps before applying Lees-Edwards shearing boundary.

• real(kind=dp) bdfrcx

Body force on particles (x-component)

• real(kind=dp) bdfrcy

Body force on particles (y-component)

• real(kind=dp) bdfrcz

Body force on particles (z-component)

• real(kind=dp) elecx

Electric field on charged particles (x-component)

• real(kind=dp) elecy

Electric field on charged particles (y-component)

• real(kind=dp) elecz

Electric field on charged particles (z-component)

• real(kind=dp), dimension(:,:), allocatable, target fxfyfz

Particle forces.

• real(kind=dp), dimension(:), pointer fxx

Particle force (x-component, pointer)

• real(kind=dp), dimension(:), pointer fyy

Particle force (y-component, pointer)

• real(kind=dp), dimension(:), pointer fzz

Particle force (z-component, pointer)

• real(kind=dp), dimension(:,:), allocatable, target vfxfyfz

Variable (recalculated dissipative or Stoyanov-Groot temperature-dependent) particle forces.

• real(kind=dp), dimension(:), pointer fvx

Variable particle force (x-component, pointer)

• real(kind=dp), dimension(:), pointer fvy

Variable particle force (y-component, pointer)

• real(kind=dp), dimension(:), pointer fvz

Variable particle force (z-component, pointer)

• real(kind=dp), dimension(:,:), allocatable, target vxvyvz

Particle velocities.

• real(kind=dp), dimension(:), pointer vxx

Particle velocity (x-component, pointer)

• real(kind=dp), dimension(:), pointer vyy

Particle velocity (y-component, pointer)

10.3. variables.F90 603

DL_MESO Technical Manual, Release 2.7

• real(kind=dp), dimension(:), pointer vzz

Particle velocity (z-component, pointer)

• real(kind=dp), dimension(:,:), allocatable, target xxyyzz

Particle positions (coordinates)

• real(kind=dp), dimension(:), pointer xxx

Particle position (x-component, pointer)

• real(kind=dp), dimension(:), pointer yyy

Particle position (y-component, pointer)

• real(kind=dp), dimension(:), pointer zzz

Particle position (z-component, pointer)

• integer, dimension(:), allocatable, save lab

Particle global index.

• integer, dimension(:), allocatable, save ltp

Particle species.

• integer, dimension(:), allocatable, save ltm

Particle molecule type.

• integer, dimension(:), allocatable, save lmp

Owning processor for particle.

• integer, dimension(:), allocatable, save loc

Particle local index on owning processor.

• character(len=8), dimension(:), allocatable, save atmnam

Particle species name.

• character(len=8), dimension(:), allocatable, save molnam

Particle molecule name.

• real(kind=dp), dimension(:), allocatable, save weight

Particle mass.

• real(kind=dp) pe

Total potential (interaction) energy.

• real(kind=dp) vir

Total virial.

• real(kind=dp) be

Bond energy.

• real(kind=dp) ae

Angle energy.

• real(kind=dp) de

Dihedral energy.

• real(kind=dp) ee

Electrostatic energy.

604 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) se

Surface energy.

• real(kind=dp) bdlng

Summed bond lengths.

• real(kind=dp) bdlmin

Minimum bond length.

• real(kind=dp) bdlmax

Maximum bond length.

• real(kind=dp) bdang

Summed bond angles.

• real(kind=dp) bddhd

Summed bond dihedrals.

• real(kind=dp), dimension(3) tke

Kinetic energy separated into x-, y- and z-components.

• real(kind=dp), dimension(36) stress

Stress tensor separated into conservative, dissipative, random and kinetic contributions.

• real(kind=dp) stppe

Total potential energy per particle at current timestep.

• real(kind=dp) stpvir

Total virial per particle at current timestep.

• real(kind=dp) stptke

Total kinetic energy per particle at current timestep.

• real(kind=dp) stpte

Total energy per particle at current timestep.

• real(kind=dp) stpprs

System pressure at current timestep.

• real(kind=dp) stpvlm

System volume at current timestep.

• real(kind=dp) stpzts

System surface tension in z-direction at current timestep.

• real(kind=dp) stpttp

System temperature at current timestep.

• real(kind=dp) stptpx

Partial temperature in x-direction at current timestep.

• real(kind=dp) stptpy

Partial temperature in y-direction at current timestep.

• real(kind=dp) stptpz

Partial temperature in z-direction at current timestep.

10.3. variables.F90 605

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) stpbe

Total bond energy per particle at current timestep.

• real(kind=dp) stpae

Total angle energy per particle at current timestep.

• real(kind=dp) stpde

Total dihedral energy per particle at current timestep.

• real(kind=dp) stpee

Total electrostatic energy per particle at current timestep.

• real(kind=dp) stpse

Total surface energy per particle at current timestep.

• real(kind=dp) stpbdl

Mean bond length at current timestep.

• real(kind=dp) stpbdmx

Maximum bond length at current timestep.

• real(kind=dp) stpbdmn

Minimum bond length at current timestep.

• real(kind=dp) stpang

Mean bond angle at current timestep.

• real(kind=dp) stpdhd

Mean bond dihedral at current timestep.

• real(kind=dp), dimension(stksize) rav

Current rolling averages of system properties using values from statistical stacks.

• real(kind=dp), dimension(statsize) ave

Current all-timestep averages of system properties.

• real(kind=dp), dimension(statsize) flc

Current all-timestep fluctuations (variances) of system properties.

• real(kind=dp), dimension(:), allocatable stkpe

Statistical stack of potential energy per particle values.

• real(kind=dp), dimension(:), allocatable stktkex

Statistical stack of x-component kinetic energy per particle values.

• real(kind=dp), dimension(:), allocatable stktkey

Statistical stack of y-component kinetic energy per particle values.

• real(kind=dp), dimension(:), allocatable stktkez

Statistical stack of z-component kinetic energy per particle values.

• real(kind=dp), dimension(:), allocatable stkbe

Statistical stack of bond energy per particle values.

• real(kind=dp), dimension(:), allocatable stkae

Statistical stack of angle energy per particle values.

606 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• real(kind=dp), dimension(:), allocatable stkde

Statistical stack of dihedral energy per particle values.

• real(kind=dp), dimension(:), allocatable stkee

Statistical stack of electrostatic energy per particle values.

• real(kind=dp), dimension(:), allocatable stkse

Statistical stack of surface energy per particle values.

• real(kind=dp), dimension(:), allocatable stkvir

Statistical stack of virial per particle values.

• real(kind=dp), dimension(:), allocatable stkvlm

Statistical stack of system volume values.

• real(kind=dp), dimension(:), allocatable stkzts

Statistical stack of surface tension in z-direction values.

• integer nav

Current number of timesteps for statistical sampling.

• real(kind=dp), dimension(11) zum

Summed values of statistical stacked properties.

• real(kind=dp), dimension(:,:), allocatable, target, save commsinbuf

Communication buffers for receiving data.

• real(kind=dp), dimension(:,:), allocatable, target, save commsoutbuf

Communication buffers for sending data.

10.3.3 Variable Documentation

aaang

real(kind=dp), dimension (:), allocatable variables::aaang

Array with first angle interaction parameters given for each angle type specified in FIELD file.

aabond

real(kind=dp), dimension (:), allocatable variables::aabond

Array with first bond interaction parameters given for each bond type specified in FIELD file.

aadhd

real(kind=dp), dimension (:), allocatable variables::aadhd

Array with first dihedral interaction parameters given for each dihedral type specified in FIELD file.

10.3. variables.F90 607

DL_MESO Technical Manual, Release 2.7

abaro

real(kind=dp) variables::abaro

First barostat parameter: either barostat relaxation time 𝜏𝑝 for Langevin barostat, or ratio of compressibility to
relaxation time 𝛽

𝜏𝑝
for Berendesen barostat.

ae

real(kind=dp) variables::ae

Total potential energy for system resulting from angle interactions.

alphaew

real(kind=dp) variables::alphaew

Real-space convergence coefficient for electrostatic interactions with Ewald sums, 𝛼.

alphasg

real(kind=dp) variables::alphasg

Temperature-dependent force coupling parameter used for Stoyanov-Groot thermostat, 𝛼𝑇 .

amass

real(kind=dp), dimension (:), allocatable variables::amass

Masses for particles of available species (in DPD mass units).

anginp1

integer, dimension (:,:), allocatable, save variables::anginp1

Array with first (relative) particle number in molecule included in current angle, used to set up angle tables for
calculations.

anginp2

integer, dimension (:,:), allocatable, save variables::anginp2

Array with second (relative) particle number in molecule included in current angle, used to set up angle tables for
calculations.

608 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

anginp3

integer, dimension (:,:), allocatable, save variables::anginp3

Array with third (relative) particle number in molecule included in current angle, used to set up angle tables for
calculations.

anginp4

integer, dimension (:,:), allocatable, save variables::anginp4

Array with identified angle type for current angle, used to set up angle tables for calculations.

angtbl

integer, dimension (:,:), allocatable, save variables::angtbl

Array listing available angles in processor’s subdomain for interaction calculations: first index is entry in angle
table, second index is either global particle numbers involved in angle (1, 2, 3) or angle type (4).

angtype

integer, dimension (:), allocatable variables::angtype

Array with flags indicating the functional forms for each angle type specified in FIELD file: 1 = harmonic, 2 =
harmonic cosine, 3 = cosine

atmnam

character(len=8), dimension (:), allocatable, save variables::atmnam

Species names (up to 8 characters) of particles

ave

real(kind=dp), dimension (statsize) variables::ave

Current average values of system properties obtained from properties over all timesteps after equilibration: 1 =
total energy per particle, 2 = total potential energy per particle, 3 = total electrostatic energy per particle, 4 =
total bond energy per particle, 5 = total angle energy per particle, 6 = total dihedral energy per particle, 7 = total
virial per particle, 8 = total kinetic energy per particle, 9 = system pressure, 10 = system volume, 11 = surface
tension in z-direction, 12 = system temperature, 13 = partial temperature in x-direction, 14 = partial temperature
in y-direction, 15 = partial temperature in z-direction, 16-51 = pressure tensors separated out into conservative
(potential), dissipative, random and kinetic contributions for all tensor components.

10.3. variables.F90 609

DL_MESO Technical Manual, Release 2.7

bbang

real(kind=dp), dimension (:), allocatable variables::bbang

Array with second angle interaction parameters given for each angle type specified in FIELD file.

bbaro

real(kind=dp) variables::bbaro

Second barostat parameter: either barostat dissipative parameter 𝛾𝑝 for Langevin barostat, or target surface tension
𝛾0 for Berendsen barostat.

bbbond

real(kind=dp), dimension (:), allocatable variables::bbbond

Array with second bond interaction parameters given for each bond type specified in FIELD file.

bbdhd

real(kind=dp), dimension (:), allocatable variables::bbdhd

Array with second dihedral interaction parameters given for each dihedral type specified in FIELD file.

bdang

real(kind=dp) variables::bdang

Total angles between pairs of bonds in molecules.

bddhd

real(kind=dp) variables::bddhd

Total dihedrals between pairs of bond planes in molecules.

bdfrcx

real(kind=dp) variables::bdfrcx

Constant acceleration acting on all moving particles (x-component).

610 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

bdfrcy

real(kind=dp) variables::bdfrcy

Constant acceleration acting on all moving particles (y-component).

bdfrcz

real(kind=dp) variables::bdfrcz

Constant acceleration acting on all moving particles (z-component).

bdinp1

integer, dimension (:,:), allocatable, save variables::bdinp1

Array with first (relative) particle number in molecule included in current bond, used to set up bond tables for
calculations.

bdinp2

integer, dimension (:,:), allocatable, save variables::bdinp2

Array with second (relative) particle number in molecule included in current bond, used to set up bond tables for
calculations.

bdinp3

integer, dimension (:,:), allocatable, save variables::bdinp3

Array with identified bond type for current bond, used to set up bond tables for calculations.

bdlmax

real(kind=dp) variables::bdlmax

Maximum length of bonds between pairs of particles in molecules.

bdlmin

real(kind=dp) variables::bdlmin

Minimum length of bonds between pairs of particles in molecules.

10.3. variables.F90 611

DL_MESO Technical Manual, Release 2.7

bdlng

real(kind=dp) variables::bdlng

Total lengths of bonds between pairs of particles in molecules.

bdtype

integer, dimension (:), allocatable variables::bdtype

Array with flags indicating the functional forms for each bond type specified in FIELD file: 1 = harmonic spring, 2
= finitely extensible non-linear elastic (FENE), 3 = Marko/Siggia worm-like chain (WLC), 4 = Morse anharmonic.

be

real(kind=dp) variables::be

Total potential energy for system resulting from bond interactions.

betaew

real(kind=dp) variables::betaew

Parameter used in calculating electrostatic interactions with charge smearing (usually related to reciprocal of
charge smearing length).

bjerelec

real(kind=dp) variables::bjerelec

Bjerrum length used for electrostatic interactions, 𝑙𝐵 (related to permittivity coefficient)

bndtbl

integer, dimension (:,:), allocatable, save variables::bndtbl

Array listing available bonds in processor’s subdomain for interaction calculations: first index is entry in bond
table, second index is either global particle numbers involved in bond (1, 2) or bond type (3).

btype

integer variables::btype

Flag indicating barostat and ensemble type specified in CONTROL file: 0 = no barostat, 1 = Lsngevin barostat
with constant pressure (𝑁𝑃𝑇) ensemble, 2 = Langevin barostat with constant surface area (𝑁𝑃𝑛𝐴𝑇) ensemble, 3
= Langevin barostat with constant surface tension (𝑁𝑃𝑛𝛾𝑇) ensemble, 4 = Berendsen barostat with constant pres-
sure (𝑁𝑃𝑇) ensemble, 5 = Berendsen barostat with constant surface area (𝑁𝑃𝑛𝐴𝑇) ensemble, 6 = Berendsen
barostat with constant surface tension (𝑁𝑃𝑛𝛾𝑇) ensemble.

612 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

cbaro

real(kind=dp) variables::cbaro

Third barostat parameter: target surface tension 𝛾0 for Langevin barostat.

ccang

real(kind=dp), dimension (:), allocatable variables::ccang

Array with third angle interaction parameters given for each angle type specified in FIELD file.

ccbond

real(kind=dp), dimension (:), allocatable variables::ccbond

Array with third bond interaction parameters given for each bond type specified in FIELD file.

ccdhd

real(kind=dp), dimension (:), allocatable variables::ccdhd

Array with third dihedral interaction parameters given for each dihedral type specified in FIELD file.

cfxfyfz

real(kind=dp), dimension (:,:), allocatable, target variables::cfxfyfz

Forces used to correct reciprocal-space Ewald sum contributions to remove the effects due to frozen-frozen particle
pairs (already excluded in real space): first index of array is coordinate, second index is local particle number.
These forces only need calculating once for constant volume (NVT) ensembles but must be recalculated when
using a barostat due to particle position changes.

chge

real(kind=dp), dimension (:), allocatable variables::chge

Charges (valencies) for particles of available species.

chglen

real(kind=dp) variables::chglen

Lengthscale for charge smearing used in electrostatic interactions.

10.3. variables.F90 613

DL_MESO Technical Manual, Release 2.7

clr

real(kind=dp), dimension (2) variables::clr

Corrections to potential energy (1) and virial (2) due to long-range effects of given interaction potentials (particu-
larly Lennard-Jones).

commsinbuf

real(kind=dp), dimension(:,:), allocatable, target, save variables::commsinbuf

Array used for inter-processor communications to receive particle data from other processors: first index is number
of values being received per buffer, second index is buffer number (0 for serial calculations, up to 4 for parallel
calculations with Lees-Edwards boundary conditions, 1 for all other parallel calculations).

commsoutbuf

real(kind=dp), dimension(:,:), allocatable, target, save variables::commsoutbuf

Array used for inter-processor communications to send particle data to other processors: first index is number
of values being sent per buffer, second index is buffer number (0 for serial calculations, up to 4 for parallel
calculations with Lees-Edwards boundary conditions, 1 for all other parallel calculations).

dbaro

real(kind=dp) variables::dbaro

Fourth barostat parameter (not currently used).

ddang

real(kind=dp), dimension (:), allocatable variables::ddang

Array with fourth angle interaction parameters given for each angle type specified in FIELD file.

ddbond

real(kind=dp), dimension (:), allocatable variables::ddbond

Array with fourth bond interaction parameters given for each bond type specified in FIELD file.

dddhd

real(kind=dp), dimension (:), allocatable variables::dddhd

Array with fourth dihedral interaction parameters given for each dihedral type specified in FIELD file.

614 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

de

real(kind=dp) variables::de

Total potential energy for system resulting from dihedral interactions.

delx

real(kind=dp) variables::delx

x-coordinate of bottom left back corner of current processor’s subdomain relative to bottom left back corner of
entire simulation box.

dely

real(kind=dp) variables::dely

y-coordinate of bottom left back corner of current processor’s subdomain relative to bottom left back corner of
entire simulation box.

delz

real(kind=dp) variables::delz

z-coordinate of bottom left back corner of current processor’s subdomain relative to bottom left back corner of
entire simulation box.

dhdinp1

integer, dimension (:,:), allocatable, save variables::dhdinp1

Array with first (relative) particle number in molecule included in current dihedral, used to set up dihedral tables
for calculations.

dhdinp2

integer, dimension (:,:), allocatable, save variables::dhdinp2

Array with second (relative) particle number in molecule included in current dihedral, used to set up dihedral
tables for calculations.

dhdinp3

integer, dimension (:,:), allocatable, save variables::dhdinp3

Array with third (relative) particle number in molecule included in current dihedral, used to set up dihedral tables
for calculations.

10.3. variables.F90 615

DL_MESO Technical Manual, Release 2.7

dhdinp4

integer, dimension (:,:), allocatable, save variables::dhdinp4

Array with fourth (relative) particle number in molecule included in current dihedral, used to set up dihedral tables
for calculations.

dhdinp5

integer, dimension (:,:), allocatable, save variables::dhdinp5

Array with identified dihedral type for current dihedral, used to set up dihedral tables for calculations.

dhdtbl

integer, dimension (:,:), allocatable, save variables::dhdtbl

Array listing available dihedral in processor’s subdomain for interaction calculations: first index is entry in dihe-
dral table, second index is either global particle numbers involved in dihedral (1, 2, 3, 4) or dihedral type (5).

dhdtype

integer, dimension (:), allocatable variables::dhdtype

Array with flags indicating the functional forms for each dihedral type specified in FIELD file: 1 = cosine (torsion),
2 = harmonic improper, 3 = harmonic cosine.

dimx

real(kind=dp) variables::dimx

Simulation box size in x-direction.

dimxcell

real(kind=dp) variables::dimxcell

Simulation box size in x-direction for unit cell defined by CONFIG file.

dimy

real(kind=dp) variables::dimy

Simulation box size in y-direction.

616 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

dimycell

real(kind=dp) variables::dimycell

Simulation box size in y-direction for unit cell defined by CONFIG file.

dimz

real(kind=dp) variables::dimz

Simulation box size in z-direction.

dimzcell

real(kind=dp) variables::dimzcell

Simulation box size in z-direction for unit cell defined by CONFIG file.

dvar

real(kind=dp) variables::dvar

Density multiplier used during simulation setup to increase numbers of particles per processor, in boundary halo
etc. for simulations with variable densities (e.g. when using many-body DPD).

ee

real(kind=dp) variables::ee

Total potential energy for system resulting from electrostatic interactions.

elecx

real(kind=dp) variables::elecx

Electric field acting on all charged particles (x-component).

elecy

real(kind=dp) variables::elecy

Electric field acting on all charged particles (y-component).

10.3. variables.F90 617

DL_MESO Technical Manual, Release 2.7

elecz

real(kind=dp) variables::elecz

Electric field acting on all charged particles (z-component).

engsic

real(kind=dp) variables::engsic

Correction made to system potential energy resulting from application of Ewald sum on charges to remove self-
interaction contributions.

engunit

integer variables::engunit

Energy units used for interaction parameters: 0 = absolute values given in FIELD file, 1 = values scaled by
temperature given in CONTROL.

etype

integer variables::etype

Flag indicating electrostatic (smearing) model and application specified in CONTROL file: 0 = no electrostatics,
1 = Ewald sum with point charges (no charge smearing), 2 = Ewald sum with linear charge smearing, 3 = Ewald
sum with exact Slater charge smearing, 4 = Ewald sum with approximate Slater charge smearing, 5 = Ewald
sum with Gaussian charge smearing, 6 = Ewald sum with Gaussian charge smearing and no real-space terms, 7
= Ewald sum with sinusoidal charge smearing, 8 = SPME with point charges (no charge smearing), 9 = SPME
with linear charge smearing, 10 = SPME with exact Slater charge smearing, 11 = SPME with approximate Slater
charge smearing, 12 = SPME with Gaussian charge smearing, 13 = SPME with Gaussian charge smearing and no
real-space terms, 14 = SPME with sinusoidal charge smearing.

ewprec

real(kind=dp) variables::ewprec

Relative precision (maximum relative error) in potential energy of Ewald sum or SPME calculations for electro-
statics: either calculated from Ewald parameters or specified in CONTROL file as maximum value for parameter-
isation.

exportname

character(len=12) variables::exportname

Name of file (default: export) with a pre-existing configuration used to restart simulation.

618 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

fcfx

real(kind=dp), dimension (:), pointer variables::fcfx

Array pointer for x-component of corrective electrostatic forces on frozen particles.

fcfy

real(kind=dp), dimension (:), pointer variables::fcfy

Array pointer for y-component of corrective electrostatic forces on frozen particles.

fcfz

real(kind=dp), dimension (:), pointer variables::fcfz

Array pointer for z-component of corrective electrostatic forces on frozen particles.

flc

real(kind=dp), dimension (statsize) variables::flc

Current fluctuations (variances) of system properties obtained from properties over all timesteps after equilibra-
tion: 1 = total energy per particle, 2 = total potential energy per particle, 3 = total electrostatic energy per particle,
4 = total bond energy per particle, 5 = total angle energy per particle, 6 = total dihedral energy per particle, 7 =
total virial per particle, 8 = total kinetic energy per particle, 9 = system pressure, 10 = system volume, 11 = surface
tension in z-direction, 12 = system temperature, 13 = partial temperature in x-direction, 14 = partial temperature
in y-direction, 15 = partial temperature in z-direction, 16-51 = pressure tensors separated out into conservative
(potential), dissipative, random and kinetic contributions for all tensor components.

fpx

real(kind=dp) variables::fpx

x-component of force acting on Langevin barostat piston.

fpy

real(kind=dp) variables::fpy

y-component of force acting on Langevin barostat piston.

fpz

real(kind=dp) variables::fpz

z-component of force acting on Langevin barostat piston.

10.3. variables.F90 619

DL_MESO Technical Manual, Release 2.7

frzwdens

real(kind=dp) variables::frzwdens

Density of particles in frozen bead walls as specified in FIELD file, used to calculate numbers of particles in walls.

frzwspe

integer variables::frzwspe

Particle species of frozen bead walls selected in FIELD file.

frzwxwid

real(kind=dp) variables::frzwxwid

Width of both frozen bead walls orthogonal to x-axis, added to system volume during setup.

frzwywid

real(kind=dp) variables::frzwywid

Width of both frozen bead walls orthogonal to y-axis, added to system volume during setup.

frzwzwid

real(kind=dp) variables::frzwzwid

Width of both frozen bead walls orthogonal to z-axis, added to system volume during setup.

fvx

real(kind=dp), dimension (:), pointer variables::fvx

Array pointer for x-component of variable forces acting on particles.

fvy

real(kind=dp), dimension (:), pointer variables::fvy

Array pointer for y-component of variable forces acting on particles.

620 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

fvz

real(kind=dp), dimension (:), pointer variables::fvz

Array pointer for z-component of variable forces acting on particles.

fxfyfz

real(kind=dp), dimension (:,:), allocatable, target variables::fxfyfz

Forces acting on particles: first index of array is coordinate, second index is local particle number.

fxx

real(kind=dp), dimension (:), pointer variables::fxx

Array pointer for x-component of forces acting on particles.

fyy

real(kind=dp), dimension (:), pointer variables::fyy

Array pointer for y-component of forces acting on particles.

fzz

real(kind=dp), dimension (:), pointer variables::fzz

Array pointer for z-component of forces acting on particles.

gamma

real(kind=dp), dimension (:), allocatable variables::gamma

DPD dissipative force parameters 𝛾 or Lowe-Andersen collision frequencies Γ for particle species pairs.

gammaelec

real(kind=dp) variables::gammaelec

Permittivity coefficient used for electrostatic interactions, Γ (related to Bjerrum length).

10.3. variables.F90 621

DL_MESO Technical Manual, Release 2.7

historyname

character(len=12) variables::historyname

Name of file (default: HISTORY) used to write simulation trajectories.

idnode

integer variables::idnode

Number (rank) to identify current processor, set between 0 and the total number of processors less one. (Always
equal to 0 for serial running.)

idx

integer variables::idx

Processor/subdomain x-coordinate with a value between 0 and the number of processors/subdomains in the x-
direction less one. (Value is always 0 when running in serial.)

idy

integer variables::idy

Processor/subdomain y-coordinate with a value between 0 and the number of processors/subdomains in the y-
direction less one. (Value is always 0 when running in serial.)

idz

integer variables::idz

Processor/subdomain z-coordinate with a value between 0 and the number of processors/subdomains in the z-
direction less one. (Value is always 0 when running in serial.)

imcon

integer variables::imcon

Boundary condition key in CONFIG file: 0 = no boundaries, 1 = cubic, 2 = orthorhombic cuboid.

iscorr

integer variables::iscorr

Frequency (number of timesteps) for writing system properties to CORREL file.

622 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

itype

integer variables::itype

Flag indicating thermostat and integration type specified in CONTROL file: 0 = DPD with MD Velocity Verlet,
1 = DPD with DPD Velocity Verlet, 2 = DPD with first-order Shardlow splitting, 3 = DPD with second-order
Shardlow splitting, 4 = Lowe-Andersen, 5 = Peters, 6 = Stoyanov-Groot.

ivrl

real(kind=dp), dimension (3) variables::ivrl

Instantaneous virial (separated into Cartesian directions) for application of barostats, excluding contributions from
thermostat.

keytrj

integer variables::keytrj

Particle data level for writing to HISTORY file: 0 = positions, 1 = positions and velocities, 2 = positions, velocities
and forces.

kmax1

integer variables::kmax1

Maximum number of periodic images used in x-direction for reciprocal space part of Ewald sum.

kmax2

integer variables::kmax2

Maximum number of periodic images used in y-direction for reciprocal space part of Ewald sum.

kmax3

integer variables::kmax3

Maximum number of periodic images used in z-direction for reciprocal space part of Ewald sum.

kres

integer variables::kres

Key for restarting simulation using export and/or REVIVE files: 0 = no restart, 1 = restart with configuration in
export file and statistical accumulators in REVIVE file, 2 = start new simulation using configuration in export
file, 3 = start new simulation using configuration in export file and rescale particle velocities to match system
temperature).

10.3. variables.F90 623

DL_MESO Technical Manual, Release 2.7

ktype

integer, dimension (:), allocatable variables::ktype

Array with types of interaction potentials for available pairs of particle species: 0 = Lennard-Jones, 1 = Weeks-
Chandler-Andersen, 2 = Groot-Warren ‘standard DPD’, 3 = Warren’s two-parameter many-body DPD

kxyz

integer, dimension (:,:), allocatable variables::kxyz

List of available reciprocal space vectors within range of maximum vector in terms of periodic image duplications:
first index is Cartesian coordinates for reciprocal vector (1, 2, 3) and flag for inclusion in SPME reciprocal space
calculations (4), second index counts the available vectors.

l_scr

logical variables::l_scr

Switch to divert simulation outputs from OUTPUT file to standard output (screen).

lab

integer, dimension (:), allocatable, save variables::lab

Global numbers (unique identifiers) for particles.

langle

logical variables::langle

Switch to apply bond angle interactions within molecules.

lblclst

integer, dimension (:,:), allocatable, save variables::lblclst

Array of global and local numbers for all particles included in molecules for current processor/subdomain, sorted
by global particle numbers and used as a look-up table to find local numbers for particles involved in bonds, angles
and dihedrals: first index gives entry number, second index gives global (1) and local (2) particle numbers.

lbond

logical variables::lbond

Switch to apply bonded interactions within molecules.

624 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

lcell

integer, dimension (:), allocatable variables::lcell

Array for link cells used for pairwise interactions and thermostats indicating numbers of link cells within proces-
sor’s subdomain (not including cells in boundary halo).

lcell_neighbour

integer, dimension (:), allocatable variables::lcell_neighbour

Array for link cells used for pairwise interactions and thermostats indicating numbers of neighbouring link cells
for cells within processor’s subdomain (set up in advance to find neighbouring cells quickly).

lcell_therm

integer, dimension (:), allocatable variables::lcell_therm

Switches for applying thermostats for particles in neighbouring interaction link cells (used to identify if neigh-
bouring cell traverses Lees-Edwards shearing boundary).

lcellew

integer, dimension (:), allocatable variables::lcellew

Array for link cells used for short-range electrostatic interactions indicating numbers of link cells within proces-
sor’s subdomain (not including cells in boundary halo).

lcellew_neighbour

integer, dimension (:), allocatable variables::lcellew_neighbour

Array for link cells used for short-range electrostatic interactions indicating numbers of neighbouring link cells
for cells within processor’s subdomain (set up in advance to find neighbouring cells quickly).

lcellmb

integer, dimension (:), allocatable variables::lcellmb

Array for link cells used for many-body DPD localised density calculations indicating numbers of link cells within
processor’s subdomain (not including cells in boundary halo).

lcellmb_neighbour

integer, dimension (:), allocatable variables::lcellmb_neighbour

Array for link cells used for many-body DPD localised density calculations indicating numbers of neighbouring
link cells for cells within processor’s subdomain (set up in advance to find neighbouring cells quickly).

10.3. variables.F90 625

DL_MESO Technical Manual, Release 2.7

lconfzero

logical variables::lconfzero

Switch to use bottom left back corner as origin (0,0,0) for CONFIG file, as used by default in previous versions of
DL_MESO_DPD, instead of box centre.

lcorr

logical variables::lcorr

Switch to write system properties to CORREL file.

lct

integer, dimension (:), allocatable variables::lct

Array giving first particle (local) number for each linked-cell list used for pairwise interactions and thermostats.

lctew

integer, dimension (:), allocatable variables::lctew

Array giving first particle (local) number for each linked-cell list used for short-range electrostatic interactions.

lctmb

integer, dimension (:), allocatable variables::lctmb

Array giving first particle (local) number for each linked-cell list used for many-body DPD localised density
calculations.

ldihed

logical variables::ldihed

Switch to apply bond dihedral interactions within molecules.

ldpol

logical variables::ldpol

Switch for applying charge dipole corrections for slab geometries.

626 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

ldyn

logical variables::ldyn

Switch for dynamic systems (i.e. if a flow field is included) to write additional information in OUTPUT and
CORREL files.

levcfg

integer variables::levcfg

Particle data level in CONFIG file: 0 = positions, 1 = positions and velocities, 2 = positions, velocities and forces.

lfrzn

integer, dimension (:), allocatable variables::lfrzn

Array with switch indicating if all particles of given species are designated as frozen: 0 = not frozen, 1 = frozen.

lfrzwall

logical variables::lfrzwall

Switch indicating use of at least one set of frozen bead walls.

lfrzx

logical variables::lfrzx

Switch indicating use of frozen bead walls orthogonal to x-axis.

lfrzy

logical variables::lfrzy

Switch indicating use of frozen bead walls orthogonal to y-axis.

lfrzz

logical variables::lfrzz

Switch indicating use of frozen bead walls orthogonal to z-axis.

10.3. variables.F90 627

DL_MESO Technical Manual, Release 2.7

lgbnd

logical variables::lgbnd

Switch to apply bond interactions using a replicated data approach (globally specified book-keeping tables and
gathering particle positions globally).

ligindex

logical variables::ligindex

Switch to ignore particle indices provided in CONFIG file and assign indices based on sequential order in file.

link

integer, dimension (:), allocatable variables::link

Array giving subsequent particle (local) number for each linked-cell list used for pairwise interactions and ther-
mostats, based on previous particle numbers (with 0 indicating end of list).

linkew

integer, dimension (:), allocatable variables::linkew

Array giving subsequent particle (local) number for each linked-cell list used for short-range electrostatic interac-
tions, based on previous particle numbers (with 0 indicating end of list).

linkmb

integer, dimension (:), allocatable variables::linkmb

Array giving subsequent particle (local) number for each linked-cell list used for many-body DPD localised density
calculations, based on previous particle numbers (with 0 indicating end of list).

lisoprs

logical variables::lisoprs

Switch for barostat to apply system pressure (semi-)isotropically.

lmb

logical variables::lmb

Switch for local density calculations used for many-body DPD interactions.

628 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

lmp

integer, dimension (:), allocatable, save variables::lmp

Numbers of processors currently owning particles.

lnewsmall

logical variables::lnewsmall

Switch to indicate a single electrostatic link cell in any direction (for small systems) and impose more stringent
conditions to find interacting particle pairs without duplications.

lnfold

logical variables::lnfold

Switch for duplicating system presented in FIELD and CONFIG files (‘nfold’ option).

lnmbsmall

logical variables::lnmbsmall

Switch to indicate a single many-body DPD link cell in any direction (for small systems) and impose more strin-
gent conditions to find interacting particle pairs without duplications.

lnsmall

logical variables::lnsmall

Switch to indicate a single interaction link cell in any direction (for small systems) and impose more stringent
conditions to find interacting particle pairs without duplications.

loc

integer, dimension (:), allocatable, save variables::loc

Local numbers for particles on processors currently owning them.

lompcrit

logical variables::lompcrit

Switch to use critical regions for OpenMP multithreading and reduce memory usage for assigning forces to parti-
cles.

10.3. variables.F90 629

DL_MESO Technical Manual, Release 2.7

lstrs

logical variables::lstrs

Switch to write any separated stress tensors to Stress_*.d files.

lstrss

logical, dimension (4) variables::lstrss

Switches to determine which separated stress tensors (conservative/potential, dissipative, random, kinetic) to write
to Stress_*.d files.

lsurf

real(kind=dp), dimension (:), allocatable variables::lsurf

Array with switch indicating if numbered pair of particle species contributes to surface energy (e.g. if one particle
species is frozen and contained in a frozen bead wall).

ltemp

logical variables::ltemp

Switch to rescale particle velocities during equilibration to match specified temperature.

ltm

integer, dimension (:), allocatable, save variables::ltm

Molecule types (numbers) for particles.

ltp

integer, dimension (:), allocatable, save variables::ltp

Species (numbers) for particles.

ltraj

logical variables::ltraj

Switch to write simulation trajectories to HISTORY file.

630 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

lvarfc

logical variables::lvarfc

Switch to determine if second set of forces needs to be allocated in memory (for use with DPD Velocity Verlet or
Stoyanov-Groot thermostat).

map

integer, dimension(6) variables::map

Array specifying neighbouring processors for current processor in negative x-direction (1), positive x-direction
(2), negative y-direction (3), positive y-direction (4), negative z-direction (5) and positive z-direction (6). (If only
one processor in a particular direction, the corresponding array indices points to the current processor: this is the
case for all directions when running in serial.)

maxbfbd

integer variables::maxbfbd

Maximum number of particles found in each processor’s boundary halo: initially estimated from assumed constant
particle density and size of boundary halo, readjusted during equilibration and for many-body DPD calculations,
used to define sizes of arrays for inter-processor communications (primarily export of data to boundary halos).

maxbuf

integer variables::maxbuf

Maximum number of values each processor will send or receive during inter-processor communications: calcu-
lated from maximum number of particles in boundary halo or maximum reciprocal space vectors (whichever is
larger).

maxdim

integer variables::maxdim

Maximum number of particles each processor can hold: initially estimated from number of particles in system and
assumption of equal division among processors, used to define sizes of arrays for particle positions, velocities and
forces.

maxpair

integer variables::maxpair

Maximum number of possible particle pairs: estimated from number of particles in system, maximum thermostat
cutoff distance and thermostat parameters, used to define sizes of arrays holding lists of particle pairs for non-DPD
thermostats (e.g. Lowe-Andersen).

10.3. variables.F90 631

DL_MESO Technical Manual, Release 2.7

mlstrtspe

integer, dimension (:,:), allocatable, save variables::mlstrtspe

Array with species of each particle for each molecule type as given in FIELD file: first index is specified molecule
type, second index is particle number in molecule (up to maximum number of particles per molecule).

mlstrtxxx

real(kind=dp), dimension (:,:), allocatable, save variables::mlstrtxxx

x-coordinate of position for each particle in a given type of molecule (as specified in FIELD file) relative to the
molecule centre of mass: first index is molecule type, second index is (relative) particle number in molecule.

mlstrtyyy

real(kind=dp), dimension (:,:), allocatable, save variables::mlstrtyyy

y-coordinate of position for each particle in a given type of molecule (as specified in FIELD file) relative to the
molecule centre of mass: first index is molecule type, second index is (relative) particle number in molecule.

mlstrtzzz

real(kind=dp), dimension (:,:), allocatable, save variables::mlstrtzzz

z-coordinate of position for each particle in a given type of molecule (as specified in FIELD file) relative to the
molecule centre of mass: first index is molecule type, second index is (relative) particle number in molecule.

mlszx

real(kind=dp), dimension (:), allocatable, save variables::mlszx

Maximum absolute x-coordinate for each molecule type as given in FIELD file, used to insert molecules into
system when starting simulation without initial or restart configurations.

mlszy

real(kind=dp), dimension (:), allocatable, save variables::mlszy

Maximum absolute y-coordinate for each molecule type as given in FIELD file, used to insert molecules into
system when starting simulation without initial or restart configurations.

mlszz

real(kind=dp), dimension (:), allocatable, save variables::mlszz

Maximum absolute z-coordinate for each molecule type as given in FIELD file, used to insert molecules into
system when starting simulation without initial or restart configurations.

632 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

moliso

logical, dimension (:), allocatable variables::moliso

Switches indicating if isomers for each molecule type are permitted when setting up simulations from scratch
(without initial or restart configurations).

molnam

character(len=8), dimension (:), allocatable, save variables::molnam

Molecule names (up to 8 characters) for particles.

molstart

integer, dimension (:), allocatable, save variables::molstart

Array with first global particle numbers for each molecule in system, used to add molecules to system when
starting simulation without initial or restart configurations and to set up bond, angle and dihedral tables.

mxangles

integer variables::mxangles

Maximum number of angles in a molecule based on FIELD file contents: used to define sizes of arrays used to
create angle tables during simulation setup.

mxbonds

integer variables::mxbonds

Maximum number of bonds in a molecule based on FIELD file contents: used to define sizes of arrays used to
create bond tables during simulation setup.

mxdiheds

integer variables::mxdiheds

Maximum number of dihedrals in a molecule based on FIELD file contents: used to define sizes of arrays used to
create dihedral tables during simulation setup.

mxmolsize

integer variables::mxmolsize

Maximum number of particles in a molecule based on FIELD file contents: used to define sizes of arrays used to
assign molecular data during simulation setup.

10.3. variables.F90 633

DL_MESO Technical Manual, Release 2.7

mxpcell

integer variables::mxpcell

Maximum number of particles per interaction link cell, used to determine sizes of arrays for lists of interacting
particle pairs.

mxprm

integer variables::mxprm

Largest number of parameters needed to define the interaction types specified in FIELD file.

mxspl

integer variables::mxspl

Number of points in each direction to interpolate charges onto grid using B-splines for Smooth Particle Mesh
Ewald (SPME) calculation.

mxsprm

integer variables::mxsprm

Largest number of parameters needed to define the surfaceinteraction types specified in FIELD file.

nammol

character(len=8), dimension (:), allocatable, save variables::nammol

Names (up to 8 characters) for types of molecules as defined in FIELD.

namspe

character(len=8), dimension (:), allocatable, save variables::namspe

Names (up to 8 characters) for particle species as defined in FIELD.

nangdef

integer variables::nangdef

Total number of defined types of angle based on their functional forms and parameters, as given in FIELD file.

634 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nangle

integer, dimension (:), allocatable, save variables::nangle

Total numbers of angle for each molecule type as defined in FIELD file

nangles

integer variables::nangles

Total number of entries in angle book-keeping table (angtbl) for current processor/subdomain.

nav

integer variables::nav

Current number of timesteps after equilibration, used to weight statistical properties when calculating time-
averaged values and fluctuations.

nbdmol

integer, dimension (:), allocatable variables::nbdmol

Number of particles per molecule for each molecule type.

nbeads

integer variables::nbeads

Total number of particles in subdomain of current processor, excluding those in boundary halo.

nbond

integer, dimension (:), allocatable, save variables::nbond

Total numbers of bonds for each molecule type as defined in FIELD file.

nbonddef

integer variables::nbonddef

Total number of defined types of bond based on their functional forms and parameters, as given in FIELD file.

10.3. variables.F90 635

DL_MESO Technical Manual, Release 2.7

nbonds

integer variables::nbonds

Total number of entries in bond book-keeping table (bndtbl) for current processor/subdomain.

ndhddef

integer variables::ndhddef

Total number of defined types of dihedral based on their functional forms and parameters, as given in FIELD file.

ndihed

integer, dimension (:), allocatable, save variables::ndihed

Total numbers of dihedrals for each molecule type as defined in FIELD file.

ndiheds

integer variables::ndiheds

Total number of entries in dihedral book-keeping table (dhdtbl) for current processor/subdomain.

ndump

integer variables::ndump

Frequency for creating simulation restart data in export and REVIVE files (default: 1000).

nfbeads

integer variables::nfbeads

Total number of frozen particles in subdomain of current processor, excluding those in boundary halo.

nfold

integer variables::nfold

Total number of duplications of system given in CONFIG file when using ‘nfold’ option.

636 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nfoldx

integer variables::nfoldx

Integer number of duplications in x-direction for system given in CONFIG file when using nfold option.

nfoldy

integer variables::nfoldy

Integer number of duplications in y-direction for system given in CONFIG file when using ‘nfold’ option.

nfoldz

integer variables::nfoldz

Integer number of duplications in z-direction for system given in CONFIG file when using ‘nfold’ option.

nfsyst

integer variables::nfsyst

Total number of frozen particles in simulation (can include particles in molecules if these specify particle species
that are frozen).

nfsystcell

integer variables::nfsystcell

Total number of frozen particles in unit cell defined by FIELD and CONFIG files.

nfwsyst

integer variables::nfwsyst

Total number of particles in frozen bead walls, calculated from wall selections in CONTROL file, system volume
(in CONTROL or CONFIG), wall density and thickness in FIELD.

nlewx

integer variables::nlewx

Total number of link cells in x-direction used for short-range electrostatic interactions in current subdomain (ex-
cluding boundary halo).

10.3. variables.F90 637

DL_MESO Technical Manual, Release 2.7

nlewx2

integer variables::nlewx2

Total number of link cells in x-direction used for short-range electrostatic interactions in current subdomain and
boundary halo.

nlewy

integer variables::nlewy

Total number of link cells in y-direction used for short-range electrostatic interactions in current subdomain (ex-
cluding boundary halo).

nlewy2

integer variables::nlewy2

Total number of link cells in y-direction used for short-range electrostatic interactions in current subdomain and
boundary halo.

nlewz

integer variables::nlewz

Total number of link cells in z-direction used for short-range electrostatic interactions in current subdomain (ex-
cluding boundary halo).

nlewz2

integer variables::nlewz2

Total number of link cells in z-direction used for short-range electrostatic interactions in current subdomain and
boundary halo.

nlist

integer variables::nlist

Total number of entries in global/local particle number look-up array.

nlistew

integer variables::nlistew

Total number of reciprocal space vectors to work through when calculating Ewald sum (size of reciprocal space
vector lists).

638 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nlmbx

integer variables::nlmbx

Total number of link cells in x-direction used for many-body DPD localised density calculations in current subdo-
main (excluding boundary halo).

nlmbx2

integer variables::nlmbx2

Total number of link cells in x-direction used for many-body DPD localised density calculations in current subdo-
main and boundary halo.

nlmby

integer variables::nlmby

Total number of link cells in y-direction used for many-body DPD localised density calculations in current subdo-
main (excluding boundary halo).

nlmby2

integer variables::nlmby2

Total number of link cells in y-direction used for many-body DPD localised density calculations in current subdo-
main and boundary halo.

nlmbz

integer variables::nlmbz

Total number of link cells in z-direction used for many-body DPD localised density calculations in current subdo-
main (excluding boundary halo).

nlmbz2

integer variables::nlmbz2

Total number of link cells in z-direction used for many-body DPD localised density calculations in current subdo-
main and boundary halo.

nlx

integer variables::nlx

Total number of link cells in x-direction used for pairwise interactions and thermostats in current subdomain
(excluding boundary halo).

10.3. variables.F90 639

DL_MESO Technical Manual, Release 2.7

nlx2

integer variables::nlx2

Total number of link cells in x-direction used for pairwise interactions and thermostats in current subdomain and
boundary halo.

nly

integer variables::nly

Total number of link cells in y-direction used for pairwise interactions and thermostats in current subdomain
(excluding boundary halo).

nly2

integer variables::nly2

Total number of link cells in y-direction used for pairwise interactions and thermostats in current subdomain and
boundary halo.

nlz

integer variables::nlz

Total number of link cells in z-direction used for pairwise interactions and thermostats in current subdomain
(excluding boundary halo).

nlz2

integer variables::nlz2

Total number of link cells in z-direction used for pairwise interactions and thermostats in current subdomain and
boundary halo.

nmol

integer, dimension (:), allocatable variables::nmol

Total number of molecules in system for each molecule type.

nmoldef

integer variables::nmoldef

Total number of defined molecule types specified in FIELD file.

640 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nodes

integer variables::nodes

Total number of available processors for current calculation. (Always equal to 1 for serial running.)

npair

integer variables::npair

Number of particle pairs in list (for current processor/subdomain) for alternative pairwise thermostats.

npot

integer variables::npot

Total number of possible pairs of particle species and pairwise interactions, calculated from number of particle
species.

npx

integer variables::npx

Total number of processors and subdomains (equal divisions of simulation box) in x-direction. (Value is always 1
when running in serial.)

npxfwx

integer variables::npxfwx

Number of frozen particles in x-direction for frozen wall orthogonal to x-axis.

npxfwy

integer variables::npxfwy

Number of frozen particles in y-direction for frozen wall orthogonal to x-axis.

npxfwz

integer variables::npxfwz

Number of frozen particles in z-direction for frozen wall orthogonal to x-axis.

10.3. variables.F90 641

DL_MESO Technical Manual, Release 2.7

npy

integer variables::npy

Total number of processors and subdomains (equal divisions of simulation box) in y-direction. (Value is always 1
when running in serial.)

npyfwx

integer variables::npyfwx

Number of frozen particles in x-direction for frozen wall orthogonal to y-axis.

npyfwy

integer variables::npyfwy

Number of frozen particles in y-direction for frozen wall orthogonal to y-axis.

npyfwz

integer variables::npyfwz

Number of frozen particles in z-direction for frozen wall orthogonal to y-axis.

npz

integer variables::npz

Total number of processors and subdomains (equal divisions of simulation box) in z-direction. (Value is always 1
when running in serial.)

npzfwx

integer variables::npzfwx

Number of frozen particles in x-direction for frozen wall orthogonal to z-axis.

npzfwy

integer variables::npzfwy

Number of frozen particles in y-direction for frozen wall orthogonal to z-axis.

642 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

npzfwz

integer variables::npzfwz

Number of frozen particles in z-direction for frozen wall orthogonal to z-axis.

nrun

integer variables::nrun

Total number of timesteps requested in CONTROL file for DPD simulation.

nsbpo

integer variables::nsbpo

Frequency (number of timesteps) for printing simulation outputs to OUTPUT file.

nsbts

integer variables::nsbts

Frequency (number of timesteps) for rescaling particle velocities to match required temperature during equilibra-
tion.

nseql

integer variables::nseql

Number of timesteps for system equilibration (including temperature rescaling, excluding statistical accumulation
of properties).

nshrs

integer variables::nshrs

Starting timestep for applying Lees-Edwards shearing boundary (change in particle velocity, displacement of
particles crossing boundary).

nspe

integer variables::nspe

Total number of particle species as specified in FIELD file.

10.3. variables.F90 643

DL_MESO Technical Manual, Release 2.7

nspec

integer, dimension (:), allocatable variables::nspec

Total numbers of particles for each species not included in any molecules.

nspecmol

integer, dimension (:), allocatable variables::nspecmol

Total numbers of particles for each species included in all molecules.

nstep

integer variables::nstep

Number of current simulation timestep (should be no larger than total number of timesteps for simulation to
continue).

nstk

integer variables::nstk

Number of timesteps to store system properties for calculating rolling averages.

nstrs

integer variables::nstrs

Frequency (number of timesteps) for writing separated stress tensors to Stress_*.d files.

nsyst

integer variables::nsyst

Total number of particles in simulation, including frozen particles and those contained in defined molecules.

nsystcell

integer variables::nsystcell

Total number of particles in unit cell defined by FIELD and CONFIG files.

644 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

ntraj

integer variables::ntraj

Frequency (number of timesteps) for writing simulation trajectories to HISTORY file.

numang

integer variables::numang

Total number of angles for all molecules in simulation.

numangcell

integer variables::numangcell

Total number of angles for all molecules in unit cell defined by FIELD file.

numbond

integer variables::numbond

Total number of bonds for all molecules in simulation.

numbondcell

integer variables::numbondcell

Total number of bonds for all molecules in unit cell defined by FIELD file.

numdhd

integer variables::numdhd

Total number of dihedrals for all molecules in simulation.

numdhdcell

integer variables::numdhdcell

Total number of dihedrals for all molecules in unit cell defined by FIELD file.

10.3. variables.F90 645

DL_MESO Technical Manual, Release 2.7

nummol

integer variables::nummol

Total number of molecules (of all defined types) in simulation.

nummolcell

integer variables::nummolcell

Total number of molecules (of all defined types) in unit cell defined by FIELD file.

nusyst

integer variables::nusyst

Total number of particles in simulation not contained in defined molecules (can include frozen particles).

nusystcell

integer variables::nusystcell

Total number of particles not contained in defined molecules in unit cell defined by FIELD and CONFIG files.

outsel

integer variables::outsel

System property key for printing to OUTPUT file, selecting which/how many properties are written.

pe

real(kind=dp) variables::pe

Total potential energy for system resulting from all interactions (except thermostat).

plbound

integer, dimension (:), allocatable, save variables::plbound

Boundary thermostatting key of selected pairs for alternative pairwise thermostats, used to determine if particle
pair crosses Lees-Edwards shearing boundary and requires adjustment of relative velocity.

646 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

pldxyz

real(kind=dp), dimension (:), allocatable, save variables::pldxyz

Vectors between selected particle pairs for alternative pairwise thermostat (i.e. Lowe-Andersen, Peters, Stoyanov-
Groot), given as triples with x-, y- and z-components contiguous in memory.

plintij

integer, dimension (:), allocatable, save variables::plintij

Particle interaction type (pair of species) for selected pairs used for Peters thermostat.

plparti

integer, dimension (:), allocatable, save variables::plparti

Local particle indices for first particles in selected pairs for alternative pairwise thermostats.

plpartj

integer, dimension (:), allocatable, save variables::plpartj

Local particle indices for second particles in selected pairs for alternative pairwise thermostats.

plproci

integer, dimension (:), allocatable, save variables::plproci

Processor/subdomain number for first particles in selected pairs for alternative pairwise thermostats.

plprocj

integer, dimension (:), allocatable, save variables::plprocj

Processor/subdomain number for second particles in selected pairs for alternative pairwise thermostats.

potcfz

real(kind=dp) variables::potcfz

Potential energy contribution used to corrective overall potential energy due to corrective electrostatic forces on
frozen particles for reciprocal-space Ewald sum calculations.

10.3. variables.F90 647

DL_MESO Technical Manual, Release 2.7

prszero

real(kind=dp) variables::prszero

Target system or normal pressure for barostat specified in CONTROL file.

psmass

real(kind=dp) variables::psmass

Mass of Langevin barostat piston, 𝑊𝑔 .

qchg

real(kind=dp) variables::qchg

Net charge on system (used to calculate corrections for Ewald sum).

qfixv

real(kind=dp) variables::qfixv

Correction made to system potential energy resulting from application of Ewald sum for systems with net overall
charge.

ralphaew

real(kind=dp) variables::ralphaew

Reciprocal of real-space convergence coefficient for electrostatic interactions with Ewald sums.

rav

real(kind=dp), dimension (stksize) variables::rav

Current rolling average values of system properties obtained from properties in statistical stacks: 1 = total energy
per particle, 2 = total potential energy per particle, 3 = total electrostatic energy per particle, 4 = total bond energy
per particle, 5 = total angle energy per particle, 6 = total dihedral energy per particle, 7 = total virial per particle,
8 = total kinetic energy per particle, 9 = system pressure, 10 = system volume, 11 = surface tension in z-direction,
12 = system temperature, 13 = partial temperature in x-direction, 14 = partial temperature in y-direction, 15 =
partial temperature in z-direction.

rct2

real(kind=dp) variables::rct2

Square of maximum cutoff distance for pairwise interactions (excluding many-body DPD and Ewald real-space).

648 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

rcut

real(kind=dp) variables::rcut

Maximum cutoff distance for pairwise interactions (other than many-body DPD localised density calculations and
Ewald sum real-space cutoff), either specified in CONTROL or derived from interaction parameters in FIELD.

rel2

real(kind=dp) variables::rel2

Square of cutoff distance for short-range electrostatic interactions used for real-space Ewald sum contributions.

relec

real(kind=dp) variables::relec

Cutoff distance for short-range electrostatic interactions used for real-space Ewald sum contributions, 𝑟𝑒.

rhalo

real(kind=dp) variables::rhalo

Size of boundary halo specified in CONTROL file.

rhalox1

real(kind=dp) variables::rhalox1

Size of boundary halo in negative x-direction, derived from value specified in CONTROL.

rhalox2

real(kind=dp) variables::rhalox2

Size of boundary halo in positive x-direction, derived from value specified in CONTROL.

rhaloy1

real(kind=dp) variables::rhaloy1

Size of boundary halo in negative y-direction, derived from value specified in CONTROL.

10.3. variables.F90 649

DL_MESO Technical Manual, Release 2.7

rhaloy2

real(kind=dp) variables::rhaloy2

Size of boundary halo in positive y-direction, derived from value specified in CONTROL.

rhaloz1

real(kind=dp) variables::rhaloz1

Size of boundary halo in negative z-direction, derived from value specified in CONTROL.

rhaloz2

real(kind=dp) variables::rhaloz2

Size of boundary halo in positive z-direction, derived from value specified in CONTROL.

rhomb

real(kind=dp), dimension (:, :), allocatable variables::rhomb

Localised densities for many-body DPD interactions: first index is local particle number, second index is particle
species.

rkxyz

real(kind=dp), dimension (:,:), allocatable variables::rkxyz

List of reciprocal space vectors within range of the maximum vector along with associated parameters: first index
is Cartesian coordinates for reciprocal vector (1, 2, 3) or multipliers for reciprocal space calculations (4, 5), second
index counts the available vectors.

rmbct2

real(kind=dp) variables::rmbct2

Square of cutoff distance for localised density calculations used for many-body DPD interactions.

rmbcut

real(kind=dp) variables::rmbcut

Cutoff distance for localised density calculations used for many-body DPD interactions, 𝑟𝑑.

650 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

rndseed

integer variables::rndseed

Seed for setup random number generators.

rpsmass

real(kind=dp) variables::rpsmass

Reciprocal of mass of Langevin barostat piston

rrct2

real(kind=dp) variables::rrct2

Square of the reciprocal of maximum cutoff distance for pairwise interactions (excluding many-body DPD and
Ewald real-space).

rrmbcut

real(kind=dp) variables::rrmbcut

Reciprocal of cutoff distance for localised density calculations used for many-body DPD interactions.

rrtcut

real(kind=dp) variables::rrtcut

Reicprocal of cutoff distance for pairwise thermostat.

rtct2

real(kind=dp) variables::rtct2

Square of cutoff distance for pairwise thermostat

rtcut

real(kind=dp) variables::rtcut

Cutoff distance for pairwise thermostat (DPD or alternatives), 𝑟𝑐.

10.3. variables.F90 651

DL_MESO Technical Manual, Release 2.7

rtstep

real(kind=dp) variables::rtstep

Reciprocal of timestep size, 1
Δ𝑡 (used for simulation setup and non-DPD thermostat calculations).

se

real(kind=dp) variables::se

Total potential energy for system resulting from surface interactions.

shrdx

real(kind=dp) variables::shrdx

x-component of boundary displacement at Lees-Edwards boundary along right/top/front box surface (negative
value along left/bottom/back surface).

shrdy

real(kind=dp) variables::shrdy

y-component of boundary displacement at Lees-Edwards boundary along right/top/front box surface (negative
value along left/bottom/back surface).

shrdz

real(kind=dp) variables::shrdz

z-component of boundary displacement at Lees-Edwards boundary along right/top/front box surface (negative
value along left/bottom/back surface).

shrvx

real(kind=dp) variables::shrvx

x-component of shearing velocity at Lees-Edwards boundary on right/top/front box surface (negative value at
left/bottom/back surface).

shrvy

real(kind=dp) variables::shrvy

y-component of shearing velocity at Lees-Edwards boundary on right/top/front box surface (negative value at
left/bottom/back surface).

652 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

shrvz

real(kind=dp) variables::shrvz

z-component of shearing velocity at Lees-Edwards boundary on right/top/front box surface (negative value at
left/bottom/back surface).

sidex

real(kind=dp) variables::sidex

Size of current processor’s subdomain in x-direction.

sidey

real(kind=dp) variables::sidey

Size of current processor’s subdomain in y-direction.

sidez

real(kind=dp) variables::sidez

Size of current processor’s subdomain in z-direction.

sigma

real(kind=dp), dimension (:), allocatable variables::sigma

DPD random force parameters 𝜎√
Δ𝑡

or Lowe-Andersen particle pair probabilities Γ∆𝑡 for particle species pairs.

sigmalang

real(kind=dp) variables::sigmalang

Langevin barostat random parameter, 𝜎𝑝.

srfktype

integer, dimension (:), allocatable variables::srfktype

Array with types of surface interaction potentials for particle species: 0 = Groot-Warren ‘standard DPD’, 1 =
Weeks-Chandler-Andersen.

10.3. variables.F90 653

DL_MESO Technical Manual, Release 2.7

srflgc

logical, dimension(6) variables::srflgc

Flags to determine if surfaces exist in current processor/subdomain (indices: 1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z,
6 = +z).

srfpos

real(kind=dp) variables::srfpos

Distance between the specified boundaries of the simulation box and location of reflecting wall surfaces, specified
in CONTROL file (default value of zero).

srftype

integer variables::srftype

Flag indicating surface type specified in CONTROL file: 0 = no surfaces, 1 = Lees-Edwards periodic shearing
boundaries, 2 = hard walls with specular reflections, 3 = hard walls with bounce-back reflections.

srfx

integer variables::srfx

Flag indicating surfaces orthogonal to x-axis of simulation box: 0 = no surface, 1 = surface.

srfxps1

real(kind=dp) variables::srfxps1

x-coordinate of reflecting wall on left surface of box (orthogonal to negative x-axis) for current proces-
sor/subdomain.

srfxps2

real(kind=dp) variables::srfxps2

x-coordinate of reflecting wall on right surface of box (orthogonal to positive x-axis) for current proces-
sor/subdomain.

srfy

integer variables::srfy

Flag indicating surfaces orthogonal to y-axis of simulation box: 0 = no surface, 1 = surface.

654 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

srfyps1

real(kind=dp) variables::srfyps1

y-coordinate of reflecting wall on bottom surface of box (orthogonal to negative y-axis) for current proces-
sor/subdomain.

srfyps2

real(kind=dp) variables::srfyps2

y-coordinate of reflecting wall on top surface of box (orthogonal to positive y-axis) for current proces-
sor/subdomain.

srfz

integer variables::srfz

Flag indicating surfaces orthogonal to z-axis of simulation box: 0 = no surface, 1 = surface.

srfzct2

real(kind=dp) variables::srfzct2

Square of cutoff distance for interactions between particles and hard surfaces.

srfzcut

real(kind=dp) variables::srfzcut

Cutoff distance for interactions between particles and hard surfaces, 𝑧𝑐.

srfzps1

real(kind=dp) variables::srfzps1

z-coordinate of reflecting wall on back surface of box (orthogonal to negative z-axis) for current proces-
sor/subdomain.

srfzps2

real(kind=dp) variables::srfzps2

z-coordinate of reflecting wall on front surface of box (orthogonal to positive z-axis) for current proces-
sor/subdomain.

10.3. variables.F90 655

DL_MESO Technical Manual, Release 2.7

sstrs

integer variables::sstrs

Starting timestep to write separated stress tensors to Stress_*.d files.

stkae

real(kind=dp), dimension (:), allocatable variables::stkae

Array of collected angle energy per particle values (size given in CONTROL file), used as a statistical stack to
calculate rolling average value.

stkbe

real(kind=dp), dimension (:), allocatable variables::stkbe

Array of collected bond energy per particle values (size given in CONTROL file), used as a statistical stack to
calculate rolling average value.

stkde

real(kind=dp), dimension (:), allocatable variables::stkde

Array of collected dihedral energy per particle values (size given in CONTROL file), used as a statistical stack to
calculate rolling average value.

stkee

real(kind=dp), dimension (:), allocatable variables::stkee

Array of collected electrostatic energy per particle values (size given in CONTROL file), used as a statistical stack
to calculate rolling average value.

stkpe

real(kind=dp), dimension (:), allocatable variables::stkpe

Array of collected potential energy per particle values (size given in CONTROL file), used as a statistical stack to
calculate rolling average value.

stkse

real(kind=dp), dimension (:), allocatable variables::stkse

Array of collected surface energy per particle values (size given in CONTROL file), used as a statistical stack to
calculate rolling average value.

656 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

stktkex

real(kind=dp), dimension (:), allocatable variables::stktkex

Array of collected x-component kinetic energy per particle values (size given in CONTROL file), used as a statis-
tical stack to calculate rolling average value.

stktkey

real(kind=dp), dimension (:), allocatable variables::stktkey

Array of collected y-component kinetic energy per particle values (size given in CONTROL file), used as a statis-
tical stack to calculate rolling average value.

stktkez

real(kind=dp), dimension (:), allocatable variables::stktkez

Array of collected z-component kinetic energy per particle values (size given in CONTROL file), used as a statis-
tical stack to calculate rolling average value.

stkvir

real(kind=dp), dimension (:), allocatable variables::stkvir

Array of collected virial per particle values (size given in CONTROL file), used as a statistical stack to calculate
rolling average value.

stkvlm

real(kind=dp), dimension (:), allocatable variables::stkvlm

Array of collected system volume values (size given in CONTROL file), used as a statistical stack to calculate
rolling average value.

stkzts

real(kind=dp), dimension (:), allocatable variables::stkzts

Array of collected surface tension in z-direction values (size given in CONTROL file), used as a statistical stack
to calculate rolling average value.

stpae

real(kind=dp) variables::stpae

Total potential energy per particle resulting from all angle interactions at current timestep.

10.3. variables.F90 657

DL_MESO Technical Manual, Release 2.7

stpang

real(kind=dp) variables::stpang

Mean angle between pairs of bonds in molecules at current timestep.

stpbdl

real(kind=dp) variables::stpbdl

Mean length of bonds between pairs of particles in molecules at current timestep.

stpbdmn

real(kind=dp) variables::stpbdmn

Minimum length of bonds between pairs of particles in molecules at current timestep.

stpbdmx

real(kind=dp) variables::stpbdmx

Maximum length of bonds between pairs of particles in molecules at current timestep.

stpbe

real(kind=dp) variables::stpbe

Total potential energy per particle resulting from all bond interactions at current timestep.

stpde

real(kind=dp) variables::stpde

Total potential energy per particle resulting from all dihedral interactions at current timestep.

stpdhd

real(kind=dp) variables::stpdhd

Mean dihedral between pairs of bond planes in molecules at current timestep.

658 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

stpee

real(kind=dp) variables::stpee

Total potential energy per particle resulting from all electrostatic interactions at current timestep.

stppe

real(kind=dp) variables::stppe

Total potential energy per particle resulting from all interactions (excluding thermostat) at current timestep.

stpprs

real(kind=dp) variables::stpprs

Pressure of system at current timestep.

stpse

real(kind=dp) variables::stpse

Total potential energy per particle resulting from all surface (wall) interactions at current timestep.

stpte

real(kind=dp) variables::stpte

Total energy per particle resulting from all interactions (excluding thermostat) and motion at current timestep.

stptke

real(kind=dp) variables::stptke

Total kinetic energy per particle resulting from particle motion at current timestep.

stptpx

real(kind=dp) variables::stptpx

Partial kinetic temperature of system in x-direction at current timestep.

10.3. variables.F90 659

DL_MESO Technical Manual, Release 2.7

stptpy

real(kind=dp) variables::stptpy

Partial kinetic temperature of system in y-direction at current timestep.

stptpz

real(kind=dp) variables::stptpz

Partial kinetic temperature of system in z-direction at current timestep.

stpttp

real(kind=dp) variables::stpttp

Kinetic temperature of system at current timestep.

stpvir

real(kind=dp) variables::stpvir

Total virial per particle resulting from all interactions (including thermostat) at current timestep.

stpvlm

real(kind=dp) variables::stpvlm

Volume of system at current timestep.

stpzts

real(kind=dp) variables::stpzts

Surface tension of system in z-direction at current timestep.

straj

integer variables::straj

Starting timestep to write simulation trajectories to HISTORY file.

660 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

strcfz

real(kind=dp), dimension (36) variables::strcfz

Stress tensor contributions used to correct overall stress tensors (separated into potential, dissipative, random and
kinetic terms) due to corrective electrostatic forces on frozen particles for reciprocal-space Ewald sum calculations.

stress

real(kind=dp), dimension (36) variables::stress

Total stress tensor for system resulting from particle interactions and motion, separated out into conservative
(potential), dissipative, random and kinetic terms for all tensor components.

tclose

real(kind=dp) variables::tclose

Time allocated in seconds to close down DL_MESO_DPD calculation early, including writing and closing output
and restart files.

temp

real(kind=dp) variables::temp

Specified system temperature in DPD units, 𝑘𝐵𝑇 .

text

character(len=80) variables::text

Contents of first line of CONTROL file used to name DPD simulation.

timfrc

real(kind=dp) variables::timfrc

Accumulator for time (in seconds) taken to calculate particle forces during simulation.

timjob

real(kind=dp) variables::timjob

Maximum available walltime in seconds for DPD calculation, including any time needed to write restart files when
closing down calculation early.

10.3. variables.F90 661

DL_MESO Technical Manual, Release 2.7

timstp

real(kind=dp) variables::timstp

Accumulator for time (in seconds) taken to carry out all calculations per timestep during simulation.

tke

real(kind=dp), dimension (3) variables::tke

Total kinetic energy for system resulting from particle motion, separated out into (1) x-, (2) y- and (3) z-
components.

tnum

integer variables::tnum

Total number of available OpenMP threads for calculation multithreading. (Always equal to 1 when using version
without OpenMP.)

tnumuse

integer variables::tnumuse

Total number of OpenMP threads currently being used for calculation multithreading: this number can be set to
less than the total number of available threads.

tstep

real(kind=dp) variables::tstep

Specified timestep size in DPD units, ∆𝑡.

upx

real(kind=dp) variables::upx

x-component of Langevin barostat piston velocity or Berendsen volume scaling factor for current timestep.

upy

real(kind=dp) variables::upy

y-component of Langevin barostat piston velocity or Berendsen volume scaling factor for current timestep.

662 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

upz

real(kind=dp) variables::upz

z-component of Langevin barostat piston velocity or Berendsen volume scaling factor for current timestep.

up1x

real(kind=dp) variables::up1x

x-component of Langevin barostat piston velocity at previous timestep.

up1y

real(kind=dp) variables::up1y

y-component of Langevin barostat piston velocity at previous timestep.

up1z

real(kind=dp) variables::up1z

z-component of Langevin barostat piston velocity at previous timestep.

vfxfyfz

real(kind=dp), dimension (:,:), allocatable, target variables::vfxfyfz

Variable forces acting on particles separated from others - dissipative forces (recalculated) for DPD Velocity Verlet
or temperature-dependent forces calculated for Stoyanov-Groot thermostat: first index of array is coordinate,
second index is local particle number.

vgapx

real(kind=dp) variables::vgapx

Vacuum gap (additional system volume) in x-direction for Ewald reciprocal space calculations of slab geometries.

vgapy

real(kind=dp) variables::vgapy

Vacuum gap (additional system volume) in y-direction for Ewald reciprocal space calculations of slab geometries.

10.3. variables.F90 663

DL_MESO Technical Manual, Release 2.7

vgapz

real(kind=dp) variables::vgapz

Vacuum gap (additional system volume) in z-direction for Ewald reciprocal space calculations of slab geometries.

vir

real(kind=dp) variables::vir

Total virial for system resulting from all interactions (including thermostat).

volm

real(kind=dp) variables::volm

Total volume of simulation box, specified in either CONTROL or from CONFIG file.

vrlcfz

real(kind=dp), dimension (3) variables::vrlcfz

Virial contributions (separated into Cartesian directions) used to correct overall virial due to corrective electrostatic
forces on frozen particles for reciprocal-space Ewald sum calculations.

vvsrf

real(kind=dp), dimension (:, :), allocatable variables::vvsrf

Array with parameters (and preparatory values) needed to calculate surface interactions with particles: first index
is parameter number, second index is particle species.

vvv

real(kind=dp), dimension (:,:), allocatable variables::vvv

Array with parameters (and preparatory values) needed to calculate interactions between particle pairs: first index
is parameter number, second index is numbered pair of particle species.

vxvyvz

real(kind=dp), dimension (:,:), allocatable, target variables::vxvyvz

Velocities of particles: first index of array is coordinate, second index is local particle number.

664 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

vxx

real(kind=dp), dimension (:), pointer variables::vxx

Array pointer for x-component of particle velocities.

vyy

real(kind=dp), dimension (:), pointer variables::vyy

Array pointer for y-component of particle velocities.

vzz

real(kind=dp), dimension (:), pointer variables::vzz

Array pointer for z-component of particle velocities.

wdthewx

real(kind=dp) variables::wdthewx

Size of link cell for short-range electrostatic interactions in x-direction.

wdthewy

real(kind=dp) variables::wdthewy

Size of link cell for short-range electrostatic interactions in y-direction.

wdthewz

real(kind=dp) variables::wdthewz

Size of link cell for short-range electrostatic interactions in z-direction.

wdthmbx

real(kind=dp) variables::wdthmbx

Size of link cell for many-body DPD localised density calculations in x-direction.

10.3. variables.F90 665

DL_MESO Technical Manual, Release 2.7

wdthmby

real(kind=dp) variables::wdthmby

Size of link cell for many-body DPD localised density calculations in y-direction.

wdthmbz

real(kind=dp) variables::wdthmbz

Size of link cell for many-body DPD localised density calculations in z-direction.

wdthx

real(kind=dp) variables::wdthx

Size of link cell for pairwise interactions and thermostats in x-direction.

wdthy

real(kind=dp) variables::wdthy

Size of link cell for pairwise interactions and thermostats in y-direction.

wdthz

real(kind=dp) variables::wdthz

Size of link cell for pairwise interactions and thermostats in z-direction.

weight

real(kind=dp), dimension (:), allocatable, save variables::weight

Masses of particles.

xxx

real(kind=dp), dimension (:), pointer variables::xxx

Array pointer for x-component of particle positions.

666 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

xxyyzz

real(kind=dp), dimension (:,:), allocatable, target variables::xxyyzz

Positions of particles: first index of array is coordinate, second index is local particle number.

yyy

real(kind=dp), dimension (:), pointer variables::yyy

Array pointer for y-component of particle positions.

zum

real(kind=dp), dimension (11) variables::zum

Summed up values of properties in statistical stack arrays used to calculate rolling average values: 1 = potential
energy per particle, 2 = electrostatic energy per particle, 3 = bond energy per particle, 4 = angle energy per particle,
5 = dihedral energy per particle, 6 = virial per particle, 7 = system volume, 8 = surface tension in z-direction, 9 =
x-component of kinetic energy per particle, 10 = y-component of kinetic energy per particle, 11 = z-component of
kinetic energy per particle.

zzz

real(kind=dp), dimension (:), pointer variables::zzz

Array pointer for z-component of particle positions.

10.4 numeric_container.F90

10.4.1 Summary

Module with general-purpose functions and subroutines required for DPD simulations, includ-
ing random number generators, scalar sum functions, error functions, periodic image adjust-
ment and Fast Fourier Transforms (FFT). (OpenMP multithreaded version available with nu-
meric_container_omp.F90.)

10.4.2 Functions/Subroutines

• real(kind=dp) function duni()

Creates a double precision random number between 0 and 1 using the Universal Random Number Generator.

• real(kind=dp) function mtrnd()

Creates a double precision random number between 0 and 1 using the Mersenne Twister Random Number
Generator.

• real(kind=dp) function sarurnd()

Creates a double precision random number between 0 and 1 using the Saru Random Number Generator with
three seeds.

10.4. numeric_container.F90 667

DL_MESO Technical Manual, Release 2.7

• real(kind=dp) function gaussmp()

Creates a double precision Gaussian random number with zero mean and unity variance using the Mersenne
Twister random number generator and the Marsaglia polar method.

• integer function idcube()

Calculates a node number based on input coordinates and extents.

• real(kind=dp) function sclsum()

Calculates the scalar sum of an array.

• real(kind=dp) function erfcdp()

Calculates the complementary error function of an input value.

• real(kind=dp) function erfdp()

Calculates the error function of an input value.

• subroutine images()

Calculates the minimum distance between two particles in a periodic orthogonal box.

• subroutine quicksort_integer_indexed()

Sorts integers in a provided array in numerical order using quicksort while recording the original positions
of its values.

• recursive subroutine qsort_integer()

Sorts integers in array into numerical order using quicksort, recording the original positions of its values.

• integer function bitadd()

Carries out bitwise addition of two integers.

• integer function bitmult()

Carries out bitwise multiplication of two integers.

• subroutine create_local_id_mol_map()

Creates a list of molecule numbers for each particle based on local particle index.

• subroutine fft3d()

Carries out Fast Fourier Transform (FFT) on a three-dimensional complex array.

• subroutine sfft()

Carries out Fast Fourier Transform (FFT) on complex array in place using Singleton’s mixed-radix algo-
rithm.

10.4.3 Variables

• integer, parameter nuni

Size of array for Universal Random Number Generator state.

• integer, parameter nmt

Size of array for Mersenne Twister Random Number Generator state.

• real(kind=dp), dimension(nuni) uni

Random number generator state for Universal Random Number Generator.

• integer, dimension(0:nmt) mt

Random number generator state for Mersenne Twister Random Number Generator.

668 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• integer, parameter mmt

Number used to reset Mersenne Twister Random Number Generator array.

• integer, parameter lmask

Positive integer limit needed for Mersenne Twister Random Number Generator.

• integer, parameter umask

Negative integer limit needed for Mersenne Twister Random Number Generator.

• integer, parameter tmaskb

Integer used to generate Mersenne Twister Random Number (second operation)

• integer, parameter tmaskc

Integer used to generate Mersenne Twister Random Number (third operation)

10.4.4 Function/Subroutine Documentation

bitadd()

integer function numeric_container::bitadd (integer, intent(in) a,
integer, intent(in) b

)

Adds two integers together in a bitwise manner without using a longer integer type and truncation for sums that
would exceed the limit for a standard integer. This function is used particularly by the Saru random number
generator.

Parameters

a First integer to be added
b Second integer to be added

bitmult()

integer function numeric_container::bitmult (integer, intent(in) a,
integer, intent(in) b

)

Multiplies two integers in a bitwise manner without using a longer integer type and truncation for products that
would exceed the limit for a standard integer. This function is used particularly by the Saru random number
generator.

Parameters

a First integer to be multiplied
b Second integer to be multiplied

10.4. numeric_container.F90 669

DL_MESO Technical Manual, Release 2.7

create_local_id_mol_map()

subroutine numeric_container::create_local_id_mol_map (integer, intent(in) nobeads,
integer, dimension(:),

→˓intent(in) global_ids,
integer, dimension(:),

→˓intent(in) molecules,
integer, dimension(:),

→˓intent(out) map
)

Sorts the global particle indices for available particles and uses the sorted list and the original indices to deter-
mine the molecule numbers each particle belongs to. This information is only used during simulation startup for
information provided in trajectory outputs and is not used during simulations.

Parameters

nobeads Number of available beads
global_ids Global particle indices of available beads
molecules Array of global particle index extents for molecules
map Resulting array of molecule numbers for available beads

duni()

real(kind=dp) function numeric_container::duni (integer seed)

The random number generator is an implementation of the Universal Random Number Generator of Marsaglia,
Zaman and Tsang [88]. The first call to this routine sets up the initial state using the provided seed and sets an
internal variable to indicate whether or not it has been initialised - this is made threadsafe for the OpenMP version.
This random number generator is used in DL_MESO_DPD to generate a consistent sequence of random numbers
for e.g. simulation startup across all processor nodes without requiring all-processor communications.

Parameters

seed Initial seed for random number generator

erfcdp()

real(kind=dp) function numeric_container::erfcdp (real(kind=dp) x)

Calculates the complementary error function (erfc) of an input value using an approximation based on Chebyshev
polynomial fitting [52].

Parameters

x Input value to find complementary error function

670 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

erfdp()

real(kind=dp) function numeric_container::erfdp (real(kind=dp) x)

Calculates the error function (erf) of an input value using value using an approximation based on Chebyshev
polynomial fitting [52].

Parameters

x Input value to find error function

fft3d()

subroutine numeric_container::fft3d (complex(kind=dp), dimension (:,:,:),
→˓intent(inout) array,

integer, intent(in) nx,
integer, intent(in) ny,
integer, intent(in) nz,
logical, intent(in) inv

)

Carries out a Fast Fourier Transform (FFT) on a three-dimensional array of complex numbers: this is a helper
subroutine to call Singleton’s mixed-radix FFT solver and does not need to be called if using other FFT solvers
(e.g. ESSL, FFTW).

Parameters

array Three-dimensional array of complex values to be transformed
nx Extent of array in x dimension
ny Extent of array in y dimension
nz Extent of array in z dimension
inv Flag to indicate whether or not the inverse transform is to be applied

gaussmp()

real(kind=dp) function numeric_container::gaussmp (integer idnode)

This is an implementation of the Marsaglia polar method [87] to convert pairs of uniform random numbers gener-
ated by the Mersenne Twister method to Gaussian random variables with zero mean and unity variance. Conver-
sion of uniform random numbers only occurs every other call, as the second Gaussian random number is stored
for the following call.

Parameters

idnode Processor number - used as dummy input seed for Mersenne Twister random number generator

10.4. numeric_container.F90 671

DL_MESO Technical Manual, Release 2.7

idcube()

integer function numeric_container::idcube (integer i,
integer j,
integer k,
integer npx,
integer npy,
integer npz

)

Using the node coordinates in x, y and z as well as the total numbers of nodes in each dimension, this function
calculates the unique number for a given processor node. No check is made to the node coordinates, each of which
should be between 0 and the number of nodes in that dimension less 1.

Parameters

i Node coordinate in x dimension
j Node coordinate in y dimension
k Node coordinate in z dimension
npx Number of nodes in x dimension
npy Number of nodes in y dimension
npz Number of nodes in z dimension

images()

subroutine numeric_container::images (real(kind=dp) dx,
real(kind=dp) dy,
real(kind=dp) dz,
real(kind=dp) lx,
real(kind=dp) ly,
real(kind=dp) lz,
integer shearx,
integer sheary,
integer shearz,
real(kind=dp) sldx,
real(kind=dp) sldy,
real(kind=dp) sldz

)

Calculates the minimum distance between two particles in a periodic orthogonal box, which is adjusted when
Lees-Edwards shearing is in use based on the shifting distance of each periodic image.

Parameters

dx Distance between two particles in x dimension
dy Distance between two particles in y dimension
dz Distance between two particles in z dimension
lx Size of the periodic box in x dimension
ly Size of the periodic box in y dimension
lz Size of the periodic box in z dimension
shearx Flag to indicate if box is undergoing shear orthogonal to x axis
sheary Flag to indicate if box is undergoing shear orthogonal to y axis
shearz Flag to indicate if box is undergoing shear orthogonal to z axis
sldx Distance periodic box is shifted in x dimension
sldy Distance periodic box is shifted in y dimension
sldz Distance periodic box is shifted in z dimension

672 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

mtrnd()

real(kind=dp) function numeric_container::mtrnd (integer seed)

The random number generator is an implementation of the Mersenne Twister Random Number Generator of
Matsumoto and Nishimura [92] based on a Fortran code by Hiroshi Takano. The first call to this routine sets up
the initial state using the provided seed and sets an internal variable to indicate whether or not it has been initialised
- this is made threadsafe for the OpenMP version. This random number generator is used in DL_MESO_DPD
for DPD random forces or similarly stochastic sections of most pairwise thermostats, as well as generating initial
particle velocities during simulation setup.

Parameters

seed Initial seed for random number generator

qsort_integer()

recursive subroutine numeric_container::qsort_integer (integer, dimension (:),
→˓intent(inout) list,

integer, dimension (:),
→˓intent(inout) index,

integer, intent(in) stride,
integer, intent(in) low,
integer, intent(in) high

)

Applies quicksort (partition-based sorting) to an input array while recording the original positions of its items.
This subroutine is recursive, i.e. it can call itself to implement the sort over smaller sections of the list, and resorts
to a bubble sort for lists of 5 items or fewer.

Parameters

list List of values to sort
index Array of original positions for items in sorted list
stride Stride between values in list to sort
low Smallest index in list to consider
high Largest index in list to consider

quicksort_integer_indexed()

subroutine numeric_container::quicksort_integer_indexed (integer, dimension (:),
→˓intent(inout) list,

integer, intent(in)
→˓stride,

integer, intent(in) n,
integer, dimension (:),

→˓intent(out) indices
)

Takes a list of values and applies a quicksort algorithm to sort the list in numerical order, while also recording
the original positions of the values in that list in another array. The quicksort implementation uses a recursive
subroutine to carry out partition-based sorts and may be substituted with similar library routines (e.g. ISORTX in
IBM’s Engineering and Scientific Subroutine Library, ESSL) that are optimised for particular machines.

Parameters

10.4. numeric_container.F90 673

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/FORTRAN/TAKANO/mt19937.f

DL_MESO Technical Manual, Release 2.7

list List of values to sort
stride Stride between values in list to sort
n Number of items in list
indices Array of original positions for items in sorted list

sarurnd()

real(kind=dp) function numeric_container::sarurnd (integer, intent(in) seed1,
integer, intent(in) seed2,
integer, intent(in) seed3

)

The random number generator is an implementation of the Saru Random Number Generator of Steve Worley
with a three-seed premixing algorithm [1]. This random number generator is intended for pairwise random force
calculations, where the first two seeds are the global particle indices in numerical order and the third is the timestep
number. No state needs to be stored and the generated numbers are independent of processor number or thread:
this random number generator can thus be used to ensure the same random forces are calculated regardless of the
number of processors used in calculations. This random number generator is currently used in DL_MESO_DPD
when the same random number is required more than once for a given particle pair, i.e. for DPD using Shardlow
splitting.

Parameters

seed1 Seed 1 for random number generator - smaller particle index
seed2 Seed 2 for random number generator - larger particle index
seed3 Seed 3 for random number generator - timestep number

sclsum()

real(kind=dp) function numeric_container::sclsum (integer n,
real(kind=dp), dimension(:) a,
integer i

)

Calculates the scalar sum of a double precision array that can represent multiple vectors or a simple series of
values.

Parameters

n Number of elements to sum together
a Array with values to sum together
i Stride or distance in array between consecutive values for summation

sfft()

subroutine numeric_container::sfft (complex(kind=dp), dimension (:), intent(inout)
→˓array,

integer, intent(in) ntotal,
integer, intent(in) npass,
integer, intent(in) nspan,
logical, intent(in) inv,
integer, intent(out) ierr

)

674 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

Applies a Fast Fourier Transform to the supplied complex array using Singleton’s mixed-radix algorithm [122] re-
stricted here to dimensions with factors of 2, 3 and/or 5. This subroutine requires the array to be one-dimensional,
but strides can be specified to ensure transforms are applied in the right directions: the results are supplied in the
same input array. Either forward or inverse transforms can be applied, and a non-zero error value can be output if
the number of grid points cannot be factorised or if there are too many prime factors to consider.

Parameters

array Array of complex values to be transformed
ntotal Total number of values in the supplied array
npass Number of values in required dimension
nspan Stride in values for given dimension
inv Flag to indicate whether or not the inverse transform is to be applied
ierr Error reporting value (0 if no error, -1 if array size cannot be factorised, -2 if too many prime factors)

10.4.5 Variable Documentation

lmask

integer parameter numeric_container::lmask = 2147483647

Highest positive signed integer value available in Fortran, required for Mersenne Twister Random Number Gen-
erator.

mmt

integer parameter numeric_container::mmt = 397

Number used in Mersenne Twister Random Number Generator when resetting state array.

mt

integer, dimension(0:nmt) numeric_container::mt

Array used as the state for the Mersenne Twister Random Number Generator (one produced per processor and
written to REVIVE file for simulation restart).

nmt

integer parameter numeric_container::nmt = 624

Size of arrays required for Mersenne Twister Random Number Generator states.

10.4. numeric_container.F90 675

DL_MESO Technical Manual, Release 2.7

nuni

integer parameter numeric_container::nuni = 102

Size of array required for Universal Random Number Generator state.

tmaskb

integer parameter numeric_container::tmaskb = -1658038656

Integer required during second operation in Mersenne Twister Random Number Generator to advance state and
generate subsequent random number.

tmaskc

integer parameter numeric_container::tmaskc = -272236544

Integer required during third operation in Mersenne Twister Random Number Generator to advance state and
generate subsequent random number.

umask

integer parameter numeric_container::umask = -LMASK-1

Highest negative signed integer value available in Fortran, required for Mersenne Twister Random Number Gen-
erator.

uni

real(kind=dp), dimension(nuni) numeric_container::uni

Array used as the state for the Universal Random Number Generator (single state used for all processors to
generate consistent sequence for simulation setup).

10.5 parse_utils.F90

10.5.1 Summary

Module with functions and subroutines required to parse text (including numbers) read from input
files.

10.5.2 Functions/Subroutines

• character(len=mxword) function, public getword()

Gets a specified word from a line of delimited text.

• integer(kind=li) function, public parseint()

Obtains an integer from a given word (string).

• real(kind=dp) function, public parsedble()

Obtains a double precision real number from a given word (string).

676 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• integer(kind=li) function, public getint()

Gets a specified word from a line of delimited text and obtains a long integer from that word.

• real(kind=dp) function, public getdble()

Gets a specified word from a line of delimited text and obtains a double precision real number from that
word.

• subroutine, public lowercase()

Converts all uppercase letters in a string to lowercase.

10.5.3 Function/Subroutine Documentation

getdble()

real(kind=dp) function, public parse_utils::getdble (character(len=*), intent(in)
→˓txt,

integer n
)

Obtains the n-th word from a line of text separated by spaces, commas or tabs and parse the word to produce a
double precision real number. If the word includes any characters besides numerals, plus/minus signs or exponent
characters (E or e), the function will return zero.

Parameters

txt Line of text to be read in
n Required word number from which to obtain double precision real number

getint()

integer(kind=li) function, public parse_utils::getint (character(len=*),
→˓intent(in) txt,

integer n
)

Obtains the n-th word from a line of text separated by spaces, commas or tabs and parse the word to produce a
long integer. If the word includes a dot (decimal point), the number is truncated at that point, while any other
characters besides numerals and minus signs will produce a value of zero.

Parameters

txt Line of text to be read in
n Required word number from which to obtain integer

getword()

character(len=mxword) function, public parse_utils::getword (character(len=*),
→˓intent(in) txt,

integer n
)

Obtains the n-th word from a line of text separated by spaces, commas or tabs and outputs the word as a string. If
the input text contains fewer words than the number specified, the output string will be a single space.

Parameters

10.5. parse_utils.F90 677

DL_MESO Technical Manual, Release 2.7

txt Line of text to be read in
n Required word number

lowercase()

subroutine, public parse_utils::lowercase (character(len=*), intent(inout) word)

Changes any uppercase letters in a provided word (string) to lowercase letters. This subroutine is used to enable
input files to have any form of capitalisation of keywords.

Parameters

word String to be converted

parsedble()

real(kind=dp) function, public parse_utils::parsedble (character(len=*),
→˓intent(in) word)

Reads a string to find the double precision real number contained inside it and outputs its value. If the string
includes any characters besides numerals, positive/minus signs or an exponent character (E or e), zero will be
returned.

Parameters

word String to be parsed

parseint()

integer(kind=li) function, public parse_utils::parseint (character(len=*),
→˓intent(in) word)

Reads a string to find the long integer contained inside it and outputs its value. If the string includes a dot, the
function will truncate the number at that point as a decimal point. If the string contains any other characters
besides numerals or a minus sign, zero will be returned.

Parameters

word String to be parsed

10.6 bond_module.F90

10.6.1 Summary

Module to maintain book-keeping and calculate forces for bonds, angles and dihedrals. (OpenMP
multithreaded version available with bond_module_omp.F90.)

678 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.6.2 Functions/Subroutines

• subroutine shellsort_list()

Reorders list of global/local particle numbers in terms of global particle numbers using a Shell sort.

• integer function search_list()

Searches a sorted list of global/local particle numbers to find a given value among the global particle num-
bers.

• subroutine contract_bndtbl()

Strips out all bond pairs from bond table that have been reassigned to neighbouring processors.

• subroutine contract_angtbl()

Strips out all bond angle triples from angle table that have been reassigned to neighbouring processors.

• subroutine contract_dhdtbl()

Strips out all bond dihedral quadruples from dihedral table that have been reassigned to neighbouring pro-
cessors.

• subroutine bond_force()

Calculates the stretching force and potential energy between a pair of bonded particles.

• subroutine angle_force()

Calculates the bond angle force, potential energy and virial across a triple of bonded particles.

• subroutine dihedral_force()

Calculates the bond dihedral force and potential energy across a quadruple of bonded particles.

• subroutine bondforceslocal()

Calculates all bond (stretching, angle, dihedral) forces between particles in system using locally-defined
bond, angle and dihedral lists.

• subroutine bondpotentialslocal()

Calculates all bond (stretching, angle, dihedral) potentials between particles in system using locally-defined
bond, angle and dihedral lists.

• subroutine bondforcesglobal()

Calculates all bond (stretching, angle, dihedral) forces between particles in system using globally-defined
bond, angle and dihedral lists.

• subroutine bondpotentialsglobal()

Calculates all bond (stretching, angle, dihedral) potentials between particles in system using globally-
defined bond, angle and dihedral lists.

10.6.3 Function/Subroutine Documentation

angle_force()

subroutine bond_module::angle_force (integer angtype,
real(kind=dp) theta,
real(kind=dp) rab,
real(kind=dp) rcb,
real(kind=dp) a,
real(kind=dp) b,
real(kind=dp) c,
real(kind=dp) d,

(continues on next page)

10.6. bond_module.F90 679

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

real(kind=dp) force,
real(kind=dp) potential,
real(kind=dp) virial,
real(kind=dp) dfab,
real(kind=dp) dfcb

)

This routine calculates bond angle forces, potentials and virials among three particles connected together by a pair
of bonds. The three current options for these interactions are harmonic:

𝑈𝑖𝑗𝑘 =
𝜅

2
(𝜃𝑖𝑗𝑘 − 𝜃0)

2

harmonic cosine:

𝑈𝑖𝑗𝑘 =
𝜅

2
(cos 𝜃𝑖𝑗𝑘 − cos 𝜃0)

2

and cosine angle potentials:

𝑈𝑖𝑗𝑘 = 𝐴 [1 + cos (𝑚𝜃𝑖𝑗𝑘 − 𝛿)]

These can be expanded upon by the user. Additional forces and virial contributions for the two end particles from
screening or truncation functions for the given bond angle are available as an option: the currently available angles
do not make use of these and give a virial of zero [126], although they still contribute to the stress tensor. Note
that the force is divided by the sine of the angle in this subroutine to optimise calculation of the forces acting on
all three particles.

Parameters

angtype Type (functional form) of bond angle among three particles
theta Angle among three particles, 𝜃𝑖𝑗𝑘, centred on particle j
rab Vector between particles i and j
rcb Vector between particles k and j
a Parameter a for bond angle interaction
b Parameter b for bond angle interaction
c Parameter c for bond angle interaction
d Parameter d for bond angle interaction
force Resulting bond angle force among particles divided by the sine of the angle, 𝐹𝑖𝑗𝑘

sin 𝜃𝑖𝑗𝑘

potential Resulting bond angle potential, 𝑈𝑖𝑗𝑘

virial Additional virial contribution resulting from bond angle
dfab Additional force acting between particles i and j resulting from bond angle
dfcb Additional force acting between particles k and j resulting from bond angle

bond_force()

subroutine bond_module::bond_force (integer bondtype,
real(kind=dp) r,
real(kind=dp) a,
real(kind=dp) b,
real(kind=dp) c,
real(kind=dp) d,
real(kind=dp) force,
real(kind=dp) potential,
real(kind=dp) mxlen

)

This routine calculates bond stretching forces and potentials between connected pairs of particles. The four current
options for these interactions are harmonic (Hookean/Fraenkel):

𝑈𝑖𝑗 =
𝜅

2
(𝑟𝑖𝑗 − 𝑟0)

2

680 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

finitely-extensible non-linear elastic (FENE):

𝑈𝑖𝑗 =

{︃
− 1

2𝜅𝑟
2
𝑚𝑎𝑥 ln

[︁
1 − (𝑟𝑖𝑗−𝑟0)

2

𝑟2𝑚𝑎𝑥

]︁
𝑟𝑖𝑗 < 𝑟0 + 𝑟𝑚𝑎𝑥

∞ 𝑟𝑖𝑗 ≥ 𝑟0 + 𝑟𝑚𝑎𝑥

Marko-Siggia Wormlike Chains (WLC) [86]:

𝑈𝑖𝑗 =

⎧⎨⎩ 𝑘𝐵𝑇
2𝐴𝑝

[︂
1

2(1−
𝑟𝑖𝑗

𝑟𝑚𝑎𝑥
)
− 1

2

(︁
1 +

𝑟𝑖𝑗
𝑟𝑚𝑎𝑥

)︁
+

𝑟2𝑖𝑗
𝑟2𝑚𝑎𝑥

]︂
𝑟𝑖𝑗 < 𝑟𝑚𝑎𝑥

∞ 𝑟𝑖𝑗 ≥ 𝑟𝑚𝑎𝑥

and Morse anharmonic [94] bonds:

𝑈𝑖𝑗 = 𝐷𝑒 [1 − exp (−𝛽 (𝑟𝑖𝑗 − 𝑟0))]
2

These can be expanded upon by the user. Note that the force is divided by the distance in this subroutine so that
multiplying this value by the vector between the particles gives the required scalar force multiplied by the unit
vector.

Parameters

bond-
type

Type (functional form) of bond between particle pair

r Distance between pair of particles, 𝑟𝑖𝑗
a Parameter a for bond interaction
b Parameter b for bond interaction
c Parameter c for bond interaction
d Parameter d for bond interaction

force Resulting bond force between particles divided by distance, 𝐹𝑖𝑗

𝑟𝑖𝑗

potential Resulting bond potential, 𝑈𝑖𝑗

mxlen Maximum possible length for bond - used in error reporting if distance between particles is too
large

bondforcesglobal()

subroutine bond_module::bondforcesglobal (integer nlimit)

Calculates all bonded interaction forces and potentials (stretching, angles and dihedrals) between particles using
book-keeping tables that hold all available bond information for the entire system (i.e. globally-defined lists).
This is less efficient for parallel running but ensures longer distances between particle pairs (e.g. in bonds) can
be accommodated, particularly during equilibration. The OpenMP version of this subroutine divides the bonds,
angles and dihedrals among the available threads, either using additional memory per thread or a critical region to
assign forces to particles in a threadsafe manner.

Parameters

nlimit Total number of particles in subdomain and boundary halo

bondforceslocal()

subroutine bond_module::bondforceslocal (integer nlimit)

Calculates all bonded interaction forces and potentials (stretching, angles and dihedrals) between particles using
book-keeping tables that are continously updated to only include particles held by each processor (i.e. locally-
defined lists). This is the most efficient method for parallel running but runs the risk of losing track of bonded pairs
etc. if distances between particle pairs become longer than the subdomain halo size. The OpenMP version of this

10.6. bond_module.F90 681

DL_MESO Technical Manual, Release 2.7

subroutine divides the bonds, angles and dihedrals among the available threads, either using additional memory
per thread or a critical region to assign forces to particles in a threadsafe manner.

Parameters

nlimit Total number of particles in subdomain and boundary halo

bondpotentialsglobal()

subroutine bond_module::bondpotentialsglobal (integer nlimit)

Calculates all bonded interaction potentials (stretching, angles and dihedrals) between particles using book-
keeping tables that hold all available bond information for the entire system (i.e. globally-defined lists). This
subroutine is intended to calculate potentials, virials and stress tensor contributions at the start of a DPD simula-
tion when particle forces are already known. The OpenMP version of this subroutine divides the bonds, angles
and dihedrals among the available threads.

Parameters

nlimit Total number of particles in subdomain and boundary halo

bondpotentialslocal()

subroutine bond_module::bondpotentialslocal (integer nlimit)

Calculates all bonded interaction potentials (stretching, angles and dihedrals) between particles using book-
keeping tables that are continously updated to only include particles held by each processor (i.e. locally-defined
lists). This subroutine is intended to calculate potentials, virials and stress tensor contributions at the start of a
DPD simulation when particle forces are already known. The OpenMP version of this subroutine divides the
bonds, angles and dihedrals among the available threads.

Parameters

nlimit Total number of particles in subdomain and boundary halo

contract_angtbl()

subroutine bond_module::contract_angtbl

Goes through each processor’s table of angles and takes out any angles that have been marked for removal after
being moved to a neighbouring processor. Only called by parallel version of DL_MESO_DPD when angle tables
include only local angles in each processor: tables include all angles when running in serial or using ‘global bonds’
option in CONTROL file.

contract_bndtbl()

subroutine bond_module::contract_bndtbl

Goes through each processor’s table of bonds and takes out any bonds that have been marked for removal after
being moved to a neighbouring processor. Only called by parallel version of DL_MESO_DPD when bond tables
include only local bonds in each processor: tables include all bonds when running in serial or using ‘global bonds’
option in CONTROL file.

682 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

contract_dhdtbl()

subroutine bond_module::contract_dhdtbl

Goes through each processor’s table of dihedrals and takes out any dihedrals that have been marked for removal
after being moved to a neighbouring processor. Only called by parallel version of DL_MESO_DPD when dihedral
tables include only local dihedrals in each processor: tables include all dihedrals when running in serial or using
‘global bonds’ option in CONTROL file.

dihedral_force()

subroutine bond_module::dihedral_force (integer dhdtype,
real(kind=dp) phi,
real(kind=dp) rpb,
real(kind=dp) rpc,
real(kind=dp) a,
real(kind=dp) b,
real(kind=dp) c,
real(kind=dp) d,
real(kind=dp) force,
real(kind=dp) potential)

This routine calculates bond dihedral forces and potentials among four particles connected together by a pair of
planes each formed from two bonds or vectors. The three current options for these interactions are torsion:

𝑈𝑖𝑗𝑘𝑙 = 𝐴 [1 + cos (𝑚𝜑𝑖𝑗𝑘𝑙 − 𝛿)]

harmonic improper:

𝑈𝑖𝑗𝑘𝑙 =
𝜅

2
(𝜑𝑖𝑗𝑘𝑙 − 𝜑0)

2

and harmonic cosine dihedral potentials:

𝑈𝑖𝑗𝑘𝑙 =
𝜅

2
(cos𝜑𝑖𝑗𝑘𝑙 − cos𝜑0)

2

These can be expanded upon by the user. Dihedrals do not contribute to the virial [126], although they still
contribute to the stress tensor. Note that the force is multiplied by the product of the dihedral vectors divided by
the sine of the dihedral angle in this subroutine to optimise calculation of the forces acting on all four particles.

Parameters

dhd-
type

Type (functional form) of bond dihedral among four particles

phi Dihedral angle among four particles, 𝜑𝑖𝑗𝑘𝑙
rpb Dihedral vector between vectors ij and jk, 𝑟⃗𝑖𝑗 × 𝑟⃗𝑗𝑘
rpc Dihedral vector between vectors jk and kl, 𝑟⃗𝑗𝑘 × 𝑟⃗𝑘𝑙
a Parameter a for bond dihedral interaction
b Parameter b for bond dihedral interaction
c Parameter c for bond dihedral interaction
d Parameter d for bond dihedral interaction
force Resulting bond dihedral force among particles multiplied by the product of dihedral vectors and di-

vided by the sine of the dihedral angle, 𝐹𝑖𝑗𝑘𝑙(𝑟⃗𝑖𝑗×𝑟⃗𝑗𝑘)·(𝑟⃗𝑗𝑘×𝑟⃗𝑘𝑙)
sin𝜑𝑖𝑗𝑘𝑙

po-
ten-
tial

Resulting bond dihedral potential, 𝑈𝑖𝑗𝑘𝑙

10.6. bond_module.F90 683

DL_MESO Technical Manual, Release 2.7

search_list()

integer function bond_module::search_list (integer aim)

Carries out a binary search of the global particle numbers in a sorted list of global/local particle numbers to output
the entry in the list that has the provided input value (of a global particle number). If no entry with this input value
can be found, a negative number is output to indicate this. (Note that the list must be sorted in numerical order for
global particle numbers beforehand to ensure searches can be carried out.)

Parameters

aim Global particle number value to search for in global/local particle number list

shellsort_list()

subroutine bond_module::shellsort_list

Takes a list of pairs of values - global and local particle numbers - and reorders the pairs in numerical order for
the global particle numbers by using a Shell sort.

10.7 comms_module.F90

10.7.1 Summary

Module to handle node-to-node communications using MPI in parallel or substitute/dummy subrou-
tines in serial (as comms_module_ser.F90).

10.7.2 Functions/Subroutines

• subroutine initcomms()

Starts off MPI, sets up communicators and works out kinds for various types of number used in
DL_MESO_DPD.

• subroutine exitcomms()

Close down MPI after completion of DL_MESO_DPD calculation in a controlled manner.

• subroutine abortcomms()

Terminates MPI before the projected end of a calculation.

• subroutine gsync()

Synchronises all processors before continuing.

• subroutine group_gsync()

Synchronises all processors in a given group before continuing.

• subroutine global_and_all()

Applies a global AND operation to a logical array and broadcasts result to all processors.

• subroutine global_and()

Applies a global AND operation to a logical array and broadcasts result to a selected processor.

• subroutine global_or_all()

Applies a global OR operation to a logical array and broadcasts result to all processors.

684 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• subroutine global_or()

Applies a global OR operation to a logical array and broadcasts result to a selected processor.

• subroutine global_sca_and_all()

Applies a global AND operation to a logical scalar and broadcasts result to all processors.

• subroutine global_sca_and()

Applies a global AND operation to a logical scalar and broadcasts result to a selected processor.

• subroutine global_sca_or_all()

Applies a global OR operation to a logical scalar and broadcasts result to all processors.

• subroutine global_sca_or()

Applies a global OR operation to a logical scalar and broadcasts result to a selected processor.

• subroutine global_sca_max_int()

Find the global maximum for an integer and broadcast result to all processors.

• subroutine global_sca_max_dble()

Find the global maximum for a double precision real number and broadcast result to all processors.

• subroutine global_sca_min_int()

Find the global minimum for an integer and broadcast result to all processors.

• subroutine global_sca_min_dble()

Find the global minimum for a double precision real number and broadcast result to all processors.

• subroutine global_sum_dble()

Applies a global summation to a double precision real array and broadcasts result to all processors.

• subroutine global_sum_sca_dble()

Applies a global summation to a double precision real number and broadcasts result to all processors.

• subroutine global_sum_int()

Applies a global summation to an integer array and broadcasts result to all processors.

• subroutine global_sum_sca_int()

Applies a global summation to an integer and broadcasts result to all processors.

• subroutine group_sum_sca_int()

Applies a group-wide summation to an integer and broadcasts result to the root processor for the group.

• subroutine group_sum_sca_int_all()

Applies a group-wide summation to an integer and broadcasts result to all processors in the group.

• subroutine group_sum_cmplx_all()

Applies a group-wide summation to a double precision complex array and broadcasts result to all processors
in the group.

• subroutine broadcast_dble()

Broadcasts a double precision real array of numbers from a root processor to all other processors.

• subroutine broadcast_sca_dble()

Broadcasts a double precision real number from a root processor to all other processors.

• subroutine broadcast_int()

Broadcasts an integer array of numbers from a root processor to all other processors.

10.7. comms_module.F90 685

DL_MESO Technical Manual, Release 2.7

• subroutine broadcast_sca_int()

Broadcasts an integer from a root processor to all other processors.

• subroutine broadcast_int1()

Broadcasts an one-byte integer array of numbers from a root processor to all other processors.

• subroutine broadcast_sca_int1()

Broadcasts a one-byte integer from a root processor to all other processors.

• subroutine broadcast_logical()

Broadcasts a logical array from a root processor to all other processors.

• subroutine broadcast_sca_logical()

Broadcasts a logical value from a root processor to all other processors.

• subroutine broadcast_char()

Broadcasts a series of characters from a root processor to all other processors.

• subroutine distribute_int_data()

Distributes an array of integers to intended destination processors within defined group.

• subroutine distribute_int_data_root()

Distributes an array of integers to the root processor within defined group.

• subroutine distribute_int_data_all()

Distributes an array of integers to all processors within defined group.

• subroutine distribute_sca_int_data()

Distributes an array of integers from each processor to all processors within defined group and gather to-
gether an array with values received from each processor.

• subroutine distribute_sca_int_data_root()

Distributes scalar integers to the root processor for the defined group.

• subroutine distribute_sca_int_data_all()

Distributes scalar integers to all processors for the defined group.

• subroutine distribute_dble_data()

Distributes an array of double precision real numbers to intended destination processors within defined
group.

• subroutine distribute_dble_data_root()

Distributes an array of double precision real numbers to the root processor within defined group.

• subroutine distribute_dble_data_all()

Distributes an array of double precision real numbers to all processors within defined group.

• subroutine distribute_sca_dble_data()

Distributes an array of double precision real numbers from each processor to all processors within defined
group and gather together an array with values received from each processor.

• subroutine distribute_sca_dble_data_root()

Distributes scalar double precision real numbers to the root processor for the defined group.

• subroutine distribute_sca_dble_data_all()

Distributes scalar double precision real numbers to all processors for the defined group.

686 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• subroutine create_group_comms()

Creates an MPI communicator among a group of processors.

• subroutine duplicate_group_comms()

Create a copy of an existing MPI communicator.

• subroutine io_open()

Open a binary output file among processors sharing an MPI communicator for writing.

• subroutine io_ansi_open()

Open an ANSI text output file among processors sharing an MPI communicator for writing.

• subroutine io_close()

Closes a previously-opened output file.

• subroutine io_write_int()

Writes a single integer to a previously-opened binary output file at a given position.

• subroutine io_write_longint()

Writes a single long integer to a previously-opened binary output file at a given position.

• subroutine io_write_dble()

Writes a single double precision real number to a previously-opened binary output file at a given position.

• subroutine io_write_batch_int()

Writes an array of integers to a previously-opened binary output file starting at a given position.

• subroutine io_write_batch_dble()

Writes an array of double precision real numbers to a previously-opened binary output file starting at a given
position.

• subroutine io_write_batch_char()

Writes an array of characters to a previously-opened ANSI text output file starting at a given position.

• subroutine msg_receive_blocked()

Receive a data array from any processor in a blocking MPI call.

• subroutine msg_receive_blocked_pe()

Receive a data array from a specific processor in a blocking MPI call.

• subroutine msg_receive_sca_blocked()

Receive a single value from any processor in a blocking MPI call.

• subroutine msg_receive_sca_blocked_pe()

Receive a single value from a specific processor in a blocking MPI call.

• integer function msg_receive_unblocked()

Receive a data array from any processor in a non-blocking MPI call.

• integer function msg_receive_unblocked_pe()

Receive a data array from a specific processor in a non-blocking MPI call.

• integer function msg_receive_unblocked_grid_pe()

Receive a three-dimensional data array from a specific processor in a non-blocking MPI call.

• subroutine msg_send_blocked()

Send a data array to a specific processor in a blocking MPI call.

10.7. comms_module.F90 687

DL_MESO Technical Manual, Release 2.7

• subroutine msg_send_blocked_grid()

Send a three-dimensional data array to a specific processor in a blocking MPI call.

• subroutine msg_send_sca_blocked()

Send a single data value to a specific processor in a blocking MPI call.

• integer function msg_send_unblocked()

Send a data array to a specific processor in a non-blocking MPI call.

• subroutine msg_wait()

Causes processor to wait for an non-blocking MPI message.

• integer function msg_wait_and_size_double()

Causes processor to wait for an non-blocking MPI message and returns size of message.

• integer function mynode()

Returns number (rank) of current processor.

• integer function numnodes()

Returns total number of available processors.

• subroutine timchk()

Determines the time elapsed since the start of the calculation and (if requested) prints the time to OUTPUT
file.

10.7.3 Variables

• integer, save dlm_comm_world = 0

All node communicator for instance of DL_MESO_DPD.

• integer, save self_comm = 0

Communicator for current node.

• integer, save dp_mpi = 0

MPI kind value for double precision real numbers.

• integer, save cx_mpi = 0

MPI kind value for double precision complex numbers.

• integer, save dlen = 0

Size of double precision real number in bytes, given as standard integer.

• integer, save ilen = 0

Size of standard integer in bytes, given as standard integer.

• integer, save lilen = 0

Size of long integer in bytes, given as standard integer.

• integer(kind=li), save dlen_li = 0

Size of double precision real number in bytes, given as long integer.

• integer(kind=li), save ilen_li = 0

Size of standard integer in bytes, given as long integer.

• integer(kind=li), save lilen_li = 0

Size of long integer in bytes, given as standard integer.

688 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.7.4 Function/Subroutine Documentation

abortcomms()

subroutine comms_module::abortcomms

In the event of a fatal error occurring during a calculation, this subroutine will terminate MPI and bring DL_MESO
to a sudden halt, ideally after printing an error message indicating what went wrong. (Dummy subroutine in serial.)

broadcast_char()

subroutine comms_module::broadcast_char (character(len=nnn) aaa,
integer, intent(in) nnn,
integer, intent(in) root

)

Carries out an MPI_bcast operation on a string of characters located in a root processor to broadcast the string to
all other processors. (Dummy subroutine in serial.)

Parameters

aaa Array of characters to broadcast/receive
nnn Size of character array (string)
root Number of processor broadcasting array to other processors

broadcast_dble()

subroutine comms_module::broadcast_dble (real(kind=dp), dimension(:) aaa,
integer, intent(in) nnn,
integer, intent(in) root

)

Carries out an MPI_bcast operation on an array of double precision real numbers located in a root processor to
broadcast the values to all other processors. (Dummy subroutine in serial.)

Parameters

aaa Array of double precision real numbers to broadcast/receive
nnn Size of double precision real array
root Number of processor broadcasting array to other processors

broadcast_int()

subroutine comms_module::broadcast_int (integer, dimension(:) aaa,
integer, intent(in) nnn,
integer, intent(in) root

)

Carries out an MPI_bcast operation on an array of integers located in a root processor to broadcast the values to
all other processors. (Dummy subroutine in serial.)

Parameters

aaa Array of integers to broadcast/receive
nnn Size of integer array
root Number of processor broadcasting array to other processors

10.7. comms_module.F90 689

DL_MESO Technical Manual, Release 2.7

broadcast_int1()

subroutine comms_module::broadcast_int1 (integer(kind=1), dimension(:) aaa,
integer, intent(in) nnn,
integer, intent(in) root

)

Carries out an MPI_bcast operation on an array of one-byte integers located in a root processor to broadcast the
values to all other processors. (Dummy subroutine in serial.)

Parameters

aaa Array of one-byte integers to broadcast/receive
nnn Size of one-byte integer array
root Number of processor broadcasting array to other processors

broadcast_logical()

subroutine comms_module::broadcast_logical (logical, dimension(:) aaa,
integer, intent(in) nnn,
integer, intent(in) root

)

Carries out an MPI_bcast operation on an array of logical values located in a root processor to broadcast the values
to all other processors. (Dummy subroutine in serial.)

Parameters

aaa Array of logicals to broadcast/receive
nnn Size of logical array
root Number of processor broadcasting array to other processors

broadcast_sca_dble()

subroutine comms_module::broadcast_sca_dble (real(kind=dp) aaa,
integer, intent(in) root

)

Carries out an MPI_bcast operation on a double precision real number located in a root processor to broadcast the
value to all other processors. (Dummy subroutine in serial.)

Parameters

aaa Double precision real number to broadcast/receive
root Number of processor broadcasting number to other processors

690 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

broadcast_sca_int()

subroutine comms_module::broadcast_sca_int (integer aaa,
integer, intent(in) root

)

Carries out an MPI_bcast operation on an integer located in a root processor to broadcast the value to all other
processors. (Dummy subroutine in serial.)

Parameters

aaa Integer to broadcast/receive
root Number of processor broadcasting number to other processors

broadcast_sca_int1()

subroutine comms_module::broadcast_sca_int1 (integer(kind=1) aaa,
integer, intent(in) root

)

Carries out an MPI_bcast operation on a one-byte integer located in a root processor to broadcast the value to all
other processors. (Dummy subroutine in serial.)

Parameters

aaa One-byte integer to broadcast/receive
root Number of processor broadcasting number to other processors

broadcast_sca_logical()

subroutine comms_module::broadcast_sca_logical (logical aaa,
integer, intent(in) root
)

Carries out an MPI_bcast operation on a logical value located in a root processor to broadcast the value to all other
processors. (Dummy subroutine in serial.)

Parameters

aaa Logical to broadcast/receive
root Number of processor broadcasting value to other processors

create_group_comms()

subroutine comms_module::create_group_comms (integer, dimension (:), intent(in)
→˓members,

integer, intent(in) number,
integer, intent(inout) group,
integer, intent(inout) comm,
integer, intent(inout) rank

)

Create a group of processors and the necessary communicator for that group based on a list of available processors
for the DL_MESO_DPD calculation, identifying the rank of the current processor in that group if it is included.
(Dummy subroutine in serial.)

10.7. comms_module.F90 691

DL_MESO Technical Manual, Release 2.7

Parameters

members Array of processors to be included in group
number Number of processors in group
group MPI group identifier (not normally used directly)
comm MPI communicator for group
rank Rank for current processor in group (only defined if processor is included)

distribute_dble_data()

subroutine comms_module::distribute_dble_data (real(kind=dp), dimension (:),
→˓intent(in) senddata,

integer, dimension (:), intent(in)
→˓sendcount,

real(kind=dp), dimension (:),
→˓intent(inout) recvdata,

integer, dimension (:), intent(in)
→˓recvcount,

integer, dimension (:), intent(in)
→˓displ,

integer, dimension (:), intent(in)
→˓nodemap,

integer, intent(in) nodes,
integer, intent(in) group

)

Applies a series of MPI_Gatherv calls to send data in the form of an array of double precision real numbers to
their intended destinations - given as arrays indicating which value goes to which processor and where the data
should be placed in the destination array - within a given group. The data array to be sent should be sorted by
destination processor to give continguous groups of values going to each processor. Note that this subroutine can
be used to distribute data to all available processors by using the all-node communicator. (The serial version of
this subroutine directly copies the array for sending data into the array for receiving data.)

Parameters

send-
data

Array of double precision real numbers being sent to all processors

send-
count

Array containing total numbers of double precision real numbers being sent by each processor

recv-
data

Array of double precision real numbers with values arriving from all processors

recv-
count

Array containing total numbers of double precision real numbers arriving from each processor

displ Array indicating where data from each processor should be placed in data-receiving array (as a
displacement from the start)

nodemap Array indicating which data value is going to which processor - should be continguous for each
processor and in numerical order

nodes Total number of processors in group involved in data distribution
group Communicator for group of processors

692 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

distribute_dble_data_all()

subroutine comms_module::distribute_dble_data_all (real(kind=dp), dimension (:),
→˓intent(in) senddata,

integer, intent(in) sendcount,
real(kind=dp), dimension (:),

→˓intent(inout) recvdata,
integer, dimension (:),

→˓intent(in) recvcount,
integer, dimension (:),

→˓intent(in) displ,
integer, intent(in) group

)

Applies an MPI_Allgatherv call to send data in the form of an array of double precision real numbers to all
processors in the group as a combined array. An array indicating where each processor’s data should be placed in
the destination array is required. Note that this subroutine can be used to distribute data to all available processors
by using the all-node communicator. (The serial version of this subroutine directly copies the array for sending
data into the array for receiving data.)

Parameters

send-
data

Array of double precision real numbers being sent to all processors

send-
count

Total number of double precision real numbers being sent by current processor

recv-
data

Array of double precision real numbers with values arriving from all processors

recv-
count

Array containing total numbers of double precision real numbers arriving from each processor

displ Array indicating where data from each processor should be placed in data-receiving array (as a
displacement from the start)

group Communicator for group of processors

distribute_dble_data_root()

subroutine comms_module::distribute_dble_data_root (real(kind=dp), dimension (:),
→˓intent(in) senddata,

integer, intent(in) sendcount,
real(kind=dp), dimension (:),

→˓intent(inout) recvdata,
integer, dimension (:),

→˓intent(in) recvcount,
integer, dimension (:),

→˓intent(in) displ,
integer, intent(in) group

)

Applies a single MPI_Gatherv call to send data in the form of an array of double precision real numbers to the
root processor for the given group as a single combined array. An array indicating where each processor’s data
should be placed in the destination array is required. Note that this subroutine can be used to distribute data from
all available processors by using the all-node communicator. (The serial version of this subroutine directly copies
the array for sending data into the array for receiving data.)

Parameters

10.7. comms_module.F90 693

DL_MESO Technical Manual, Release 2.7

send-
data

Array of double precision real numbers being sent to all processors

send-
count

Total number of double precision real numbers being sent by current processor

recv-
data

Array of double precision real numbers with values arriving from all processors (only needs to be
allocated for root processor)

recv-
count

Array containing total numbers of double precision real numbers arriving at root processor from
each processor

displ Array indicating where data from each processor should be placed in data-receiving array (as a
displacement from the start)

group Communicator for group of processors

distribute_int_data()

subroutine comms_module::distribute_int_data (integer, dimension (:), intent(in)
→˓senddata,

integer, dimension (:), intent(in)
→˓sendcount,

integer, dimension (:),
→˓intent(inout) recvdata,

integer, dimension (:), intent(in)
→˓recvcount,

integer, dimension (:), intent(in)
→˓displ,

integer, dimension (:), intent(in)
→˓nodemap,

integer, intent(in) nodes,
integer, intent(in) group

)

Applies a series of MPI_Gatherv calls to send data in the form of an array of integers to their intended destinations
- given as arrays indicating which value goes to which processor and where the data should be placed in the
destination array - within a given group. The data array to be sent should be sorted by destination processor to
give continguous groups of values going to each processor. Note that this subroutine can be used to distribute
data to all available processors by using the all-node communicator. (The serial version of this subroutine directly
copies the array for sending data into the array for receiving data.)

Parameters

send-
data

Array of integers being sent to all processors

send-
count

Array containing total numbers of integers being sent by each processor

recv-
data

Array of integers with values arriving from all processors

recv-
count

Array containing total numbers of integers arriving from each processor

displ Array indicating where data from each processor should be placed in data-receiving array (as a
displacement from the start)

nodemap Array indicating which data value is going to which processor - should be continguous for each
processor and in numerical order

nodes Total number of processors in group involved in data distribution
group Communicator for group of processors

694 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

distribute_int_data_all()

subroutine comms_module::distribute_int_data_all (integer, dimension (:),
→˓intent(in) senddata,

integer, intent(in) sendcount,
integer, dimension (:),

→˓intent(inout) recvdata,
integer, dimension (:),

→˓intent(in) recvcount,
integer, dimension (:),

→˓intent(in) displ,
integer, intent(in) group

)

Applies an MPI_Allgatherv call to send data in the form of an array of integers to all processors in the group as
a combined array. An array indicating where each processor’s data should be placed in the destination array is
required. Note that this subroutine can be used to distribute data to all available processors by using the all-node
communicator. (The serial version of this subroutine directly copies the array for sending data into the array for
receiving data.)

Parameters

send-
data

Array of integers being sent to all processors

send-
count

Total number of integers being sent by current processor

recv-
data

Array of integers with values arriving from all processors

recv-
count

Array containing total numbers of integers arriving from each processor

displ Array indicating where data from each processor should be placed in data-receiving array (as a
displacement from the start)

group Communicator for group of processors

distribute_int_data_root()

subroutine comms_module::distribute_int_data_root (integer, dimension (:),
→˓intent(in) senddata,

integer, intent(in) sendcount,
integer, dimension (:),

→˓intent(inout) recvdata,
integer, dimension (:),

→˓intent(in) recvcount,
integer, dimension (:),

→˓intent(in) displ,
integer, intent(in) group

)

Applies a single MPI_Gatherv call to send data in the form of an array of integers to the root processor for the
given group as a single combined array. An array indicating where each processor’s data should be placed in the
destination array is required. Note that this subroutine can be used to distribute data from all available processors
by using the all-node communicator. (The serial version of this subroutine directly copies the array for sending
data into the array for receiving data.)

Parameters

10.7. comms_module.F90 695

DL_MESO Technical Manual, Release 2.7

send-
data

Array of integers being sent to all processors

send-
count

Total number of integers being sent by current processor

recv-
data

Array of integers with values arriving from all processors (only needs to be allocated for root pro-
cessor)

recv-
count

Array containing total numbers of integers arriving at root processor from each processor

displ Array indicating where data from each processor should be placed in data-receiving array (as a
displacement from the start)

group Communicator for group of processors

distribute_sca_dble_data()

subroutine comms_module::distribute_sca_dble_data (real(kind=dp), dimension (:),
→˓intent(in) senddata,

real(kind=dp), dimension (:),
→˓intent(inout) recvdata,

integer, intent(in) nodes,
integer, intent(in) group

)

Applies a series of MPI_Gather calls to scatter an array of double precision real numbers from each processor to
all processors in a group, such that each processor will receive a single value from each sending processor, and
gather together the received values into an array. The data in the array being scattered by each processor should
be in processor order for the group, also noting that this subroutine can be used for all processors by using the
all-node communicator. (The serial version of this subroutine directly copies the array for sending data into the
array for receiving data.)

Parameters

send-
data

Array of double precision real numbers being scattered to all processors

recv-
data

Array of double precision real numbers with values arriving from all processors

nodes Total number of processors in group involved in data distribution (equal to number of integers being
sent and received by all processors)

group Communicator for group of processors

distribute_sca_dble_data_all()

subroutine comms_module::distribute_sca_dble_data_all (real(kind=dp), intent(in)
→˓senddata,

real(kind=dp), dimension
→˓(:), intent(inout) recvdata,

integer, intent(in) group
)

Applies an MPI_Allgather call to gather together individual double precision real numbers from each processor
into an array of values that is distributed to all processors. Note that this subroutine can be used for all processors
by using the all-node communicator. (The serial version of this subroutine directly copies the array for sending
data into the array for receiving data.)

Parameters

696 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

senddata Double precision real number being sent to all processors for gathering together
recvdata Array of double precision real numbers with gathered values
group Communicator for group of processors

distribute_sca_dble_data_root()

subroutine comms_module::distribute_sca_dble_data_root (real(kind=dp), intent(in)
→˓senddata,

real(kind=dp), dimension
→˓(:), intent(inout) recvdata,

integer, intent(in) group
)

Applies an MPI_Gather call to gather together individual double precision real numbers from each processor to
the group’s root processor, which will gather together the received values into an array. Note that this subroutine
can be used for all processors by using the all-node communicator. (The serial version of this subroutine directly
copies the array for sending data into the array for receiving data.)

Parameters

send-
data

Double precision real number being sent to root processor

recv-
data

Array of double precision real numbers with values arriving from all processors (only needs to be
allocated for root processor)

group Communicator for group of processors

distribute_sca_int_data()

subroutine comms_module::distribute_sca_int_data (integer, dimension (:),
→˓intent(in) senddata,

integer, dimension (:),
→˓intent(inout) recvdata,

integer, intent(in) nodes,
integer, intent(in) group

)

Applies a series of MPI_Gather calls to scatter an array of integers from each processor to all processors in a group,
such that each processor will receive a single integer value from each sending processor, and gather together the
received values into an array. The data in the array being scattered by each processor should be in processor order
for the group, also noting that this subroutine can be used for all processors by using the all-node communicator.
(The serial version of this subroutine directly copies the array for sending data into the array for receiving data.)

Parameters

send-
data

Array of integers being scattered to all processors

recv-
data

Array of integers with values arriving from all processors

nodes Total number of processors in group involved in data distribution (equal to number of integers being
sent and received by all processors)

group Communicator for group of processors

10.7. comms_module.F90 697

DL_MESO Technical Manual, Release 2.7

distribute_sca_int_data_all()

subroutine comms_module::distribute_sca_int_data_all (integer, intent(in) senddata,
integer, dimension (:),

→˓intent(inout) recvdata,
integer, intent(in) group

)

Applies an MPI_Allgather call to gather together single integer values from each processor into an array of values
that is distributed to all processors. Note that this subroutine can be used for all processors by using the all-node
communicator. (The serial version of this subroutine directly copies the array for sending data into the array for
receiving data.)

Parameters

senddata Integer being sent to all processors for gathering together
recvdata Array of integers with gathered values
group Communicator for group of processors

distribute_sca_int_data_root()

subroutine comms_module::distribute_sca_int_data_root (integer, intent(in)
→˓senddata,

integer, dimension (:),
→˓intent(inout) recvdata,

integer, intent(in) group
)

Applies an MPI_Gather call to gather together single integer values from each processor to the group’s root
processor, which will gather together the received values into an array. Note that this subroutine can be used for
all processors by using the all-node communicator. (The serial version of this subroutine directly copies the array
for sending data into the array for receiving data.)

Parameters

send-
data

Integer being sent to root processor

recv-
data

Array of integers with values arriving from all processors (only needs to be allocated for root
processor)

group Communicator for group of processors

duplicate_group_comms()

subroutine comms_module::duplicate_group_comms (integer, intent(inout) comm1,
integer, intent(inout) comm2
)

Duplicate the provided MPI communicator for a group to produce a new copy. (Dummy subroutine in serial.)

Parameters

comm1 Communicator to be copied
comm2 Newly copied communicator

698 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

exitcomms()

subroutine comms_module::exitcomms

Synchronises all processors and calls MPI routine to close all communications to end the DL_MESO_DPD run
after a successful calculation. (Dummy subroutine in serial.)

global_and()

subroutine comms_module::global_and (logical, dimension (:) iii,
integer nnn,
integer nod,
integer idnode
)

Carries out an MPI_reduce operation on a logical array to find AND for all elements across all processors and
send the result to a single processor. (Dummy subroutine in serial.)

Parameters

iii Logical array with which to find global AND
nnn Size of logical array
nod Destination processor for result
idnode Current processor number

global_and_all()

subroutine comms_module::global_and_all (logical, dimension (:) iii,
integer nnn

)

Carries out an MPI_allreduce operation on a logical array to find AND for all elements across all processors and
share the result. (Dummy subroutine in serial.)

Parameters

iii Logical array with which to find global AND
nnn Size of logical array

global_or()

subroutine comms_module::global_or (logical, dimension (:) iii,
integer nnn,
integer nod,
integer idnode

)

Carries out an MPI_reduce operation on a logical array to find OR for all elements across all processors and send
the result to a single processor. (Dummy subroutine in serial.)

Parameters

iii Logical array with which to find global OR
nnn Size of logical array
nod Destination processor for result
idnode Current processor number

10.7. comms_module.F90 699

DL_MESO Technical Manual, Release 2.7

global_or_all()

subroutine comms_module::global_or_all (logical, dimension (:) iii,
integer nnn

)

Carries out an MPI_allreduce operation on a logical array to find OR for all elements across all processors and
share the result. (Dummy subroutine in serial.)

Parameters

iii Logical array with which to find global OR
nnn Size of logical array

global_sca_and()

subroutine comms_module::global_sca_and (logical iii,
integer nod,
integer idnode

)

Carries out an MPI_reduce operation on a logical scalar to find AND across all processors and send the result to a
single processor. (Dummy subroutine in serial.)

Parameters

iii Logical scalar with which to find global AND
nod Destination processor for result
idnode Current processor number

global_sca_and_all()

subroutine comms_module::global_sca_and_all (logical iii)

Carries out an MPI_allreduce operation on a logical scalar to find AND across all processors and share the result.
(Dummy subroutine in serial.)

Parameters

iii Logical scalar with which to find global AND

global_sca_max_dble()

subroutine comms_module::global_sca_max_dble (real(kind=dp) aaa)

Carries out an MPI_allreduce operation on a double precision real number to find maximum across all processors
and share the result. (Dummy subroutine in serial.)

Parameters

aaa Double precision real number with which to find global maximum

700 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

global_sca_max_int()

subroutine comms_module::global_sca_max_int (integer iii)

Carries out an MPI_allreduce operation on an integer to find maximum across all processors and share the result.
(Dummy subroutine in serial.)

Parameters

iii Integer with which to find global maximum

global_sca_min_dble()

subroutine comms_module::global_sca_min_dble (real(kind=dp) aaa)

Carries out an MPI_allreduce operation on a double precision real number to find minimum across all processors
and share the result. (Dummy subroutine in serial.)

Parameters

aaa Double precision real number with which to find global minimum

global_sca_min_int()

subroutine comms_module::global_sca_min_int (integer iii)

Carries out an MPI_allreduce operation on an integer to find minimum across all processors and share the result.
(Dummy subroutine in serial.)

Parameters

iii Integer with which to find global minimum

global_sca_or()

subroutine comms_module::global_sca_or (logical iii,
integer nod,
integer idnode

)

Carries out an MPI_reduce operation on a logical scalar to find OR across all processors and send the result to a
single processor. (Dummy subroutine in serial.)

Parameters

iii Logical scalar with which to find global OR
nod Destination processor for result
idnode Current processor number

10.7. comms_module.F90 701

DL_MESO Technical Manual, Release 2.7

global_sca_or_all()

subroutine comms_module::global_sca_or_all (logical iii)

Carries out an MPI_allreduce operation on a logical scalar to find OR across all processors and share the result.
(Dummy subroutine in serial.)

Parameters

iii Logical scalar with which to find global OR

global_sum_dble()

subroutine comms_module::global_sum_dble (real(kind=dp), dimension (:) aaa,
integer nnn
)

Carries out an MPI_allreduce operation on an array of double precision real numbers to find the sums for all
elements across all processors and share the result. (Dummy subroutine in serial.)

Parameters

aaa Double precision real array on which to apply global summation
nnn Size of double precision real array

global_sum_int()

subroutine comms_module::global_sum_int (integer, dimension (:) iii,
integer nnn

)

Carries out an MPI_allreduce operation on an array of integers to find the sums for all elements across all proces-
sors and share the result. (Dummy subroutine in serial.)

Parameters

iii Integer array on which to apply global summation
nnn Size of integer array

global_sum_sca_dble()

subroutine comms_module::global_sum_sca_dble (real(kind=dp) aaa)

Carries out an MPI_allreduce operation on a double precision real number to find the sum across all processors
and share the result. (Dummy subroutine in serial.)

Parameters

aaa Double precision real number on which to apply global summation

702 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

global_sum_sca_int()

subroutine comms_module::global_sum_sca_int (integer iii)

Carries out an MPI_allreduce operation on an integer to find the sum across all processors and share the result.
(Dummy subroutine in serial.)

Parameters

iii Integer on which to apply global summation

group_gsync()

subroutine comms_module::group_gsync (integer, intent(in) group)

Pauses running until all processors in the group are synchronised and have reached a given point in the code:
needed when the entire group needs to be involved with what happens subsequently. (Dummy subroutine in
serial.)

Parameters

group Communicator for group

group_sum_cmplx_all()

subroutine comms_module::group_sum_cmplx_all (complex(kind=dp), dimension (:) aaa,
integer nnn,
integer group

)

Carries out an MPI_allreduce operation on an array of double precision complex numbers to find the sum across
all processors in a specified group and share the result among the entire group. (Dummy subroutine in serial.)

Parameters

aaa Double precision complex array on which to apply group-wide summation
nnn Size of double precision complex array
group Communicator for specified group of processors

group_sum_sca_int()

subroutine comms_module::group_sum_sca_int (integer, intent(inout) iii,
integer, intent(in) group,
integer, intent(in) rank

)

Carries out an MPI_reduce operation on an integer to find the sum across all processors in a specified group and
send the result to the group’s root processor. (Dummy subroutine in serial.)

Parameters

iii Integer on which to apply group-wide summation
group Communicator for specified group of processors
rank Rank for processor within the specified group

10.7. comms_module.F90 703

DL_MESO Technical Manual, Release 2.7

group_sum_sca_int_all()

subroutine comms_module::group_sum_sca_int_all (integer, intent(inout) iii,
integer, intent(in) group
)

Carries out an MPI_allreduce operation on an integer to find the sum across all processors in a specified group and
share the result among the entire group. (Dummy subroutine in serial.)

Parameters

iii Integer on which to apply group-wide summation
group Communicator for specified group of processors

gsync()

subroutine comms_module::gsync

Pauses running until all processors are synchronised and have reached a given point in the code: needed when all
processors need to be involved with what happens subsequently. (Dummy subroutine in serial.)

initcomms()

subroutine comms_module::initcomms

Starts the Message Passing Interface (MPI), each processor establishes a communicator for itself and for all pro-
cessors involved in the instance of DL_MESO_DPD, works out the sizes of real and integer kinds and assigns
MPI kinds for real and complex numbers. (In serial, only the sizes of real and integer kinds are determined.)

io_ansi_open()

subroutine comms_module::io_ansi_open (integer, intent(in) comm,
character(len=*), intent(in) name,
integer, intent(inout) handle,
integer, intent(in) ioport

)

Open an ANSI text file that can be accessed by a group of writing processors identified by an MPI communicator,
creating a handle to identify the file when using MPI-IO (part of MPI-2 and later). If running in serial, this
subroutine opens a stream formatted (text) file using a standard Fortran I/O channel (not used in parallel) and sets
the handle to the value of this channel.

Parameters

comm MPI communicator for writing group of processors
name Name of file being opened
handle Handle or information object used for MPI-IO calls
ioport Fortran I/O channel used for serial running

704 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

io_close()

subroutine comms_module::io_close (integer, intent(inout) handle)

The file writing handle is used to close the specified output file (either binary or ANSI text).

Parameters

handle Handle used for MPI-IO calls (parallel) or to identify Fortran I/O channel (serial)

io_open()

subroutine comms_module::io_open (integer, intent(in) comm,
character(len=*), intent(in) name,
integer, intent(inout) handle,
integer, intent(in) ioport

)

Open a stream binary file that can be accessed by a group of writing processors identified by an MPI communicator,
creating a handle to identify the file when using MPI-IO (part of MPI-2 and later). If running in serial, this
subroutine opens a stream unformatted (binary) file using a standard Fortran I/O channel (not used in parallel) and
sets the handle to the value of this channel.

Parameters

comm MPI communicator for writing group of processors
name Name of file being opened
handle Handle or information object used for MPI-IO calls
ioport Fortran I/O channel used for serial running

io_write_batch_char()

subroutine comms_module::io_write_batch_char (integer, intent(in) handle,
integer(kind=li), intent(in) offset,
character(len=*), intent(in)

→˓charwrite,
integer, intent(in) writecount

)

Writes a contiguous series (stream) of characters (string) to an opened ANSI text file identified by the file-writing
handle (equivalent to the I/O channel in serial) starting at an offset from the beginning of the file given in bytes:
the first character in the file is 1.

Parameters

handle Handle used for MPI-IO calls (parallel) or to identify Fortran I/O channel (serial)
offset Starting location for string to be written as byte number in file
charwrite Characters (string) to be written to file
writecount Number of characters to write to file

10.7. comms_module.F90 705

DL_MESO Technical Manual, Release 2.7

io_write_batch_dble()

subroutine comms_module::io_write_batch_dble (integer, intent(in) handle,
integer(kind=li), intent(in) offset,
real(kind=dp), dimension (:),

→˓intent(in) dblewrite,
integer, intent(in) writecount

)

Writes a contiguous series (stream) of double precision real numbers to an opened binary file identified by the
file-writing handle (equivalent to the I/O channel in serial) starting at an offset from the beginning of the file given
in bytes: the first character in the file is 1.

Parameters

handle Handle used for MPI-IO calls (parallel) or to identify Fortran I/O channel (serial)
offset Starting location for double precision real numbers to be written as byte number in file
dblewrite Double precision real numbers to be written to file
writecount Number of double precision real numbers to write to file

io_write_batch_int()

subroutine comms_module::io_write_batch_int (integer, intent(in) handle,
integer(kind=li), intent(in) offset,
integer, dimension (:), intent(in)

→˓intwrite,
integer, intent(in) writecount

)

Writes a contiguous series (stream) of integers to an opened binary file identified by the file-writing handle (equiv-
alent to the I/O channel in serial) starting at an offset from the beginning of the file given in bytes: the first character
in the file is 1.

Parameters

handle Handle used for MPI-IO calls (parallel) or to identify Fortran I/O channel (serial)
offset Starting location for integers to be written as byte number in file
intwrite Integers to be written to file
writecount Number of integers to write to file

io_write_dble()

subroutine comms_module::io_write_dble (integer, intent(in) handle,
integer(kind=li), intent(in) offset,
real(kind=dp), intent(in) dblewrite

)

Writes a single double precision real number to an opened binary file identified by the file-writing handle (equiva-
lent to the I/O channel in serial) at an offset from the beginning of the file given in bytes: the first character in the
file is 1.

Parameters

handle Handle used for MPI-IO calls (parallel) or to identify Fortran I/O channel (serial)
offset Starting location for double precision real number to be written as byte number in file
dblewrite Double precision real number to be written to file

706 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

io_write_int()

subroutine comms_module::io_write_int (integer, intent(in) handle,
integer(kind=li), intent(in) offset,
integer, intent(in) intwrite

)

Writes a single integer to an opened binary file identified by the file-writing handle (equivalent to the I/O channel
in serial) at an offset from the beginning of the file given in bytes: the first character in the file is 1.

Parameters

handle Handle used for MPI-IO calls (parallel) or to identify Fortran I/O channel (serial)
offset Starting location for integer to be written as byte number in file
intwrite Integer to be written to file

io_write_longint()

subroutine comms_module::io_write_longint (integer, intent(in) handle,
integer(kind=li), intent(in) offset,
integer(kind=li), intent(in)

→˓longintwrite
)

Writes a single long integer to an opened binary file identified by the file-writing handle (equivalent to the I/O
channel in serial) at an offset from the beginning of the file given in bytes: the first character in the file is 1.

Parameters

handle Handle used for MPI-IO calls (parallel) or to identify Fortran I/O channel (serial)
offset Starting location for long integer to be written as byte number in file
l ongintwrite Long integer to be written to file

msg_receive_blocked()

subroutine comms_module::msg_receive_blocked (integer msgtag,
real(kind=dp), dimension (:) buf,
integer length

)

Receives an array of double precision real numbers from any processor as part of an MPI blocking send/receive
call, i.e. the code has to wait until the array is received. (Dummy subroutine in serial.)

Parameters

msgtag MPI message tag associated with send/receive
buf Received array of double precision real numbers
length Size of incoming array in bytes

10.7. comms_module.F90 707

DL_MESO Technical Manual, Release 2.7

msg_receive_blocked_pe()

subroutine comms_module::msg_receive_blocked_pe (integer msgtag,
real(kind=dp), dimension (:) buf,
integer length,
integer pe

)

Receives an array of double precision real numbers from a specific processor as part of an MPI blocking
send/receive call, i.e. the code has to wait until the array is received.

Parameters

msgtag MPI message tag associated with send/receive
buf Received array of double precision real numbers
length Size of incoming array in bytes
pe Source processor of incoming array

msg_receive_sca_blocked()

subroutine comms_module::msg_receive_sca_blocked (integer msgtag,
real(kind=dp) buf,
integer length

)

Receives one double precision real number from any processor as part of an MPI blocking send/receive call, i.e.
the code has to wait until the array is received. (Dummy subroutine in serial.)

Parameters

msgtag MPI message tag associated with send/receive
buf Received double precision real number
length Size of incoming number in bytes

msg_receive_sca_blocked_pe()

subroutine comms_module::msg_receive_sca_blocked_pe (integer msgtag,
real(kind=dp) buf,
integer length,
integer pe
)

Receives one double precision real number from a specific processor as part of an MPI blocking send/receive call,
i.e. the code has to wait until the array is received.

Parameters

msgtag MPI message tag associated with send/receive
buf Received double precision real number
length Size of incoming number in bytes
pe Source processor of incoming number

708 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

msg_receive_unblocked()

integer function comms_module::msg_receive_unblocked (integer msgtag,
real(kind=dp), dimension (:)

→˓buf,
integer length

)

Receives an array of double precision real numbers from any processor as part of an MPI non-blocking
send/receive call, i.e. the code does not have to wait until the array is received but the MPI message has to
be explicitly requested using the number returned by this function. (Dummy subroutine in serial.)

Parameters

msgtag MPI message tag associated with send/receive
buf Received array of double precision real numbers
length Size of incoming array in bytes

msg_receive_unblocked_grid_pe()

integer function comms_module::msg_receive_unblocked_grid_pe (integer msgtag,
→˓real(kind=dp), dimension (x0:x1,y0:y1,z0:z1) buf,

integer x0,
integer x1,
integer y0,
integer y1,
integer z0,
integer z1,
integer length,
integer pe

)

Receives a three-dimensional array of double precision real numbers from a specific processor as part of an MPI
non-blocking send/receive call, i.e. the code does not have to wait until the array is received but the MPI message
has to be explicitly requested using the number returned by this function.

Parameters

msgtag MPI message tag associated with send/receive
buf Received three-dimensional array of double precision real numbers
x0 Minimum extent of x in array
x1 Maximum extent of x in array
y0 Minimum extent of y in array
y1 Maximum extent of y in array
z0 Minimum extent of z in array
z1 Maximum extent of z in array
length Size of incoming array in bytes
pe Source processor of incoming array

10.7. comms_module.F90 709

DL_MESO Technical Manual, Release 2.7

msg_receive_unblocked_pe()

integer function comms_module::msg_receive_unblocked_pe (integer msgtag,
real(kind=dp), dimension

→˓(:) buf,
integer length,
integer pe

)

Receives an array of double precision real numbers from a specific processor as part of an MPI non-blocking
send/receive call, i.e. the code does not have to wait until the array is received but the MPI message has to be
explicitly requested using the number returned by this function. (Dummy subroutine in serial.)

Parameters

msgtag MPI message tag associated with send/receive
buf Received array of double precision real numbers
length Size of incoming array in bytes
pe Source processor of incoming array

msg_send_blocked()

subroutine comms_module::msg_send_blocked (integer msgtag,
real(kind=dp), dimension (:) buf,
integer length,
integer pe

)

Sends an array of double precision real numbers to a specific processor as part of an MPI blocking send/receive
call, i.e. the code has to wait until the array is received. (Dummy subroutine in serial.)

Parameters

msgtag MPI message tag associated with send/receive
buf Sent array of double precision real numbers
length Size of outgoing array in bytes
pe Destination processor of outgoing array

msg_send_blocked_grid()

subroutine comms_module::msg_send_blocked_grid (integer msgtag,
real(kind=dp), dimension (x0:x1,

→˓y0:y1,z0:z1) buf,
integer x0,
integer x1,
integer y0,
integer y1,
integer z0,
integer z1,
integer length,
integer pe
)

Sends a three-dimensional array of double precision real numbers from a specific processor as part of an MPI
blocking send/receive call, i.e. the code has to wait until the array is received. (Dummy subroutine in serial.)

Parameters

710 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

msgtag MPI message tag associated with send/receive
buf Sent three-dimensional array of double precision real numbers
x0 Minimum extent of x in array
x1 Maximum extent of x in array
y0 Minimum extent of y in array
y1 Maximum extent of y in array
z0 Minimum extent of z in array
z1 Maximum extent of z in array
length Size of outgoing array in bytes
pe Destination processor of outgoing array

msg_send_sca_blocked()

subroutine comms_module::msg_send_sca_blocked (integer msgtag,
real(kind=dp) buf,
integer length,
integer pe

)

Sends an individual double precision real number to a specific processor as part of an MPI blocking send/receive
call, i.e. the code has to wait until the number is received. (Dummy subroutine in serial.)

Parameters

msgtag MPI message tag associated with send/receive
buf Sent double precision real number
length Size of outgoing number in bytes
pe Destination processor of outgoing number

msg_send_unblocked()

integer function comms_module::msg_send_unblocked (integer msgtag,
real(kind=dp), dimension (:)

→˓buf,
integer length,
integer pe

)

Sends an array of double precision real numbers to a specific processor as part of an MPI non-blocking
send/receive call, i.e. the code does not have to wait until the array is received but the MPI message has to
be explicitly requested using the number returned by this function.

Parameters

msgtag MPI message tag associated with send/receive
buf Received array of double precision real numbers
length Size of incoming array in bytes
pe Destination processor of outgoing array

10.7. comms_module.F90 711

DL_MESO Technical Manual, Release 2.7

msg_wait()

subroutine comms_module::msg_wait (integer request)

As part of an MPI non-blocking send/receive call, this routine waits for a specified MPI request obtained from a
non-blocking send or receive to complete before continuing. (Dummy subroutine in serial.)

Parameters

request MPI call request number

msg_wait_and_size_double()

integer function comms_module::msg_wait_and_size_double (integer request)

As part of an MPI non-blocking send/receive call, this function waits for a specified MPI request obtained from
a non-blocking send or receive to complete before continuing and returns the message size, i.e. the number of
values in the (presumed) double precision real array.

Parameters

request MPI call request number

mynode()

integer function comms_module::mynode

Finds rank (number) of current processor, which can range from 0 to the number of processors less 1. (The serial
version of this function always returns 0.)

numnodes()

integer function comms_module::numnodes

Finds the total number of processors available for DL_MESO_DPD to run. (The serial version of this function
always returns 1.)

timchk()

subroutine comms_module::timchk (integer ktim,
real(kind=dp) time

)

This subroutine is used to determine the time elapsed since the start of the calculation: the first call initiates the
timer and subsequent calls return the number of second elapsed since then. If the input parameter is greater than
0, a statement giving the elapsed time will be printed to either the OUTPUT file or the standard output (if the
‘l_scr’ option in CONTROL is invoked). The parallel version of this subroutine uses MPI wall time, while the
serial version uses a generic Fortran system clock call.

Parameters

ktim Flag for printing time to OUTPUT or standard output (greater than 0 to activate)
time Number of seconds elapsed since first call to subroutine to start timer

712 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.7.5 Variable Documentation

cx_mpi

integer save comms_module::cx_mpi = 0

Integer with the MPI kind value for double precision complex numbers, with the initial default value of 0 replaced
only during initcomms() when running in parallel.

dlen

integer save comms_module::dlen = 0

Integer with the Fortran kind value for double precision real numbers, with the initial default value of 0 replaced
during initcomms().

dlen_li

integer (kind=li), save comms_module::dlen_li = 0

Long integer with the Fortran kind value for double precision real numbers, with the initial default value of 0
replaced during initcomms().

dlm_comm_world

integer save comms_module::dlm_comm_world = 0

Variable with number of all-node MPI communicator for the current instance of DL_MESO_DPD: the initial
default value of 0 (retained in the serial version) is replaced in the parallel version during initcomms() with the
value of MPI_COMM_WORLD.

dp_mpi

integer save comms_module::dp_mpi = 0

Integer with the MPI kind value for double precision real numbers, with the initial default value of 0 replaced only
during initcomms() when running in parallel.

ilen

integer save comms_module::ilen = 0

Integer with the Fortran kind value for standard integers, with the initial default value of 0 replaced during init-
comms().

10.7. comms_module.F90 713

DL_MESO Technical Manual, Release 2.7

ilen_li

integer (kind=li), save comms_module::ilen_li = 0

Long integer with the Fortran kind value for standard integers, with the initial default value of 0 replaced during
initcomms().

lilen

integer save comms_module::lilen = 0

Integer with the Fortran kind value for long integers, with the initial default value of 0 replaced during initcomms().

lilen_li

integer (kind=li), save comms_module::lilen_li = 0

Long integer with the Fortran kind value for long integers, with the initial default value of 0 replaced during
initcomms().

self_comm

integer save comms_module::self_comm = 0

Variable with number of single node MPI communicator for the current instance of DL_MESO_DPD: the initial
default value of 0 (retained in the serial version) is replaced in the parallel version during initcomms() with the
value of MPI_COMM_SELF.

10.8 config_module.F90

10.8.1 Summary

Module to set up simulation by reading in system data and determining simulation properties.

10.8.2 Functions/Subroutines

• subroutine sysdef()

Reads in system data to specify simulation, writes information to OUTPUT or standard output and sets up
main arrays.

• subroutine elecgen()

Sets up electrostatic parameters for Ewald self-interaction and charged system corrections.

• logical function fft_length_ok()

Checks magnitude of maximum reciprocal vector for FFT solvers.

• subroutine free_memory()

Deallocates all arrays at the end of the simulation.

• subroutine zero()

Initialises counters, system parameters etc. before starting calculation.

714 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.8.3 Function/Subroutine Documentation

elecgen()

subroutine config_module::elecgen

Based on total numbers of charged particles, calculates system-wide corrections to potential energies for Ewald
self-interactions of charges and for systems that are not charge neutral. This subroutine also checks for valid
maximum reciprocal vectors and adjusts these upwards for SPME calculations if any component does not factorise
into powers of 2, 3 or 5.

fft_length_ok()

logical function config_module::fft_length_ok (integer kmax)

Checks the magnitude of a supplied maximum reciprocal space extent to see if it factorises into powers of 2, 3 and
5, as required for available Fast Fourier Transform (FFT) solvers used for Smooth Particle Mesh Ewald (SPME).
Returns true if the value can be factorised by at least one of these values, false if it cannot.

Parameters

kmax Maximum reciprocal vector being tested

free_memory()

subroutine config_module::free_memory

Frees up memory used by DL_MESO_DPD during the calculation for arrays, both those used directly during
calculations and those specifying simulation properties.

sysdef()

subroutine config_module::sysdef (logical l_config,
logical l_rest

)

Reads in system data, determines simulation properties (including how it will be run on available processor nodes),
allocates main arrays for calculations and prints information to OUTPUT file or standard output. This subroutine
calculates maximum array sizes for numbers of particles, pairwise interactions and communication buffers based
on supplied total numbers of particles, link cells and available processor nodes.

Parameters

l_config Flag to determine if CONFIG file is to be used to provide initial configuration
l_rest Flag to determine if restarting a previous simulation using an export file (and REVIVE file)

10.8. config_module.F90 715

DL_MESO Technical Manual, Release 2.7

zero()

subroutine config_module::zero

Sets step counters, initial time parameters, system parameters, accumulators for statistical properties, long-range
potential corrections and particle properties (forces, velocities, positions) to zero, and initialises random number
generators using supplied seed.

10.9 domain_module.F90

10.9.1 Summary

Module to specify subdomains for each processor node, establish linked cell lists and subroutines
to carry out node-to-node communications. (A serial version of this module is available as do-
main_module_ser.F90, which includes some modified versions of the subroutines and excludes others
that are not necessary for running on a single processor.)

10.9.2 Functions/Subroutines

• subroutine domain_decompose()

Determines how system is divided up among processor nodes.

• subroutine domain_dimensions()

Determines the dimensions of the subdomain and link cells.

• subroutine parlnk()

Constructs parallel link cells.

• subroutine resize_buffer()

Resizes arrays for communication transfer buffers between processor nodes.

• subroutine deport()

Deports particles outside subdomain to neighbouring nodes.

• subroutine deport_shear()

Deports particles outside subdomain to appropriate nodes for Lees-Edwards shearing boundaries.

• subroutine import()

Imports forces for particles in boundary halos back to original processor nodes.

• subroutine import_shear()

Imports forces for particles in boundary halos back to original processor nodes for Lees-Edwards shearing
boundaries.

• subroutine importvariable()

Imports two sets of forces for particles in boundary halos back to original processor nodes.

• subroutine importvariable_shear()

Imports two sets of forces for particles in boundary halos back to original processor nodes for Lees-Edwards
shearing boundaries.

• subroutine export

Exports particle data to neighbouring nodes or across box for boundary halo creation.

716 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• subroutine export_shear()

Exports particle data to neighbouring nodes or across box for boundary halo creation when using Lees-
Edwards boundaries.

• subroutine exportvelocity()

Exports particle data to neighbouring nodes or across box for updates to positions or velocities in boundary
halo.

• subroutine exportvelocity_shear()

Exports particle data to neighbouring nodes or across box for updates to positions or velocities in boundary
halo when using Lees-Edwards boundaries.

• subroutine exportdensity()

Exports particle data to neighbouring nodes or across box for boundary halo used in many-body DPD
density calculations.

• subroutine exportdensity_shear()

Exports particle data to neighbouring nodes or across box for boundary halo used in many-body DPD
density calculations when using Lees-Edwards boundaries.

• subroutine deportdata()

Applies particle deport to neighbouring domains and/or periodic boundary conditions.

• subroutine importdata()

Applies particle import from neighbouring domains and/or across periodic boundaries.

• subroutine importdata_dpdvv()

Applies particle import from neighbouring domains and/or across periodic boundaries for DPD Velocity
Verlet.

• subroutine importdata_stoyanov()

Applies particle import from neighbouring domains and/or across periodic boundaries for Stoyanov-Groot.

• subroutine exportdata()

Applies particle export from neighbouring domains and/or across periodic boundaries.

• subroutine exportvelocitydata()

Applies particle export from neighbouring domains and/or across periodic boundaries to update particle
positions or velocities.

• subroutine exportdensitydata()

Applies particle export from neighbouring domains and/or across periodic boundaries for many-body DPD
localised density calculations.

10.9.3 Variables

• integer, parameter bufnum

Maximum number of communication buffers.

10.9. domain_module.F90 717

DL_MESO Technical Manual, Release 2.7

10.9.4 Function/Subroutine Documentation

deport()

subroutine domain_module::deport (integer nlimit,
integer mdir,
integer mp_send,
integer mp_recv,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
logical skip

)

Moves particles that currently exist outside volume for subdomain (after first stage of Velocity Verlet integration) to
neighbouring processor nodes. All data including any relevant bond, angle and dihedral information are transferred
for each particle. A switch is available to prevent particles being transferred when using non-periodic boundary
conditions (e.g. hard surfaces, Lees-Edwards shearing). This subroutine is only needed for the parallel version of
DL_MESO_DPD, as no particles need to be transferred when only using a single processor node.

Parameters

nlimit Number of particles in subdomain (subjected to change during routine)
mdir Dimension to search for particles outside subdomain (1 = x, 2 = y, 3 = z)
mp_send Destination processor node for sending particle data
mp_recv Source processor node for receiving particle data
begin Smallest coordinate in given direction for particle to be sent to neighbouring node
final Largest coordinate in given direction for particle to be sent to neighbouring node
shove Required shift for coordinate in given direction when particle is sent to neighbouring node
skip Switch to specify whether or not particles should be omitted from being moved in current direction

deport_shear()

subroutine domain_module::deport_shear (integer nlimit,
integer mdir,
integer shft,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,
real(kind=dp) vshove1,
real(kind=dp) vshove2,
real(kind=dp) side1,
real(kind=dp) side2

)

Moves particles that currently exist outside volume for subdomain (after first stage of Velocity Verlet integration)
to processor nodes on opposite side of simulation box that enable position shifting required for Lees-Edwards
shearing boundaries. All data including any relevant bond, angle and dihedral information are transferred for each
particle. This subroutine requires the displacement of particles due to shear and the velocity corrections in both
directions orthogonal to the boundary. A switch is included to use different MPI tags if the subroutine is called
twice by the same processor node. This subroutine is only needed for the parallel version of DL_MESO_DPD, as
no particles need to be transferred when only using a single processor node.

Parameters

718 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nlimit Number of particles in subdomain (subjected to change during routine)
mdir Direction to search for particles outside subdomain (1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z, 6 = +z)
shft Switch to change communication tag if calling more than once
begin Smallest coordinate in given direction for particle to be sent to destination nodes
final Largest coordinate in given direction for particle to be sent to destination nodes
shove Required shift for coordinate in given direction when particle is sent to destination nodes
shove1 Required shift in first orthogonal coordinate when particle is sent to destination nodes
shove2 Required shift in second orthogonal coordinate when particle is sent to destination nodes
vshove1 Required change in velocity for first orthogonal coordinate when particle is sent to destination nodes
vshove2 Required change in velocity in second orthogonal coordinate when particle is sent to destination

nodes
side1 Size of subdomain in first orthogonal coordinate
side2 Size of subdomain in second orthogonal coordinate

deportdata()

subroutine domain_module::deportdata (integer nlimit)

Determines particles that need to be moved to/from current processor, simulataneously applying periodic boundary
conditions with and without Lees-Edwards shearing. The serial version of this routine applies the boundary
conditions by using mathematical functions on particle positions, as no change in the number of particles is
required. This routine is a common interface in DL_MESO_DPD for both parallel and serial running.

Parameters

nlimit Number of particles currently in subdomain (subjected to change during routine if running in parallel)

domain_decompose()

subroutine domain_module::domain_decompose

Determines the three-dimensional domain decomposition for the system, including the number of nodes in each
direction, the location for each node in the system and the nearest neighbouring nodes required for node-to-node
communications.

domain_dimensions()

subroutine domain_module::domain_dimensions

Determines the size of the subdomain (the same for all processor nodes) and the number and sizes of link cells in
each direction for pairwise interactions. This subroutine is called during simulation setup and whenever the system
volume changes due to use of a barostat. Different link cells exist for ‘standard’ pairwise forces, electrostatic forces
in real space and many-body DPD localised density calculations: the subroutine determines the sizes of linked
cell list arrays and which link cells are neighbours to each cell in the subdomain.

10.9. domain_module.F90 719

DL_MESO Technical Manual, Release 2.7

export()

Parallel version

subroutine domain_module::export (integer nlimit,
integer mdir,
integer mp_send,
integer mp_recv,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
logical skip,
logical listadd,
integer bmove

)

Serial version

subroutine domain_module::export (integer nlimit,
integer mdir,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove

)

Sends particle positions, velocities and (if using many-body DPD) localised densities to neighbouring nodes or to
opposite side of simulation volume to create boundary halos for force calculations, particularly those involving
pairwise interactions. Two switches are available: one to prevent particle data being transferred across non-
periodic boundaries (i.e. hard surfaces, Lees-Edwards shearing boundaries), the other to add any incoming par-
ticles to the global/local particle index list for bonded interactions. In parallel, this subroutine also returns the
number of particles received to check and adjust buffer array sizes for future time steps.

Parameters

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Dimension to send particles from inside subdomain (1 = x, 2 = y, 3 = z)
mp_send Destination processor node for sending particle data
mp_recv Source processor node for receiving particle data
begin Smallest coordinate in given direction for particle data to be sent to neighbouring node/across box
final Largest coordinate in given direction for particle data to be sent to neighbouring node/across box
shove Required shift for coordinate in given direction when particle data are sent to neighbouring

node/across box
skip Switch to specify whether or not particles should be omitted from being moved in current direction
listadd Switch to specify whether or not incoming particles should be added to global/local particle index

list for bonded interactions
bmove Number of particles received during communication to check and adjust buffer array sizes

export_shear()

Parallel version

subroutine domain_module::export_shear (integer nlimit,
integer mdir,
integer shft,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,

(continues on next page)

720 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

real(kind=dp) vshove1,
real(kind=dp) vshove2,
real(kind=dp) side1,
real(kind=dp) side2,
logical listadd,
integer bmove

)

Serial version

subroutine domain_module::export_shear (integer nlimit,
integer mdir,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,
real(kind=dp) vshove1,
real(kind=dp) vshove2,
real(kind=dp) side1,
real(kind=dp) side2

)

Sends particle positions, velocities and (if using many-body DPD) localised densities - either (in parallel) to pro-
cessor nodes on opposite side of simulation box that enable position shifting required for Lees-Edwards shearing
boundaries, or (in serial) to opposite side of simulation box while applying position shifting required for Lees-
Edwards shearing boundaries - to create boundary halos for force calculations, particularly those involving pair-
wise interactions. This subroutine requires the displacement of particles due to shear and the velocity corrections
in both directions orthogonal to the boundary: the velocities of particles entering the boundary halo are adjusted
to remove the discontinuity in relative velocities that would otherwise exist [77]. Two switches are available for
parallel running: one to use different MPI tags if the subroutine is called twice by the same processor node, the
other to add any incoming particles to the global/local particle index list for bonded interactions. The parallel
version of this subroutine also returns the number of particles received to check and adjust buffer array sizes for
future time steps.

Parameters

nlimit Number of particles in subdomain (subjected to change during routine)
mdir Direction to send particles from inside subdomain (1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z, 6 = +z)
shft Switch to change communication tag if calling more than once
begin Smallest coordinate in given direction for particle to be sent to destination nodes/across box
final Largest coordinate in given direction for particle to be sent to destination nodes/across box
shove Required shift for coordinate in given direction when particle is sent to destination nodes/across box
shove1 Required shift in first orthogonal coordinate when particle is sent to destination nodes/across box
shove2 Required shift in second orthogonal coordinate when particle is sent to destination nodes/across box
vshove1 Required change in velocity for first orthogonal coordinate when particle is sent to destination nodes/

across box
vshove2 Required change in velocity in second orthogonal coordinate when particle is sent to destination

nodes/ across box
side1 Size of subdomain in first orthogonal coordinate
side2 Size of subdomain in second orthogonal coordinate
listadd Switch to specify whether or not incoming particles should be added to global/local particle index

list for bonded interactions
bmove Number of particles received during communication to check and adjust buffer array sizes

10.9. domain_module.F90 721

DL_MESO Technical Manual, Release 2.7

exportdata()

subroutine domain_module::exportdata (integer nlimit)

Sends and receives particle data from neighbouring processors - including those used for Lees-Edwards shearing
boundaries, but excluding other non-periodic boundaries - to create boundary halos for force calculations. The
particles sent in each direction are recorded in memory for any subsequent export steps to update particle velocities
and positions. The serial version of this routine applies this procedure by creating copies of particles that would be
in the boundary halo, so as to allow use of the same force calculation methods for both serial and parallel running.
As the most memory intensive form of export step, the parallel version also checks the transfer buffer arrays used
to send and receive data are large enough while the system is still equilibrating or if many-body DPD is in use
and readjusts the buffers for subsequent timesteps if more than 85% of the allocated memory was in use. This
subroutine is a common interface in DL_MESO_DPD for both parallel and serial running.

Parameters

nlimit Number of particles currently in subdomain and boundary halo (subjected to change during routine)

exportdensity()

Parallel version

subroutine domain_module::exportdensity (integer nlimit,
integer mdir,
integer mp_send,
integer mp_recv,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
logical skip

)

Serial version

subroutine domain_module::exportdensity (integer nlimit,
integer mdir,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove

)

Sends particle positions to neighbouring nodes or across simulation box to create boundary halos for calculations
of localised densities used for many-body DPD interactions. A switch is available in the parallel version to
prevent particle data being transferred across non-periodic boundaries (i.e. hard surfaces, Lees-Edwards shearing
boundaries).

Parameters

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Dimension to send particles from inside subdomain (1 = x, 2 = y, 3 = z)
mp_send Destination processor node for sending particle data
mp_recv Source processor node for receiving particle data
begin Smallest coordinate in given direction for particle data to be sent to neighbouring node/across box
final Largest coordinate in given direction for particle data to be sent to neighbouring node/across box
shove Required shift for coordinate in given direction when particle and its force are sent to neighbouring

node/ across box
skip Switch to specify whether or not particles should be omitted from being moved in current direction

722 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

exportdensity_shear()

Parallel version

subroutine domain_module::exportdensity_shear (integer nlimit,
integer mdir,
integer shft,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,
real(kind=dp) side1,
real(kind=dp) side2

)

Serial version

subroutine domain_module::exportdensity_shear (integer nlimit,
integer mdir,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,
real(kind=dp) side1,
real(kind=dp) side2

)

Sends particle positions - either (in parallel) to processor nodes on opposite side of simulation box, or (in serial)
across simulation box - with position shifting required for Lees-Edwards shearing boundaries, as needed to create
boundary halos for calculations of localised densities used for many-body DPD interactions. This subroutine
requires the displacement of of particles due to shear in both directions orthogonal to the boundary. A switch is
available to use different MPI tags if the subroutine is called twice by the same processor node.

Parameters

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Direction to send particles from inside subdomain (1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z, 6 = +z)
shft Switch to change communication tag if calling more than once
begin Smallest coordinate in given direction for particle data to be sent to destination nodes/across box
final Largest coordinate in given direction for particle data to be sent to destination nodes/across box
shove Required shift for coordinate in given direction when particle is sent to destination nodes/across box
shove1 Required shift in first orthogonal coordinate when particle is sent to destination nodes/across box
shove2 Required shift in second orthogonal coordinate when particle is sent to destination nodes/across box
side1 Size of subdomain in first orthogonal coordinate
side2 Size of subdomain in second orthogonal coordinate

exportdensitydata()

subroutine domain_module::exportdensitydata (integer nlimit)

Sends and receives particle data from neighbouring processors - including those used for Lees-Edwards shearing
boundaries, but excluding other non-periodic boundaries - to create boundary halos for localised density calcu-
lations required for many-body DPD interactions. The serial version of this routine applies this procedure by
creating copies of particles that would be in the boundary halo, so as to allow use of the same density calculation
methods for both serial and parallel running. This subroutine is a common interface in DL_MESO_DPD for both
parallel and serial running.

Parameters

10.9. domain_module.F90 723

DL_MESO Technical Manual, Release 2.7

nlimit Number of particles currently in subdomain and boundary halo (subjected to change during routine)

exportvelocity()

Parallel version

subroutine domain_module::exportvelocity (integer nlimit,
integer mdir,
integer mp_send,
integer mp_recv,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
logical skip
)

Serial version

subroutine domain_module::exportvelocity (integer nlimit,
integer mdir,
real(kind=dp) begin,
real(kind=dp) final
)

Sends updated particle positions and velocities to neighbouring nodes or across simulation box as required for re-
calculation of dissipative forces for DPD Velocity Verlet and integration of DPD forces with Shardlow splitting. A
switch is available in the parallel version to prevent particle data being transferred across non-periodic boundaries
(i.e. hard surfaces, Lees-Edwards shearing boundaries).

Parameters

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Dimension to send particles from inside subdomain (1 = x, 2 = y, 3 = z)
mp_send Destination processor node for sending particle data
mp_recv Source processor node for receiving particle data
begin Smallest coordinate in given direction for particle to be sent to destination nodes/across box
final Largest coordinate in given direction for particle to be sent to destination nodes/across box
shove Required shift for coordinate in given direction when particle is sent to neighbouring node/across

box
skip Switch to specify whether or not particles should be omitted from being moved in current direction

exportvelocity_shear()

Parallel version

subroutine domain_module::exportvelocity_shear (integer nlimit,
integer mdir,
integer shft,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,
real(kind=dp) vshove1,
real(kind=dp) vshove2,
real(kind=dp) side1,
real(kind=dp) side2
)

724 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

Serial version

subroutine domain_module::exportvelocity_shear (integer nlimit,
integer mdir,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) vshove1,
real(kind=dp) vshove2
)

Sends updated particle positions and velocities - either (in parallel) to processor nodes on opposite side of simula-
tion box, or (in serial) across simulation box - with position shifting required for Lees-Edwards shearing bound-
aries, as needed for recalculation of dissipative forces for DPD Velocity Verlet, and integration of DPD forces with
Shardlow splitting. This subroutine requires the displacement of of particles due to shear in both directions or-
thogonal to the boundary: the velocities of particles in the boundary halo are adjusted to remove the discontinuity
in relative velocities that would otherwise exist [77]. A switch is available in the parallel version to use different
MPI tags if the subroutine is called twice by the same processor node.

Parameters

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Direction to send particles from inside subdomain (1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z, 6 = +z)
shft Switch to change communication tag if calling more than once
begin Smallest coordinate in given direction for particle to be sent to destination nodes/across box
final Largest coordinate in given direction for particle to be sent to destination nodes/across box
shove Required shift for coordinate in given direction when particle is sent to destination nodes/across box
shove1 Required shift in first orthogonal coordinate when particle is sent to destination nodes/across box
shove2 Required shift in second orthogonal coordinate when particle is sent to destination nodes/across box
vshove1 Required change in velocity for first orthogonal coordinate when particle is sent to destination nodes/

across box
vshove2 Required change in velocity in second orthogonal coordinate when particle is sent to destination

nodes/ across box
side1 Size of subdomain in first orthogonal coordinate
side2 Size of subdomain in second orthogonal coordinate

exportvelocitydata()

subroutine domain_module::exportvelocitydata (integer nlimit)

Sends and receives particle data from neighbouring processors - including those used for Lees-Edwards shearing
boundaries, but excluding other non-periodic boundaries - to update particle positions or velocities for recalcula-
tion of dissipative forces for DPD Velocity Verlet and integration of DPD forces using Shardlow splitting. The
serial version of this routine applies this procedure by replacing the positions and velocities of particle copies in
the boundary halo. This subroutine is a common interface in DL_MESO_DPD for both parallel and serial running.

Parameters

nlimit Number of particles currently in subdomain and boundary halo (subjected to change during routine)

10.9. domain_module.F90 725

DL_MESO Technical Manual, Release 2.7

import()

subroutine domain_module::import (integer nlimit,
integer mdir,
integer mp_send,
integer mp_recv,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
logical skip

)

Sends contributions to forces for particles in boundary halos back to the processor nodes where the particles
are located to complete these particles’ forces. This version of the subroutine is suitable for thermostats and
integration schemes that only require a single set of forces to be calculated (i.e. DPD with MD Velocity Verlet or
Shardlow splitting, Lowe-Andersen and Peters). A switch is available to prevent particle forces being transferred
when using non-periodic boundary conditions (e.g. hard surfaces, Lees-Edwards shearing). This subroutine is
only required for the parallel version of DL_MESO_DPD, as the force contributions will already be available on
a single processor node.

Parameters

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Dimension to search for particles in subdomain (1 = x, 2 = y, 3 = z)
mp_send Destination processor node for sending particle data
mp_recv Source processor node for receiving particle data
begin Smallest coordinate in given direction for particle forces to be sent to neighbouring node
final Largest coordinate in given direction for particle forces to be sent to neighbouring node
shove Required shift for coordinate in given direction when particle and its force are sent to neighbouring

node
skip Switch to specify whether or not particles should be omitted from being moved in current direction

import_shear()

subroutine domain_module::import_shear (integer nlimit,
integer mdir,
integer shft,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,
real(kind=dp) side1,
real(kind=dp) side2

)

Sends contributions to forces for particles in boundary halos back to the processor nodes where the particles are
located to complete these particles’ forces when Lees-Edwards shearing boundaries are in use. This version of
the subroutine is suitable for thermostats and integration schemes that only require a single set of forces to be
calculated (i.e. DPD with MD Velocity Verlet or Shardlow splitting, Lowe-Andersen and Peters). This subroutine
requires the displacement of particles due to shear in both directions orthogonal to the boundary. A switch is
included to use different MPI tags if the subroutine is called twice by the same processor node. This subroutine is
only needed for the parallel version of DL_MESO_DPD, as the force contributions will already be available on a
single processor node.

Parameters

726 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Direction to search for particles inside subdomain (1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z, 6 = +z)
shft Switch to change communication tag if calling more than once
begin Smallest coordinate in given direction for particle to be sent to destination nodes
final Largest coordinate in given direction for particle to be sent to destination nodes
shove Required shift for coordinate in given direction when particle is sent to destination nodes
shove1 Required shift in first orthogonal coordinate when particle is sent to destination nodes
shove2 Required shift in second orthogonal coordinate when particle is sent to destination nodes
side1 Size of subdomain in first orthogonal coordinate
side2 Size of subdomain in second orthogonal coordinate

importdata()

subroutine domain_module::importdata (integer nlimit)

Collects contributions for particle forces in current processor from boundary halos in neighbouring processors,
including those used for Lees-Edwards shearing boundaries. The serial version of this routine applies this proce-
dure by simply adding force contributions from particles in the boundary halo to the forces for actual particles:
this information is already available. This subroutine is applicable for integrators and thermostats that require a
single set of particle forces (i.e. DPD with MD Velocity Verlet, Shardlow splitting, Lowe-Andersen, Peters) and
is a common interface in DL_MESO_DPD for both parallel and serial running.

Parameters

nlimit Number of particles currently in subdomain and boundary halo (subjected to change during routine if
running in parallel)

importdata_dpdvv()

subroutine domain_module::importdata_dpdvv (integer nlimit)

Collects contributions for particle forces in current processor from boundary halos in neighbouring processors, in-
cluding those used for Lees-Edwards shearing boundaries. The serial version of this routine applies this procedure
by simply adding force contributions from particles in the boundary halo to the forces for actual particles: this
information is already available. This subroutine is applicable for integrators and thermostats that require two sets
of particle forces (i.e. DPD with DPD Velocity Verlet) and is a common interface in DL_MESO_DPD for both
parallel and serial running.

Parameters

nlimit Number of particles currently in subdomain and boundary halo (subjected to change during routine if
running in parallel)

importdata_stoyanov()

subroutine domain_module::importdata_stoyanov (integer nlimit)

Collects contributions for particle forces in current processor from boundary halos in neighbouring processors,
including those used for Lees-Edwards shearing boundaries. The serial version of this routine applies this proce-
dure by simply adding force contributions from particles in the boundary halo to the forces for actual particles:
this information is already available. This subroutine is applicable for integrators and thermostats that require two
sets of particle forces (i.e. Stoyanov-Groot) and is a common interface in DL_MESO_DPD for both parallel and
serial running.

Parameters

10.9. domain_module.F90 727

DL_MESO Technical Manual, Release 2.7

nlimit Number of particles currently in subdomain and boundary halo (subjected to change during routine if
running in parallel)

importvariable()

subroutine domain_module::importvariable (integer nlimit,
integer mdir,
integer mp_send,
integer mp_recv,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
logical skip
)

Sends contributions to forces for particles in boundary halos back to the processor nodes where the particles
are located to complete these particles’ forces. This version of the subroutine is suitable for thermostats and
integration schemes that require two sets of forces to be calculated (i.e. DPD with DPD Velocity Verlet, Stoyanov-
Groot). A switch is available to prevent particle forces being transferred when using non-periodic boundary
conditions (e.g. hard surfaces, Lees-Edwards shearing). This subroutine is only required for the parallel version
of DL_MESO_DPD, as the force contributions will already be available on a single processor node.

Parameters

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Dimension to search for particles inside subdomain (1 = x, 2 = y, 3 = z)
mp_send Destination processor node for sending particle data
mp_recv Source processor node for receiving particle data
begin Smallest coordinate in given direction for particle forces to be sent to neighbouring node
final Largest coordinate in given direction for particle forces to be sent to neighbouring node
shove Required shift for coordinate in given direction when particle and its force are sent to neighbouring

node
skip Switch to specify whether or not particles should be omitted from being moved in current direction

importvariable_shear()

subroutine domain_module::importvariable_shear (integer nlimit,
integer mdir,
integer shft,
real(kind=dp) begin,
real(kind=dp) final,
real(kind=dp) shove,
real(kind=dp) shove1,
real(kind=dp) shove2,
real(kind=dp) side1,
real(kind=dp) side2
)

Sends contributions to forces for particles in boundary halos back to the processor nodes where the particles are
located to complete these particles’ forces when Lees-Edwards shearing boundaries are in use. This version of
the subroutine is suitable for thermostats and integration schemes that require two sets of forces to be calculated
(i.e. DPD with DPD Velocity Verlet, Stoyanov-Groot). This subroutine requires the displacement of particles
due to shear in both directions orthogonal to the boundary. A switch is included to use different MPI tags if the
subroutine is called twice by the same processor node. This subroutine is only needed for the parallel version of
DL_MESO_DPD, as the force contributions will already be available on a single processor node.

Parameters

728 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

nlimit Number of particles in subdomain and boundary halo (subjected to change during routine)
mdir Direction to search for particles inside subdomain (1 = -x, 2 = +x, 3 = -y, 4 = +y, 5 = -z, 6 = +z)
shft Switch to change communication tag if calling more than once
begin Smallest coordinate in given direction for particle to be sent to destination nodes
final Largest coordinate in given direction for particle to be sent to destination nodes
shove Required shift for coordinate in given direction when particle is sent to destination nodes
shove1 Required shift in first orthogonal coordinate when particle is sent to destination nodes
shove2 Required shift in second orthogonal coordinate when particle is sent to destination nodes
side1 Size of subdomain in first orthogonal coordinate
side2 Size of subdomain in second orthogonal coordinate

parlnk()

subroutine domain_module::parlnk (integer num1,
integer num2,
integer nx,
integer ny,
integer nz,
real(kind=dp) widthx,
real(kind=dp) widthy,
real(kind=dp) widthz,
integer, dimension (:) cell,
integer, dimension (:) lnk,
integer mxcell,
integer typ

)

Constructs the parallel link cells for calculations of pairwise forces (or localised densities) between particles and
returns the maximum number of particles per cell. A switch is available for electrostatic interactions that typically
act over longer distances solely between charged particles. Each linked-cell list is checked for infinite loops, which
are broken if any are found.

Parameters

num1 Starting particle for list construction
num2 Finishing particle for list construction
nx Number of link cells in x direction
ny Number of link cells in y direction
nz Number of link cells in z direction
widthx Width of link cells in x direction
widthy Width of link cells in y direction
widthz Width of link cells in z direction
cell Array with starting particle in list for each link cell
lnk Array indicating next particles in linked-cell lists
mxcell Maximum number of particles per link cell
typ Switch to indicate if link cells are for Ewald real-space calculations (1) or not (0)

10.9. domain_module.F90 729

DL_MESO Technical Manual, Release 2.7

resize_buffer()

subroutine domain_module::resize_buffer

Deallocates and reallocates the arrays required for node-to-node communications to send and receive particle data.
This is only required for the parallel version of DL_MESO: a dummy version of the subroutine is supplied for
single-node running.

10.9.5 Variable Documentation

bufnum

integer parameter domain_module::bufnum

Maximum number of buffers (arrays) used for inter-processor communications. The parallel version of
DL_MESO_DPD sets this value to 4 as required for Lees-Edwards shearing boundaries, while the serial version
sets it to 0 as no buffers are required when running on a single processor.

10.10 error_module.F90

10.10.1 Summary

Module to print error/warning messages and, if necessary, close down DL_MESO_DPD in a con-
trolled manner.

10.10.2 Functions/Subroutines

• subroutine error()

Prints user-friendly error messages in OUTPUT file (or standard output) and closes down DL_MESO_DPD.

10.10.3 Function/Subroutine Documentation

error()

subroutine error_module::error (integer idnode,
integer iode,
integer value

)

Based on the error code supplied, this subroutine will print either an error message or a warning message to either
the OUTPUT file or to standard output if the ‘l_scr’ option is selected in the CONTROL file. If the code indicates
an error that cannot be resolved during runtime, DL_MESO_DPD will then close down in a rapid but controlled
manner (using MPI_Abort in parallel). If the error code fed into this routine is negative, this indicates a non-fatal
warning that does not affect the ability of DL_MESO_DPD to continue running the simulation, although it may
indicate problems with simulation setup or options chosen by the user.

Parameters

idnode Processor node number calling subroutine (0 is the default for printing)
iode Error/warning code
value Optional value used by some error messages to provide more context or pin down the location where

DL_MESO_DPD fails

730 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.11 ewald_module.F90

10.11.1 Summary

Module to calculate real-space (short-range) and reciprocal-space (long-range) electrostatic forces for
Ewald sums. (OpenMP multithreaded version available with ewald_module_omp.F90.)

10.11.2 Functions/Subroutines

• subroutine ewald_initialize()

Sets up variables required for Ewald sum calculations.

• subroutine loadpart_ewald()

Fills an array with particle indices in a link cell for real-space Ewald force calculations.

• subroutine diff_ewald()

Finds all interacting pairs of particles inside current link cell and its neighbouring cells for Ewald sum
real-space force calculations.

• subroutine ewald_real_point()

Calculates pairwise real-space Ewald forces between pairs of charged particles, using point charges (no
charge smearing scheme).

• subroutine ewald_real_linear()

Calculates pairwise real-space Ewald forces between pairs of charged particles, using linear charge smear-
ing.

• subroutine ewald_real_slater_exact()

Calculates pairwise real-space Ewald forces between pairs of charged particles, using exact Slater charge
smearing.

• subroutine ewald_real_slater_approx()

Calculates pairwise real-space Ewald forces between pairs of charged particles, using approximate Slater
charge smearing.

• subroutine ewald_real_gauss()

Calculates pairwise real-space Ewald forces between pairs of charged particles, using Gaussian charge
smearing.

• subroutine ewald_real_sinusoidal()

Calculates pairwise real-space Ewald forces between pairs of charged particles, using sinusoidal charge
smearing.

• subroutine ewald_real_potentials()

Calculates pairwise real-space Ewald potentials between pairs of charged particles, using specified charge
smearing scheme, based on initial configuration.

• subroutine ewald_reciprocal_map()

Determines vectors within range for Ewald reciprocal-space calculations.

• subroutine ewald_reciprocal()

Calculates reciprocal-space forces on charged particles for Ewald summation.

• subroutine ewald_reciprocal_potentials()

Calculates reciprocal-space potentials on charged particles for Ewald summation.

10.11. ewald_module.F90 731

DL_MESO Technical Manual, Release 2.7

• subroutine ewald_frozen()

Calculates corrective forces, potential energies, virials and stress tensors to remove electrostatic interactions
between frozen charged particles in Ewald sums.

10.11.3 Variables

• real(kind=dp), save kmax1r

Double-precision real value for maximum k-vector (x-component)

• real(kind=dp), save kmax2r

Double-precision real value for maximum k-vector (y-component)

• real(kind=dp), save kmax3r

Double-precision real value for maximum k-vector (z-component)

10.11.4 Function/Subroutine Documentation

diff_ewald()

subroutine ewald_module::diff_ewald (integer, dimension (:,:), intent(in) pone,
integer, dimension (:), intent(in) tone,
integer, dimension (:,:), intent(inout) pair,
real(kind=dp), dimension (:,:), intent(inout)

→˓pdata,
integer, intent(inout) tpairs
)

Takes the constructed lists of particle indices for a given Ewald sum link cell and adds all pairs within the maximum
real-space cutoff distance to an array listing the pairs, storing the vector and distance between each particle pair.
The number of pairs is also recorded in preparation for looping through them to calculate the real-space Ewald
forces. More stringent checks in qualifying distances between particle pairs are applied if the simulation box is
small (i.e. if at least one simulation box dimension only has a single Ewald link cell across all processors). Pairs
of particles in the excluded interaction list are omitted from the list.

Parameters

pone List of particle indices for all available link cells
tone Total numbers of particles in all available link cells
pair List of interacting particle pairs
pdata Vectors and distances between particle pairs
tpairs Total number of particle pairs for link cell

ewald_frozen()

subroutine ewald_module::ewald_frozen

Finds all pairs of frozen charged particles using a replicated data strategy and calculates corrections to reciprocal-
space forces, potential energies, virials and stress tensors to remove their contributions. No corrections need to be
made to real-space contributions as all pairs of frozen charged particles are automatically omitted. This subroutine
only needs to be called once if the simulation does not use a barostat, but otherwise has to be called whenever the
simulation volume changes (i.e. every timestep).

732 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

ewald_initialize()

subroutine ewald_module::ewald_initialize

Assigns double-precision real values for maximum reciprocal vectors (supplied by user as integers), in preparation
for calculating electrostatic interactions using Ewald sums. This subroutine only has to be called once before
calculations commence.

ewald_real_gauss()

subroutine ewald_module::ewald_real_gauss (integer nlimit)

Calculates all real-space forces for Ewald sums between pairs of charged particles within a cutoff radius (the
real-space cutoff). The main loop in this subroutine goes through all of the Ewald link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads in
the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces to
particles in a threadsafe manner. This subroutine uses a Gaussian charge smearing scheme [24][146] applied in
real-space, as this should result in the standard Coulombic potential at the longer distances used for reciprocal-
space calculations. (This routine is called if the charge smearing length does not match that for the Ewald sum
itself: in the case of equal values, all real-space terms reduce to zero.)

Parameters

nlimit Total number of particles in subdomain and boundary halo

ewald_real_linear()

subroutine ewald_module::ewald_real_linear (integer nlimit)

Calculates all real-space forces for Ewald sums between pairs of charged particles within a cutoff radius (the
real-space cutoff). The main loop in this subroutine goes through all of the Ewald link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads
in the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces
to particles in a threadsafe manner. This subroutine uses a linear charge smearing scheme [45] applied in real-
space, as this should result in the standard Coulombic potential at the longer distances used for reciprocal-space
calculations.

Parameters

nlimit Total number of particles in subdomain and boundary halo

ewald_real_point()

subroutine ewald_module::ewald_real_point (integer nlimit)

Calculates all real-space forces for Ewald sums between pairs of charged particles within a cutoff radius (the
real-space cutoff). The main loop in this subroutine goes through all of the Ewald link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads in
the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces to
particles in a threadsafe manner. This subroutine uses point charges, i.e. no charge smearing scheme is applied in
real-space.

Parameters

nlimit Total number of particles in subdomain and boundary halo

10.11. ewald_module.F90 733

DL_MESO Technical Manual, Release 2.7

ewald_real_potentials()

subroutine ewald_module::ewald_real_potentials (integer nlimit)

Calculates all real-space potentials for Ewald sums between pairs of charged particles within a cutoff radius (the
real-space cutoff) without calculating the associated forces. The main loop in this subroutine goes through all
of the Ewald link cells in the subdomain and searches for particle pairs in each cell and its neighbours: this
loop is divided up among available threads in the OpenMP version, which uses a reduction operator to sum up
contributions from all threads. Virial and stress tensors are also calculated. Any charge smearing scheme specified
by the user is applied in real-space, as this should result in the standard Coulombic potential at the longer distances
used for reciprocal-space calculations. This subroutine is use prior to starting a simulation if forces have already
been provided in a CONFIG file.

Parameters

nlimit Total number of particles in subdomain and boundary halo

ewald_real_sinusoidal()

subroutine ewald_module::ewald_real_sinusoidal (integer nlimit)

Calculates all real-space forces for Ewald sums between pairs of charged particles within a cutoff radius (the
real-space cutoff). The main loop in this subroutine goes through all of the Ewald link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads in
the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces to
particles in a threadsafe manner. This subroutine uses a sinusoidal charge smearing scheme [37] applied in real-
space, as this should result in the standard Coulombic potential at the longer distances used for reciprocal-space
calculations.

Parameters

nlimit Total number of particles in subdomain and boundary halo

ewald_real_slater_approx()

subroutine ewald_module::ewald_real_slater_approx (integer nlimit)

Calculates all real-space forces for Ewald sums between pairs of charged particles within a cutoff radius (the
real-space cutoff). The main loop in this subroutine goes through all of the Ewald link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads
in the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces
to particles in a threadsafe manner. This subroutine uses an approximated Slater charge smearing scheme [44]
applied in real-space, as this should result in the standard Coulombic potential at the longer distances used for
reciprocal-space calculations.

Parameters

nlimit Total number of particles in subdomain and boundary halo

734 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

ewald_real_slater_exact()

subroutine ewald_module::ewald_real_slater_exact (integer nlimit)

Calculates all real-space forces for Ewald sums between pairs of charged particles within a cutoff radius (the
real-space cutoff). The main loop in this subroutine goes through all of the Ewald link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads in
the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces to
particles in a threadsafe manner. This subroutine uses an exact Slater charge smearing scheme [145] applied in
real-space, as this should result in the standard Coulombic potential at the longer distances used for reciprocal-
space calculations.

Parameters

nlimit Total number of particles in subdomain and boundary halo

ewald_reciprocal()

subroutine ewald_module::ewald_reciprocal

Calculates long-range Coulombic forces and potential energies using standard Ewald summation (i.e. analytical
calculation of Fourier transforms of charges), including self-energy corrections for charged systems and any dipole
moment-based corrections for slab-like geometries [153] (i.e non-periodic boundaries in one dimension). The
OpenMP version divides the reciprocal vectors among available threads for potential calculations and divides the
particles among threads for force calculations.

ewald_reciprocal_map()

subroutine ewald_module::ewald_reciprocal_map

Puts together list of reciprocal vectors within range for the long-range (reciprocal-space) part of the Ewald sum,
taking user-specified vacuum gaps and Lees-Edwards shearing boundaries [148] into account. This subroutine
only needs to be called once for constant volume (NVT) systems without shearing, but needs to be called every
timestep for systems with barostats or Lees-Edwards shearing boundary conditions.

ewald_reciprocal_potentials()

subroutine ewald_module::ewald_reciprocal_potentials

Calculates long-range Coulombic potential energies using standard Ewald summation (i.e. analytical calculation
of Fourier transforms of charges), including self-energy corrections for charged systems and any dipole moment-
based corrections for slab-like geometries [153] (i.e non-periodic boundaries in one dimension). The OpenMP
version divides the reciprocal vectors among available threads for potential calculations and divides the particles
among threads for force calculations. This subroutine does not assign forces to particles and is intended to calculate
potential, virial and stress tensor contributions at the start of a DPD simulation when forces are already known.

10.11. ewald_module.F90 735

DL_MESO Technical Manual, Release 2.7

loadpart_ewald()

subroutine ewald_module::loadpart_ewald (integer, intent(in) cell,
integer, intent(in) kc,
integer, dimension (:,:), intent(inout)

→˓loaded,
integer, dimension (:), intent(inout)

→˓total
)

Starting from a given link cell, read the linked-cell list arrays for Ewald summation to create a list of particles (by
local indices) in either the link cell itself or a neighbouring link cell, recording the total number of particles in that
cell.

Parameters

cell Link cell number to search for particles
kc Link cell neighbour (1 for the link cell itself)
loaded List of particles in link cell and its neighbours
total Total number of particles in link cell and its neighbours

10.11.5 Variable Documentation

kmax1r

real(kind=dp), save ewald_module::kmax1r

Double precision real value for x-component of maximum reciprocal vector (number of periodic images) for
Ewald sum calculations: value obtained by converting integer value either directly supplied in CONTROL file or
calculated from supplied relative error in electrostatic potential.

kmax2r

real(kind=dp), save ewald_module::kmax2r

Double precision real value for y-component of maximum reciprocal vector (number of periodic images) for
Ewald sum calculations: value obtained by converting integer value either directly supplied in CONTROL file or
calculated from supplied relative error in electrostatic potential.

kmax3r

real(kind=dp), save ewald_module::kmax3r

Double precision real value for z-component of maximum reciprocal vector (number of periodic images) for
Ewald sum calculations: value obtained by converting integer value either directly supplied in CONTROL file or
calculated from supplied relative error in electrostatic potential.

736 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.12 field_module.F90

10.12.1 Summary

Module to calculate pairwise forces between particles other than bonded, surface or electrostatic
interactions. (OpenMP multithreaded version available with field_module_omp.F90.)

10.12.2 Functions/Subroutines

• subroutine conservativeforce()

Calculates conservative interaction forces and potentials between a specified pair of particles.

• subroutine loadpart()

Fills an array with particle indices in a link cell.

• subroutine diff()

Finds all interacting pairs of particles inside current link cell and its neighbouring cells for standard force
calculations.

• subroutine forces_mdvv()

Calculates pairwise forces for system applying DPD with MD Velocity Verlet.

• subroutine forces_dpdvv()

Calculates pairwise forces for system applying DPD with DPD Velocity Verlet.

• subroutine dragforces_dpdvv()

Recalculates pairwise dissipative forces for system applying DPD with DPD Velocity Verlet.

• subroutine forces_shardlow()

Calculates pairwise forces for system applying DPD with Shardlow splitting.

• subroutine shardlow_integrate()

Applies Shardlow operator to particle velocities to integrate DPD dissipative and random forces.

• subroutine forces_lowe()

Calculates pairwise forces for system applying Lowe-Andersen thermostat.

• subroutine forces_peters()

Calculates pairwise forces for system applying Peters thermostat.

• subroutine forces_stoyanov()

Calculates pairwise forces for system applying Stoyanov-Groot thermostat.

• subroutine potentials_initial()

Calculates pairwise potentials for system based on initial configuration.

• subroutine plcfor_mdvv()

Sets up parallel link cells and calculates all forces on particles for system applying DPD with MD Velocity
Verlet.

• subroutine plcfor_dpdvv()

Sets up parallel link cells and calculates all forces on particles for system applying DPD with DPD Velocity
Verlet.

10.12. field_module.F90 737

DL_MESO Technical Manual, Release 2.7

• subroutine plcfor_shardlow()

Sets up parallel link cells and calculates all forces on particles for system applying DPD with Shardlow
splitting (either first or second order).

• subroutine plcfor_lowe()

Sets up parallel link cells and calculates all forces on particles for system applying the Lowe-Andersen
thermostat.

• subroutine plcfor_peters()

Sets up parallel link cells and calculates all forces on particles for system applying the Peters thermostat.

• subroutine plcfor_stoyanov()

Sets up parallel link cells and calculates all forces on particles for system applying the Stoyanov-Groot
thermostat.

• subroutine plcfor_initial()

Sets up parallel link cells and calculates all forces or potentials on particles when starting a new simulation.

• subroutine freeze_beads()

Quenches forces and velocities for frozen particles.

10.12.3 Function/Subroutine Documentation

conservativeforce()

subroutine field_module::conservativeforce (integer i,
integer j,
integer k,
real(kind=dp) rrr,
real(kind=dp) rsq,
real(kind=dp) gforce,
real(kind=dp) pot

)

This routine calculates non-bonded, non-electrostatic, non-surface interaction forces and potentials. The four
current options for these forces and potentials include Lennard-Jones [66]:

𝑈𝑖𝑗 = 4𝜖𝑖𝑗

[︃(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂12

−
(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂6
]︃

Weeks-Chandler-Andersen [147]:

𝑈𝑖𝑗 = 4𝜖𝑖𝑗

[︃(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂12

−
(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂6
]︃

+ 𝜖

‘standard’ Groot-Warren DPD [46]:

𝐹𝐶
𝑖𝑗 = 𝐴𝑖𝑗

(︂
1 − 𝑟𝑖𝑗

𝑟𝑐

)︂
𝑟⃗𝑖𝑗
𝑟𝑖𝑗

and a two-term many-body DPD interaction for vapour/liquid mixtures [142]:

𝐹𝐶
𝑖𝑗 =

[︂
𝐴𝑖𝑗

(︂
1 − 𝑟𝑖𝑗

𝑟𝑐

)︂
+𝐵𝑖𝑗(𝜌𝑖 + 𝜌𝑗)

(︂
1 − 𝑟𝑖𝑗

𝑟𝑑

)︂]︂
𝑟⃗𝑖𝑗
𝑟𝑖𝑗

(only calculating the non-density dependent potential at this stage). This subroutine may be changed by users who
wish to use different or additional interaction functional forms. Note that the force is divided by the distance in
this subroutine so that multiplying this value by the vector between the particles gives the required scalar force
multiplied by the unit vector.

738 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

Parameters

i Local index for particle i
j Local index for particle j
k Potential number dependent on species of both particles in pair (used to identify interaction type and

parameters)
rrr Distance between particles i and j, 𝑟𝑖𝑗
rsq Squared distance between particles i and j

gforce Resulting conservative force between pair of particles divided by distance,
𝐹𝐶

𝑖𝑗

𝑟𝑖𝑗

pot Resulting potential for pair of particles, 𝑈𝑖𝑗

diff()

subroutine field_module::diff (integer, dimension (:,:), intent(in) pone,
integer, dimension (:), intent(in) tone,
integer, dimension(:,:), intent(inout) pair,
real(kind=dp), dimension(:,:), intent(inout) pdata,
integer, intent(inout) tpairs,
integer, intent(in) icell,
integer, intent(in) kcmax
)

Takes the constructed lists of particle indices for a given link cell and adds all pairs within the maximum interaction
cutoff distance to an array listing the pairs, storing the vector and distance between each particle pair and various
switches to indicate whether or not the pair is involved in conservative interactions and/or pairwise thermostatting.
The number of pairs is also recorded in preparation for looping through them to calculate the forces. More stringent
checks in qualifying distances between particle pairs are applied if the simulation box is small (i.e. if at least one
simulation box dimension only has a single link cell over all available processors).

Parameters

pone List of particle indices for all available link cells
tone Total numbers of particles in all available link cells
pair List of interacting particle pairs and flags to indicate if pairs are included in conservative interactions

and thermostatting
pdata Vectors and distances between particle pairs
tpairs Total number of particle pairs for link cell
icell Current link cell number
kc-
max

Maximum number of neighbouring link cells in which to search for interacting pairs

dragforces_dpdvv()

subroutine field_module::dragforces_dpdvv (integer nlimit)

Repeats calculations of dissipative forces between pairs of particles within a cut-off radius, using updated particle
velocities after the second stage of Velocity Verlet force integration as part of applying the DPD thermostat using
DPD Velocity Verlet integration. The main loop in this subroutine goes through all of the link cells in the subdo-
main and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads
in the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces to
particles in a threadsafe manner. Dissipative contributions to the virial and stress tensor are calculated at this point.
Unlike other interaction forces, this subroutine does not require a subsequent force import communication step as
the forces are deterministic and thus link cells close to the edge of the subdomain can look in all neighbouring
cells in the boundary halo to find all particle pairs.

Parameters

10.12. field_module.F90 739

DL_MESO Technical Manual, Release 2.7

nlimit Total number of particles in subdomain and boundary halo

forces_dpdvv()

subroutine field_module::forces_dpdvv (integer nlimit)

Calculates all interaction forces (other than bonded, surface and electrostatic interactions) between pairs of par-
ticles within a cut-off radius, as well as random and dissipative forces to apply the DPD thermostat using DPD
Velocity Verlet integration: this requires recalculation of dissipative forces after the second stage of Velocity Verlet
integration of forces, so these forces are assigned to different arrays from the conservative and random forces. The
main loop in this subroutine goes through all of the link cells in the subdomain and searches for particle pairs in
each cell and its neighbours: this loop is divided up among available threads in the OpenMP version, which either
uses additional memory per thread or uses a critical region to assign forces to particles in a threadsafe manner.
DPD random forces make use of a uniform random number generator (default: Mersenne Twister) to calculate
approximate Gaussian random numbers [46]:

𝜁𝑖𝑗 ≈
√

12 (𝑢𝑖𝑗 − 0.5)

that gives statistically similar results to real Gaussian random numbers [26] for lower computational cost. Po-
tential energy, virial and stress tensors are also calculated, the latter separated out into conservative and random
contributions. (Dissipative contributions to virial and stress tensors are assigned after force recalculation.)

Parameters

nlimit Total number of particles in subdomain and boundary halo

forces_lowe()

subroutine field_module::forces_lowe (integer nlimit)

Calculates all interaction forces (other than bonded, surface and electrostatic interactions) between pairs of parti-
cles within a cut-off radius. The main loop in this subroutine goes through all of the link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads
in the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces
to particles and create thermostatting lists in a threadsafe manner. Potential energy, virial and stress tensors are
also calculated, the latter providing the conservative contributions for this property. To apply the Lowe-Andersen
pairwise thermostat, a random number is generated for each pair that can be thermostatted: if this number is less
than the product of collision frequency and timestep, the particle pair is added to a list for thermostatting during
the second stage of Velocity Verlet force integration.

Parameters

nlimit Total number of particles in subdomain and boundary halo

forces_mdvv()

subroutine field_module::forces_mdvv (integer nlimit)

Calculates all interaction forces (other than bonded, surface and electrostatic interactions) between pairs of par-
ticles within a cut-off radius, as well as random and dissipative forces to apply the DPD thermostat using MD
(simple) Velocity Verlet integration of all forces. The main loop in this subroutine goes through all of the link
cells in the subdomain and searches for particle pairs in each cell and its neighbours: this loop is divided up
among available threads in the OpenMP version, which either uses additional memory per thread or uses a critical

740 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

region to assign forces to particles in a threadsafe manner. DPD random forces make use of a uniform random
number generator (default: Mersenne Twister) to calculate approximate Gaussian random numbers [46]:

𝜁𝑖𝑗 ≈
√

12 (𝑢𝑖𝑗 − 0.5)

that gives statistically similar results to real Gaussian random numbers [26] for lower computational cost. Potential
energy, virial and stress tensors are also calculated, the latter separated out into conservative, dissipative and
random contributions.

Parameters

nlimit Total number of particles in subdomain and boundary halo

forces_peters()

subroutine field_module::forces_peters (integer nlimit)

Calculates all interaction forces (other than bonded, surface and electrostatic interactions) between pairs of parti-
cles within a cut-off radius. The main loop in this subroutine goes through all of the link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads
in the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces
to particles and create thermostatting lists in a threadsafe manner. Potential energy, virial and stress tensors are
also calculated, the latter providing the conservative contributions for this property. To apply the Peters pairwise
thermostat, each pair of particles for thermostatting is added to a list for applying the thermostat during the second
stage of Velocity Verlet force integration.

Parameters

nlimit Total number of particles in subdomain and boundary halo

forces_shardlow()

subroutine field_module::forces_shardlow (integer nlimit)

Calculates all interaction forces (other than bonded, surface and electrostatic interactions) between pairs of parti-
cles within a cut-off radius. The main loop in this subroutine goes through all of the link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads in
the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces to
particles in a threadsafe manner. Potential energy, virial and stress tensors are also calculated, the latter providing
the conservative contributions for this property. This subroutine is also used to calculate forces acting on particles
during simulation startup if these are not provided in a CONFIG file.

Parameters

nlimit Total number of particles in subdomain and boundary halo

forces_stoyanov()

subroutine field_module::forces_stoyanov (integer nlimit)

Calculates all interaction forces (other than bonded, surface and electrostatic interactions) between pairs of parti-
cles within a cut-off radius. The main loop in this subroutine goes through all of the link cells in the subdomain
and searches for particle pairs in each cell and its neighbours: this loop is divided up among available threads in
the OpenMP version, which either uses additional memory per thread or uses a critical region to assign forces to
particles and create thermostatting lists in a threadsafe manner. To apply the Stoyanov-Groot pairwise thermostat,
a random number is generated for each pair that can be thermostatted. If this number is less than the product of

10.12. field_module.F90 741

DL_MESO Technical Manual, Release 2.7

collision frequency and timestep, the particle pair is added to a list for thermostatting during the second stage of
Velocity Verlet force integration (similar to the Lowe-Andersen thermostat). An additional pairwise force is cal-
culated for other thermostatting pairs that is scaled with an instantaneous temperature based on contributions from
all pairs. Potential energy, virial and stress tensors are also calculated: the latter are separated out into conservative
and dissipative contributions, with the dissipative contributions coming from the temperature-dependent pairwise
thermostatting forces.

Parameters

nlimit Total number of particles in subdomain and boundary halo

freeze_beads()

subroutine field_module::freeze_beads

Resets the velocities and forces for frozen particles in the system to zero: these particles are readily found as the
first particles in local arrays.

loadpart()

subroutine field_module::loadpart (integer, intent(in) cell,
integer, intent(in) kc,
integer, dimension (:,:), intent(inout) loaded,
integer, dimension (:), intent(inout) total

)

Starting from a given link cell, read the linked-cell list arrays to create a list of particles (by local indices) in either
the link cell itself or a neighbouring link cell, recording the total number of particles in that cell.

Parameters

cell Link cell number to search for particles
kc Link cell neighbour (1 for the link cell itself)
loaded List of particles in link cell and its neighbours
total Total number of particles in link cell and its neighbours

plcfor_dpdvv()

subroutine field_module::plcfor_dpdvv

Creates boundary halo, sets up parallel link cells and carries out calculations of all forces acting on particles due
to interactions and DPD thermostat to be integrated using DPD Velocity Verlet, i.e. recalculation of dissipative
forces after force integration.

plcfor_initial()

subroutine field_module::plcfor_initial (logical l_config)

Creates boundary halo, sets up parallel link cells and carries out calculations of all forces or potentials acting on
particles due to interactions (and thermostatting if using DPD with MD or DPD Velocity Verlet integration). Only
the potentials are needed if a CONFIG file with particle forces is supplied.

Parameters

l_config Flag to determine if CONFIG file is being used to provide initial forces

742 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

plcfor_lowe()

subroutine field_module::plcfor_lowe

Creates boundary halo, sets up parallel link cells and carries out calculations of all forces acting on particles due
to interactions with collection of particle pairs to be thermostatted using the Lowe-Andersen thermostat after force
integration.

plcfor_mdvv()

subroutine field_module::plcfor_mdvv

Creates boundary halo, sets up parallel link cells and carries out calculations of all forces acting on particles due
to interactions and DPD thermostat to be integrated using a standard Velocity Verlet scheme as used in molecular
dynamics (MD) simulations.

plcfor_peters()

subroutine field_module::plcfor_peters

Creates boundary halo, sets up parallel link cells and carries out calculations of all forces acting on particles due to
interactions with collection of particle pairs to be thermostatted using the Peters thermostat after force integration.

plcfor_shardlow()

subroutine field_module::plcfor_shardlow

Creates boundary halo, sets up parallel link cells and carries out calculations of all forces acting on particles due
to interactions, with the dissipative and random forces for the DPD thermostat applied separately using Shardlow
splitting.

plcfor_stoyanov()

subroutine field_module::plcfor_stoyanov

Creates boundary halo, sets up parallel link cells and carries out calculations of all forces acting on particles due
to interactions and Nosé-Hoover thermostatting, as well as collecting particle pairs to be thermostatted using the
Lowe-Andersen thermostat after force integration.

potentials_initial()

subroutine field_module::potentials_initial (integer nlimit)

Calculates all interaction potentials (other than bonded, surface and electrostatic interactions) between pairs of
particles within a cut-off radius without calculating the associated forces. The main loop in this subroutine goes
through all of the link cells in the subdomain and searches for particle pairs in each cell and its neighbours: this
loop is divided up among available threads in the OpenMP version, which uses a reduction operator to sum up
contributions from all threads. Virial and stress tensors are also calculated: only the conservative contributions
are given here. This subroutine is used prior to starting a simulation if forces have already been provided in a
CONFIG file.

Parameters

nlimit Total number of particles in subdomain and boundary halo

10.12. field_module.F90 743

DL_MESO Technical Manual, Release 2.7

shardlow_integrate()

subroutine field_module::shardlow_integrate (integer nlimit,
real(kind=dp) tstepfrac,
integer stage

)

Calculates and applies the Shardlow operator [120] for particle pairs within a cut-off radius. The main loops in
this subroutine go through all of the link cells in the subdomain and search for particle pairs in each cell and
its neighbours: these loops are divided up among available threads in the OpenMP version, which either uses
additional memory per thread or uses a critical region to assign velocity changes to particles in a threadsafe
manner. DPD random forces make use of a uniform random number generator (Saru) to calculate approximate
Gaussian random numbers [46]:

𝜁𝑖𝑗 ≈
√

12 (𝑢𝑖𝑗 − 0.5)

that gives statistically similar results to real Gaussian random numbers [26] for lower computational cost. The
same random number for each particle pair is required for both stages in applying the SHardlow operator. Dissi-
pative and random contributions to virial and stress tensors are calculated during this subroutine. This subroutine is
applied once for first-order Shardlow splitting and twice for second-order Shardlow splitting, the latter integrating
forces over half a timestep during each pass.

Parameters

nlimit Total number of particles in subdomain and boundary halo
tstepfrac Fraction of timestep to integrate dissipative and random forces in each stage of Shardlow operator
stage Velocity Verlet stage during which the operator is applied - this affects random number generator

seeding

10.13 manybody_module.F90

10.13.1 Summary

Module to calculate local densities and potentials for many-body DPD interactions. (OpenMP multi-
threaded version available with manybody_module_omp.F90.)

10.13.2 Functions/Subroutines

• subroutine loadpart_manybody()

Fills an array with particle indices in a link cell for many-body DPD local density calculations.

• subroutine diff_manybody()

Finds all pairs of particles inside current link cell and its neighbouring cells within many-body DPD cutoff
for local density calculations.

• subroutine local_density()

Calculates local densities for many-body DPD interactions.

• real(kind=dp) function weight_rho()

Calculates normalised weight function for many-body DPD localised densities.

• subroutine manybody_potential()

Calculates self-energies resulting from density-dependent (many-body DPD) interactions for every particle
involved.

744 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.13.3 Function/Subroutine Documentation

diff_manybody()

subroutine manybody_module::diff_manybody (integer, dimension (:,:), intent(in)
→˓pone,

integer, dimension (:), intent(in) tone,
integer, dimension(:,:), intent(inout)

→˓pair,
real(kind=dp), dimension(:,:),

→˓intent(inout) pdata,
integer, intent(inout) tpairs,
integer, intent(in) kcmax

)

Takes the constructed lists of particle indices for a given many-body DPD link cell and adds all pairs within the
maximum cutoff distance for local densities to an array listing the pairs, storing the vector and distance between
each particle pair. The number of pairs is also recorded in preparation for looping through them to calculate local
densities. More stringent checks in qualifying distances between particle pairs are applied if the simulation box is
small (i.e. if at least one simulation box dimension only has a single many-body DPD link cell over all available
processors).

Parameters

pone List of particle indices for all available link cells
tone Total numbers of particles in all available link cells
pair List of interacting particle pairs
pdata Vectors and distances between particle pairs
tpairs Total number of particle pairs for link cell
kcmax Maximum number of neighbouring link cells in which to search for interacting pairs

loadpart_manybody()

subroutine manybody_module::loadpart_manybody (integer, intent(in) cell,
integer, intent(in) kc,
integer, dimension (:,:),

→˓intent(inout) loaded,
integer, dimension (:),

→˓intent(inout) total
)

Starting from a given link cell, read the linked-cell list arrays for many-body DPD local densities to create a list
of particles (by local indices) in either the link cell itself or a neighbouring link cell, recording the total number of
particles in that cell.

Parameters

cell Link cell number to search for particles
kc Link cell neighbour (1 for the link cell itself)
loaded List of particles in link cell and its neighbours
total Total number of particles in link cell and its neighbours

10.13. manybody_module.F90 745

DL_MESO Technical Manual, Release 2.7

local_density()

subroutine manybody_module::local_density (integer nlimit)

Calculates local densities summed up over pairs of particles within the many-body DPD cutoff radius:

𝜌𝑖 =
∑︁
𝑗 ̸=𝑖

𝑤𝜌 (𝑟𝑖𝑗)

omitting self-contributions for each particle [140]. The main loop in this subroutine goes through all the link cells
in the subdomain and searches for particle pairs in each cell and its neighbours: this loop is divided up among
available threads in the OpenMP version, which either uses additional memory per thread or uses a critical region
to assign densities to particles in a threadsafe manner. Contributions are calculated separately for individual
particle species, which can be summed together for obtain densities for all particle species. A full search of
boundary link cells is carried out in this subroutine to ensure all pairwise contributions are included for all particles
in the current subdomain (negating the need to communicate contributions from neighbours afterwards).

Parameters

nlimit Total number of particles in subdomain and boundary halo

manybody_potential()

subroutine manybody_module::manybody_potential

Sums up self-energy potential terms for many-body DPD interactions over all involved particles and species (pairs
of frozen particles are excluded). The default form is based on the density term used in the two-term vapour-liquid
model [142] where 𝛿𝑘𝑙 is the Kronecker delta):

𝑈𝑚𝑏 =
𝜋𝑟4𝑑
30

𝐵
∑︁
𝑘

∑︁
𝑙

𝜌𝑘𝜌𝑙 (2 − 𝛿𝑘𝑙)

(The remainder of the potential is calculated with conservative interaction forces.) Users may wish to modify this
routine to use their own many-body DPD interaction models.

weight_rho()

real(kind=dp) function manybody_module::weight_rho (real(kind=dp) rrr)

This function provides the pairwise weight function required for calculating localised densities needed for many-
body DPD interactions. The default weight function [142] is:

𝑤𝜌(𝑟) =
15

2𝜋𝑟3𝑑

(︂
1 − 𝑟

𝑟𝑑

)︂2

which may be changed by the user.

Parameters

rrr Distance between pair of particles, 𝑟

746 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.14 read_module.F90

10.14.1 Summary

Module for reading DL_MESO_DPD input files with system, interaction, molecular and configura-
tion data.

10.14.2 Data Types

• type type read_module::particledata_p

Particle data for molecules.

• type type read_module::particledata

Particle data.

10.14.3 Functions/Subroutines

• subroutine scan_control()

Scans CONTROL file for essential simulation directives.

• subroutine scan_field()

Scan FIELD file for information on array bounds for interaction data.

• subroutine scan_config()

Scan CONFIG file for system unit cell dimensions.

• subroutine scan_export()

Scan export file for system unit cell dimensions.

• subroutine read_control()

Reads in system data from CONTROL file.

• subroutine read_field()

Reads in interaction information from FIELD file.

• subroutine read_config()

Reads initial system configuration from CONFIG file.

• subroutine readpos()

Finds starting position of entry in CONFIG file closest to given byte number.

• subroutine read_export()

Read configuration from export file for simulation restart.

• subroutine read_revive()

Read statistical accumulators from REVIVE file for simulation restart.

10.14. read_module.F90 747

DL_MESO Technical Manual, Release 2.7

10.14.4 Data Type Documentation

type read_module::particledata_p

Table 10.1: Class Members
real(kind=dp), dimension(:), allocatable fx Particle force (x-component)
real(kind=dp), dimension(:), allocatable fy Particle force (y-component)
real(kind=dp), dimension(:), allocatable fz Particle force (z-component)
integer, dimension(:), allocatable species Particle species
real(kind=dp), dimension(:), allocatable vx Particle velocity (x-component)
real(kind=dp), dimension(:), allocatable vy Particle velocity (y-component)
real(kind=dp), dimension(:), allocatable vz Particle velocity (z-component)
real(kind=dp), dimension(:), allocatable x Particle position (x-component)
real(kind=dp), dimension(:), allocatable y Particle position (y-component)
real(kind=dp), dimension(:), allocatable z Particle position (z-component)

type read_module::particledata

Table 10.2: Class Members
real(kind=dp), dimension(:), allocatable fx Particle force (x-component)
real(kind=dp), dimension(:), allocatable fy Particle force (y-component)
real(kind=dp), dimension(:), allocatable fz Particle force (z-component)
integer, dimension(:), allocatable gb Particle global index (after expansion)
integer, dimension(:), allocatable global Particle original global index.
integer, dimension(:), allocatable species Particle species.
real(kind=dp), dimension(:), allocatable vx Particle velocity (x-component)
real(kind=dp), dimension(:), allocatable vy Particle velocity (y-component)
real(kind=dp), dimension(:), allocatable vz Particle velocity (z-component)
real(kind=dp), dimension(:), allocatable x Particle position (x-component)
real(kind=dp), dimension(:), allocatable y Particle position (y-component)
real(kind=dp), dimension(:), allocatable z Particle position (z-component)

Function/Subroutine Documentation

read_config()

subroutine read_module::read_config

Reads initial system configuration (positions, velocities, forces) from a CONFIG file (in DL_POLY-style format)
and assigns particles, bonds etc. to system, accounting for any system duplication specified using the ‘nfold’
directive in the CONTROL file. Each processor reads a near-equal size part of the CONFIG file and distributes
particle data to the relevant processors based on positions. The number of particles in the CONFIG file must
match the number given in the corresponding FIELD file - which are checked and reported if they do not match
up - as should any molecule and bond information. The periodic boundary key (imcon) is effectively ignored as
all DL_MESO_DPD systems are orthorhombic. This routine also adds any required frozen bead walls as cubic
lattices. No direct checks are made to ensure molecules do not cross non-periodic boundaries or form cross-linked
structures across periodic boundaries. The likely number of particles to be exported to boundary halos is evaluated
and, where necessary, the sizes of transfer buffers for communications are adjusted.

748 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

read_control()

subroutine read_module::read_control (logical l_readvol,
logical l_config,
logical l_rest

)

Reads in all system data from CONTROL file not previously obtained from initial scan.

Parameters

l_readvol Flag to determine whether or not to read simulation volume provided in CONTROL file
l_config Flag to determine whether or not a CONFIG file is to be read
l_rest Flag to determine whether or not a previous simulation is to be restarted

read_export()

subroutine read_module::read_export (logical, intent(in) ltempscale)

Read in state of previous simulation from export file: particle positions, velocities and forces, Lees-Edwards
shearing displacements and (if required) factor for rescaling particle velocities. Each processor reads a near-equal
sized part of the export file: the particle data are redistributed to the relevant processors based on their positions.
The likely number of particles to be exported to boundary halos is evaluated and, where necessary, the sizes of
transfer buffers for communications are adjusted.

Parameters

ltempscale Flag to determine if particles velocities are to be rescaled for system temperature

read_field()

subroutine read_module::read_field

Reads in all interaction information from FIELD file not previously obtained from initial scan, including inter-
action parameters, molecule configurations and connectivity for simulation setup, and external fields (constant
body/gravity forces and electric fields). This subroutine will determine interaction parameters for species pairs
not specified in the FIELD file unless any interactions are many-body DPD (requiring parameters for all species
pairs). All energy-based interaction parameters (for standard pairwise interactions, surface interactions, bonded
and electrostatic interactions) will be scaled with temperature if specified in the FIELD file.

read_revive()

subroutine read_module::read_revive

Read in statistical accumulators for system properties, barostat properties and random number generator states
from REVIVE file. The REVIVE file is not absolutely necessary for a simulation restart: only a warning is printed
if it cannot be found. The random number generator states replace those previously initialised with the exception
of higher number processors if fewer processors were originally used to create the REVIVE file.

10.14. read_module.F90 749

DL_MESO Technical Manual, Release 2.7

readpos()

subroutine read_module::readpos (integer(kind=li), intent(inout) testpos,
integer(kind=li), intent(in) header,
integer, intent(out) startpart,
integer, intent(out) nextpart,
integer, intent(in) readlines

)

Finds the starting position of a particle entry in the CONFIG file at or before the provided byte number, as well as
the associated particle number.

Parameters

testpos Byte number at start of particle entry (initially provided as estimate)
header Number of bytes as header in CONFIG file before particle data starts
startpart Particle index in current particle entry
nextpart Particle index in next particle entry
readlines Number of lines per particle entry in CONFIG file

scan_config()

subroutine read_module::scan_config

Scan the top of the CONFIG file to find the amount of data per particle (positions, velocities, forces), the simulation
box shape and the dimensions of the system unit cell.

scan_control()

subroutine read_module::scan_control (logical l_exist,
logical l_safe,
logical l_scr,
logical l_temp,
logical l_time,
logical l_conf,
logical l_init,
logical l_rest

)

Checks for the existence of the CONTROL file and whether or not it can safely be read, before scanning for
valid temperature and timestep values, as well as the ‘l_scr’ directive to divert simulation output to the screen or
standard output, the ‘l_conf’ directive to inform DL_MESO_DPD whether or not to use CONFIG file, the ‘l_init’
directive to create a CONFIG file (called CFGINI) from the devised initial state, and whether or not the simulation
is being restarted. This subroutine is called directly by the main DL_MESO_DPD code.

Parameters

l_exist Flag to indicate if CONTROL file exists
l_safe Flag to indicate if CONTROL file can be safely read
l_scr Flag to indicate if simulation output is to be directed to screen or standard output
l_temp Flag to indicate if simulation temperature is defined in CONTROL file
l_time Flag to indicate if simulation timestep is defined in CONTROL file
l_conf Flag to indicate whether or not CONFIG file is to be used
l_init Flag to indicate if CFGINI file is to be written
l_rest Flag to indicate if a previous simulation is to be restarted

750 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

scan_export()

subroutine read_module::scan_export

Scan the export file from a previous DL_MESO_DPD simulation to find the dimensions of the simulation box for
a restart.

scan_field()

subroutine read_module::scan_field

Scan through FIELD file to find numbers of species, molecule types and interactions, the maximum numbers of
parameters and particles per molecule, data for particle species (names, masses, charges and frozen flags), and
parameters for bonds, angles and dihedrals.

10.15 run_module.F90

10.15.1 Summary

Module with main loops over timesteps for DPD simulations.

10.15.2 Functions/Subroutines

• subroutine mdvv()

Calculation loop for simulation with DPD thermostat and standard (MD) Velocity Verlet integration.

• subroutine dpdvv()

Calculation loop for simulation with DPD thermostat and DPD Velocity Verlet integration.

• subroutine dpds1()

Calculation loop for simulation with DPD thermostat using first-order Shardlow splitting.

• subroutine dpds2()

Calculation loop for simulation with DPD thermostat using second-order Shardlow splitting.

• subroutine lowe()

Calculation loop for simulation with Lowe-Andersen thermostat.

• subroutine peters()

Calculation loop for simulation with Peters thermostat.

• subroutine stoyanov()

Calculation loop for simulation with Stoyanov-Groot thermostat.

10.15. run_module.F90 751

DL_MESO Technical Manual, Release 2.7

10.15.3 Variables

• logical finish = .false.

Flag to indicate whether or not DPD simulation has finished (scheduled or not)

• integer i

Counter for loop to reassign particle properties at each timestep.

• integer npage = 25

Number of timesteps to report to OUTPUT file before writing column headers.

• integer lines = 0

Number of timesteps written to OUTPUT file.

• integer klock = 0

Number of timesteps passed since start of DPD simulation loop (accounting for restarts)

• real(kind=dp) time

Simulation time in DPD units.

• real(kind=dp) frctim

Walltime taken to calculate particle forces during timestep.

• real(kind=dp) timelp

Current walltime for simulation (used to obtain time from function)

• real(kind=dp) timsrt

Walltime at start of current timestep.

• real(kind=dp) timfst

Walltime when force calculations started for current timestep.

• real(kind=dp) stptim

Walltime after calculations for current timestep are complete (before file writing starts)

10.15.4 Function/Subroutine Documentation

dpds1()

subroutine run_module::dpds1 (logical l_scr)

Carries out a simulation using the DPD thermostat, with dissipative and random pairwise forces integrated at
the start of each timestep using a first-order Shardlow splitting approach, and conservative (interaction) forces
integrated using Velocity Verlet integration.

Parameters

l_scr Flag to indicate if simulation outputs are to be diverted to standard output/screen

752 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

dpds2()

subroutine run_module::dpds2 (logical l_scr)

Carries out a simulation using the DPD thermostat, with dissipative and random pairwise forces integrated twice
per timestep - once at the start, again at the middle - using a second-order Shardlow splitting approach, and
conservative (interaction) forces integrated using Velocity Verlet integration.

Parameters

l_scr Flag to indicate if simulation outputs are to be diverted to standard output/screen

dpdvv()

subroutine run_module::dpdvv (logical l_scr)

Carries out a simulation using the DPD thermostat, with dissipative and random pairwise forces integrated along
with conservative (interaction) forces using Velocity Verlet integration before dissipative forces are recalculated
afterwards (known as DPD Velocity Verlet).

Parameters

l_scr Flag to indicate if simulation outputs are to be diverted to standard output/screen

lowe()

subroutine run_module::lowe (logical l_scr)

Carries out a simulation using the Lowe-Andersen thermostat, with replacements to relative velocities between
particle pairs carried out at the end of each timestep, and conservative (interaction) forces integrated using Velocity
Verlet integration.

Parameters

l_scr Flag to indicate if simulation outputs are to be diverted to standard output/screen

mdvv()

subroutine run_module::mdvv (logical l_scr)

Carries out a simulation using the DPD thermostat, with dissipative and random pairwise forces integrated along
with conservative (interaction) forces using the standard (molecular dynamics) form of Velocity Verlet integration.

Parameters

l_scr Flag to indicate if simulation outputs are to be diverted to standard output/screen

10.15. run_module.F90 753

DL_MESO Technical Manual, Release 2.7

peters()

subroutine run_module::peters (logical l_scr)

Carries out a simulation using the Peters thermostat, with replacements to relative velocities between particle
pairs carried out at the end of each timestep, and conservative (interaction) forces integrated using Velocity Verlet
integration.

Parameters

l_scr Flag to indicate if simulation outputs are to be diverted to standard output/screen

stoyanov()

subroutine run_module::stoyanov (logical l_scr)

Carries out a simulation using the Stoyanov-Groot thermostat, with replacements to relative velocities between
particle pairs carried out at the end of each timestep, and conservative (interaction) forces and instantaneous
temperature-dependent pairwise forces integrated using Velocity Verlet integration.

Parameters

l_scr Flag to indicate if simulation outputs are to be diverted to standard output/screen

10.15.5 Variable Documentation

finish

logical run_module::finish = .false.

Flag to indicate whether or not DPD simulation has finished, either due to running out of timesteps or due to
running out of calculation time: checked across all processors and used to break out of the calculation loop.

frctim

real(kind=dp) run_module::frctim

Calculation walltime (in seconds) taken to calculate particle forces during current timestep.

i

integer run_module::i

Counter for loop to reassign properties (mass, species and molecule names) to each particle at each timestep after
the first Velocity Verlet stage.

754 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

klock

integer run_module::klock = 0

Number of timesteps that have passed since the DPD simulation loop started for the current run (not including
any timesteps passed before a simulation restart): used to calculate average wall clock times for simulation as
performance measures.

lines

integer run_module::lines = 0

Number of lines of properties previously written to OUTPUT file (or to standard output/screen), used to determine
when to print column headers.

npage

integer run_module::npage = 25

Frequency for writing column headers to OUTPUT file (or standard output/screen) in terms of number of lines of
properties.

stptim

real(kind=dp) run_module::stptim

Walltime (in seconds) taken to carry out calculations during current timestep, excluding time taken to write to
output files.

time

real(kind=dp) run_module::time

Current time of the simulation in DPD time units, equal to the product of the timestep size ∆𝑡 and the current
timestep number less number of equilibration timesteps.

timelp

real(kind=dp) run_module::timelp

Walltime (in seconds) since the start of the simulation to after force calculations for the current timestep.

timfst

real(kind=dp) run_module::timfst

Accumulated wall clock time taken to calculate forces during current simulation, used to calculate average time
per timestep as a performance measure.

10.15. run_module.F90 755

DL_MESO Technical Manual, Release 2.7

timsrt

real(kind=dp) run_module::timsrt

Walltime (in seconds) since the start of the simulation to the beginning of the current timestep.

10.16 spme_module.F90

10.16.1 Summary

Module to calculate reciprocal-space (long-range) electrostatic forces using Smooth Particle Mesh
Ewald (SPME). (OpenMP multithreaded version available with spme_module_omp.F90.)

10.16.2 Functions/Subroutines

• subroutine spme_initialize()

Sets up variables, B-splines and global charge arrays for Smooth Particle Mesh Ewald (SPME) calculations.

• subroutine spme_reciprocal_map()

Determines vectors within range for Smooth Particle Mesh Ewald (SPME) calculations.

• subroutine spme_ewald_reciprocal()

Calculates reciprocal-space forces on charged particles using Smooth Particle Mesh Ewald (SPME).

• subroutine spme_ewald_reciprocal_potentials()

Calculates reciprocal-space potentials on charged particles using Smooth Particle Mesh Ewald (SPME).

• subroutine spme_bspline_gen()

Calculates B-splines for Smooth Particle Mesh Ewald (SPME) calculations to apply charges to grid and
calculate derivatives for forces.

• subroutine spme_free_memory()

Deallocates B-spline and global charge arrays for SPME calculations.

10.16.3 Variables

• integer, save mxspl2

Square of maximum B-spline order.

• integer, save mxspl3

Cube of maximum B-spline order.

• real(kind=dp), save kmax1r

Double-precision real value for maximum k-vector (x-component)

• real(kind=dp), save kmax2r

Double-precision real value for maximum k-vector (y-component)

• real(kind=dp), save kmax3r

Double-precision real value for maximum k-vector (z-component)

• real(kind=dp), dimension(:,:,:), allocatable, save qqc

Double-precision real charge grid.

756 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• complex(kind=dp), dimension(:), allocatable, save bscx

B-spline construction coefficients (x-component)

• complex(kind=dp), dimension(:), allocatable, save bscy

B-spline construction coefficients (y-component)

• complex(kind=dp), dimension(:), allocatable, save bscz

B-spline construction coefficients (z-component)

• complex(kind=dp), dimension(:,:,:), allocatable, save qqq

• complex(c_double_complex), dimension (:,:,:), allocatable, save qqq

Double-precision complex charge grid.

• type(c_ptr) planback

FFTW plan for inverse 3D FFT

• type(c_ptr) planfor

FFTW plan for forward 3D FFT

10.16.4 Function/Subroutine Documentation

spme_bspline_gen()

subroutine spme_module::spme_bspline_gen (integer, intent(in) natms,
integer, intent(in) nospl,
real(kind=dp), dimension (:), intent(in)

→˓xxx,
real(kind=dp), dimension (:), intent(in)

→˓yyy,
real(kind=dp), dimension (:), intent(in)

→˓zzz,
real(kind=dp), dimension (:,:),

→˓intent(out) bspx,
real(kind=dp), dimension (:,:),

→˓intent(out) bspy,
real(kind=dp), dimension (:,:),

→˓intent(out) bspz,
real(kind=dp), dimension (:,:),

→˓intent(out) bsdx,
real(kind=dp), dimension (:,:),

→˓intent(out) bsdy,
real(kind=dp), dimension (:,:),

→˓intent(out) bsdz
)

Constructs B-splines based on the positions of particles relative to the maximum reciprocal vector grid in prepara-
tion for applying a Fast Fourier Transform (FFT) as part of Smooth Particle Mesh Ewald (SPME). The derivatives
of the spline are also calculated to enable forces on particles to be calculated. The spline order should be an even
number and no less than 4.

Parameters

10.16. spme_module.F90 757

DL_MESO Technical Manual, Release 2.7

natms Number of particles in subdomain to construct B-splines
nospl Spline order
xxx Particle positions (x-coordinate)
yyy Particle positions (y-coordinate)
zzz Particle positions (z-coordinate)
bspx Constructed B-splines for particles (x-coordinate)
bspy Constructed B-splines for particles (y-coordinate)
bspz Constructed B-splines for particles (z-coordinate)
bsdx Constructed B-spline derivatives for particles (x-coordinate)
bsdy Constructed B-spline derivatives for particles (y-coordinate)
bsdz Constructed B-spline derivatives for particles (z-coordinate)

spme_ewald_reciprocal()

subroutine spme_module::spme_ewald_reciprocal (integer nlimit)

Calculates long-range Coulombic forces and potential energies using the Smooth Particle Mesh Ewald (SPME)
method [31], including self-energy corrections for charged systems and dipole moment-based corrections for
slab-like geometries [153] (i.e. non-periodic boundaries in one dimension). The charges are assigned to a grid of
size equal to the maximum reciprocal vector range and the Fourier transform of this grid is found using a three-
dimensional Fast Fourier Transform (FFT) solver. DL_MESO supplies an FFT solver, but the user can choose
ESSL or FFTW as alternatives when compiling the code by using compile-time flags. The OpenMP version
divides the particles among available threads for force calculations.

Parameters

nlimit Total number of particles in subdomain and boundary halo

spme_ewald_reciprocal_potentials()

subroutine spme_module::spme_ewald_reciprocal_potentials (integer nlimit)

Calculates long-range Coulombic potential energies using the Smooth Particle Mesh Ewald (SPME) method [31],
including self-energy corrections for charged systems and dipole moment-based corrections for slab-like geome-
tries [153] (i.e. non-periodic boundaries in one dimension). The charges are assigned to a grid of size equal to the
maximum reciprocal vector range and the Fourier transform of this grid is found using a three-dimensional Fast
Fourier Transform (FFT) solver. DL_MESO supplies an FFT solver, but the user can choose ESSL or FFTW as
alternatives when compiling the code by using compile-time flags. This subroutine does not assign forces to par-
ticles and is intended to calculate potential, virial and stress tensor contributions at the start of a DPD simulation
when forces are already known.

Parameters

nlimit Total number of particles in subdomain and boundary halo

758 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

spme_free_memory()

subroutine spme_module::spme_free_memory

Deallocates all timestep-independent arrays used for Smooth Particle Mesh Ewald (SPME) calculations - those
for constructing B-splines and the global charge grids - at the end of the DPD simulation.

spme_initialize()

subroutine spme_module::spme_initialize

Assigns double-precision real values for maximum reciprocal vectors (supplied by user as integers), allocates
arrays for B-spline coefficients, global charge arrays and helper arrays used to assign charges to a grid. This
subroutine only has to be called once before SPME calculations commence.

spme_reciprocal_map()

subroutine spme_module::spme_reciprocal_map

Puts together list of reciprocal vectors within range for the long-range (reciprocal-space) part of the Ewald sum to
be carried out using Smooth Particle Mesh Ewald (SPME), taking user-specified vacuum gaps and Lees-Edwards
shearing boundaries [148] into account. This subroutine only needs to be called once for constant volume (NVT)
systems without shearing, but needs to be called every timestep for systems with barostats or Lees-Edwards
shearing boundary conditions.

10.16.5 Variable Documentation

bscx

complex(kind=dp), dimension (:), allocatable, save spme_module::bscx

x-component of B-spline construction coefficients used to assign charges to grid for SPME calculations.

bscy

complex(kind=dp), dimension (:), allocatable, save spme_module::bscy

y-component of B-spline construction coefficients used to assign charges to grid for SPME calculations.

bscz

complex(kind=dp), dimension (:), allocatable, save spme_module::bscz

z-component of B-spline construction coefficients used to assign charges to grid for SPME calculations.

10.16. spme_module.F90 759

DL_MESO Technical Manual, Release 2.7

kmax1r

real(kind=dp), save spme_module::kmax1r

Double precision real value for x-component of maximum reciprocal vector (number of periodic images) for
SPME calculations: value obtained by converting integer value either directly supplied in CONTROL file or
calculated from supplied relative error in electrostatic potential.

kmax2r

real(kind=dp), save spme_module::kmax2r

Double precision real value for y-component of maximum reciprocal vector (number of periodic images) for
SPME calculations: value obtained by converting integer value either directly supplied in CONTROL file or
calculated from supplied relative error in electrostatic potential.

kmax3r

real(kind=dp), save spme_module::kmax3r

Double precision real value for z-component of maximum reciprocal vector (number of periodic images) for
SPME calculations: value obtained by converting integer value either directly supplied in CONTROL file or
calculated from supplied relative error in electrostatic potential.

mxspl2

integer save spme_module::mxspl2

Square of the maximum B-spline order specified in CONTROL file, used to construct 3D charge array for SPME
calculations.

mxspl3

integer save spme_module::mxspl3

Cube of the maximum B-spline order specified in CONTROL file, used to construct 3D charge array for SPME
calculations.

planback

type(c_ptr) :: planback

Calculation plan for FFTW to carry out inverse Fast Fourier Transform of charge grid. (Not used if using ESSL
or internal FFT solver.)

760 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

planfor

type(c_ptr) :: planfor

Calculation plan for FFTW to carry out forward Fast Fourier Transform of charge grid. (Not used if using ESSL
or internal FFT solver.)

qqc

real(kind=dp), dimension (:,:,:), allocatable, save spme_module::qqc

Three-dimensional grid of charges represented as double precision real numbers.

qqq

complex(kind=dp), dimension (:,:,:), allocatable, save spme_module::qqq
complex(c_double_complex), dimension (:,:,:), allocatable, save spme_module::qqq

Three-dimensional grid of charges represented as double precision complex numbers, which undergoes Fast
Fourier Transforms as part of SPME calculation. (If using FFTW, double precision complex kind is taken from
Fortran iso_c_bindings instrinics used for interoperability with C.)

10.17 start_module.F90

10.17.1 Summary

Module to start and revive DPD simulations based on available inputted data.

10.17.2 Functions/Subroutines

• subroutine start()

Sets up starting configuration for DPD calculation.

• subroutine initialize()

Sets up starting configuration for DPD simulation without an initial or restart configuration.

• subroutine initialvelocity()

Assigns initial particle velocities to give required system temperature.

• subroutine sort_beads()

Sorts particles held by current processor.

• subroutine assign_bonds()

Assigns bond data (bonds, angles and dihedrals) to book-keeping tables.

10.17. start_module.F90 761

DL_MESO Technical Manual, Release 2.7

assign_bonds()

subroutine start_module::assign_bonds

Creates bond, angle and dihedral tables for the current processor to identify which particles are involved in these
interactions. If assigning bond data globally (using ‘global bonds’ directive in the CONTROL file), every proces-
sor will hold all available data. If assigning bond data locally (by default), only data involving particles held by
each processor - i.e. index particles for bonds, angles and dihedrals - will be assigned to that processor.

initialize()

subroutine start_module::initialize

Assigns positions and velocities for particles in the DPD simulation when only system volume and numbers of
particles are provided in CONTROL and FIELD files. Particles not included in molecules are assigned to a
cubic lattice with species assigned as evenly as possible among processors, while molecules are inserted into the
simulation box at random positions and rotations (to fit entirely box if using hard walls or frozen bead walls).
Frozen bead walls are also assigned as cubic lattices. No duplication of the system using the ‘nfold’ directive in
the CONTROL file is assumed.

initialvelocity()

subroutine start_module::initialvelocity

Randomly assigns velocities to particles, starting with values obtained from a uniform random number generator
rescaled to give correct system-wide kinetic energy for required system temperature and no overall momentum.

sort_beads()

subroutine start_module::sort_beads

Re-orders particles held by each processor to put frozen particles first by local bead index, which makes identifying
these and skipping them during force integration easier.

start()

subroutine start_module::start (logical l_config)

Sets up initial particle configuration (positions and velocities) and bond information for the DPD simulation.
This can either be derived from the system volume and numbers of particles given in CONTROL and FIELD
files, read from a CONFIG file, or obtained from an export file when restarting a previous simulation. The initial
particle velocities can either be obtained from these input files or selected randomly to provide the required system
temperature. A sample of particle positions and velocities is printed to the OUTPUT file (or standard output), and
the HISTORY file for simulation trajectories is prepared.

Parameters

l_config Flag to indicate if CONFIG file is to be read

762 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.18 statistics_module.F90

10.18.1 Summary

Module to collect system properties for statistical analysis.

10.18.2 Functions/Subroutines

• subroutine statis()

Calculates system properties and accumulates statistical information for simulation outputs.

10.18.3 Function/Subroutine Documentation

statis()

subroutine statistics_module::statis

Gathers together system-wide simulation properties - potential and kinetic energies, bond lengths and angles, and
stress tensors - for the current timestep, and uses values to calculate rolling averages (based on continuously-
updated statistical data stacks), simulation averages and standard deviations (fluctuations). These values are re-
ported in the OUTPUT file (or standard output), the CORREL file or Stress_*.d files. Temperature rescaling of
particle velocities is also applied at user-specified intervals during equilibration.

10.19 surface_module.F90

10.19.1 Summary

Module for applying boundary conditions at system planes (e.g. solid walls) and wall interaction
potentials.

10.19.2 Functions/Subroutines

• subroutine surfacenodes()

Identifies processors containing surfaces or other boundary conditions.

• subroutine surfaceforce()

Calculates interaction force and potential between a particle and a hard boundary (wall).

• subroutine wallforces()

Calculates and applies wall forces and potentials on particles.

• subroutine wallpotentials()

Calculates and applies wall potentials on particles.

• subroutine hardreflect_specular()

Applies a specular reflective condition at a hard wall.

• subroutine hardreflect_bounceback()

Applies a bounce-back reflective condition at a hard wall.

10.18. statistics_module.F90 763

DL_MESO Technical Manual, Release 2.7

• subroutine frozenbead()

Calculates numbers of frozen particles needed for boundary walls.

• subroutine shearslide()

Calculates displacement of shearing boundaries for Lees-Edwards boundary conditions.

10.19.3 Function/Subroutine Documentation

frozenbead()

subroutine surface_module::frozenbead (integer, intent(out) numwallbeads)

Determines the number of frozen particles required for a frozen bead wall, given the wall thickness and bead
density, and adjusts the system dimensions and particle counts to acommodate them.

Parameters

n umwallbeads Calculated number of frozen particles for boundary walls

hardreflect_bounceback()

subroutine surface_module::hardreflect_bounceback

For any particle about to pass through a hard wall, this subroutine relocates the particle based on it being reflected
by the wall in all three dimensions and reverses its velocity and momentum, applying bounce-back reflection for
a no-slip boundary.

hardreflect_specular()

subroutine surface_module::hardreflect_specular

For any particle about to pass through a hard wall, this subroutine relocates the particle based on it being reflected
orthogonally to the wall while preserving tangental momentum and reverses the orthogonal velocity component,
applying specular reflection for a free-slip boundary.

shearslide()

subroutine surface_module::shearslide

Based on the time elapsed after equilibration, this subroutine determines the displacement of a periodic shearing
boundary as required for Lees-Edwards boundary conditions [76]. This displacement is used to adjust the positions
of beads passing through shearing boundaries.

764 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

surfaceforce()

subroutine surface_module::surfaceforce (integer j,
real(kind=dp) rrr,
real(kind=dp) rsq,
real(kind=dp) srfforce,
real(kind=dp) srfpot

)

This subroutine calculates all surface-based interactions acting on particles. Two types are currently available: a
Groot-Warren ‘DPD’ soft repulsive type [105] given as:

𝑈𝑤𝑎𝑙𝑙,𝑖(𝑧) =
1

2
𝐴𝑤𝑎𝑙𝑙,𝑖𝑧𝑐,𝑖

(︂
1 − 𝑧

𝑧𝑐,𝑖

)︂2

for 𝑧 < 𝑧𝑐,𝑖, and a Weeks-Chandler-Andersen (WCA) type given as:

𝑈𝑤𝑎𝑙𝑙,𝑖(𝑧) = 4𝜖𝑤𝑎𝑙𝑙,𝑖

[︃(︂
𝑧

𝜎𝑤𝑎𝑙𝑙,𝑖

)︂12

−
(︂

𝑧

𝜎𝑤𝑎𝑙𝑙,𝑖

)︂6
]︃

+ 𝜖𝑤𝑎𝑙𝑙,𝑖

for 𝑧 < 2
1
6𝜎𝑤𝑎𝑙𝑙,𝑖. Note that the force is divided by the distance in this subroutine so that multiplying this value

by the vector between the particle and the wall gives the required scalar force multiplied by the unit vector.

Parameters

j Species number for particle (𝑖)
rrr Distance between particle and wall, 𝑧𝑤𝑎𝑙𝑙,𝑖

rsq Squared distance between particle and wall

srfforce Resulting surface force between particle and wall divided by distance, 𝐹𝑤𝑎𝑙𝑙,𝑖

𝑧𝑤𝑎𝑙𝑙,𝑖

srfpot Resulting wall potential, 𝑈𝑤𝑎𝑙𝑙,𝑖

surfacenodes()

subroutine surface_module::surfacenodes

Determines if each processor includes a surface (e.g. a hard wall or a shearing boundary), indicates which surfaces
exist for the purposes of applying communications (deport, export and import steps) between processors and, for
reflecting boundaries, determines their locations within the processor’s subdomain. If Lees-Edwards shearing
boundaries are in use, these are only applied after equilibration.

wallforces()

subroutine surface_module::wallforces

Based on their positions relative to a reflecting hard wall boundary, calculates wall interaction forces and potentials
acting on particles within a surface cutoff distance.

10.19. surface_module.F90 765

DL_MESO Technical Manual, Release 2.7

wallpotentials()

subroutine surface_module::wallpotentials

Based on their positions relative to a reflecting hard wall boundary, calculates wall interaction potentials acting
on particles within a surface cutoff distance. This subroutine does not assign forces to particles and is intended
to calculate potentials, virials and stress tensor contributions at the start of a DPD simulation when particle forces
are already known.

10.20 write_module.F90

10.20.1 Summary

Module for writing DL_MESO_DPD output files with system properties, trajectories.

10.20.2 Data Types

• type type write_module::output_distribution

Data gathering and output filewriting parameters.

• type type write_module::outputgroup

Data gathering and output filewriting group properties.

10.20.3 Functions/Subroutines

• subroutine write_output_summary()

Writes simulation summary at current timestep to OUTPUT file.

• subroutine write_output_equil()

Writes end-of-equilibration message to OUTPUT file.

• subroutine write_correl()

Writes system properties to CORREL file.

• subroutine write_stress()

Write separated stress tensor data to Stress_*.d files.

• subroutine init_output_groups()

Initialises data gathering and file writing groups and communicators for HISTORY, export and CONFIG
(CFGINI) files.

• subroutine write_history_header()

Writes header information to new HISTORY file or prepares to write to existing HISTORY file (if restarting
simulation).

• subroutine gather_write_data()

Gather together particle data before writing to HISTORY and/or export file(s).

• subroutine write_history()

Writes gathered particle data to HISTORY file.

• subroutine write_export()

Writes gathered particle data to export file.

766 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• subroutine write_revive()

Writes statistical accumulators etc. to REVIVE file.

• subroutine write_config()

Writes a CONFIG file of the current system configuration.

• subroutine write_output_result()

Writes final summary of DPD simulation to OUTPUT file.

10.20.4 Variables

• type(outputgroup), save group_info

Group information for data gathering and file writing.

• integer(kind=li) filesize

Current size of HISTORY file in bytes.

• integer(kind=li) markerpos

Location in HISTORY file to write filesize, number of trajectory frames and current timestep number.

• integer(kind=li) headersize

Size of HISTORY file header before trajectory data in bytes.

• integer numframe

Current number of trajectory frames in HISTORY file.

10.20.5 Data Type Documentation

type write_module::output_distribution

Table 10.3: Class Members
integer(kind=li) chunksize Maximum amount of data to be gathered per group in

bytes
integer(kind=li) framesize Maximum amount of data to be gathered per particle in

bytes
integer, dimension(:), allocat-
able

nodes_per_group Number of processors in each data gathering group

integer number_groups Number of data gathering groups and file writing proces-
sors

10.20. write_module.F90 767

DL_MESO Technical Manual, Release 2.7

type write_module::outputgroup

Table 10.4: Class Members
integer comm Communicator for data gathering group
type(type
write_module::output_distribution)

distribu-
tion_info

Data gathering and file writing parameters

integer group Data gathering group identifier (not normally used)
integer, dimension(:), allocatable members Processor numbers in data gathering group
integer my_group Data gathering group number
integer num-

ber_members
Number of processors in data gathering group

integer rank Rank of current processor in data gathering group
integer root Root processor for data gathering group
integer writecomm1 Communicator for writing HISTORY file (if de-

fined)
integer writecomm2 Communicator for writing export file (if defined)
integer writecomm3 Communicator for writing CONFIG (CFGINI) file

(if defined)
integer writegroup File writing group identifier (not normally used)
integer, dimension(:), allocatable writemembers Processor numbers of file writing group
integer writerank Rank of current processor in file writing group (if

defined)

Function/Subroutine Documentation

gather_write_data()

subroutine write_module::gather_write_data (logical, intent(in) lexport,
logical, intent(in) lhistory,
real(kind=dp) time

)

Gather together particle positions, velocities and forces, global indices, species and molecule type numbers in
preparation for writing this information to either the HISTORY file as a new trajectory frame or an export file as
the current simulation configuration for restarts.

Parameters

lexport Flag to indicate whether or not to write gathered data to export file
lhistory Flag to indicate whether or not to write gathered data to HISTORY file
time Current simulation time in DPD units

init_output_groups()

subroutine write_module::init_output_groups

Creates two sets of processor groups and communicators: one set to gather particle data among groups of pro-
cessors to a root processor, and the other set to allow root processors to write data to files simultaneously. The
number of processors per gathering group is determined based on the maximum amount of data to be gathered and
the amount of data required per particle. The latter set of communicators are duplicated twice to allow HISTORY,
export and CONFIG (CFGINI) files to be written without conflicts.

768 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

write_config()

subroutine write_module::write_config (character (len=*) configname,
integer levdata

)

Gathers together particle data (global indices, species, positions, velocities, forces) and writes to a text-formatted
CONFIG file. The CONFIG file is predominately written using stream I/O, with each output group in parallel
writing to the file simultaneously with MPI-IO after creating a string with particle data. Particles are sent to
output group root processors according to their global indices, and their data is written in global index order. This
subroutine is intended for use in writing the initial configuration of a new simulation with the file name CFGINI.

Parameters

config-
name

Name of CONFIG file to be written

levdata Level of data to be written to CONFIG file (equivalent to ‘levcfg’: 0 = positions, 1 = positions and
velocities, 2 = positions, velocities and forces)

write_correl()

subroutine write_module::write_correl (real(kind=dp) time)

Writes instantaneous system properties to CORREL file at periodic intervals. A header with column titles is
printed when the file is created.

Parameters

time Current simulation time in DPD units

write_export()

subroutine write_module::write_export (integer, intent(in) total_beads,
integer, dimension (:), intent(in) glab,
integer, dimension (:), intent(in) gltp,
integer, dimension (:), intent(in) gltm,
real(kind=dp), dimension (:), intent(in)

→˓gxx,
real(kind=dp), dimension (:), intent(in)

→˓gyy,
real(kind=dp), dimension (:), intent(in)

→˓gzz,
real(kind=dp), dimension (:), intent(in)

→˓gvx,
real(kind=dp), dimension (:), intent(in)

→˓gvy,
real(kind=dp), dimension (:), intent(in)

→˓gvz,
real(kind=dp), dimension (:), intent(in)

→˓gfx,
real(kind=dp), dimension (:), intent(in)

→˓gfy,
real(kind=dp), dimension (:), intent(in) gfz

)

Writes current simulation state - including simulation box size, Lees-Edwards shearing displacements, global
particle indices and gathered particle data (positions, velocities, forces) - to export file as restart file. The export

10.20. write_module.F90 769

DL_MESO Technical Manual, Release 2.7

file is written using stream I/O, which does not require record-keeping characters and allows for easy searching.
When writing in parallel, the root processors in each data gathering group (the processors in the file writing
group) write to the export file simultaneously using MPI-IO, appending their group’s data without sorting by
particle number. Any previous export file is overwritten each time it is written to by this subroutine.

Parameters

total_beads Total number of particles gathered by current processor
glab Gathered global particle indices
gltp Gathered particle species
gltm Gathered molecule types for particles
gxx Gathered particle positions (x-component)
gyy Gathered particle positions (y-component)
gzz Gathered particle positions (z-component)
gvx Gathered particle velocities (x-component)
gvy Gathered particle velocities (y-component)
gvz Gathered particle velocities (z-component)
gfx Gathered particle forces (x-component)
gfy Gathered particle forces (y-component)
gfz Gathered particle forces (z-component)

write_history()

subroutine write_module::write_history (integer, intent(in) total_beads,
integer, dimension (:), intent(in) glab,
real(kind=dp), dimension (:), intent(in)

→˓gxx,
real(kind=dp), dimension (:), intent(in)

→˓gyy,
real(kind=dp), dimension (:), intent(in)

→˓gzz,
real(kind=dp), dimension (:), intent(in)

→˓gvx,
real(kind=dp), dimension (:), intent(in)

→˓gvy,
real(kind=dp), dimension (:), intent(in)

→˓gvz,
real(kind=dp), dimension (:), intent(in)

→˓gfx,
real(kind=dp), dimension (:), intent(in)

→˓gfy,
real(kind=dp), dimension (:), intent(in)

→˓gfz,
real(kind=dp), intent(in) time

)

Writes global particle indices and then gathered particle data (positions, velocities, forces - depending on required
data level) to HISTORY file as simulation trajectory frame. The HISTORY file is written using stream I/O,
which does not require record-keeping characters and allows for easy searching. When writing in parallel, the
root processors in each data gathering group (the processors in the file writing group) write to the HISTORY file
simultaneously using MPI-IO, appending their group’s data without sorting by particle number. The previous file
size and number of trajectory frames are overwritten with updated values to include the new frame written by this
subroutine.

Parameters

770 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

total_beads Total number of particles gathered by current processor
glab Gathered global particle indices
gxx Gathered particle positions (x-component)
gyy Gathered particle positions (y-component)
gzz Gathered particle positions (z-component)
gvx Gathered particle velocities (x-component)
gvy Gathered particle velocities (y-component)
gvz Gathered particle velocities (z-component)
gfx Gathered particle forces (x-component)
gfy Gathered particle forces (y-component)
gfz Gathered particle forces (z-component)
time Current simulation time in DPD units

write_history_header()

subroutine write_module::write_history_header

For a new simulation, open a new HISTORY file and write header information, including specifications for particle
species and molecules, particle species and molecule data, and bond connectivity information. For a restarted
simulation, open the previously-created HISTORY file and find where the next trajectory frame should be written,
i.e. after the last completed frame closest to the current timestep, overwriting any data previously written after this
point in the file.

write_output_equil()

subroutine write_module::write_output_equil

Once equilibration has come to an end, writes a message to the OUTPUT file (or standard output) to indicate this.

write_output_result()

subroutine write_module::write_output_result

Writes the numbers of timesteps for simulation and statistical sampling, average system properties and standard
deviations (fluctuations) - including stress tensors separated out into conservative, dissipative, random and kinetic
contributions - simulation timings, final particle buffer sizes and a sample of particle positions and velocities to
the OUTPUT file (or standard output).

write_output_summary()

subroutine write_module::write_output_summary (real(kind=dp) time,
logical lbegin,
logical l_scr

)

Writes a summary of the simulation - timestep number, walltime and system properties (both instantaneous and
rolling averages) - at periodic intervals to the OUTPUT file (or standard output).

Parameters

time Current walltime for simulation
lbegin Flag to indicate whether or not column titles should be printed before system data
l_scr Flag to indicate if summary is to be printed to standard output instead of OUTPUT file

10.20. write_module.F90 771

DL_MESO Technical Manual, Release 2.7

write_revive()

subroutine write_module::write_revive

Writes current simulation state - statistical accumulators of system properties, barostat properties and random
number generator states - to REVIVE file as restart file. The REVIVE file is written using stream I/O, which
does not require record-keeping characters and allows for easy searching. One core writes the accumulators and
barostat properties (as these are replicated over all processors), while MPI-IO is used by all processors to write
random number generator states.

write_stress()

subroutine write_module::write_stress (real(kind=dp) time)

Writes instantaneous values of stress tensors separated into interaction potential, dissipative, random and kinetic
components to Stress_*.d files (Stress_pot.d, Stress_diss.d, Stress_rn.d and Stress_kin.d). Only files requested in
CONTROL file will be created and written to.

Parameters

time Current simulation time in DPD units

Variable Documentation

filesize

integer (kind=li) write_module::filesize

Current size of HISTORY file in bytes: updated value written into header of HISTORY file after each trajectory
frame is written.

group_info

type (outputgroup), save write_module::group_info

Information about groups of processors used for gathering data and writing data to output files (especially HIS-
TORY and export).

headersize

integer (kind=li) write_module::headersize

Total size of header (in bytes) at the start of the HISTORY file before trajectory data is added, including particle
and bond identifications: used to identify locations for writing each trajectory frame in HISTORY file.

772 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

markerpos

integer (kind=li) write_module::markerpos

Location in HISTORY file (as byte number) where the filesize, number of trajectory frames and the current (last)
timestep number are to be written.

numframe

integer write_module::numframe

Current number of frames in HISTORY: updated value written into header of HISTORY file after each trajectory
frame is written.

10.21 integrate_dpd_mdvv.F90

10.21.1 Summary

Module for integrating forces with DPD thermostat using standard MD form of Velocity Verlet inte-
gration.

10.21.2 Functions/Subroutines

• subroutine mdvv_nvt()

Applies a constant volume and temperature (NVT) ensemble by using standard (MD) Velocity Verlet force
integration on both interaction and DPD thermostat forces.

• subroutine mdvv_lang_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on both interaction and DPD thermostat forces, and a Langevin barostat.

• subroutine mdvv_lang_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on both interaction and DPD thermostat forces, and a Langevin barostat.

• subroutine mdvv_lang_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on both interaction and DPD thermostat forces, and a Langevin barostat.

• subroutine mdvv_berend_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on both interaction and DPD thermostat forces, and a Berendsen barostat.

• subroutine mdvv_berend_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on both interaction and DPD thermostat forces, and a Berendsen barostat.

• subroutine mdvv_berend_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on both interaction and DPD thermostat forces, and a Berendsen barostat.

10.21. integrate_dpd_mdvv.F90 773

DL_MESO Technical Manual, Release 2.7

10.21.3 Function/Subroutine Documentation

mdvv_berend_npat()

subroutine integrate_dpd_mdvv::mdvv_berend_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and DPD
thermostat (dissipative and random) forces for a constant pressure, surface area and temperature (NPAT) ensemble
using a Berendsen barostat. This implementation holds the x- and y-components of box dimensions and positions
constant and only varies the z-component based on the zz-component of the pressure tensor. Particle positions
and system volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal
vector values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen
particles.

Parameters

stage Velocity Verlet stage (1 or 2)

mdvv_berend_npt()

subroutine integrate_dpd_mdvv::mdvv_berend_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure and temperature (NPT) ensemble using a
Berendsen barostat. This implementation keeps the system isotropic by using equal (averaged) values for pressure
tensors. Particle positions and system volume are rescaled during the first integration stage, applying any boundary
conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective forces
for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

mdvv_berend_nst()

subroutine integrate_dpd_mdvv::mdvv_berend_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure, surface tension and temperature (NST)
ensemble using a Berendsen barostat. This implementation can either apply the barostat independently in all three
directions or semi-isotropically by using averaged pressure tensors for x- and y-components: in either case, the
surface tension terms are applied in x- and y-directions. Particle positions and system volume are rescaled during
the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME
are always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

774 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

mdvv_lang_npat()

subroutine integrate_dpd_mdvv::mdvv_lang_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and DPD
thermostat (dissipative and random) forces for a constant pressure, surface area and temperature (NPAT) ensemble
using a Langevin barostat. This implementation holds the x- and y-components of box dimensions and positions
constant and only varies the z-component based on the zz-component of the pressure tensor. Particle positions and
system volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector
values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles.
The barostat piston forces and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

mdvv_lang_npt()

subroutine integrate_dpd_mdvv::mdvv_lang_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure and temperature (NPT) ensemble using a
Langevin barostat. This implementation keeps the system isotropic by using equal (averaged) values for pressure
tensors and random numbers in all three dimensions. Particle positions and system volume are rescaled during the
first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are
always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces and final
particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

mdvv_lang_nst()

subroutine integrate_dpd_mdvv::mdvv_lang_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure, surface tension and temperature (NST)
ensemble using a Langevin barostat. This implementation can either apply the barostat independently in all three
directions or semi-isotropically by using averaged pressure tensors and the same random piston force for x- and
y-components: in either case, the surface tension terms are applied in x- and y-directions. Particle positions and
system volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector
values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles.
The barostat piston forces and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

10.21. integrate_dpd_mdvv.F90 775

DL_MESO Technical Manual, Release 2.7

mdvv_nvt()

subroutine integrate_dpd_mdvv::mdvv_nvt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant volume and temperature (NVT) ensemble. Particle
positions are adjusted after the first integration stage for any applicable boundary conditions - reciprocal vector
maps for Ewald sums or SPME are recalculated if the system undergoes Lees-Edwards shearing.

Parameters

stage Velocity Verlet stage (1 or 2)

10.22 integrate_dpd_dpdvv.F90

10.22.1 Summary

Module for integrating forces with DPD thermostat using DPD Velocity Verlet integration (recalcu-
lation of dissipative forces after force integration).

10.22.2 Functions/Subroutines

• subroutine dpdvv_nvt()

Applies a constant volume and temperature (NVT) ensemble by using DPD Velocity Verlet force integration
on both interaction and DPD thermostat forces, recalculating dissipative forces at end of timestep.

• subroutine dpdvv_lang_npt()

Applies a constant pressure and temperature (NPT) ensemble by using DPD Velocity Verlet force integration
on both interaction and DPD thermostat forces, and a Langevin barostat, recalculating dissipative forces at
end of timestep.

• subroutine dpdvv_lang_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using DPD Velocity Verlet
force integration on both interaction and DPD thermostat forces, and a Langevin barostat.

• subroutine dpdvv_lang_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using DPD Velocity Verlet
force integration on both interaction and DPD thermostat forces, and a Langevin barostat.

• subroutine dpdvv_berend_npt()

Applies a constant pressure and temperature (NPT) ensemble by using DPD Velocity Verlet force integration
on both interaction and DPD thermostat forces, and a Berendsen barostat, recalculating dissipative forces at
end of timestep.

• subroutine dpdvv_berend_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using DPD Velocity Verlet
force integration on both interaction and DPD thermostat forces, and a Berendsen barostat.

• subroutine dpdvv_berend_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using DPD Velocity Verlet
force integration on both interaction and DPD thermostat forces, and a Berendsen barostat.

776 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.22.3 Function/Subroutine Documentation

dpdvv_berend_npat()

subroutine integrate_dpd_dpdvv::dpdvv_berend_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and DPD
thermostat (dissipative and random) forces for a constant pressure, surface area and temperature (NPAT) ensemble
using a Berendsen barostat, and recalculating dissipative forces at the end of the timestep - this approach is known
as DPD Velocity Verlet [9]. This implementation holds the x- and y-components of box dimensions and positions
constant and only varies the z-component based on the zz-component of the pressure tensor. Particle positions
and system volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal
vector values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen
particles.

Parameters

stage Velocity Verlet stage (1 or 2)

dpdvv_berend_npt()

subroutine integrate_dpd_dpdvv::dpdvv_berend_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure and temperature (NPT) ensemble using a
Berendsen barostat, and recalculating dissipative forces at the end of the timestep - this approach is known as DPD
Velocity Verlet [9]. This implementation keeps the system isotropic by using equal (averaged) values for pressure
tensors in all three dimensions. Particle positions and system volume are rescaled during the first integration stage,
applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as
are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

dpdvv_berend_nst()

subroutine integrate_dpd_dpdvv::dpdvv_berend_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure, surface tension and temperature (NST)
ensemble using a Berendsen barostat, and recalculating dissipative forces at the end of the timestep - this approach
is known as DPD Velocity Verlet [9]. This implementation can either apply the barostat independently in all three
directions or semi-isotropically by using averaged pressure tensors for x- and y-components: in either case, the
surface tension terms are applied in x- and y-directions. Particle positions and system volume are rescaled during
the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME
are always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

10.22. integrate_dpd_dpdvv.F90 777

DL_MESO Technical Manual, Release 2.7

dpdvv_lang_npat()

subroutine integrate_dpd_dpdvv::dpdvv_lang_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and DPD
thermostat (dissipative and random) forces for a constant pressure, surface area and temperature (NPAT) ensemble
using a Langevin barostat, and recalculating dissipative forces at the end of the timestep - this approach is known
as DPD Velocity Verlet [9]. This implementation holds the x- and y-components of box dimensions and positions
constant and only varies the z-component based on the zz-component of the pressure tensor. Particle positions and
system volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector
values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles.
The barostat piston forces and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

dpdvv_lang_npt()

subroutine integrate_dpd_dpdvv::dpdvv_lang_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure and temperature (NPT) ensemble using a
Langevin barostat, and recalculating dissipative forces at the end of the timestep - this approach is known as DPD
Velocity Verlet [9]. This implementation keeps the system isotropic by using equal (averaged) values for pressure
tensors and random numbers in all three dimensions. Particle positions and system volume are rescaled during the
first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are
always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces and final
particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

dpdvv_lang_nst()

subroutine integrate_dpd_dpdvv::dpdvv_lang_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant pressure, surface tension and temperature (NST)
ensemble using a Langevin barostat, and recalculating dissipative forces at the end of the timestep - this approach
is known as DPD Velocity Verlet [9]. This implementation can either apply the barostat independently in all three
directions or semi-isotropically by using averaged pressure tensors and the same random piston force for x- and
y-components: in either case, the surface tension terms are applied in x- and y-directions. Particle positions and
system volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector
values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles.
The barostat piston forces and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

778 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

dpdvv_nvt()

subroutine integrate_dpd_dpdvv::dpdvv_nvt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate both interaction forces and
DPD thermostat (dissipative and random) forces for a constant volume and temperature (NVT) ensemble, and
recalculating dissipative forces at the end of the timestep - this approach is known as DPD Velocity Verlet [9].
Particle positions are adjusted after the first integration stage for any applicable boundary conditions - reciprocal
vector maps for Ewald sums or SPME are recalculated if the system undergoes Lees-Edwards shearing.

Parameters

stage Velocity Verlet stage (1 or 2)

10.23 integrate_dpd_shardlow.F90

10.23.1 Summary

Module for integrating forces with DPD thermostat using Shardlow splitting.

10.23.2 Functions/Subroutines

• subroutine dpds1_nvt()

Applies a constant volume and temperature (NVT) ensemble by using Velocity Verlet force integration on
interaction forces and first-order Shardlow splitting on DPD thermostat forces.

• subroutine dpds1_lang_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and first-order Shardlow splitting on DPD thermostat forces, and a Langevin
barostat.

• subroutine dpds1_lang_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and first-order Shardlow splitting on DPD thermostat
forces, and a Langevin barostat.

• subroutine dpds1_lang_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on interaction forces and first-order Shardlow splitting on DPD thermostat
forces, and a Langevin barostat.

• subroutine dpds1_berend_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and first-order Shardlow splitting on DPD thermostat forces, and a Berend-
sen barostat.

• subroutine dpds1_berend_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and first-order Shardlow splitting on DPD thermostat
forces, and a Berendsen barostat.

• subroutine dpds1_berend_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on interaction forces and first-order Shardlow splitting on DPD thermostat
forces, and a Berendsen barostat.

10.23. integrate_dpd_shardlow.F90 779

DL_MESO Technical Manual, Release 2.7

• subroutine dpds2_nvt()

Applies a constant volume and temperature (NVT) ensemble by using Velocity Verlet force integration on
interaction forces and second-order Shardlow splitting on DPD thermostat forces.

• subroutine dpds2_lang_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and second-order Shardlow splitting on DPD thermostat forces, and a
Langevin barostat.

• subroutine dpds2_lang_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and second-order Shardlow splitting on DPD thermostat
forces, and a Langevin barostat.

• subroutine dpds2_lang_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and second-order Shardlow splitting on DPD thermostat
forces, and a Langevin barostat.

• subroutine dpds2_berend_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and second-order Shardlow splitting on DPD thermostat forces, and a
Berendsen barostat.

• subroutine dpds2_berend_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and second-order Shardlow splitting on DPD thermostat
forces, and a Berendsen barostat.

• subroutine dpds2_berend_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and second-order Shardlow splitting on DPD thermostat
forces, and a Berendsen barostat.

10.23.3 Function/Subroutine Documentation

dpds1_berend_npat()

subroutine integrate_dpd_shardlow::dpds1_berend_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and first-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep for a constant pressure, surface area and temperature (NPAT) ensemble using a Berendsen barostat. This
implementation holds the x- and y-components of box dimensions and positions constant and only varies the z-
component based on the zz-component of the pressure tensor. Particle positions and system volume are rescaled
during the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or
SPME are always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

780 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

dpds1_berend_npt()

subroutine integrate_dpd_shardlow::dpds1_berend_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and first-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep for a constant pressure and temperature (NPT) ensemble using a Berendsen barostat. This implementation
keeps the system isotropic by using equal (averaged) values for pressure tensors in all three dimensions. Particle
positions and system volume are rescaled during the first integration stage, applying any boundary conditions.
Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged
frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds1_berend_nst()

subroutine integrate_dpd_shardlow::dpds1_berend_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and first-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep for a constant pressure, surface tension and temperature (NST) ensemble using a Berendsen barostat.
This implementation can either apply the barostat independently in all three directions or semi-isotropically by
using averaged pressure tensors for x- and y-components: in either case, the surface tension terms are applied in x-
and y-directions. Particle positions and system volume are rescaled during the first integration stage, applying any
boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective
forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds1_lang_npat()

subroutine integrate_dpd_shardlow::dpds1_lang_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and first-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep for a constant pressure, surface area and temperature (NPAT) ensemble using a Langevin barostat. This
implementation holds the x- and y-components of box dimensions and positions constant and only varies the z-
component based on the zz-component of the pressure tensor. Particle positions and system volume are rescaled
during the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or
SPME are always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces
and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

10.23. integrate_dpd_shardlow.F90 781

DL_MESO Technical Manual, Release 2.7

dpds1_lang_npt()

subroutine integrate_dpd_shardlow::dpds1_lang_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and first-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep for a constant pressure and temperature (NPT) ensemble using a Langevin barostat. This implementation
keeps the system isotropic by using equal (averaged) values for pressure tensors and random numbers in all three
dimensions. Particle positions and system volume are rescaled during the first integration stage, applying any
boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective
forces for any charged frozen particles. The barostat piston forces and final particle velocities are calculated
iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds1_lang_nst()

subroutine integrate_dpd_shardlow::dpds1_lang_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and first-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep for a constant pressure, surface tension and temperature (NST) ensemble using a Langevin barostat. This
implementation can either apply the barostat independently in all three directions or semi-isotropically by using
averaged pressure tensors and the same random piston force for x- and y-components: in either case, the surface
tension terms are applied in x- and y-directions. Particle positions and system volume are rescaled during the
first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are
always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces and final
particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds1_nvt()

subroutine integrate_dpd_shardlow::dpds1_nvt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and first-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep for a constant volume and temperature (NVT) ensemble. Particle positions are adjusted after the first
integration stage for any applicable boundary conditions - reciprocal vector maps for Ewald sums or SPME are
recalculated if the system undergoes Lees-Edwards shearing.

Parameters

stage Velocity Verlet stage (1 or 2)

782 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

dpds2_berend_npat()

subroutine integrate_dpd_shardlow::dpds2_berend_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and second-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep and after the second Velocity Verlet stage for a constant pressure, surface area and temperature (NPAT)
ensemble using a Berendsen barostat. This implementation holds the x- and y-components of box dimensions and
positions constant and only varies the z-component based on the zz-component of the pressure tensor. Particle
positions and system volume are rescaled during the first integration stage, applying any boundary conditions.
Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged
frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds2_berend_npt()

subroutine integrate_dpd_shardlow::dpds2_berend_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and second-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep and after the second Velocity Verlet stage for a constant pressure and temperature (NPT) ensemble using a
Berendsen barostat. This implementation keeps the system isotropic by using equal (averaged) values for pressure
tensors in all three dimensions. Particle positions and system volume are rescaled during the first integration stage,
applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as
are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds2_berend_nst()

subroutine integrate_dpd_shardlow::dpds2_berend_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and second-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep and after the second Velocity Verlet stage for a constant pressure, surface tension and temperature (NST)
ensemble using a Berendsen barostat. This implementation can either apply the barostat independently in all three
directions or semi-isotropically by using averaged pressure tensors for x- and y-components: in either case, the
surface tension terms are applied in x- and y-directions. Particle positions and system volume are rescaled during
the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME
are always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

10.23. integrate_dpd_shardlow.F90 783

DL_MESO Technical Manual, Release 2.7

dpds2_lang_npat()

subroutine integrate_dpd_shardlow::dpds2_lang_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and second-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep and after the second Velocity Verlet stage for a constant pressure, surface area and temperature (NPAT)
ensemble using a Langevin barostat. This implementation holds the x- and y-components of box dimensions and
positions constant and only varies the z-component based on the zz-component of the pressure tensor. Particle
positions and system volume are rescaled during the first integration stage, applying any boundary conditions.
Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged
frozen particles. The barostat piston forces and final particle velocities are calculated iteratively [64] until the latter
converge.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds2_lang_npt()

subroutine integrate_dpd_shardlow::dpds2_lang_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and second-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep and after the second Velocity Verlet stage for a constant pressure and temperature (NPT) ensemble using
a Langevin barostat. This implementation keeps the system isotropic by using equal (averaged) values for pressure
tensors and random numbers in all three dimensions. Particle positions and system volume are rescaled during the
first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are
always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces and final
particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

dpds2_lang_nst()

subroutine integrate_dpd_shardlow::dpds2_lang_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and second-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep and after the second Velocity Verlet stage for a constant pressure, surface tension and temperature (NST)
ensemble using a Langevin barostat. This implementation can either apply the barostat independently in all three
directions or semi-isotropically by using averaged pressure tensors and the same random piston force for x- and
y-components: in either case, the surface tension terms are applied in x- and y-directions. Particle positions and
system volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector
values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles.
The barostat piston forces and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

784 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

dpds2_nvt()

subroutine integrate_dpd_shardlow::dpds2_nvt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces, and second-
order Shardlow splitting [120] to integrate DPD thermostat (dissipative and random) forces at the start of the
timestep and after the second Velocity Verlet stage for a constant volume and temperature (NVT) ensemble.
Particle positions are adjusted after the first integration stage for any applicable boundary conditions - reciprocal
vector maps for Ewald sums or SPME are recalculated if the system undergoes Lees-Edwards shearing.

Parameters

stage Velocity Verlet stage (1 or 2)

10.24 integrate_lowe.F90

10.24.1 Summary

Module for integrating forces with the Lowe-Andersen thermostat.

10.24.2 Functions/Subroutines

• subroutine lowe_correct()

Applies corrections to relative velocities between selected particle pairs for the Lowe-Andersen thermostat.

• subroutine lowe_nvt()

Applies a constant volume and temperature (NVT) ensemble by using Velocity Verlet integration on inter-
action forces and Lowe-Andersen thermostat.

• subroutine lowe_lang_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and Lowe-Andersen thermostat, and a Langevin barostat.

• subroutine lowe_lang_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on interaction forces and Lowe-Andersen thermostat, and a Langevin barostat.

• subroutine lowe_lang_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and Lowe-Andersen thermostat, and a Langevin barostat.

• subroutine lowe_berend_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and Lowe-Andersen thermostat, and a Berendsen barostat.

• subroutine lowe_berend_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on interaction forces and Lowe-Andersen thermostat, and a Berendsen barostat.

• subroutine lowe_berend_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on interaction forces and Lowe-Andersen thermostat, and a Berendsen
barostat.

10.24. integrate_lowe.F90 785

DL_MESO Technical Manual, Release 2.7

10.24.3 Function/Subroutine Documentation

lowe_berend_npat()

subroutine integrate_lowe::lowe_berend_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Lowe-Andersen thermostat [83] for a constant pressure, surface area and temperature (NPAT) ensemble using a
Berendsen barostat. This implementation holds the x- and y-components of box dimensions and positions constant
and only varies the z-component based on the zz-component of the pressure tensor. Particle positions and system
volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector values
for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

lowe_berend_npt()

subroutine integrate_lowe::lowe_berend_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the Lowe-
Andersen thermostat [83] for a constant pressure and temperature (NPT) ensemble using a Berendsen barostat.
This implementation keeps the system isotropic by using equal (averaged) values for pressure tensors in all three
dimensions. Particle positions and system volume are rescaled during the first integration stage, applying any
boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective
forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

lowe_berend_nst()

subroutine integrate_lowe::lowe_berend_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Lowe-Andersen thermostat [83] for a constant pressure, surface tension and temperature (NST) ensemble using
a Berendsen barostat. This implementation can either apply the barostat independently in all three directions
or semi-isotropically by using averaged pressure tensors for x- and y-components: in either case, the surface
tension terms are applied in x- and y-directions. Particle positions and system volume are rescaled during the
first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are
always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

786 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

lowe_correct()

subroutine integrate_lowe::lowe_correct (real(kind=dp) sdxx,
real(kind=dp) sdxy,
real(kind=dp) sdxz,
real(kind=dp) sdyy,
real(kind=dp) sdyz,
real(kind=dp) sdzz,
real(kind=dp) srxx,
real(kind=dp) srxy,
real(kind=dp) srxz,
real(kind=dp) sryy,
real(kind=dp) sryz,
real(kind=dp) srzz

)

Collects together data for thermostatting particle pairs (obtained while calculating pairwise interaction forces)
across all processors, randomises order and replaces relative velocities between particle pairs with values taken
from Maxwell-Boltzmann distribution for system temperature, applying the Lowe-Andersen thermostat [83]. Ve-
locities for particles on different processors are shared by communications between those processors to complete
the calculations. Virials and stresses resulting from this thermostat are calculated from velocity corrections.

Parameters

sdxx Resulting xx-component of dissipative stress tensor from applying Lowe-Andersen thermostat
sdxy Resulting xy-component (and yx-component) of dissipative stress tensor from applying Lowe-Andersen

thermostat
sdxz Resulting xz-component (and zx-component) of dissipative stress tensor from applying Lowe-Andersen

thermostat
sdyy Resulting yy-component of dissipative stress tensor from applying Lowe-Andersen thermostat
sdyz Resulting yz-component (and zy-component) of dissipative stress tensor from applying Lowe-Andersen

thermostat
sdzz Resulting zz-component of dissipative stress tensor from applying Lowe-Andersen thermostat
srxx Resulting xx-component of random stress tensor from applying Lowe-Andersen thermostat
srxy Resulting xy-component (and yx-component) of random stress tensor from applying Lowe-Andersen

thermostat
srxz Resulting xz-component (and zx-component) of random stress tensor from applying Lowe-Andersen

thermostat
sryy Resulting yy-component of random stress tensor from applying Lowe-Andersen thermostat
sryz Resulting yz-component (and zy-component) of random stress tensor from applying Lowe-Andersen

thermostat
srzz Resulting zz-component of random stress tensor from applying Lowe-Andersen thermostat

lowe_lang_npat()

subroutine integrate_lowe::lowe_lang_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Lowe-Andersen thermostat [83] for a constant pressure, surface area and temperature (NPAT) ensemble using a
Langevin barostat. This implementation holds the x- and y-components of box dimensions and positions constant
and only varies the z-component based on the zz-component of the pressure tensor. Particle positions and system
volume are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector values
for Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles. The
barostat piston forces and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

10.24. integrate_lowe.F90 787

DL_MESO Technical Manual, Release 2.7

lowe_lang_npt()

subroutine integrate_lowe::lowe_lang_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Lowe-Andersen thermostat [83] for a constant pressure and temperature (NPT) ensemble using a Langevin baro-
stat. This implementation keeps the system isotropic by using equal (averaged) values for pressure tensors and
random numbers in all three dimensions. Particle positions and system volume are rescaled during the first inte-
gration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are always
recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces and final particle
velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

lowe_lang_nst()

subroutine integrate_lowe::lowe_lang_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Lowe-Andersen thermostat [83] for a constant pressure, surface tension and temperature (NST) ensemble using a
Langevin barostat. This implementation can either apply the barostat independently in all three directions or semi-
isotropically by using averaged pressure tensors and the same random piston force for x- and y-components: in
either case, the surface tension terms are applied in x- and y-directions. Particle positions and system volume are
rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald
sums or SPME are always recalculated, as are corrective forces for any charged frozen particles. The barostat
piston forces and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

lowe_nvt()

subroutine integrate_lowe::lowe_nvt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Lowe-Andersen thermostat [83] to apply a constant volume and temperature (NVT) ensemble. Particle positions
are adjusted after the first integration stage for any applicable boundary conditions: reciprocal vector maps for
Ewald sums or SPME are recalculated if the system undergoes Lees-Edwards shearing.

Parameters

stage Velocity Verlet stage (1 or 2)

788 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

10.25 integrate_peters.F90

10.25.1 Summary

Module for integrating forces with the Peters thermostat.

10.25.2 Functions/Subroutines

• subroutine peters_correct()

Applies corrections to relative velocities between selected particle pairs for the Peters thermostat.

• subroutine peters_nvt()

Applies a constant volume and temperature (NVT) ensemble by using Velocity Verlet integration on inter-
action forces and Peters thermostat.

• subroutine peters_lang_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and Peters thermostat, and a Langevin barostat.

• subroutine peters_lang_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on interaction forces and Peters thermostat, and a Langevin barostat.

• subroutine peters_lang_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on interaction forces and Peters thermostat, and a Langevin barostat.

• subroutine peters_berend_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and Peters thermostat, and a Berendsen barostat.

• subroutine peters_berend_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on interaction forces and Peters thermostat, and a Berendsen barostat.

• subroutine peters_berend_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on interaction forces and Peters thermostat, and a Berendsen barostat.

10.25.3 Function/Subroutine Documentation

peters_berend_npat()

subroutine integrate_peters::peters_berend_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Peters thermostat [100] for a constant pressure, surface area and temperature (NPAT) ensemble using a Berendsen
barostat. This implementation holds the x- and y-components of box dimensions and positions constant and only
varies the z-component based on the zz-component of the pressure tensor. Particle positions and system volume
are rescaled during the first integration stage, applying any boundary conditions. Reciprocal vector values for
Ewald sums or SPME are always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

10.25. integrate_peters.F90 789

DL_MESO Technical Manual, Release 2.7

peters_berend_npt()

subroutine integrate_peters::peters_berend_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the
Peters thermostat [100] for a constant pressure and temperature (NPT) ensemble using a Berendsen barostat.
This implementation keeps the system isotropic by using equal (averaged) values for pressure tensors in all three
dimensions. Particle positions and system volume are rescaled during the first integration stage, applying any
boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective
forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

peters_berend_nst()

subroutine integrate_peters::peters_berend_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the Peters
thermostat [100] for a constant pressure, surface tension and temperature (NST) ensemble using a Berendsen baro-
stat. This implementation can either apply the barostat independently in all three directions or semi-isotropically
by using averaged pressure tensors for x- and y-components: in either case, the surface tension terms are applied
in x- and y-directions. Particle positions and system volume are rescaled during the first integration stage, apply-
ing any boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are
corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

peters_correct()

subroutine integrate_peters::peters_correct (real(kind=dp) sdxx,
real(kind=dp) sdxy,
real(kind=dp) sdxz,
real(kind=dp) sdyy,
real(kind=dp) sdyz,
real(kind=dp) sdzz,
real(kind=dp) srxx,
real(kind=dp) srxy,
real(kind=dp) srxz,
real(kind=dp) sryy,
real(kind=dp) sryz,
real(kind=dp) srzz

)

Collects together data for thermostatting particle pairs (obtained while calculating pairwise interaction forces)
across all processors, randomises order and applies changes to velocities for particle pairs, applying the Peters
thermostat [100]. Velocities for particles on different processors are shared by communications between those
processors to complete the calculations. Virials and stresses resulting from this thermostat are calculated from
velocity corrections.

Parameters

790 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

sdxx Resulting xx-component of dissipative stress tensor from applying Peters thermostat
sdxy Resulting xy-component (and yx-component) of dissipative stress tensor from applying Peters thermo-

stat
sdxz Resulting xz-component (and zx-component) of dissipative stress tensor from applying Peters thermo-

stat
sdyy Resulting yy-component of dissipative stress tensor from applying Peters thermostat
sdyz Resulting yz-component (and zy-component) of dissipative stress tensor from applying Peters thermo-

stat
sdzz Resulting zz-component of dissipative stress tensor from applying Peters thermostat
srxx Resulting xx-component of random stress tensor from applying Peters thermostat
srxy Resulting xy-component (and yx-component) of random stress tensor from applying Peters thermostat
srxz Resulting xz-component (and zx-component) of random stress tensor from applying Peters thermostat
sryy Resulting yy-component of random stress tensor from applying Peters thermostat
sryz Resulting yz-component (and zy-component) of random stress tensor from applying Peters thermostat
srzz Resulting zz-component of random stress tensor from applying Peters thermostat

peters_lang_npat()

subroutine integrate_peters::peters_lang_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the Peters
thermostat [100] for a constant pressure, surface area and temperature (NPAT) ensemble using a Langevin barostat.
This implementation holds the x- and y-components of box dimensions and positions constant and only varies the
z-component based on the zz-component of the pressure tensor. Particle positions and system volume are rescaled
during the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or
SPME are always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces
and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

peters_lang_npt()

subroutine integrate_peters::peters_lang_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the Pe-
ters thermostat [100] for a constant pressure and temperature (NPT) ensemble using a Langevin barostat. This
implementation keeps the system isotropic by using equal (averaged) values for pressure tensors and random num-
bers in all three dimensions. Particle positions and system volume are rescaled during the first integration stage,
applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as
are corrective forces for any charged frozen particles. The barostat piston forces and final particle velocities are
calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

10.25. integrate_peters.F90 791

DL_MESO Technical Manual, Release 2.7

peters_lang_nst()

subroutine integrate_peters::peters_lang_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the Peters
thermostat [100] for a constant pressure, surface tension and temperature (NST) ensemble using a Langevin baro-
stat. This implementation can either apply the barostat independently in all three directions or semi-isotropically
by using averaged pressure tensors and the same random piston force for x- and y-components: in either case, the
surface tension terms are applied in x- and y-directions. Particle positions and system volume are rescaled during
the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME
are always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces and
final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

peters_nvt()

subroutine integrate_peters::peters_nvt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction forces and the Peters
thermostat [100] to apply a constant volume and temperature (NVT) ensemble. Particle positions are adjusted after
the first integration stage for any applicable boundary conditions: reciprocal vector maps for Ewald sums or SPME
are recalculated if the system undergoes Lees-Edwards shearing.

Parameters

stage Velocity Verlet stage (1 or 2)

10.26 integrate_stoyanov.F90

10.26.1 Summary

Module for integrating forces with the Stoyanov-Groot thermostat.

10.26.2 Functions/Subroutines

• subroutine stoyanov_correct()

Applies corrections to relative velocities between selected particle pairs for the Stoyanov-Groot thermostat.

• subroutine stoyanov_nvt()

Applies a constant volume and temperature (NVT) ensemble by using Velocity Verlet integration on inter-
action forces and Stoyanov-Groot thermostat.

• subroutine stoyanov_lang_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and Stoyanov-Groot thermostat, and a Langevin barostat.

• subroutine stoyanov_lang_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on interaction forces and Stoyanov-Groot thermostat, and a Langevin barostat.

792 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

• subroutine stoyanov_lang_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD) Ve-
locity Verlet force integration on interaction forces and Stoyanov-Groot thermostat, and a Langevin barostat.

• subroutine stoyanov_berend_npt()

Applies a constant pressure and temperature (NPT) ensemble by using standard (MD) Velocity Verlet force
integration on interaction forces and Stoyanov-Groot thermostat, and a Berendsen barostat.

• subroutine stoyanov_berend_npat()

Applies a constant pressure, surface area and temperature (NPAT) ensemble by using standard (MD) Veloc-
ity Verlet force integration on interaction forces and Stoyanov-Groot thermostat, and a Berendsen barostat.

• subroutine stoyanov_berend_nst()

Applies a constant pressure, surface tension and temperature (NST) ensemble by using standard (MD)
Velocity Verlet force integration on interaction forces and Stoyanov-Groot thermostat, and a Berendsen
barostat.

10.26.3 Function/Subroutine Documentation

stoyanov_berend_npat()

subroutine integrate_stoyanov::stoyanov_berend_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction and Nosé-Hoover
temperature-dependent forces with the Lowe-Andersen thermostat (known as the Stoyanov-Groot thermostat)
[131] for a constant pressure, surface area and temperature (NPAT) ensemble using a Berendsen barostat. This
implementation holds the x- and y-components of box dimensions and positions constant and only varies the z-
component based on the zz-component of the pressure tensor. Particle positions and system volume are rescaled
during the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or
SPME are always recalculated, as are corrective forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

stoyanov_berend_npt()

subroutine integrate_stoyanov::stoyanov_berend_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction and Nosé-Hoover
temperature-dependent forces with the Lowe-Andersen thermostat (known as the Stoyanov-Groot thermostat)
[131] for a constant pressure and temperature (NPT) ensemble using a Berendsen barostat. This implementation
keeps the system isotropic by using equal (averaged) values for pressure tensors in all three dimensions. Particle
positions and system volume are rescaled during the first integration stage, applying any boundary conditions.
Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective forces for any charged
frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

10.26. integrate_stoyanov.F90 793

DL_MESO Technical Manual, Release 2.7

stoyanov_berend_nst()

subroutine integrate_stoyanov::stoyanov_berend_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction and Nosé-Hoover
temperature-dependent forces with the Lowe-Andersen thermostat (known as the Stoyanov-Groot thermostat)
[131] for a constant pressure, surface tension and temperature (NST) ensemble using a Berendsen barostat. This
implementation can either apply the barostat independently in all three directions or semi-isotropically by using
averaged pressure tensors for x- and y-components: in either case, the surface tension terms are applied in x- and
y-directions. Particle positions and system volume are rescaled during the first integration stage, applying any
boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective
forces for any charged frozen particles.

Parameters

stage Velocity Verlet stage (1 or 2)

stoyanov_correct()

subroutine integrate_stoyanov::stoyanov_correct (real(kind=dp) sdxx,
real(kind=dp) sdxy,
real(kind=dp) sdxz,
real(kind=dp) sdyy,
real(kind=dp) sdyz,
real(kind=dp) sdzz,
real(kind=dp) srxx,
real(kind=dp) srxy,
real(kind=dp) srxz,
real(kind=dp) sryy,
real(kind=dp) sryz,
real(kind=dp) srzz

)

Collects together data for thermostatting particle pairs (obtained while calculating pairwise interaction forces)
across all processors, randomises order and replaces relative velocities between particle pairs with values taken
from Maxwell-Boltzmann distribution for system temperature, applying the Lowe-Andersen part of the Stoyanov-
Groot thermostat [131]. Velocities for particles on different processors are shared by communications between
those processors to complete the calculations. Virials and stresses resulting from this thermostat are calculated
from velocity corrections.

Parameters

794 Chapter 10. DL_MESO_DPD Code Description

DL_MESO Technical Manual, Release 2.7

sdxx Resulting xx-component of dissipative stress tensor from applying Lowe-Andersen part of thermostat
sdxy Resulting xy-component (and yx-component) of dissipative stress tensor from applying Lowe-Andersen

part of thermostat
sdxz Resulting xz-component (and zx-component) of dissipative stress tensor from applying Lowe-Andersen

part of thermostat
sdyy Resulting yy-component of dissipative stress tensor from applying Lowe-Andersen part of thermostat
sdyz Resulting yz-component (and zy-component) of dissipative stress tensor from applying Lowe-Andersen

part of thermostat
sdzz Resulting zz-component of dissipative stress tensor from applying Lowe-Andersen part of thermostat
srxx Resulting xx-component of random stress tensor from applying Lowe-Andersen part of thermostat
srxy Resulting xy-component (and yx-component) of random stress tensor from applying Lowe-Andersen

part of thermostat
srxz Resulting xz-component (and zx-component) of random stress tensor from applying Lowe-Andersen

part of thermostat
sryy Resulting yy-component of random stress tensor from applying Lowe-Andersen part of thermostat
sryz Resulting yz-component (and zy-component) of random stress tensor from applying Lowe-Andersen

part of thermostat
srzz Resulting zz-component of random stress tensor from applying Lowe-Andersen part of thermostat

stoyanov_lang_npat()

subroutine integrate_stoyanov::stoyanov_lang_npat (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction and Nosé-Hoover
temperature-dependent forces with the Lowe-Andersen thermostat (known as the Stoyanov-Groot thermostat)
[131] for a constant pressure, surface area and temperature (NPAT) ensemble using a Langevin barostat. This
implementation holds the x- and y-components of box dimensions and positions constant and only varies the z-
component based on the zz-component of the pressure tensor. Particle positions and system volume are rescaled
during the first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or
SPME are always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces
and final particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

stoyanov_lang_npt()

subroutine integrate_stoyanov::stoyanov_lang_npt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction and Nosé-Hoover
temperature-dependent forces with the Lowe-Andersen thermostat (known as the Stoyanov-Groot thermostat)
[131] for a constant pressure and temperature (NPT) ensemble using a Langevin barostat. This implementation
keeps the system isotropic by using equal (averaged) values for pressure tensors and random numbers in all three
dimensions. Particle positions and system volume are rescaled during the first integration stage, applying any
boundary conditions. Reciprocal vector values for Ewald sums or SPME are always recalculated, as are corrective
forces for any charged frozen particles. The barostat piston forces and final particle velocities are calculated
iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

10.26. integrate_stoyanov.F90 795

DL_MESO Technical Manual, Release 2.7

stoyanov_lang_nst()

subroutine integrate_stoyanov::stoyanov_lang_nst (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction and Nosé-Hoover
temperature-dependent forces with the Lowe-Andersen thermostat (known as the Stoyanov-Groot thermostat)
[131] for a constant pressure, surface tension and temperature (NST) ensemble using a Langevin barostat. This
implementation can either apply the barostat independently in all three directions or semi-isotropically by using
averaged pressure tensors and the same random piston force for x- and y-components: in either case, the surface
tension terms are applied in x- and y-directions. Particle positions and system volume are rescaled during the
first integration stage, applying any boundary conditions. Reciprocal vector values for Ewald sums or SPME are
always recalculated, as are corrective forces for any charged frozen particles. The barostat piston forces and final
particle velocities are calculated iteratively [64] until the latter converge.

Parameters

stage Velocity Verlet stage (1 or 2)

stoyanov_nvt()

subroutine integrate_stoyanov::stoyanov_nvt (integer stage)

Solves the equations of motion using the Velocity Verlet scheme [141] to integrate interaction and Nosé-Hoover
temperature-dependent forces with the Lowe-Andersen thermostat (known as the Stoyanov-Groot thermostat)
[131] to apply a constant volume and temperature (NVT) ensemble. Particle positions are adjusted after the first
integration stage for any applicable boundary conditions: reciprocal vector maps for Ewald sums or SPME are
recalculated if the system undergoes Lees-Edwards shearing.

Parameters

stage Velocity Verlet stage (1 or 2)

796 Chapter 10. DL_MESO_DPD Code Description

CHAPTER

ELEVEN

DL_MESO_DPD INPUT AND OUTPUT FILES

All user-specified input files for DL_MESO_DPD must be in ANSI text format, with keywords (where necessary)
and numerical values separated from each other with spaces, tabs or commas.

11.1 CONTROL

This ANSI text input file contains the control variables for running a DPD simulation. It consists primarily of
directives: character strings that appear as the first entry of a data record and invoke a particular operation or
provide numerical parameters. Extra options may be added by the inclusion of keywords to qualify a particular
directive. Directives can be included in any order except for the simulation name (up to 80 characters long) on the
first line of the file and the finish directive which marks the end of the file. Keywords and numerical values can
be separated from each other with spaces, tabs or commas.

While not every directive has to be included for a valid simulation - many hold default values if unspecified - the
following are mandatory and must be set to values greater than zero:

• temperature

• timestep

• volume (if no CONFIG file is available or the supplied file omits volume data)

while pressure must also be specified if using an ensemble other than NVT (i.e. a barostat is involved), even if
the value is set to zero. The maximum interaction cutoff should also be set greater than zero, but this value can
be derived from the maximum interaction length (𝜎𝑖𝑗 or 𝑟𝑐,𝑖𝑗) specified in the FIELD file if it is omitted here.

A list of the available directives follows. Some directives may include optional words or parameters as indicated
by brackets that can safely be omitted. The read_control() and scan_control() subroutines that read and scan the
CONTROL file often search for only the first few letters in each directive keyword, but use of the full words and
their given spellings is strongly recommended. Further details about these keywords are given in Chapter 10 of the
DL_MESO User Manual. Keywords of superfluous properties for the given simulation (e.g. pressure for constant
volume simulations) can be omitted, while any number left out of a directive will be assumed to be zero.

Note that if there are duplicate entries for any directive, the values associated with the last one in the file will be
used.

Table 11.1: Available keywords in CONTROL input file
directive meaning
bjerrum (length) 𝑓 sets the Bjerrum length 𝜆𝐵 = Γ𝑟𝑐

4𝜋 for the system to 𝑓
boundary halo 𝑓 sets size of boundary halo (overriding default values)

as 𝑓 length units
close time 𝑓 sets job closure time to 𝑓 seconds
config (origin) zero sets origin of CONFIG file as bottom left back corner

instead of default of box centre
cutoff 𝑓 sets maximum interaction cutoff radius, 𝑟𝑐,𝑚𝑎𝑥, to 𝑓

length units
continues on next page

797

DL_MESO Technical Manual, Release 2.7

Table 11.1 – continued from previous page
directive meaning
densvar 𝑓 allows for local variation of ≈ 𝑓 % in the system den-

sity of particles (default 𝑓 = 0)
electrostatic cutoff 𝑓 sets required short-range electrostatic cutoff radius,

𝑟𝑒, to 𝑓 length units (default 𝑓 = 𝑟𝑐)
ensemble nvt mdvv selects NVT (constant volume/temperature) ensem-

ble, DPD thermostat with standard MD-like Velocity
Verlet integration (default ensemble if otherwise not
specified)

ensemble nvt dpdvv selects NVT ensemble, DPD thermostat with DPD
Velocity Verlet integration

ensemble nvt dpds1 selects NVT ensemble, DPD thermostat with first-
order Shardlow splitting

ensemble nvt dpds2 selects NVT ensemble, DPD thermostat with second-
order Shardlow splitting

ensemble nvt lowe selects NVT ensemble, Lowe-Andersen thermostat
ensemble nvt peters selects NVT ensemble, Peters thermostat
ensemble nvt stoyanov 𝛼 selects NVT ensemble, Stoyanov-Groot thermostat

with coupling parameter 𝛼
ensemble npt 𝑄 langevin 𝑓1 𝑓2 selects NPT (constant pressure/temperature) ensem-

ble, thermostat type 𝑄 (i.e. mdvv, dpdvv, dpds1,
dpds2, lowe, peters or stoyanov 𝛼) with
Langevin barostat, setting relaxation time (𝜏𝑝) and
viscosity parameter (𝛾𝑝) as 𝑓1 and 𝑓2

ensemble npt 𝑄 berendsen 𝑓 selects NPT ensemble, thermostat type 𝑄 with
Berendsen barostat, setting ratio of compressibility to
relaxation time, 𝛽

𝜏𝑝
, to 𝑓

ensemble nst 𝑄 langevin 𝑓1 𝑓2 selects (orthogonally constrained) N𝜎T (constant
stress/temperature) ensemble, thermostat type 𝑄 with
Langevin barostat, setting relaxation time (𝜏𝑝) and
viscosity parameter (𝛾𝑝) as 𝑓1 and 𝑓2 respectively

ensemble nst 𝑄 berendsen 𝑓 selects (orthogonally constrained) N𝜎T ensemble,
thermostat type𝑄with Berendsen barostat, setting ra-
tio of compressibility to relaxation time, 𝛽

𝜏𝑝
, to 𝑓

ensemble nst 𝑄1 𝑄2 area selects NP𝑛AT (constant normal pressure/surface
area/temperature) ensemble, thermostat type 𝑄1 and
barostat type 𝑄2 (i.e. langevin 𝑓1 𝑓2 or
berendsen 𝑓)

ensemble nst 𝑄1 𝑄2 tension 𝛾0 selects NP𝑛𝛾T (constant normal pressure/surface ten-
sion/temperature) anisotropic ensemble, thermostat
type 𝑄1 and barostat type 𝑄2 with target surface ten-
sion 𝛾0

ensemble nst 𝑄1 𝑄2 tension 𝛾0 semi selects NP𝑛𝛾T (constant normal pressure/surface ten-
sion/temperature) semi-isotropic ensemble, thermo-
stat type 𝑄1 and barostat type 𝑄2 with target surface
tension 𝛾0, varying the (𝑥, 𝑦) plane isotropically

ensemble nst 𝑄1 𝑄2 orthogonal selects NP𝑛𝛾T (constant normal pressure/surface ten-
sion/temperature) anisotropic ensemble, thermostat
type 𝑄1 and barostat type 𝑄2 with target surface ten-
sion 𝛾0 = 01

ensemble nst 𝑄1 𝑄2 orth semi selects NP𝑛𝛾T (constant normal pressure/surface ten-
sion/temperature) semi-isotropic ensemble, thermo-
stat type 𝑄1 and barostat type 𝑄2 with target surface
tension 𝛾0 = 0

continues on next page

798 Chapter 11. DL_MESO_DPD Input and Output Files

DL_MESO Technical Manual, Release 2.7

Table 11.1 – continued from previous page
directive meaning
equilibration (steps) 𝑛 equilibrates system for the first 𝑛 timesteps (default

𝑛 = 0)
ewald precision 𝑓 calculates electrostatic forces using Ewald sum, set-

ting the real-space convergence parameter 𝛼 and re-
ciprocal space (k-vector) range (𝑘1, 𝑘2, 𝑘3) to achieve
the relative potential error 𝑓

ewald (sum) 𝛼 𝑘1 𝑘2 𝑘3 calculates electrostatic forces using Ewald sum with
real-space convergence parameter 𝛼 and reciprocal
space (k-vector) range (𝑘1, 𝑘2, 𝑘3)

finish closes the CONTROL file (last data record)
frozen (wall) 𝑖 sets frozen bead walls orthogonal to 𝑖-axis (x, y, z) if

specified2

global bonds calculates bonded interactions globally by storing
bond data on all processors and sharing bonded par-
ticle positions (default: calculate bonded interactions
locally)

job time 𝑓 sets maximum job time (including closure) to 𝑓 sec-
onds

l_init creates CONFIG file (CFGINI) of initial system con-
figuration (with velocities and forces) for new simula-
tions3

l_scr redirects simulation output to the standard (default)
output of the machine and operating system, e.g. the
screen

manybody cutoff 𝑓 sets required many-body DPD interaction radius, 𝑟𝑑,
to 𝑓 length units (default 𝑓 = 𝑟𝑐)

ndump 𝑛 writes restart data to export and REVIVE files every 𝑛
timesteps (default 𝑛 = 1000)

nfold 𝑖 𝑗 𝑘 option to create volumetrically expanded version of
current system by replicating configuration described
by CONFIG file (𝑖, 𝑗, 𝑘) times, preserving topology
of FIELD file4

no config ignores contents of CONFIG file and create initial
configuration based purely on FIELD file

no electrostatics ignores electrostatics in simulation
no index ignores particles’ indices in CONFIG file and sets in-

dices according to reading order
openmp (critical) uses OpenMP critical regions to assign forces in mul-

tithreaded calculations (instead of using additional
memory per thread)

permittivity (constant) 𝑓 sets permittivity constant for system, Γ = 4𝜋𝜆𝐵

𝑟𝑐
, to 𝑓

pressure 𝑓 sets required system pressure to 𝑓 (target pressure for
constant pressure ensembles)

print (every) 𝑛 prints system data every 𝑛 timesteps
print partial (temperatures) prints partial temperatures (for each dimension) in

both OUTPUT and CORREL. (Option automatically
switched on if a constant force or shear is applied to
the system.)

rcut 𝑓 see cutoff
restart restarts job from end point of previous run (i.e. con-

tinue current simulation using export and REVIVE
files)

continues on next page

11.1. CONTROL 799

DL_MESO Technical Manual, Release 2.7

Table 11.1 – continued from previous page
directive meaning
restart noscale restarts job from previous run without rescaling to

system temperature (i.e. begin a new simulation from
older run without temperature reset using configura-
tion in export file)

restart scale restarts job from previous run after rescaling to sys-
tem temperature (i.e. begin a new simulation from
older run with temperature reset using configuration
in export file)

scale (temperature) (every) 𝑛 rescales system temperature every 𝑛 steps during
equilibration

seed 𝑛 modifies random number generator seeds used in
DPD calculations

smear 𝑄 applies charge smearing type to 𝑄 (none, linear,
slater (exact), slater approx, gauss or
sinusoidal)

smear beta 𝑓 (𝑄) sets Slater-type smearing parameter 𝛽: can
be followed by 𝑄 (original, overlap or
distribution) to specify how 𝛽 is related to the
smearing length

smear length 𝑓 sets smearing length (𝑅, 𝜆, 𝜎𝐺 or 𝐷) to 𝑓
smear length 𝑓 equal sets smearing length for Gaussian smearing (𝜎𝐺) to 𝑓

and set Ewald real-space convergence parameter 𝛼 =
1

2𝜎𝐺
to override any other specified value5

smear length 𝑓 𝑄 sets smearing length for Slater-type smearing
(𝜆) to 𝑓 , with 𝑄 (original, overlap or
distribution) indicating how 𝛽 is related to the
smearing length 𝜆

spme precision 𝑓 (𝑛) calculates electrostatic forces using Smooth Particle
Mesh Ewald, setting the real-space convergence pa-
rameter 𝛼 and reciprocal space (k-vector) range (𝑘1,
𝑘2, 𝑘3) to achieve the relative potential error 𝑓 and
maximum B-spline order 𝑛 (default: 8 if omitted or
less than 4)

spme (sum) 𝛼 𝑘1 𝑘2 𝑘3 (𝑛) calculates electrostatic forces using Smooth Particle
Mesh Ewald with real-space convergence parameter
𝛼, reciprocal space (k-vector) range (𝑘1, 𝑘2, 𝑘3)6 and
maximum B-spline order 𝑛 (default: 8 if omitted or
less than 4)

stack (size) 𝑛 sets rolling average stack to 𝑛 timesteps
stats (every) 𝑛 accumulates statistics data and writes to CORREL file

every 𝑛 timesteps
steps 𝑛 runs simulation for 𝑛 timesteps
stress 𝑖 𝑗 𝑄 accumulates separated stress tensors and writes to

Stress_*.d file(s) with controls: 𝑖 = start timestep
for writing stress tensors, 𝑗 = timestep interval, 𝑄
= (up to four) separated stress tensor sets to write
to files (potential, dissipative, random,
kinetic, all four)

surface cutoff 𝑓 sets required maximum surface repulsive range, 𝑧𝑐, to
𝑓 length units (default 𝑓 = 𝑟𝑐)

surface hard 𝑖 bounceback (𝑓) sets hard adsorbing walls orthogonal to 𝑖-axis (x, y,
z) if specified with bounce-back reflections (option-
ally at a distance 𝑓 from simulation boundaries, de-
fault 𝑓 = 0)

continues on next page

800 Chapter 11. DL_MESO_DPD Input and Output Files

DL_MESO Technical Manual, Release 2.7

Table 11.1 – continued from previous page
directive meaning
surface hard 𝑖 (specular) (𝑓) sets hard adsorbing walls orthogonal to 𝑖-axis (x, y,

z) if specified with specular reflections (optionally at
a distance 𝑓 from simulation boundaries, default 𝑓 =
0)

surface shear 𝑖 𝑗 sets moving Lees-Edwards periodic walls orthogonal
to 𝑖-axis (x, y, z) if specified7, starting shearing from
time step 𝑗

temperature 𝑓 sets required simulation temperature (𝑘𝐵𝑇) to 𝑓
thermostat cutoff 𝑓 sets thermostat cutoff radius, 𝑟𝑐, to 𝑓 length units
trajectory 𝑖 𝑗 (𝑘) writes trajectory data to HISTORY file with controls:

𝑖 = start timestep for dumping configurations (default:
equilibration time), 𝑗 = timestep interval between con-
figurations, 𝑘 = data level to be included (default: 0;
0 = positions, 1 adds velocities, 2 adds forces)

timestep 𝑓 set timestep to 𝑓 time units
vacuum (gap) 𝑓1 𝑓2 𝑓3 sets size of vacuum gap (additional volume) for re-

ciprocal space Ewald/SPME calculations of slab-like
systems as orthorhombic dimensions (𝑓1, 𝑓2, 𝑓3)

volume 𝑓1 (𝑓2 𝑓3) sets system size to either cubic volume 𝑓1 or or-
thorhombic dimensions (𝑓1, 𝑓2, 𝑓3)

This file is compulsory for a DL_MESO_DPD calculation and must be supplied in the same directory where
DL_MESO_DPD is run. It can be created or modified either by hand using a text editor or by using the DL_MESO
GUI (recommended when starting to use DL_MESO_DPD).

11.2 FIELD

This ANSI text input file contains the species and force field information required for both bonded and unbonded
interactions in a DPD simulation. Apart from the first line indicating the simulation name (as for the CONTROL
file), it consists of blocks of information, each headed by a directive indicating the type and (in most cases) the
number of interactions to follow in specific formats for the directives in question. Keywords and numerical values
can be separated from each other with spaces, tabs or commas.

1 This option is equivalent to the orthogonal N𝜎T ensemble and is included for equivalence to DL_POLY.
2 This directive can only be used for new simulations and is ignored if a simulation is restarted.
3 If simulation is started using a CONFIG file with velocities and forces without volumetric expansion, this option is ignored.
4 If restarting a system with an export file that was originally set up this way, this option can be used to avoid modifying the FIELD file.
5 The real space terms for the Ewald sum are omitted when this option is selected.
6 This vector should be double the size of that used for the standard Ewald sum, as the k-vector is applied cubically rather than spherically.
7 Unlike frozen bead and hard surfaces, only one shearing boundary can be specified: if multiple axes are specified, DL_MESO_DPD will

use the first one.

11.2. FIELD 801

DL_MESO Technical Manual, Release 2.7

Table 11.2: Available directives in FIELD input file
directive meaning
units constant Sets units for DPD simulation to use force and energy parameters without scaling

(default)
units kT Sets units for DPD simulation to use force and energy parameters scaled by tem-

perature specified in CONTROL file
species 𝑛 Sets information for 𝑛 available particle species
interactions 𝑛 Sets (intermolecular) non-bonded interactions between particle pairs for 𝑛 pairs

of particle species
molecules 𝑛 Specifies 𝑛molecule definitions with name, particles, bonds, angles and dihedrals

(see below)
surface 𝑛 Sets surface interactions between solid walls and particles for 𝑛 particle species
frozen SPEC
𝜌𝑤𝑎𝑙𝑙:math:`x_{wall}

Sets frozen walls to use particles of species SPECwith density 𝜌𝑤𝑎𝑙𝑙 and thickness
of :math:`x_{wall} DPD length units

external Specifies external fields applied to particles: gravitional acceleration, electric
fields on charged particles and/or linear shear

close Indicates end of interaction data in file

Each line of the species data is given by the following format:

name a8 name of species
mass real particle mass for species
charge real particle charge for species
populations integer unbonded population of species
frozen integer determines whether particles of this species are frozen (1) or not (0)

where all numbers beyond the particle mass are optional and will be read as zero if not supplied, e.g. no species
population contained entirely in molecules needs to be given as this can be worked out from molecule definitions.
Only the first 8 characters of the species name will be used: DL_MESO_DPD will warn the user if two or more
species have the same truncated names.

Each line of the interaction data is given as:

species 1 a8 name of species 1
species 2 a8 name of species 2
key a4 interaction key
variables 1-7 real interaction and thermostat parameters

where the interaction key (up to 4 characters long) indicates the type of non-bonded interaction (lj, wca, dpd or
mdpd) between the two species, which requires up to six interaction parameters (including an interaction length)
and a thermostat parameter, either the dissipative force parameter 𝛾𝑖𝑗 or a collision frequency Γ𝑖𝑗 . (Full details of
what is required for each interaction type are given in Chapter 10 of the DL_MESO User Manual.)

Each surface interaction line uses a similar format to the interactions above:

species a8 name of species
key a4 interaction key
variables 1 and 2 real interaction parameters

with similar interaction keys (dpd and wca) and only two parameters required per species.

The molecules directive is followed by 𝑛 blocks of data, one for each molecule type. Each block starts with
the molecule name (a string of up to 8 characters) and is followed by the following sub-directives, all given in any
order apart from finish which concludes the block:

802 Chapter 11. DL_MESO_DPD Input and Output Files

DL_MESO Technical Manual, Release 2.7

Table 11.3: Available molecule sub-directives in FIELD input file
sub-directive meaning
nummols 𝑛 Gives the number of molecules of the current type in the system (molecule population)
beads 𝑛 Indicates the number of particles per molecules (followed by details about each particle, see

below)
no isomer Indicates the molecule shape should not be reflected/inverted when added to a new simulation
bonds 𝑛 Indicates the number of bonds included in each molecule (followed by details, see below)
angles 𝑛 Indicates the number of bond angles included in each molecule (followed by details, see

below)
dihedrals
𝑛

Indicates the number of bonds included in each molecule (followed by details, see below)

finish Indicates end of information for current molecule type

Each line of information indicating the particles involved in each molecule type is given by the following format:

name a8 name of species
𝑥 real relative 𝑥-coordinate for bead
𝑦 real relative 𝑦-coordinate for bead
𝑧 real relative 𝑧-coordinate for bead

where the relative coordinates for the bead are used by DL_MESO_DPD when setting up a new simulation without
a CONFIG file.

The bonds, angles and dihedrals all follow similar formats:

bond/angle/dihedral key a4 potential key
index 1 (𝑖) integer first bead index in bond/angle/dihedral
index 2 (𝑗) integer second bead index in bond/angle/dihedral
index 3 (𝑘) integer third bead index in angle/dihedral (omitted for bonds)
index 4 (𝑙) integer fourth bead index in dihedral (omitted for bonds/angles)
variables 1-4 real potential parameters

where the bond/angle/dihedral key indicates the potential form used and the indices indicate which particles in
the molecule (given in terms of the current molecule type) are involved in the bonded interaction. (Full details of
which potentials are available and what is required for each type are given in Chapter 10 of the DL_MESO User
Manual.)

The external directive is followed by another line with a keyword (grav, elec or shear) indicating the
type of field to be applied and the Cartesian components of the field: the gravitational acceleration applied to all
particles, the constant electric field applied to all charged particles or the velocity of one of the shearing walls
when using Lees-Edwards boundary conditions.

This file is compulsory for a DL_MESO_DPD calculation and is used by the scan_field() and read_field() sub-
routines, the former scanning in information required to allocate arrays and the latter reading in all of the required
interaction data. This file can be constructed by hand using a text editor, although use of the DL_MESO GUI
is recommended when creating one for the first time. The molecule-generate.cpp utility is also recom-
mended for constructing data for chain molecules with branches and needs to be compiled before launching it via
the DL_MESO GUI.

11.2. FIELD 803

DL_MESO Technical Manual, Release 2.7

11.3 CONFIG

This ANSI text input file enables users to provide their own initial configurations for DL_MESO_DPD simula-
tions. It consists mainly of blocks of data providing the species, number and at least the position for each particle
in the simulation, which are read into DL_MESO_DPD at the start of the calculation8. Multiple numbers on lines
can be separated from each other with spaces, tabs or commas.

The first line of this file gives the simulation name (up to 80 characters), while the second line includes a file
key levcfg indicating the data available per particle (0 = positions, 1 = positions and velocities, 2 = positions,
velocities and forces), a periodic boundary key imcon (normally an integer greater than zero) and, optionally, the
number of particles in the file and the current configuration energy. If the periodic boundary key is greater than
zero, the following three lines need to include the Cartesian components for the 𝑥-, 𝑦- and 𝑧-axis vectors: since
DL_MESO_DPD only operates with orthogonal boxes, only the diagonal of these vectors will be read and used.

Each particle is represented by a block record, with at least two lines of information:

• The species name (8 characters) and the global particle number (integer, optional)

• The 𝑥-, 𝑦- and 𝑧-coordinates for the particle (real)

• The 𝑥-, 𝑦- and 𝑧-components of the particle velocity (real, only included if levcfg is 1 or 2)

• The 𝑥-, 𝑦- and 𝑧-components of force on the particle (real, only included if levcfg is 2)

This file is entirely optional for a DL_MESO_DPD calculation, but if it is to be used, it must be in the directory
where DL_MESO_DPD is launched. CONFIG files can be created from export or HISTORY files generated from
previous DL_MESO_DPD using the export_config.F90 or history_config.F90 utilities respectively. Alternatively,
DL_MESO_DPD can create a CFGINI file using the same format (that can later be renamed as CONFIG) based
on the initial configuration it creates from scratch when the l_init directive is included in the CONTROL file,
which is carried out by the write_config() subroutine.

The scan_config() and read_config() subroutines read the CONFIG file: the former looks for the system volume,
while the latter reads in and assigns the particle data to the available processor cores based on their positions.
The nfold option in the CONTROL file can be used to duplicate the unit cell in the CONFIG file and produce a
larger simulation. Frozen particle walls or hard surfaces can be added to a system initialised using a CONFIG file,
although users need to take care that no molecules cross these boundaries (no checks for this are currently carried
out by DL_MESO_DPD).

11.4 export

This binary file consists of information required for DL_MESO_DPD to restart and extend a DPD simulation -
the positions, velocities and forces for all particles - which can be read in if a restart directive is used in the
CONTROL file.

The file consists of a header with the name of the DPD calculation (80 characters), two (4-byte) integers giving
the total number of particles and the number of particles not included in molecules, and eight double-precision
real numbers (8 bytes each) giving the specified temperature, the timestep size, the dimensions of the simulation
box and the current displacement used for Lees-Edwards shearing boundaries.

This is then followed by a block of integers to indicate the ordering of particles in the file. Each particle supplies
three integers of data: the global particle number, its species and its molecule type. A block of double-precision
real numbers follows, with each particle providing nine values for its position, velocity and force (each property
given as three Cartesian components). The particle data is provided in this block using the same ordering as the
integer block preceding it. This format is particularly amenable to being written concurrently (using MPI-IO) by
a small group of processor cores that have previously gathered together particle data: it avoids the need to sort
the particles by global numbers and enables large streams of integers or real numbers to be written in single write
operations.

This file is automatically generated by DL_MESO_DPD during a simulation by the write_export() subroutine and
either at the very end once all the timesteps have been completed or when the calculation job time (less the close

8 This file is formatted identically to CONFIG files used in DL_POLY [127][139], with the origin set at the centre of the simulation volume.

804 Chapter 11. DL_MESO_DPD Input and Output Files

DL_MESO Technical Manual, Release 2.7

time) specified in CONTROL has run out. The endianness (big or small) of the file corresponds to that of the
computer used to run the calculation: it can be used to restart the simulation on another machine provided the
two computers have the same endianness or DL_MESO_DPD is compiled on the second computer to use that
endianness (which can be set as a compiler flag). The read_export() subroutine gets all processor cores to read
a section of the file each and subsequently send data for individual particles to the appropriate cores based on
positions: it can be used either to resume a previous simulation from where it left off or to start a new simulation
using the configuration given in the export file.

The export_config.F90 utility can be used to generate a CONFIG file from this file as a starting point for a new
simulation, while export_image_vtf.F90 and export_image_xml.F90 can be used to generate VTF and GALAM-
OST XML-format files that can be opened in VMD and OVITO respectively to visualise the system at the point
the export file was created.

11.5 REVIVE

This binary file consists of information required for DL_MESO_DPD to resume a previous simulation from where
it left off - barostat parameters, statistical properties and random number generator states - which can be read in if
a restart directive is used in the CONTROL file.

The file consists a header with the name of the DPD calculation (80 characters), 9 double-precision real numbers
(8 bytes each) with the barostat piston velocities (or volume scaling factor) for the current timestep (upx, upy, upz),
the previous timestep (up1x, up1y and up1z) and the piston forces (fpx, fpy and fpz), and three (4-byte) integers
with the current timestep number nstep, the number of values used for statistical averaging nav and the statistical
stack size for rolling average values nstk.

This is then followed by the current instantaneous values (all double-precision real values) of the following prop-
erties:

• Total energy per particle

• Total potential energy per particle

• Electrostatic energy per particle

• Bond energy per particle

• Angle energy per particle

• Dihedral energy per particle

• Virial per particle

• Kinetic energy per particle

• System pressure

• System volume

• Interfacial tension along the 𝑧-axis

• System temperature

• Partial temperature in the 𝑥-direction

• Partial temperature in the 𝑦-direction

• Partial temperature in the 𝑧-direction

• Mean bond length

• Mean bond angle (in radians)

• Mean bond dihedral (in radians)

and then the current array with rolling average values, rav, for all of the above properties (apart from mean bond
lengths, angles and dihedrals). The arrays used to calculate mean and fluctuating values of the same 15 properties

11.5. REVIVE 805

DL_MESO Technical Manual, Release 2.7

plus the pressure tensors separated into conservative interaction, dissipative, random and kinetic parts, ave and flc,
then follow.

Arrays for statistical stacks then follow: starting with the current sums of 11 properties, zum, used to calculate the
rolling average values:

• Total potential energy per particle

• Electrostatic energy per particle

• Bond energy per particle

• Angle energy per particle

• Dihedral energy per particle

• Virial per particle

• System volume

• Interfacial tension along the 𝑧-axis

• Kinetic energy per particle in the 𝑥-direction

• Kinetic energy per particle in the 𝑦-direction

• Kinetic energy per particle in the 𝑧-direction

and followed by the current statistical stacks for these properties - stkpe, stkee, stkbe, stkae, stkde, stkvir, stkvlm,
stkzts, stktkex, stktkey and stktkez - each of which have nstk values.

The write_revive() subroutine mainly uses processor core 0 to write the REVIVE file - all cores have the same
statistical data in memory - apart from the random number generator states, which are each written concurrently
to the file by each individual core using MPI-IO. The read_revive() subroutine - only called when a simulation is
restarted - uses processor core 0 to read the statistical data and broadcast the values to all other cores, while each
core (up to the number given in the REVIVE file) reads in its own random number generator state to overwrite the
previously initialised state.

No utilities currently exist to read REVIVE files, as these are only intended to be used by DL_MESO_DPD itself
for simulation restarts.

11.6 OUTPUT

This ANSI text file is generated by all DL_MESO_DPD calculations and contains:

• The number of processors available (and threads per core if using the OpenMP version) and their endianness.

• The system and bond/angle/dihedral properties used for calculations.

• Domain decomposition details (parallel version only).

• The starting positions and velocities for a sample of particles (in processor core 0).

• The calculation time, current values and rolling averages of system-wide properties every nsbpo time steps.

• Final averages and fluctuations (standard deviations) for all reported properties and pressure tensors over all
time steps after equilibration.

• The final positions and velocities for a sample of particles (in processor core 0).

• Elapsed and average times for the calculation.

Only the properties relevant to the simulation will be printed: for instance, electrostatic and bond energies will
be output if the simulation includes these kinds of interactions, while the partial temperatures will be output if
the system is likely to include dynamics (e.g. if a constant force or shear is applied) or the print partial
directive is included in the CONTROL file.

If the l_scr directive is included in the CONTROL file, the above simulation information will be redirected to
the standard output for the machine and its operating system (e.g. to the screen) and no OUTPUT file will be

806 Chapter 11. DL_MESO_DPD Input and Output Files

DL_MESO Technical Manual, Release 2.7

generated. This directive may be useful when a simulation crashes but no error messages or other information are
printed to the OUTPUT file, or to use a custom-named file for this output.

11.7 HISTORY

If the trajectory option is specified in the CONTROL file, DL_MESO_DPD will generate this binary file
containing snapshots of the simulation every ntraj timesteps starting at timestep number straj as a trajectory. This
file is written using stream I/O or MPI-IO without beginning or end of record markers typically created by Fortran
programs.

The file starts with a header beginning with a (4-byte) integer (currently equal to 1) as an endianness check used by
DL_MESO_DPD and its utilities, the latter of which use this value to determine if the HISTORY file needs to be
read using the opposite endianness. This is followed by another integer indicating the number of bytes per floating
point (real) number used in the file (set to 8 for double precision), a long integer (8 bytes in length) with the current
size of the HISTORY file in bytes (the value of which can be checked when reading or during simulation restart)
and two further standard integers with the current number of trajectory frames in the file and the timestep number
for the last trajectory frame.

The next part of the header describes the simulation itself: an 80-character simulation name, integers providing the
numbers of particle species, molecule definitions, particles not involved in molecules, all particles and bonds. An
integer indicating the trajectory data key (equal to 0 for positions, 1 for positions and velocities, 2 for positions,
velocities and forces) then follows with three further integers indicating the boundary condition types in the 𝑥-, 𝑦-
and 𝑧-directions (0 = periodic, 1 = Lees-Edwards shearing, 2 = specular reflection, 3 = bounce back reflection).

Data for the particle species then follow, with the following provided for each species (as double-precision real
numbers unless otherwise indicated):

• The species name (8 character string)

• Mass per particle of the species

• Interaction length or particle radius

• Charge or valency of a particle for the species

• Flag indicating if the species is frozen (1) or not (0), given as an integer

If there is at least one molecule type, the names for the molecule types are then supplied as 8 character strings.

Data about the individual particles and bonds then follow. The following is provided for each particle (all given
as integers):

• Its global particle number (index)

• Its species type

• Its molecule type

• Its molecule number (used to identify individual molecules)

and any bonds are given as pairs of global particle numbers (all integers) that are connected together. It should
be noted that neither the particle nor bond data need to be written in numerical order by global particle numbers.
This brings the file header to a close: its size can be determined from the data supplied inside it (mainly the total
numbers of species, molecule types, particles and bonds) and used to skip past it when reading the simulation
snapshots.

Each trajectory frame in the HISTORY file consists of a block of information about the simulation at the given
timestep (given as double-precision real numbers unless otherwise specified):

• Time of the trajectory frame in DPD units (product of timestep size ∆𝑡 and timestep number less the number
of equilibration timesteps)

• Total number of particles in trajectory frame (given as an integer)

• Length of simulation box in 𝑥-dimension

11.7. HISTORY 807

DL_MESO Technical Manual, Release 2.7

• Length of simulation box in 𝑦-dimension

• Length of simulation box in 𝑧-dimension

• Displacement in 𝑥-direction for Lees-Edwards shear

• Displacement in 𝑦-direction for Lees-Edwards shear

• Displacement in 𝑧-direction for Lees-Edwards shear

This information block is then followed by a series of integers with global particle numbers to indicate the order
in which the particles and their data appear in this trajectory frame. A block of double-precision real numbers
follows, with each particle providing three, six or nine values for the three Cartesian components of its position,
velocity and force (depending on the trajectory data key selected in the CONTROL file). The particle data is
provided in this block using the same ordering as the integer block preceding it. This format is particularly
amenable to being written concurrently (using MPI-IO) by a small group of processor cores that have previously
gathered together particle data: it avoids the need to sort the particles by global numbers and enables large streams
of integers or real numbers to be written in single write operations.

This file is generated by DL_MESO_DPD during a simulation, with the write_history_header() subroutine creat-
ing the file and writing the header to it (if required) and the write_history() subroutine appending each trajectory
frame and updating the filesize, number of frames and the timestep number for the last frame in the header. The
endianness (big or small) of the file corresponds to that of the computer used to run the calculation: it is possible
to get a different computer to continue writing to the HISTORY file provided it either uses the same endianness
as the original machine or DL_MESO_DPD is compiled to use that endianness (available as a compiler flag). If
a simulation is restarted, the write_history_header() subroutine will check the HISTORY file had previously been
written correctly (producing warning messages if not) and prepare DL_MESO_DPD to append new trajectory
frames to the correct places in the file.

The HISTORY file can be used with twelve utilities provided with DL_MESO:

• traject_vtf.F90 and traject_selected_vtf.F90 produce plottable VMD files [60] with sets of bonded particles
represented as residues

• traject_xml.F90 and traject_selected_xml.F90 produce plottable XML files formatted for the coarse-grained
molecular dynamics code GALAMOST [157], which can be read into the visualisation software package
OVITO [132]

• history_config.F90 can produce a CONFIG file from a selected frame in the HISTORY file

• local.F90 can calculate localised properties (e.g. temperature, composition) and produce Legacy VTK files
with these properties as cell data that can be visualised and analysed using Paraview

• isosurfaces.F90 can produce isovolumetric maps based on a given species as Legacy VTK files and calculate
order parameters to determine the structure of a mesophase

• radius.F90 calculates the end-to-end distances and radii of gyration for all molecules, as well as give nor-
malised distributions of end-to-end distances

• dipole.F90 calculates the dipole moments for all molecules in the system, autocorrelation functions of dipole
moments and their Fourier transforms

• rdf.F90 and rdfmol.F90 calculate radial distribution functions (RDFs) for pairs of particle species or
molecule types respectively, with the option of calculating Fourier transforms of the RDFs to give struc-
ture factors

• widom_insertion.F90 calculates excess chemical potentials of individual particles or molecules by random
insertions into particle configurations supplied from trajectory frames

All of these utilities can be run on different machines to those used for DL_MESO_DPD calculations, including
those with a different endianness.

808 Chapter 11. DL_MESO_DPD Input and Output Files

DL_MESO Technical Manual, Release 2.7

11.8 CORREL

If specified by the stats directive in the CONTROL file, DL_MESO_DPD will generate this ANSI text file with
statistical data written every iscorr timesteps after equilibration has finished. This file can be imported into a
spreadsheet program or used by graph-plotting software for visualisation and analysis.

The file is formatted predominately as fixed-width columns of numbers - given as (scientific) E notation with 6
decimal places and three characters for the exponent and its sign - with column headers in the first line starting
with a # character. The number of columns printed to the file will depend upon the simulation, primarily the
interactions and ensemble in use: if a particular property in the table below is not required (e.g. bond energy for a
system without molecules), it will be left out.

at a timestep interval specified by the user, which can later be imported into a spreadsheet or used by graph-plotting
software. The formatting of the data varies depending on which kinds of interactions (bonds, angles, dihedrals,
electrostatics) were used and whether a barostat was applied, based on the overall format (in a single line):

Table 11.4: Available properties in CORREL output file
quantity column header property
𝑡 time time (in DPD units)
𝐸𝑡𝑜𝑡 en-total total energy per particle
𝐸𝑝𝑜𝑡,𝑡𝑜𝑡 pe-total total potential energy per particle
𝐸𝑝𝑜𝑡.𝑒𝑙𝑒𝑐 ee-total total electrostatic energy per parti-

cle
𝐸𝑝𝑜𝑡,𝑏𝑜𝑛𝑑 be-total total (stretching) bond energy per

particle
𝐸𝑝𝑜𝑡,𝑎𝑛𝑔𝑙𝑒 ae-total total bond angle energy per parti-

cle
𝐸𝑝𝑜𝑡,𝑑𝑖ℎ𝑒𝑑 de-total total bond dihedral energy per par-

ticle
𝑃 pressure system pressure
𝑃𝑥𝑥 p_xx 𝑥𝑥-component of pressure tensor

(𝜎𝑥𝑥/𝑉)9

𝑃𝑥𝑦 p_xy 𝑥𝑦-component of pressure tensor
(𝜎𝑥𝑦/𝑉)

𝑃𝑥𝑧 p_xz 𝑥𝑧-component of pressure tensor
(𝜎𝑥𝑧/𝑉)

𝑃𝑦𝑥 p_yx 𝑦𝑥-component of pressure tensor
(𝜎𝑦𝑥/𝑉)

𝑃𝑦𝑦 p_yy 𝑦𝑦-component of pressure tensor
(𝜎𝑦𝑦/𝑉)

𝑃𝑦𝑧 p_yz 𝑦𝑧-component of pressure tensor
(𝜎𝑦𝑧/𝑉)

𝑃𝑧𝑥 p_zx 𝑧𝑥-component of pressure tensor
(𝜎𝑧𝑥/𝑉)

𝑃𝑧𝑦 p_zy 𝑧𝑦-component of pressure tensor
(𝜎𝑧𝑦/𝑉)

𝑃𝑧𝑧 p_zz 𝑧𝑧-component of pressure tensor
(𝜎𝑧𝑧/𝑉)

𝑉 volume system volume
𝐿𝑥 L_x box length in dimension 𝑥
𝐿𝑦 L_y box length in dimension 𝑦
𝐿𝑧 L_z box length in dimension 𝑧
𝛾𝑧 tension interfacial tension along 𝑧-axis
𝑇 temperature system temperature
𝑇𝑥 temp-x partial temperature in 𝑥-dimension

(⟨
∑︀

𝑖𝑚𝑖𝑣
2
𝑖,𝑥⟩)

continues on next page

11.8. CORREL 809

DL_MESO Technical Manual, Release 2.7

Table 11.4 – continued from previous page
quantity column header property
𝑇𝑦 temp-y partial temperature in 𝑦-dimension

(⟨
∑︀

𝑖𝑚𝑖𝑣
2
𝑖,𝑦⟩)

𝑇𝑧 temp-z partial temperature in 𝑧-dimension
(⟨
∑︀

𝑖𝑚𝑖𝑣
2
𝑖,𝑧⟩)

⟨𝑟𝑏𝑜𝑛𝑑⟩ bndlen-av average (mean) bond length
𝑟𝑏𝑜𝑛𝑑,𝑚𝑎𝑥 bndlen-max maximum bond length
𝑟𝑏𝑜𝑛𝑑,𝑚𝑖𝑛 bndlen-min minimum bond length
⟨𝜃𝑎𝑛𝑔𝑙𝑒⟩ angle-av average (mean) bond angle (in de-

grees)
⟨𝜑𝑑𝑖ℎ𝑒𝑑⟩ dihed-av average (mean) bond dihedral (in

degrees)

This file is written by the write_correl() subroutine, which will ordinarily only create a new CORREL file (with
the required column headers) if one does not already exist. If a CORREL file already exists, DL_MESO_DPD
will append data to it even if running a new simulation: if this is not required, the user will need to either delete or
rename the existing CORREL file before running DL_MESO_DPD.

11.9 Stress_*.d

If specified by the stress directive in the CONTROL file, DL_MESO_DPD will generate at least one ANSI text
file containing stress tensors separated by contributions every nstrs timesteps starting from timestep number sstrs,
both of which are specified by the user. Four contributions with associated filenames are available:

• Interaction potential (conservative, many-body, bonded and electrostatic) components: Stress_pot.d

• Dissipative components: Stress_diss.d

• Random components: Stress_rn.d

• Kinetic components: Stress_kin.d

and the user can select which files are written in the CONTROL file. The data are formatted in a similar form to the
CORREL file: fixed-width columns of numbers in (scientific) E notation with 6 decimal places and three characters
for the exponent and its sign, plus column headers in the first line starting with #. The available properties in these
files are as follows:

Table 11.5: Available properties in Stress_*.d output files
quantity column header property
𝑡 time time (in DPD units)
𝑃 pressure system pressure
𝑃𝑄
𝑥𝑥 p_xx 𝑥𝑥-component of pressure tensor (𝜎𝑄

𝑥𝑥/𝑉) for contribution 𝑄
𝑃𝑄
𝑥𝑦 p_xy 𝑥𝑦-component of pressure tensor (𝜎𝑄

𝑥𝑦/𝑉) for contribution 𝑄
𝑃𝑄
𝑥𝑧 p_xz 𝑥𝑧-component of pressure tensor (𝜎𝑄

𝑥𝑧/𝑉) for contribution 𝑄
𝑃𝑄
𝑦𝑥 p_yx 𝑦𝑥-component of pressure tensor (𝜎𝑄

𝑦𝑥/𝑉) for contribution 𝑄
𝑃𝑄
𝑦𝑦 p_yy 𝑦𝑦-component of pressure tensor (𝜎𝑄

𝑦𝑦/𝑉) for contribution 𝑄
𝑃𝑄
𝑦𝑧 p_yz 𝑦𝑧-component of pressure tensor (𝜎𝑄

𝑦𝑧/𝑉) for contribution 𝑄
𝑃𝑄
𝑧𝑥 p_zx 𝑧𝑥-component of pressure tensor (𝜎𝑄

𝑧𝑥/𝑉) for contribution 𝑄
𝑃𝑄
𝑧𝑦 p_zy 𝑧𝑦-component of pressure tensor (𝜎𝑄

𝑧𝑦/𝑉) for contribution 𝑄
𝑃𝑄
𝑧𝑧 p_zz 𝑧𝑧-component of pressure tensor (𝜎𝑄

𝑧𝑧/𝑉) for contribution 𝑄
𝑉 volume system volume

where 𝑄 represents potential, dissipative, random or kinetic contributions to the pressure tensor.

9 The pressure tensors printed in this file include all contributions (interaction potential, dissipative, random and kinetic): the average
between the 𝑥𝑥-, 𝑦𝑦- and 𝑧𝑧-components should equal the system pressure, while the non-diagonal components are ordinarily symmetric, i.e.
𝑃(𝑥𝑦) = 𝑃𝑦𝑥.

810 Chapter 11. DL_MESO_DPD Input and Output Files

DL_MESO Technical Manual, Release 2.7

These files can be imported into a spreadsheet program or used by graph-plotting software for visualisation and
analysis. They can be used to analyse the rheological behaviour of the system, e.g. integrating autocorrelation
functions of the potential and dissipative components of stress tensors to find the zero-shear viscosity [30].

11.9. Stress_*.d 811

DL_MESO Technical Manual, Release 2.7

812 Chapter 11. DL_MESO_DPD Input and Output Files

CHAPTER

TWELVE

ADVICE ON DEVELOPING DL_MESO_DPD

DL_MESO_DPD has been written to allow users to either use the code as-is for their DPD simulations and/or to
expand the code to implement their new functionalities and run simulations in a highly-scalable manner. In order
to expand upon DL_MESO_DPD’s feature set, this chapter provides some advice on what changes need to be
made to the code and how these could be carried out.

12.1 New conservative interaction forces and potentials

The main force calculation routines - forces_mdvv(), forces_dpdvv() etc. - call the conservativeforce() subroutine
to obtain the pairwise force and potential for a given particle pair1. The functional form is specified by the ktype
array for each pair of particle species, whose index is numbered as:

𝑘 =
max (𝑖, 𝑗) (max (𝑖, 𝑗) − 1)

2
+ min (𝑖, 𝑗)

where 𝑖 and 𝑗 are the species numbers for the two particles. A SELECT CASE block is used on the value in this
array for the given species pair to select the functional form:

1. Lennard-Jones [66]

2. Weeks-Chandler-Andersen [147]

3. Standard DPD Groot-Warren [46]

4. Two-term many-body DPD [142]

so another value can be selected for a new functional form and implemented as a new CASE in the conservative-
force() subroutine. The outputs for this subroutine are:

• gforce: Scalar force divided by the distance between the particle pair,
𝐹𝐶

𝑖𝑗

𝑟𝑖𝑗

• pot: Potential energy for particle pair, 𝑈𝑖𝑗

where the force is related to the potential by

𝐹𝐶
𝑖𝑗 = −𝜕𝑈𝑖𝑗

𝜕𝑟𝑖𝑗

and the division by the distance 𝑟𝑖𝑗 is used to enable multiplication of the scalar force by the unit vector while
reducing the number of required division operations.

The parameters for the conservative force and potential are stored in the two-dimensional vvv array, with the first
index giving the available parameters (or useful numbers derived from those parameters) and the second index
giving the pair of particle species 𝑘. These parameters can include a cutoff distance for the potential and force,
which can be compared with the distance between the particles (rrr) or its square (rsq).

Modifications can be made to reading the FIELD file to include the new interaction type. These are specified in
the information block under the interactions keyword, and require a name for the interaction type (normally

1 The conservativeforce() subroutine appears in both the standard and OpenMP versions of field_module.F90: the user-developer should
ideally make the required changes in both versions of the subroutine to ensure they are implemented in any available form of DL_MESO_DPD.

813

DL_MESO Technical Manual, Release 2.7

up to 4 characters long but no longer than 16 characters) and up to 7 parameters including a lengthscale and a
thermostat parameter (dissipative force parameter 𝛾𝑖𝑗 or collision frequency Γ𝑖𝑗).

The scan_field() subroutine searches for the available interaction types (under the interactions keyword) to
find the maximum number of parameters per interaction type, mxprm, and the maximum cutoff distance if not
specified in the CONTROL file from the lengthscale.

The read_field() subroutine actually reads in the parameters and assigns them (and any numbers based on them
that are useful for force and potential calculations) to the vvv array, while the thermostat parameters are placed in
the gamma array. If the potential does not truncate to zero at or before the maximum interaction cutoff distance
rcut, long-range corrections to potential and virials can be added to the clr array. The interact array in
this subroutine is used to indicate whether or not the species pair has its parameters - energy, length scale and
thermostat - correctly specified, and is checked after reading the entire FIELD file to see if all particle species
pairs have specified parameters and/or if those missing values can be derived using mixing rules.

The sysdef() subroutine reports the interaction types and parameters specified in the FIELD file for the various
species pairs, using the ktype array to identify the type and which parameters need printing to the OUTPUT
file. The energy parameters, interaction lengths and thermostat parameters are printed separately, with the energy
parameters indicating the potential type for each species pair. The potential and virial long-range corrections can
also be printed if any of the interaction types use them.

12.2 New wall forces and potentials

The main subroutine calculating wall potentials and forces, wallforces(), calls the surfaceforce() subroutine to
obtain the force and potential for each particle within the surface cutoff distance srfzcut of the planar surface. The
functional form is specified by the srfktype array for each particle species, and the value from this array for the
required particle species is used in the SELECT CASE block to select the form used in calculations, currently one
of two options:

1. Standard DPD Groot-Warren [46][105]

2. Weeks-Chandler-Andersen [147]

Another value can thus be selected for a new functional form and implemented as a new CASE in the surfaceforce()
subroutine. The outputs for this subroutine are:

• srfforce: Scalar force divided by the distance between the particle and the wall, 𝐹𝑤𝑎𝑙𝑙,𝑖

𝑧𝑤𝑎𝑙𝑙,𝑖

• srfpot: Wall potential energy for particle, 𝑈𝑤𝑎𝑙𝑙,𝑖

where the force is related to the potential by

𝐹𝑤𝑎𝑙𝑙,𝑖 = −𝜕𝑈𝑤𝑎𝑙𝑙,𝑖

𝜕𝑧𝑤𝑎𝑙𝑙,𝑖

and the division by the distance 𝑧𝑤𝑎𝑙𝑙,𝑖 is used to enable multiplication of the scalar force by the unit vector (which
points orthogonally from the wall back into the system) while reducing the number of required division operations.

The parameters for the wall forces and potentials are stored in the two-dimensional vvsrf array, with the first index
giving the available parameters (or useful numbers derived from those parameters) and the second index giving
the particle species 𝑖. These parameters can include a cutoff distance for the potential and force, which can be
compared with the distance between the particle and the wall (rrr) or its square (rsq).

Modifications can be made to reading the FIELD file to include the new wall interaction type. These are specified
in the information block under the surfaces keyword, and require a name for the interaction type (normally up
to 4 characters long but no longer than 16 characters) and 2 parameters including a lengthscale.

The scan_field() subroutine searches for the available wall interaction types (under the surfaces keyword) to
find the maximum number of parameters per interaction type, mxsprm, and the maximum surface cutoff distance
if not specified in the CONTROL file from the lengthscale.

The read_field() subroutine actually reads in the parameters and assigns them (and any numbers based on them
that are useful for force and potential calculations) to the vvsrf array. Unlike the conservative interactions, the

814 Chapter 12. Advice on developing DL_MESO_DPD

DL_MESO Technical Manual, Release 2.7

omission of any species in surface interactions will not cause issues: missing particle species will effectively be
omitted from wall force and potential calculations.

The sysdef() subroutine reports the wall interaction types and parameters specified in the FIELD file for the various
species, using the srfktype array to identify the type and which parameters need printing to the OUTPUT file.
The energy parameters and interaction lengths are printed separately, with the energy parameters indicating the
potential type for each species.

12.3 New bond, angle and dihedral forces and potentials

The main subroutines calculating the bond interaction forces and potentials, bondforceslocal() and bondforces-
global(), call the bond_force(), angle_force() and dihedral_force() subroutines to calculate the forces and poten-
tials for a given bond, angle or dihedral (respectively)2. The functional form is given as an integer input to each
subroutine - bondtype, angtype or dhdtype - with a SELECT CASE block used to select the form and
carry out the calculations: these are stored for the available bonds/angles/dihedrals in the system in the bdtype,
angtype and dhdtype arrays. The parameters for each bond/angle/dihedral are also input into the subroutines and
stored in arrays for each available type. Up to four parameters can be specified for each bond/angle/dihedral type,
with their specific meanings chosen arbitrarily when implementing the potentials and forces.

The force supplied as an output by bond_force() is the scalar bond force divided by the distance between the two
particles, 𝐹𝑖𝑗

𝑟𝑖𝑗
. A maximum possible bond length mxlen is also supplied as an output for certain bond types to

check that the current bond is within that distance. The force supplied by angle_force() is the scalar angle force
divided by the sine of the angle formed by the two connected bonds, 𝐹𝑖𝑗𝑘

sin 𝜃𝑖𝑗𝑘
. This subroutine can also output the

resulting virial for the angle virial and any additional force contributions (dfab, dfcb) if the angle interaction
potential includes screening/truncation functions (currently not used in DL_MESO_DPD). The force supplied by
dihedral_force() is the scalar dihedral force divided by the sine of the dihedral angle, 𝐹𝑖𝑗𝑘𝑙

sin𝜑𝑖𝑗𝑘𝑙
. Since dihedrals

do not contribute to virials, no such output is made from this subroutine (although the forces do contribute to the
stress tensor).

Modifications can be made to reading the FIELD file to include the new bond/angle/dihedral type. These are
specified in the information block under the molecules keyword within the sub-blocks indicated by bonds,
angles or dihedrals. A name for the new bond/angle/dihedral type is required (normally up to 4 characters
long but no longer than 16 characters) and up to 4 parameters can be specified.

The scan_field() subroutine searches for the required bond, angle and dihedral types for all molecule definitions:
each of these is identified by the keyword for the type and the parameters, ending up with all of the unique
bond, angle and dihedral definitions and eventually assigning the types to bdtype, angtype and dhdtype, and the
parameters to aabond, bbbond etc.

The read_field() subroutine reads through the FIELD file again and identifies the bond/angle/dihedral types for
each bond/angle/dihedral in each molecule’s definition based on the keyword and the supplied parameters. The
unique bond/angle/dihedral types are assigned to the arrays subsequenrly used to assign data to the book-keeping
arrays: bdinp3, anginp4 and dhdinp5.

The sysdef() subroutine reports the bonded interaction types and parameters specified in the FIELD file, using the
bdtype, angtype and dhdtype arrays to identify the types. Each bond/angle/dihedral type is printed with all four
parameters, regardless of whether or not all of them are used during calculations.

2 The bond_force(), angle_force() and dihedral_force() subroutines appear in both the standard and OpenMP versions of bond_module.F90:
the user-developer should ideally make the required changes in both versions of the subroutines to ensure they are implemented in any available
form of DL_MESO_DPD.

12.3. New bond, angle and dihedral forces and potentials 815

DL_MESO Technical Manual, Release 2.7

12.4 Change to many-body DPD calculations

Most of the code changes required for many-body DPD interactions are carried out in the same manner as for other
conservative interactions (see above). There are, however, a few additional considerations to take when applying
a new many-body DPD model in DL_MESO_DPD, mainly involving changes to the manybody_module.F903.

The local_density() subroutine calculates localised densities for each particle species (as stored in rhomb): the
sum over all particle species (the second index of this two-dimensional array) gives the total localised density
for each particle, as used in the current two-parameter many-body DPD model. These localised densities use the
screening function 𝑤𝜌 given in weight_rho(), which can be changed by the user-developer provided:

• It truncates to zero at the many-body cutoff distance rmbcut

• The weighting function used for the pairwise forces is proportional to the derivative of this function with
respect to distance between particle pairs

The self-energy terms for the potential are dependent only on localised densities and are calculated in the many-
body_potential() subroutine for all particles and all species pairs involving at least one non-frozen particle species.
The calculations in this subroutine should be modified for new many-body DPD interactions.

No changes are absolutely necessary in the scan_field() or read_field() subroutines, unless the user-developer
wishes to give a new name to the interaction type. The instructions for doing this are nearly identical to those for
other conservative interactions (see above), except that lmb should be set to true when reading the interaction in
read_field() to ensure localised densities and self-energy terms are calculated.

12.5 Changes to electrostatic interaction calculations

Two main changes may be made to calculations of electrostatic interactions between charged particles in
DL_MESO_DPD:

• Addition of a new charge smearing scheme

• Alternative method to calculate long-range (reciprocal-space) part of Ewald sum

The first change - adding a new charge smearing scheme - involves creating a new subroutine in ewald_module.F90
to calculate pairwise real-space calculations4, which is the only place where the scheme needs to be applied. The
user-developer should copy and paste one of the existing subroutines, e.g. ewald_real_slater_exact(), and modify
it accordingly. The variable betaew is available as a parameter related to the charge smearing length chglen.
Changes will additionally need to be made to the read_control() subroutine for the smear keyword to read the
new charge smearing type as the integer variable etype and to calculate the value of betaew from the charge
smearing length, the sysdef() subroutine to print information about electrostatic interactions to the OUTPUT file,
and the subroutines in field_module.F90 setting up parallel link cells and calculating forces (e.g. plcfor_mdvv())
to include the new Ewald real-space subroutine as an option. It should be noted that the variable etype selects
both the charge smearing scheme and the implementation of the reciprocal-space calculations (standard Ewald or
SPME), so changes to numbering for this variable will be needed for the new charge smearing scheme to fit in
with the current ones.

The addition of a new method to calculate the long-range part of electrostatic interactions - currently available with
standard Ewald summation and Smooth Particle Mesh Ewald (SPME) - will require even more extensive changes.
Specifically, the user-developer may need to create their own module (along similar lines to spme_module.F90) to
incorporate an implementation of this new method. Similarly to adding a charge smearing scheme, changes will
be needed for CONTROL file reading to read in the new calculation scheme (as an alternative to ewald or spme)
and assign the variable etype to apply it for the available charge smearing schemes, to write information to the
OUTPUT file and to select new subroutines during force calculations.

3 This module exists in both standard and OpenMP versions: the user-developer should ideally make the required changes in both versions
of the module to ensure they are implemented in any available form of DL_MESO_DPD.

4 This module exists in both standard and OpenMP versions: the user-developer should ideally make the required changes in both versions
of the module to ensure they are implemented in any available form of DL_MESO_DPD.

816 Chapter 12. Advice on developing DL_MESO_DPD

DL_MESO Technical Manual, Release 2.7

12.6 New integration scheme or thermostat

Each thermostat and force integration scheme is implemented by its own module:

• integrate_dpd_mdvv.F90 for DPD using standard (MD) Velocity Verlet

• integrate_dpd_dpdvv.F90 for DPD using DPD Velocity Verlet (recalculation of dissipative forces)

• integrate_dpd_shardlow.F90 for DPD with Shardlow splitting, using Velocity Verlet for interaction forces

• integrate_lowe.F90 for Lowe-Andersen using Velocity Verlet for interaction forces

• integrate_peters.F90 for Peters using Velocity Verlet for interaction forces

• integrate_stoyanov.F90 for Stoyanov-Groot using Velocity Verlet for interaction and pairwise thermostat
forces

with subroutines for each ensemble and barostat (where applicable). The user-developer is advised to create their
own module to implement their own thermostat and/or force integration scheme along the lines of the existing
ones listed above. Subroutine calls for applying the communications - deportdata() and exportvelocitydata()
(where applicable) - applying boundary conditions. recalculating Ewald/SPME reciprocal space vector maps and
corrective forces for frozen charged particles etc. can be based on the pre-existing subroutines for the various
ensembles.

12.7 New or modified output file format

The simplest type of new output file to create is one that reports on system-wide values of a property. Noting that
obtaining these values in parallel running might require a global communication step, e.g. summation over all
processor cores using e.g. global_sum_dble(), the results can be printed to a file by a single processor core. By
convention and to ensure compatibility for serial running, this core should be numbered 0. An example of this
approach includes write_correl(), which writes statistical data collected together by the statis() subroutine.

If data for individual particles need to be written to a new file, a similar approach to that used for export
and HISTORY files can be taken. This involves gathering together data among groups of processor cores -
as in gather_write_data() - before the writing cores in each group writes the data concurrently to the file (e.g.
write_history()). Since the cores in each group and the writing cores are likely to send/write different amounts of
data, the cores in each gathering and writing group should share a measure of the amount of data they are sending
or writing (e.g. the number of particles), which will allow these cores to specify where the data should end up in
the receive array (i.e. the starting index) or the file (the starting byte number where the data should be placed). No
changes need to be made to the I/O groups set up in init_output_groups() for the HISTORY , export and CFGINI
files, although an additional MPI communicator should be created for the new file to enable it to be written (and a
file handle for MPI-IO to be created) without interrupting writing to other existing files.

12.8 Modifications to input file reading

If the new feature has been tested and the user-developer wishes to implement it more fully into DL_MESO_DPD,
they will need to make modifications to reading input files - CONTROL for simulation parameters, FIELD for
new interactions - to read in options and parameters for the new feature. The main subroutines to modify are
read_control() and scan_control(), which read keywords and values in individual lines, and scan_control() and
scan_field() to prepare any arrays for reading in data from these files.

Once the user-developer has devised the new keywords for the CONTROL or FIELD file, they can then add them
to the main DO WHILE loops going through each line of the file with IF statements to check for the strings. The
getword() function can be used to obtain a word from a given line that can be compared with a string (with the
lowercase() subroutine available to change all uppercase letters to lowercase ones), while getdble() and getint()
can read a double-precision real number and an integer from the same ‘word’ respectively.

12.6. New integration scheme or thermostat 817

DL_MESO Technical Manual, Release 2.7

When comparing strings with possible values, care should be taken to ensure enough characters in the string being
compared are used. If the proposed keyword is long, only the first few characters may be compared to allow for
variant spellings or abbreviations.

818 Chapter 12. Advice on developing DL_MESO_DPD

CHAPTER

THIRTEEN

DL_MESO_DPD ERROR MESSAGES

This chapter documents the error and warning messages currently available in the DPD code in DL_MESO,
DL_MESO_DPD, and recommendations for users to try and overcome the errors. Users may contact the authors
of DL_MESO after attempting the recommended actions.

13.1 Messages related to input files

13.1.1 Message 1: cutoff radius value not set

A valid cutoff radius (either 𝑟𝑐,𝑚𝑎𝑥 or 𝑟𝑐) for all (non-electrostatic) interactions cannot be found in the CONTROL
file: this is a compulsory parameter for DPD simulations.

Action: Look in the CONTROL file and make sure either the cutoff directive or the thermostat cutoff
directive is included with a non-zero value.

13.1.2 Message 2: temperature not set

A valid system temperature (𝑘𝐵𝑇) cannot be found in the CONTROL file: this is a compulsory parameter for DPD
simulations.

Action: Look in the CONTROL file and make sure the temperature directive is included with a non-zero value.

13.1.3 Message 3: time step size not set

A valid simulation timestep (∆𝑡) cannot be found in the CONTROL file: this is a compulsory parameter for DPD
simulations.

Action: Look in the CONTROL file and make sure the timestep directive is included with a non-zero value.

13.1.4 Message 4: boundary halo size larger than half subdomain size

The size of the boundary halo (either specified by the user or determined from required interaction and bond
lengths) exceeds half the length of at least one dimension of the subdomain volume assigned to each processor.
The DPD simulation may therefore run less efficiently.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to reduce
the specified boundary halo size or use global bond calculations for future calculations.

819

DL_MESO Technical Manual, Release 2.7

13.1.5 Message 5: too many beads per node

The number of particles likely to be assigned to each processor is greater than the calculated maximum value.

Action: This error is unlikely to happen as the maximum number of particles per node is calculated according
to the numbers of particles and processors available, but the user may wish to use the densvar directive in the
CONTROL file to increase this value.

13.1.6 Message 6: system is not charge neutral

The overall charge for the system is non-zero.

Action: None immediately required to ensure the simulation runs as this is a warning message, but the user may
wish to adjust the numbers of charged particles to balance out positive and negative charges. (Ewald sums do not
tend to work for periodic systems with overall charges.)

13.1.7 Message 7: at least one interaction length larger than cutoff radius

The interaction length for at least one interacting pair of species (𝑟𝑐,𝑖𝑗) specified in the FIELD file exceeds the
(global) cutoff radius (𝑟𝑐) specified in the CONTROL file: any overly-long interactions will be truncated at the
global cutoff radius.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to increase
the specified cutoff radius to prevent truncation of interactions at larger separations.

13.1.8 Message 8: boundary halo size larger than subdomain size - cannot apply
SPME

The size of the boundary halo (either specified by the user or determined from required interaction and bond
lengths) exceeds the length of at least one dimension of the subdomain volume assigned to each processor. This
prevents correct charge grid assignment for Smooth Particle Mesh Ewald calculations when using distributed
charge grids.

Action: The user should either increase the size of the maximum reciprocal vector or otherwise reduce the size of
the boundary halo.

13.1.9 Message 9: volume not specified in CONTROL or CONFIG file

The system volume cannot be found in either the CONTROL file (for systems initialized from scratch) or the
supplied CONFIG file.

Action: The user should check that either the CONTROL file includes a volume directive or the CONFIG file
includes lines specifying the system volume.

13.1.10 Message 10: cannot read CONFIG file

The supplied CONFIG file cannot be read by DL_MESO_DPD: it might have been corrupted.

Action: Check the CONFIG file to ensure it is complete and in ANSI (text) format.

820 Chapter 13. DL_MESO_DPD Error Messages

DL_MESO Technical Manual, Release 2.7

13.1.11 Message 20: missing CONTROL file

No input file named CONTROL can be found.

Action: Make sure there is a CONTROL file in the same directory as the DL_MESO_DPD executable.

13.1.12 Message 21: cannot read CONTROL file

The supplied CONTROL file cannot be read by DL_MESO_DPD: it might have been corrupted.

Action: Check the CONTROL file to ensure it is complete and in ANSI (text) format.

13.1.13 Message 22: no charge smearing length defined in CONTROL file

The supplied CONTROL file has specified a charge smearing type but no charge smearing length (or reciprocal).

Action: Check the CONTROL file includes a smear length or smear beta directive with a non-zero value.
If the CONTROL file was originally created for earlier versions of DL_MESO_DPD, it will need modification
to specify both charge smearing type and lengthscale in separate lines: see Appendix A in the DL_MESO User
Manual for further details.

13.1.14 Message 23: no pressure specified in CONTROL file for barostat

The supplied CONTROL file has specified an ensemble involving a barostat (constant pressure, surface area or
surface tension) but no pressure.

Action: Check the CONTROL file includes a pressure directive.

13.1.15 Message 30: missing FIELD file

No input file named FIELD can be found.

Action: Make sure there is a FIELD file in the same directory as the DL_MESO_DPD executable.

13.1.16 Message 31: cannot read FIELD file

The supplied FIELD file cannot be read by DL_MESO_DPD: it might have been corrupted.

Action: Check the FIELD file to ensure it is complete and in ANSI (text) format.

13.1.17 Message 32: unrecognised bond type defined in FIELD file

A bond type not included in the available range has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond types are valid; if adding a new bond type to DL_MESO_DPD,
the scan_field and read_field routines in config_module need to be modified.

13.1. Messages related to input files 821

DL_MESO Technical Manual, Release 2.7

13.1.18 Message 33: unrecognised bond angle type defined in FIELD file

A bond angle type not included in the available range has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond angle types are valid; if adding a new bond angle type to
DL_MESO_DPD, the scan_field and read_field routines in config_module need to be modified.

13.1.19 Message 34: unrecognised bond dihedral type defined in FIELD file

A bond dihedral type not included in the available range has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond dihedral types are valid; if adding a new bond dihedral type to
DL_MESO_DPD, the scan_field and read_field routines in config_module need to be modified.

13.1.20 Message 35: name for species number 𝑖 in FIELD file truncated to 8
characters

The given name for the 𝑖-th species in the FIELD file exceeds 8 characters and has had to be truncated.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to check
the FIELD file to ensure this species cannot be confused with another.

13.1.21 Message 36: name for molecule number 𝑖 in FIELD file truncated to 8
characters

The given name for the 𝑖-th molecule type in the FIELD file exceeds 8 characters and has had to be truncated.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to check
the FIELD file to ensure this molecule type cannot be confused with another.

13.1.22 Message 37: missing finish directive in FIELD file for molecule 𝑖

No finish directive can be found for the 𝑖-th molecule type in the FIELD file.

Action: Check the FIELD file, particularly the 𝑖-molecule type, and ensure each molecule type ends with a
finish directive.

13.1.23 Message 38: non-existent species given in FIELD file for molecule 𝑖

An undefined species has been found in the definition for the 𝑖-th molecule type in the FIELD file.

Action: Check the FIELD file, particularly the 𝑖-th molecule type and the species definitions, to ensure the species
in the molecule are defined.

13.1.24 Message 39: unrecognised bond definition in FIELD file for molecule 𝑖

A bond definition has been found in the FIELD file for the 𝑖-th molecule that was not detected during the initial
scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL_MESO.

822 Chapter 13. DL_MESO_DPD Error Messages

DL_MESO Technical Manual, Release 2.7

13.1.25 Message 40: out-of-range bead number for bond in FIELD file for
molecule 𝑖

At least one of the bond definitions for the 𝑖-th molecule type refers to a bead number out of range (either below
1 or above the number of beads for the molecule).

Action: Check the FIELD file, particularly the 𝑖-th molecule type, and check that the bond definitions refer to
bead numbers within range.

13.1.26 Message 41: unrecognised bond angle definition in FIELD file for
molecule 𝑖

A bond angle definition has been found in the FIELD file for the 𝑖-th molecule that was not detected during the
initial scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL_MESO.

13.1.27 Message 42: out-of-range bead number for angle in FIELD file for
molecule 𝑖

At least one of the angle definitions for the 𝑖-th molecule type refers to a bead number out of range (either below
1 or above the number of beads for the molecule).

Action: Check the FIELD file, particularly the 𝑖-th molecule type, and check that the angle definitions refer to
bead numbers within range.

13.1.28 Message 43: unrecognised dihedral angle definition in FIELD file for
molecule 𝑖

A bond dihedral definition has been found in the FIELD file for the 𝑖-th molecule that was not detected during the
initial scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL_MESO.

13.1.29 Message 44: out-of-range bead number for dihedral in FIELD file for
molecule 𝑖

At least one of the dihedral definitions for the 𝑖-th molecule type refers to a bead number out of range (either
below 1 or above the number of beads for the molecule).

Action: Check the FIELD file, particularly the 𝑖-th molecule type, and check that the dihedral definitions refer to
bead numbers within range.

13.1.30 Message 45: non-existent species given in FIELD file for unbonded in-
teraction 𝑖

An undefined species has been found in the 𝑖-th (unbonded) interaction definition in the FIELD file.

Action: Check the FIELD file, particularly the 𝑖-th interaction type and the species definitions, to ensure the
species in the interaction are defined.

13.1. Messages related to input files 823

DL_MESO Technical Manual, Release 2.7

13.1.31 Message 46: non-existent species given in FIELD file for surface inter-
action 𝑖

An undefined species has been found in the 𝑖-th (hard) surface interaction definition in the FIELD file.

Action: Check the FIELD file, particularly the 𝑖-th surface interaction and species definitions, to ensure the species
in the interaction are defined.

13.1.32 Message 47: non-existent species given in FIELD file for frozen wall
interaction

An undefined species has been found in the definition for frozen particle walls in the FIELD file.

Action: Check the FIELD file, particularly the frozen particle wall and species definitions, to ensure the required
frozen particle species is defined.

13.1.33 Message 48: incomplete many-body DPD interaction data in FIELD file

Not all species pairs have defined interaction parameters in the FIELD file: this is vital for systems with any
many-body DPD interactions as universal mixing rules are unavailable for many-body DPD parameters.

Action: Check the FIELD file to ensure that unbonded interactions between every possible species pair is defined.

13.1.34 Message 49: no interaction data in FIELD file for single species 𝑖

Unbonded interaction data between particle pairs of the same species 𝑖 are unavailable in the FIELD file: mixing
rules to determine any missing interaction data thus cannot be applied.

Action: Check the FIELD file to ensure that unbonded interactions exist for same-species pairs.

13.1.35 Message 50: zero reciprocal vector range for ewald sum

The maximum reciprocal vector, 𝑘⃗𝑚𝑎𝑥, has not been defined for systems requiring Ewald sum or SPME electro-
statics.

Action: Look in the CONTROL file and make sure the ewald or spme directive includes the convergence param-
eter 𝛼 and the extents of the maximum reciprocal vector, 𝑘1, 𝑘2 and 𝑘3.

13.1.36 Message 51: cannot read restart file named export

No valid file called export can be found or read to restart a simulation.

Action: Check for the existence of the export file in the working directory; if no file exists or is needed, remove
the restart directive from the CONTROL file.

13.1.37 Message 52: too many beads needed per node for export file

The total number of particles from the export file for a particular process exceeds the predicted maximum
number of particles per node.

Action: This error is unlikely to happen as the maximum number of particles per node is calculated according
to the numbers of particles and processors available, but the user may wish to use the densvar directive in the
CONTROL file to increase this value.

824 Chapter 13. DL_MESO_DPD Error Messages

DL_MESO Technical Manual, Release 2.7

13.1.38 Message 53: cannot read REVIVE file - no previous statistical data avail-
able

No valid REVIVE file with statistical accumulators, barostat properties and random number generator states can
be found or read.

Action: No immediate action is necessary to get DL_MESO to run as this message is a warning, but the user may
need to consider either ensuring there is a REVIVE file available in the working directory or using the restart
noscale directive in the CONTROL file (which starts a new simulation based on the configuration given in the
export file).

13.1.39 Message 54: at least one molecule type incorrectly defined in FIELD file

The FIELD file contains a molecule definition that is incorrectly formatted, preventing other definitions from
being read.

Action: Check the molecule definitions in the FIELD file to ensure each of them includes the number of molecules
to be used in the simulation, the number of beads per molecule and finishes with the finish directive (which
indicates the end of the molecule definition).

13.1.40 Message 55: insufficient number of beads per node allocated for re-
quired CONFIG file

The total number of particles from the CONFIG file for a particular process exceeds the predicted maximum
number of particles per node.

Action: This error is unlikely to happen as the maximum number of particles per node is calculated according
to the numbers of particles and processors available, but the user may wish to use the densvar directive in the
CONTROL file to increase this value.

13.1.41 Message 56: non-existent species given in CONFIG file

No valid species can be found for an entry in the CONFIG file: this can happen either when the file is being
scanned to find the start of a particle entry or when the particles are being read (in the latter case, additional
messages will be produced stating which particles have invalid species identifiers).

Action: Check the species definitions in the FIELD file and the 𝑖-th particle in the CONFIG file (if given as an
additional message) to ensure that species is defined.

13.1.42 Message 57: out-of-range particle index given in CONFIG file

At least one of the particle indices given in the CONFIG file is out of range compared with the contents of the
FIELD file.

Action: Check the particle numbering in the CONFIG file and the contents of the FIELD file, and adjust where
necessary. If the contents of the CONFIG file match up with the FIELD file, consider using the no index option
in the CONTROL file to ignore the supplied particle numbering.

13.1. Messages related to input files 825

DL_MESO Technical Manual, Release 2.7

13.1.43 Message 58: mismatch in species particle counts between FIELD and
CONFIG files

The numbers of particles for a given species in the CONFIG file does not match those given in the FIELD file: a
table itemising the total numbers for each species and for all species in both files is given before this message.

Action: Check the CONFIG and FIELD files to ensure the species compositions of both files match up.

13.1.44 Message 59: out-of-range particle index given in export file

At least one of the particle indices given in the export file is out of range compared with the contents of the
FIELD file.

Action: Check the contents of the FIELD file to make sure it matches up with that used when the export file
was created, and adjust where necessary. The export_config utility might be useful here to determine the
contents of the export file.

13.1.45 Message 60: out-of-range species type given in export file

At least one of the species types given in the export file is out of range compared with the contents of the FIELD
file.

Action: Check the contents of the FIELD file to make sure it matches up with that used when the export file
was created, and adjust where necessary. The export_config utility might be useful here to determine the
contents of the export file.

13.1.46 Message 61: out-of-range molecule type given in export file

At least one of the molecule types given in the export file is out of range compared with the contents of the
FIELD file.

Action: Check the contents of the FIELD file to make sure it matches up with that used when the export file
was created, and adjust where necessary. The export_config utility might be useful here to determine the
contents of the export file, although the resulting CONFIG file would not directly show which particles belong
to particular molecules.

13.1.47 Message 62: mismatch in species particle counts between FIELD and
export files

The numbers of particles for a given species in the export file does not match those given in the FIELD file
(with any cell duplication from the previous simulation taken into account): a table itemising the total numbers
for each species and for all species in both files is given before this message.

Action: Check the export and FIELD files to ensure the species compositions of both files match up. If the
nfold option was used for the simulation that created the export file, make sure the relevant values are specified
in the CONTROL file.

826 Chapter 13. DL_MESO_DPD Error Messages

DL_MESO Technical Manual, Release 2.7

13.1.48 Message 65: insufficient number of beads per node allocated for re-
quired initialization

The maximum number of particles per node is not large enough to include the unbonded particles assigned to each
processor for a new simulation (without a CONFIG file).

Action: This error is unlikely to happen as the maximum number of particles per node is calculated according
to the numbers of particles and processors available, but the user may wish to use the densvar directive in the
CONTROL file to increase this value.

13.1.49 Message 66: discrepancy in total number of starting beads - 𝑖 too
many/few

The total number of particles assigned to all processors for a new simulation does not match up with the numbers
specified in the FIELD file (taking nfold duplication into account if a CONFIG file is used).

Action: For new simulations without CONFIG files or restarted simulations without frozen bead walls, this error
should never occur and the authors of DL_MESO should be contacted if it does. If using a CONFIG file, check
the FIELD file to ensure that the number of particles for each species and numbers of molecules match up with
those in the CONFIG file. If restarting a simulation that used frozen bead walls, remove the directives for frozen
bead walls in the CONTROL and FIELD files and include the number of frozen beads used in the species totals in
the FIELD file.

13.1.50 Message 67: molecule 𝑖 bigger than domain - cannot insert into system

The maximum extent of molecule 𝑖, which is represented as a cuboid, is larger than the defined size of the system
in all three dimensions. This message will only appear for systems with hard surfaces or frozen walls, and the
molecule cannot therefore be inserted into the system without crossing these surfaces or walls.

Action: Either the system size must be increased to accommodate the defined molecule or the molecule needs to
be made smaller to fit inside the system dimensions (which are reduced by the specified positions of hard surfaces
or the thicknesses of frozen walls).

13.1.51 Message 68: molecule 𝑖 bigger than domain in at least one dimension

The maximum extent of molecule 𝑖, which is represented as a cuboid, is larger than the defined size of the system
in at least one dimension.

Action: No immediate action is necessary as this is a warning message, but the user may wish to either increase
the system size or reduce the molecule size in future simulations. In the case of systems with hard surfaces or
frozen walls, the molecule size may restrict how it can be randomly inserted into the system volume and it may
take longer to initialize such systems.

13.2 Messages for processor-to-processor communication

13.2.1 Message 71: deport coordinate buffers exceeded

The amount of particle data received during deport is greater than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.
The user may wish to use the densvar directive in the CONTROL file to increase the value of the maximum
number of particles per node and thus accommodate larger numbers of particles.

13.2. Messages for processor-to-processor communication 827

DL_MESO Technical Manual, Release 2.7

13.2.2 Message 72: deport coordinate buffers exceeded for lees-edwards shear

The amount of particle data received during deport with Lees-Edwards shearing is greater than the current proces-
sor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.
The user may wish to use the densvar directive in the CONTROL file to increase the value of the maximum
number of particles per node and thus accommodate larger numbers of particles.

13.2.3 Message 81: import coordinate buffers exceeded

The number of additional particles created during import of particle forces is greater than the current processor
can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.
The user may wish to use the densvar directive in the CONTROL file to increase the value of the maximum
number of particles per node and thus accommodate larger numbers of particles.

13.2.4 Message 82: import coordinate buffers exceeded for lees-edwards shear

The number of additional particles created during import of particle forces with Lees-Edwards shearing is greater
than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.
The user may wish to use the densvar directive in the CONTROL file to increase the value of the maximum
number of particles per node and thus accommodate larger numbers of particles.

13.2.5 Message 91: export coordinate buffers exceeded

The number of additional particles created during export of particles into boundary halos is greater than the current
processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.
The user may wish to use the densvar directive in the CONTROL file to increase the value of the maximum
number of particles per node and thus accommodate larger numbers of particles.

13.2.6 Message 92: export coordinate buffers exceeded for lees-edwards shear

The number of additional particles created during export of particles into boundary halos with Lees-Edwards
shearing is greater than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.
The user may wish to use the densvar directive in the CONTROL file to increase the value of the maximum
number of particles per node and thus accommodate larger numbers of particles.

13.2.7 Message 93: cannot correctly export velocities to boundary halos

Particle velocities (for DPD Velocity Verlet integration) cannot be exported correctly to particles already in the
boundary halos. (This error message can only be invoked when running the serial version of DL_MESO.)

Action: This error should never occur! If it does, please contact the authors of DL_MESO.

828 Chapter 13. DL_MESO_DPD Error Messages

DL_MESO Technical Manual, Release 2.7

13.2.8 Message 94: cannot correctly export data to boundary halos for density
calculations

Particle data for calculating localised densities (needed for many-body DPD) cannot be exported to the boundary
halos as the number of particles created would be greater than that accounted for in memory. (This error message
can only be invoked when running the serial version of DL_MESO.)

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.
The user may wish to use the densvar directive in the CONTROL file to increase the value of the maximum
number of particles per node and thus accommodate larger numbers of particles.

13.2.9 Message 95: cannot correctly export data to boundary halos for density
calculations with shear

Particle data for calculating localised densities (needed for many-body DPD) cannot be exported to the boundary
halos with Lees-Edwards shearing as the number of particles created would be greater than that accounted for in
memory. (This error message can only be invoked when running the serial version of DL_MESO.)

Action: This error message suggests non-constant particle densities across the system. The user may wish to use
the densvar directive in the CONTROL file to increase the value of the maximum number of particles per node
and thus accommodate larger numbers of particles.

13.3 Messages for runtime issues

13.3.1 Message 100: wrong bead total after compression - 𝑖 too many/few

The total number of particles after the first Velocity Verlet integration stage (including dealing with boundary
conditions etc.) does not equal the specified total number of particles for the system.

Action: This error should never occur! If it does, please contact the authors of DL_MESO.

13.3.2 Message 200: bond too long or cannot be found

At least one bond between specified particles is too long (e.g. longer than the maximum specified length for the
potential) or cannot be calculated due to lack of available information for both particles. The bond(s) identified as
overly long or lost is/are printed either in the OUTPUT file or in the standard output (e.g. screen).

Action: If calculating bonds locally, increasing the size of boundary halos may reduce the likelihood of bonds
being ‘broken’. Alternatively, global bond calculations can ensure all data is available at the cost of replication
over all processors. Adjusting the parameters for the bond potential may also help ensure bonds do not get too
long.

13.3.3 Message 201: too many interacting pairs

The number of interacting pairs for non-DPD thermostats (Lowe-Andersen, Peters, Stoyanov-Groot) exceeds the
maximum number calculated from the number of particles in the system.

Action: The user may wish to use the densvar directive in the CONTROL file to increase the maximum numbers
of particles per node and pairs per node, thus accommodating larger numbers of interacting pairs.

13.3. Messages for runtime issues 829

DL_MESO Technical Manual, Release 2.7

13.4 Messages related to output files

13.4.1 Message 301: incorrect endianness in HISTORY file - cannot append ad-
ditional data

The endianness used for a pre-existing HISTORY file does not match the endianness currently used for the calcu-
lation: data appended to the end of the file will therefore not be readable.

Action: The endianness used in DL_MESO can be swapped by re-compiling with appropriate compiler flags in
the Makefile.

13.4.2 Message 302: incorrect real number size in HISTORY file - cannot append
additional data

The number of bytes per real number used in the HISTORY does not match the number of bytes per real number
used by DL_MESO: there is a mismatch in real number types.

Action: The kind of real number used in DL_MESO can be modified by changing the definition of dp in the
constants module.

13.4.3 Message 303: data corruption in HISTORY file

The beginning of a trajectory frame (the header containing the number of particles and time) in the HISTORY file
cannot be read due to a previous interruption in writing it.

Action: Greater care must be taken to ensure there is enough closing time to complete writing the last trajectory
frame to the HISTORY file at the end of a simulation.

13.4.4 Message 304: HISTORY file missing 𝑖 frames of trajectories

The HISTORY file ends before the timestep at which the simulation is being restarted.

Action: None immediately required as this message is a warning and does not prevent the simulation from being
restarted, but the user should be aware there will be a gap in the sequence of trajectories in the HISTORY file
when it is visualised or analysed with post-processing utilities.

13.5 Messages related to memory usage

13.5.1 Messages 1001-1256: allocation/deallocation errors

Allocation or deallocation of arrays for DPD calculations (including reading of input data, transfer buffers for
communications between processors, global arrays for Lowe-Andersen/Peters/Stoyanov-Groot thermostats etc.)
has failed. This may be due to a lack of addressable memory required for the DPD calculations. These messages
identify which allocation/deallocation has failed by module and routine names.

Action: Increase the amount of memory available for running DL_MESO_DPD by closing any other running
applications, running the simulation on a larger number of processors (to reduce the memory required per pro-
cessor to hold particle data), under-populating multicore processors (i.e. using fewer cores per processor than the
maximum available) or upgrading your machine. Alternatively, try running a smaller simulation.

830 Chapter 13. DL_MESO_DPD Error Messages

CHAPTER

FOURTEEN

DL_MESO GUI CODE DESCRIPTION

This chapter lists and describes the classes, subroutines, functions etc. in the DL_MESO GUI, based on output
generated using Doxygen with annotations in the code. Many of the classes describing windows (e.g. Define
LBE System, setlbeSys.java) have event counterparts (e.g. setlbeSysEvt.java) that deal with user-driven actions,
including changing the states of pull-down (combo) boxes and reading values from text boxes and checkboxes
when buttons are pressed: these latter classes are also used to deal with related pop-up windows.

14.1 dlmesogui.java

Main window for DL_MESO GUI.

Sets up main window for DL_MESO GUI, including welcome message in centre and buttons at top for LBE, DPD
and SPH simulations, Manual, Help and Exit. (Note that SPH button currently not a working option due to lack
of Smooth Particle Hydrodynamics code in DL_MESO, but is available for future versions.)

14.1.1 Classes

• public class dlmesogui

14.1.2 Function/Subroutine Documentation

dlmesogui()

public dlmesogui ()

Sets up main window for DL_MESO GUI, laying out elements onto a grid.

main()

public static void main (String[] arguments)

Creates new instance of graphical user interface when program is run.

831

DL_MESO Technical Manual, Release 2.7

14.2 dlmesoguiEvt.java

Events for main window of DL_MESO GUI.

Implements actions for LBE, DPD, SPH, Manual, Help and Exit buttons, including adding side bar on left hand
side for LBE and DPD simulations.

14.2.1 Classes

• class dlmesoguiEvt

14.2.2 Function/Subroutine Documentation

dlmesoguiEvt

public dlmesoguiEvt(dlmesogui in)
public dlmesoguiEvt(dllbe lbein)
public dlmesoguiEvt(dldpd dpdin)

Sets currently open DL_MESO GUI (including side bars for LBE and DPD) as window to check for user actions
and implement actions in response.

Parameters

in dlmesogui Instance of DL_MESO GUI
in dllbe Instance of LBE side bar
in dldpd Instance of DPD side bar

changecode

void changecode()

Opens window for Change LBE Code.

compilel

void compilel()

Opens window for Compile LBE Code.

runprogram

void runprogram()

Opens window for Run LBE Program.

832 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

gatherdata

void gatherdata()

Opens window for Gather LBE Data.

plotresult

void plotresult()

Opens window for Plot LBE Results.

setspa

void setspa(int dim)

Opens window for Set LBE Space.

Parameters

dim int Number of spatial dimensions required for LBE simulation (obtained from Define LBE System)

defsy

void defsy()

Opens window for Define LBE System.

dpdchangecode

void dpdchangecode()

Opens window for Change DPD Code.

dpdcompile

void dpdcompile()

Opens window for Compile DPD Code.

dpdrunprogram

void dpdrunprogram()

Opens window for Run DPD Program.

14.2. dlmesoguiEvt.java 833

DL_MESO Technical Manual, Release 2.7

dpdgatherdata

void dpdgatherdata()

Opens window for Process DPD Data.

dpdplotresult

void dpdplotresult()

Opens window for Plot DPD Results.

dpdsetinteract

void dpdsetinteract()

Opens window for Set DPD Interactions.

dpddefsys

void dpddefsys()

Opens window for Define DPD System.

closelbe

void closelbe()

Closes current window for LBE simulations.

closedpd

void closedpd()

Closes current window for DPD simulations.

lbe

void lbe()

Opens side bar for LBE simulations on left-hand side of GUI window.

834 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

dpd

void dpd()

Opens side bar for DPD simulations on left-hand side of GUI window.

sph

void sph()

Opens side bar for SPH simulations on left-hand side of GUI window: currently not an active option, so will open
pop-up window with error message.

help

void help()

Opens a pop-up window advising the user to visit the DL_MESO website.

manual

void manual()

Attempts to open the DL_MESO User Manual using Acrobat Reader (if installed on computer): if not available,
opens a pop-up window to advise user to open file manually.

lbeUpdatePan0

void lbeUpdatePan0()

Updates side bar (panel) with buttons for LBE simulation without modifying the main window in the GUI.

lbeUpdatePan

void lbeUpdatePan(Component cc)

Updates side bar (panel) with buttons for LBE simulation and updates main window in the GUI with the required
window (taken as an input).

Parameters

cc Component Window to be opened in main window of GUI

14.2. dlmesoguiEvt.java 835

DL_MESO Technical Manual, Release 2.7

dpdUpdatePan0

void dpdUpdatePan0()

Updates side bar (panel) with buttons for DPD simulation without modifying the main window in the GUI.

dpdUpdatePan

void dpdUpdatePan(Component cc)

Updates side bar (panel) with buttons for DPD simulation and updates main window in the GUI with the required
window (taken as an input).

Parameters

cc Component Window to be opened in main window of GUI

14.3 dlwelcome.java

Welome message for DL_MESO GUI.

Displays welcome message for DL_MESO GUI, including an indicator of the identified operating system, in the
centre of the main window.

836 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.3.1 Classes

• class dlwelcome

14.3.2 Function/Subroutine Documentation

dlwelcome

public dlwelcome()

Sets up welcome message in middle of DL_MESO GUI window.

14.4 dllbe.java

Side panel for LBE.

Sets up panel on left hand side of main window for LBE (Lattice Boltzmann Equation) simulations, with buttons
for Define LBE System, Set LBE Space, Change LBE Code, Compile LBE Code, Run LBE Program, Gather LBE
Data, Plot LBE Results and Close LBE Panel.

14.4.1 Classes

• class dllbe

14.4.2 Function/Subroutine Documentation

dllbe

public dllbe()

Sets up LBE side panel for DL_MESO GUI, laying out buttons in a single column.

14.5 lbesysdim.java

System boundaries for LBE simulations.

Sets grid size, numbers of dimensions, fluids, solutes and temperature fields, boundary condition types and gra-
dient order (using 0 for all values as default apart from 1 for gradient order), and provides arrays for boundary
condition values at main boundaries around the outside of the grid (constant fluid densities, constant velocities,
oscillating velocities, oscillation frequencies/periods, switches for boundary oscillations, constant concentrations,
constant temperatures, constant heating rates): used to store global properties required for both Define LBE Sys-
tem and Set LBE Space windows.

14.4. dllbe.java 837

DL_MESO Technical Manual, Release 2.7

14.5.1 Classes

• class lbesysdim

14.5.2 Variables

• static int lbnx

Number of grid points in 𝑥-dimension

• static int lbny

Number of grid points in 𝑥-dimension

• static int lbnz

Number of grid points in 𝑧-dimension

• static int led

Number of spatial dimensions

• static int lbf

Number of fluids

• static int lbc

Number of solutes

• static int lbt

Number of temperature fields

• static int bctyp

Boundary condition type for fluids

• static int sbctyp

Boundary condition type for solutes

• static int tbctyp

Boundary condition type for temperature

• static int gradord

Order of gradient calculations at surfaces

• static double densf[]

Fixed fluid densities at main boundaries on outside of simulation box

• static double vel[]

Fixed velocities at main boundaries on outside of simulation box

• static double velos[]

Oscillating velocities (amplitudes) at main boundaries on outside of simulation box

• static velospf[]

Period or frequency for oscillating velocities at main boundaries

• static int pf[]

Flags to indicate whether period or frequency is specified for oscillating velocities at main boundaries

• static double conc[]

Fixed solute concentrations at main boundaries on outside of simulation box

838 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

• static double temp[]

Fixed temperatures at main boundaries on outside of simulation box

• static double tempdt[]

Heating rate at main boundaries on outside of simulation box

14.6 dldpd.java

Side panel for DPD.

Sets up panel on left hand side of main window for DPD (Dissipative Particle Dynamics) simulations, with buttons
for Define DPD System, Set DPD Interactions, Change DPD Code, Compile DPD Code, Run DPD Program,
Process DPD Data, Plot DPD Results and Close DPD Panel.

14.6.1 Classes

• class dldpd

14.6.2 Function/Subroutine Documentation

dldpd

public dldpd()

Sets up DPD side panel for DL_MESO GUI, laying out buttons in a single column.

14.7 dpdsysdim.java

System boundaries for DPD simulations.

Sets boundary conditions for DPD simulation, using periodic boundaries without frozen particle walls as the
default: used to store global properties required for both Define DPD System and Set DPD Interactions windows.

14.7.1 Classes

• class dpdsysdim

14.7.2 Variables

• static int srftyp

Selected surface type (corresponds to srftype in DL_MESO_DPD)

• static boolean frzwalls

Switch for frozen bead walls (corresponds to lfrzwall in DL_MESO_DPD)

14.6. dldpd.java 839

DL_MESO Technical Manual, Release 2.7

14.8 setlbeSys.java

Window for Define LBE System.

Sets up window for Define LBE System, including pull-down (combo) boxes for lattice scheme, collision/forcing
type, interaction type and output file format, checkboxes for options to use incompressible fluids, simulation
restart, text format for output files, temperature scalar and combining outputs for parallel calculations, text boxes
to type in values, and buttons to open existing lbin.sys file, save information to lbin.sys file and open pop-up
windows for fluid parameters, fluid forces, solute parameters and thermal parameters.

14.8.1 Classes

• class setlbeSys

14.8.2 Function/Subroutine Documentation

setlbeSys

public setlbeSys()

Sets up Define LBE System window for DL_MESO GUI, laying out elements onto a grid.

840 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.9 setlbeSysEvt.java

Events for Define LBE System.

Implements actions for Define LBE System (including pop-up windows for setting fluid parameters, forces on
fluids, solute and thermal parameters): opening lbin.sys file into GUI on clicking OPEN button, reading values
from text fields, pull-down (combo) boxes and checkboxes, and saving information to lbin.sys file on clicking
SAVE button (and saving values from pop-up boxes into memory when relevant save buttons are clicked).

14.9.1 Classes

• class setlbeSysEvt

14.9.2 Function/Subroutine Documentation

setlbeSysEvt

public setlbeSysEvt(setlbeSys ini)
public setlbeSysEvt(setFluid fluini)
public setlbeSysEvt(setFluidForce fluforini)
public setlbeSysEvt(setFluidInteract fluinterini)
public setlbeSysEvt(setSolute solini)
public setlbeSysEvt(setThermal theini)

Sets currently open Define LBE System window and pop-up windows to check for user actions and implement
actions in response.

Parameters

ini setlbeSys Instance of current Define LBE System window
fluini setFluid Instance of LBE Fluid Properties pop-up window
fluforini setFluidForce Instance of LBE Fluid Forces pop-up window
fluinterini setFluidInteract Instance of LBE Fluid Interaction Properties pop-up window
solini setSolute Instance of LBE Solute Properties pop-up window
theini setThermal Instance of LBE Thermal Properties pop-up window

saveflu

void saveflu()

Reads values for initial velocity, fluid densities, relaxation times etc. from text boxes in LBE Fluid Properties
pop-up window and stores them in memory before closing window.

saveflufor

void saveflufor()

Reads values for body, oscillating and Boussinesq forces acting on fluids and oscillation period/frequency from
text boxes and pull-down (combo) box in LBE Fluid Forces pop-up window and stores them in memory before
closing window.

14.9. setlbeSysEvt.java 841

DL_MESO Technical Manual, Release 2.7

savefluint

void savefluint()

Reads values for interaction parameters, types and parameters for equations of state etc. from text boxes and
pull-down (combo) boxes in LBE Fluid Interaction Properties pop-up window and stores them in memory before
closing window.

savesol

void savesol()

Reads values for initial solute concentrations and solute relaxation times from text boxes in LBE Solute Properties
pop-up window and stores them in memory before closing window.

savethe

void savethe()

Reads values for initial temperature and heating rate, Boussinesq temperatures and thermal relaxation time from
text boxes in LBE Thermal Properties pop-up window and stores them in memory before closing window.

savelbe

void savelbe()

Creates new lbin.sys file (or overwrites existing one) after reading in values from text boxes, pull-down (combo)
boxes and checkboxes in Define LBE System window, also using values previously obtained from pop-up win-
dows.

openlbe

void openlbe()

Opens and reads lbin.sys file, storing values required for pop-up windows (on fluid properties, fluid forces, inter-
action properties, solute properties and thermal properties) in memory and writing or setting values in text boxes,
pull-down (combo) boxes and checkboxes in Define LBE System window. (Some values read from this file -
particularly those related to boundary conditions - are also used in the Set LBE Space window.)

setfluitparameter

void setfluitparameter(int totf,
int nd,
int nq,
int coll,
int inter,
double[] densfic,
double[] initv,
double[] relaxtime,
double[] mrtrelaxtime,
double trtm,
int[] rheo,
double[] rheoa,

(continues on next page)

842 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

double[] rheob,
double[] rheoc,
double[] rheod,
double[] rheon)

Launches LBE Fluid Properties pop-up window with number of fluids, lattice scheme, collision and interaction
types, initial and constant densities, initial velocity, relaxation times/frequencies etc.

Parameters

totf int Number of fluids
nd int Number of spatial dimensions
nq int Number of lattice links (based on lattice scheme pull-down box in Define LBE Sys-

tem)
coll int Selected collision scheme (based on pull-down box in Define LBE System window)
inter int Selected interaction type (based on pull-down box in Define LBE System window)
densfic dou-

ble[]
Initial and constant densities for fluids

initv dou-
ble[]

Initial velocity for system

relaxtime dou-
ble[]

Relaxation times for fluids (including bulk and CLBE third and fourth order values)

mrtrelax-
time

dou-
ble[]

System-wide relaxation frequencies for MRT collisions

trtm double TRT magic number
rheo int[] Rheological models for fluids (selecting item for pull-down box)
rheoa dou-

ble[]
Parameters 𝑎 for rheological models

rheob dou-
ble[]

Parameters 𝑏 for rheological models

rheoc dou-
ble[]

Parameters 𝑐 for rheological models

rheod dou-
ble[]

Parameters 𝑑 for rheological models

rheon dou-
ble[]

Parameters 𝑛 (power law indices) for rheological models

setfluitforceparameter

void setfluitforceparameter(int totf,
int dim,
int coll,
double[] bdf,
double[] oscf,
double[] bousf,
double ocfp,
int fp)

Launches LBE Fluid Forces pop-up window with numbers of fluids and dimensions, collision type, body, oscil-
lating and Boussinesq forces acting on fluids and oscillating period/frequency.

Parameters

14.9. setlbeSysEvt.java 843

DL_MESO Technical Manual, Release 2.7

totf int Number of fluids
dim int Number of spatial dimensions
coll int Selected collision scheme (based on pull-down box in Define LBE System window)
bdf double[] Body (constant) forces acting on fluids
oscf double[] Oscillating forces (amplitudes) acting on fluids
bousf double[] Boussinesq (buoyancy) forces acting on fluids
ocfp double Frequency or period for oscillating forces
pf int Switch indicating frequency or period for oscillating forces (used for pull-down box)

setfluitintparameter

void setfluitintparameter(int totf,
int inter,
double[] fluidinteract,
int[] eos,
int eoscrit,
double[] eosa,
double[] eosb,
double[] acentric,
double[] psi0,
double[] quadw,
int[] wettype,
double[] wallinteract,
double segregate,
double gascon,
double tempsys,
double kappa,
double taumob,
double mobparam)

Launches LBE Fluid Interaction Properties pop-up window with numbers of fluids, interaction type, interaction
parameters, selected equations of state and related parameters etc.

Parameters

844 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

totf int Number of fluids
inter int Selected interaction type (based on pull-down box in Define LBE System window)
fluidin-
teract

dou-
ble[]

Interaction parameters between fluid pairs

eos int[] Selected equations of states for fluids (selecting items for pull-down boxes)
eoscrit int Switch to indicate using equation-of-state parameters or critical properties
eosa dou-

ble[]
Parameters 𝑎 for equations of state or critical temperatures 𝑇𝑐 for each fluid

eosb dou-
ble[]

Parameters 𝑏 for equations of state or critical pressures 𝑃𝑐 for each fluid

acentric dou-
ble[]

Acentric parameters 𝜔 for equations of state, for each fluid

psi0 dou-
ble[]

Maximum pseudopotential parameters 𝜓0 for equations of state with 1994 Shan-Chen
thermodynamically consistent model

quadw dou-
ble[]

Shan-Chen quadratic weighting parameter for fluid pairs

wettype int[] Surface wetting type for fluids (selecting items for pull-down boxes)
wallinter-
act

dou-
ble[]

Wall interaction parameters for fluids

segre-
gate

dou-
ble

Segregation parameter 𝛽 between fluid pairs for Lishchuk interactions

gascon dou-
ble

Universal gas constant 𝑅 used for equations of state

tempsys dou-
ble

Isothermal system temperature used for equations of state without temperature field

kappa dou-
ble

Surface tension parameter 𝜅 for Swift free-energy interactions

taumob dou-
ble

Mobility relaxation time 𝜏𝜑 for Swift free-energy interactions

mob-
param

dou-
ble

Mobility parameter Γ for Swift free-energy interactions

setsoluteparameter

void setsoluteparameter(int totc,
int dim,
double[] solrelax,
double[] concs)

Launches LBE Solute Properties pop-up window with numbers of solutes and dimensions, solute relaxation times
and initial solute concentrations.

Parameters

totc int Number of solutes
dim int Number of spatial dimensions
solrelax double[] Solute relaxation times
concs double[] Initial solute concentrations

14.9. setlbeSysEvt.java 845

DL_MESO Technical Manual, Release 2.7

setthermalparameter

void setthermalparameter(int dim,
double heatrelax,
double boustemph,
double boustempl,
double tempsi,
double heatratei)

Launches LBE Thermal Properties pop-up window with number of spatial dimensions, thermal relaxation time,
high and low Boussinesq temperatures, initial temperature and heating rate.

Parameters

dim int Number of spatial dimensions
heatrelax double Thermal relaxation time 𝜏𝑡
boustemph double High temperature for Boussinesq approximation
boustempl double Low temperature for Boussinesq approximation
tempsi double Initial system temperature
heatratesi double Initial heating rate

14.10 setFluid.java

Pop-up window for LBE Fluid Properties.

Sets up pop-up window for LBE Fluid Properties (obtained from button in Define LBE System), setting labels and
adding text boxes for initial and constant fluid densities, initial velocity, relaxation times etc. based on number
of fluids (given as an input), filling values into text boxes based on either default values or those obtained from
reading lbin.sys file (setlbeSysEvt.java reads values from these boxes when saving lbin.sys file).

846 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.10.1 Classes

• class setFluid

14.10.2 Function/Subroutine Documentation

setFluid

public setFluid(int totf,
int nd,
int nq,
int coll,
int inter,
double[] densf,
double[] iniv,
double[] relaxtime,
double[] mrtrelaxfreq,
double trtm,
int[] rheomod,
double[] rheoa,
double[] rheob,
double[] rheoc,
double[] rheod,
double[] rheon)

Sets up LBE Fluid Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and using
supplied numbers of fluids, dimensions, lattice links (for lattice scheme), collision and interaction types, initial
and constant fluid densities, initial velocity, relaxation times, rheology model and parameters to set up the text
fields, pull-down (combo) boxes etc.

Parameters

totf int Number of fluids
nd int Number of spatial dimensions
nq int Number of lattice links (based on lattice scheme pull-down box in Define LBE Sys-

tem)
coll int Selected collision scheme (based on pull-down box in Define LBE System window)
inter int Selected interaction type (based on pull-down box in Define LBE System window)
densf dou-

ble[]
Initial and constant densities for fluids

iniv dou-
ble[]

Initial velocity for system

relaxtime dou-
ble[]

Relaxation times for fluids (including bulk and CLBE third and fourth order values)

mrtre-
laxfreq

dou-
ble[]

System-wide relaxation frequencies for MRT collisions

trtm double TRT magic number
rheomod int[] Rheological models for fluids (selecting item for pull-down box)
rheoa dou-

ble[]
Parameters 𝑎 for rheological models

rheob dou-
ble[]

Parameters 𝑏 for rheological models

rheoc dou-
ble[]

Parameters 𝑐 for rheological models

rheod dou-
ble[]

Parameters 𝑑 for rheological models

rheon dou-
ble[]

Parameters 𝑛 (power law indices) for rheological models

14.10. setFluid.java 847

DL_MESO Technical Manual, Release 2.7

14.11 setFluidForce.java

Pop-up window for LBE Fluid Forces.

Sets up pop-up window for LBE Fluid Forces (obtained from button in Define LBE System), setting labels and
adding text boxes for body (constant), sinusoid oscillating and Boussinesq forces based on number of fluids (given
as an input) and pull-down (combo) box to specify oscillating frequency or time period, filling values into text
boxes based on either default values or those obtained from reading lbin.sys file (setlbeSysEvt.java reads values
from these boxes when saving lbin.sys file).

14.11.1 Classes

• class setFluidForce

14.11.2 Function/Subroutine Documentation

setFluidForce

public setFluidForce(int totf,
int dim,
int coll,
double[] bdf,
double[] oscf,
double[] bousf,
double oscfrpe,
int fp)

Sets up LBE Fluid Forces pop-up window for DL_MESO GUI, laying out elements onto a grid and using supplied
numbers of fluids, dimensions, collision type, body, oscillating and Boussinesq (buoyancy) forces, oscillating
period/frequency and switch to set up the text fields, pull-down (combo) boxes etc.

Parameters

totf int Number of fluids
dim int Number of spatial dimensions
coll int Selected collision scheme (based on pull-down box in Define LBE System window)
bdf double[] Body (constant) forces acting on fluids
oscf double[] Oscillating forces (amplitudes) acting on fluids
bousf double[] Boussinesq (buoyancy) forces acting on fluids
oscfrpe double Frequency or period for oscillating forces
pf int Switch indicating frequency or period for oscillating forces (used for pull-down box)

848 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.12 setFluidInteract.java

Pop-up window for LBE Fluid Interaction Properties.

Sets up pop-up window for LBE Fluid Interaction Properties (obtained from button in Define LBE System), setting
labels and adding text boxes and pull-down (combo) boxes for interaction parameters, pseudopotential type and/or
equation of state, surface wetting etc. based on interaction type and number of fluids (given as inputs), filling
values into text boxes and selecting values in pull-down boxes based on either default values or those obtained
from reading lbin.sys file (setlbeSysEvt.java reads values from these boxes when saving lbin.sys file).

Fig. 14.1: Fluid interaction pop-up windows: (a) Shan/Chen pseudopotential interactions, (b) Lishchuk
continuum-based interactions, (c) Swift free-energy interactions

14.12.1 Classes

• class setFluidInteract

14.12.2 Function/Subroutine Documentation

setFluidInteract

public setFluidInteract(int totf,
int inter,
double[] interact,
int[] eos,
int eoscrt,
double[] eosa,

(continues on next page)

14.12. setFluidInteract.java 849

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

double[] eosb,
double[] acentric,
double[] psi0,
double[] quadw,
int[] wettyp,
double[] wallinteract,
double segregate,
double gascon,
double tempsys,
double kappa,
double taumob,
double mobparam)

Sets up LBE Fluid Interaction Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and
using supplied number of fluids, interaction type, interaction parameters, fluid equations of state and parameters,
wetting type and parameters etc. to set up the text fields, pull-down (combo) boxes etc.

Parameters

totf int Number of fluids
inter int Selected interaction type (based on pull-down box in Define LBE System window)
interact dou-

ble[]
Interaction parameters between fluid pairs

eos int[] Selected equations of states for fluids (selecting items for pull-down boxes)
eoscrt int Switch to indicate using equation-of-state parameters or critical properties
eosa dou-

ble[]
Parameters 𝑎 for equations of state or critical temperatures 𝑇𝑐 for each fluid

eosb dou-
ble[]

Parameters 𝑏 for equations of state or critical pressures 𝑃𝑐 for each fluid

acentric dou-
ble[]

Acentric parameters 𝜔 for equations of state, for each fluid

psi0 dou-
ble[]

Maximum pseudopotential parameters 𝜓0 for equations of state with 1994 Shan-Chen
thermodynamically consistent model

quadw dou-
ble[]

Shan-Chen quadratic weighting parameter for fluid pairs

wettyp int[] Surface wetting type for fluids (selecting items for pull-down boxes)
wallinter-
act

dou-
ble[]

Wall interaction parameters for fluids

segre-
gate

dou-
ble

Segregation parameter 𝛽 between fluid pairs for Lishchuk interactions

gascon dou-
ble

Universal gas constant 𝑅 used for equations of state

tempsys dou-
ble

Isothermal system temperature used for equations of state without temperature field

kappa dou-
ble

Surface tension parameter 𝜅 for Swift free-energy interactions

taumob dou-
ble

Mobility relaxation time 𝜏𝜑 for Swift free-energy interactions

mob-
param

dou-
ble

Mobility parameter Γ for Swift free-energy interactions

850 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.13 setSolute.java

Pop-up window for LBE Solute Properties.

Sets up pop-up window for LBE Solute Properties (obtained from button in Define LBE System), setting labels
and adding text boxes for initial solute concentrations and solute relaxation times based on number of solutes
(given as an input), filling values into text boxes based on either default values or those obtained from reading
lbin.sys file (setlbeSysEvt.java reads values from these boxes when saving lbin.sys file)

14.13.1 Classes

• class setSolute

14.13.2 Function/Subroutine Documentation

setSolute

public setSolute(int totc,
int dim,
double[] solrelax,
double[] concs)

Sets up LBE Solute Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and using
supplied numbers of solutes and dimensions, solute relaxation times and initial concentrations to set up the text
fields etc.

Parameters

totc int Number of solutes
dim int Number of spatial dimensions
solrelax double[] Solute relaxation times
concs double[] Initial solute concentrations

14.14 setThermal.java

Pop-up window for LBE Thermal Properties.

Sets up pop-up window for LBE Thermal Properties (obtained from button in Define LBE System), setting labels
and adding text boxes for initial temperature and heating rate, Boussinesq high and low temperatures and thermal
relaxation time, filling values into text boxes based on either default values or those obtained from reading lbin.sys
file (setlbeSysEvt.java reads values from these boxes when saving lbin.sys file).

14.13. setSolute.java 851

DL_MESO Technical Manual, Release 2.7

14.14.1 Classes

• class setThermal

14.14.2 Function/Subroutine Documentation

setThermal

public setThermal(int dim,
double heatrelax,
double boustemph,
double boustempl,
double tempsi,
double heatratesi)

Sets up LBE Thermal Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and using
supplied number of dimensions, thermal relaxation time, high and low Boussinesq temperatures, initial tempera-
ture and heating rate to set up the text fields etc.

Parameters

dim int Number of spatial dimensions
heatrelax double Thermal relaxation time 𝜏𝑡
boustemph double High temperature for Boussinesq approximation
boustempl double Low temperature for Boussinesq approximation
tempsi double Initial system temperature
heatratesi double Initial heating rate

14.15 setlbeSpa.java

Window for Set LBE Space.

Sets up window for Set LBE Space, including pull-down (combo) boxes to specify boundary conditions at pla-
nar/edge boundaries, order for calculating gradients (for surface interactions), boundary condition types, solid
obstacle specifications (bounce back and obstacle types) and bounce back type for porous media, text boxes for
position and sizes of solid obstacles and pore fraction, and buttons to open pop-up windows to specify properties
at planar/edge boundaries, to add solid obstacle, set pore for porous media, create lbin.spa file and add required
values for boundary conditions to lbin.sys file. (Note that the system dimensions, including grid size and numbers
of fluids/solutes/temperature fields, are required as an input.)

852 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.15.1 Classes

• class setlbeSpa

14.15.2 Function/Subroutine Documentation

setlbeSpa

public setlbeSpa(int dim)

Sets up Set DPD Interactions window for DL_MESO GUI, laying out elements onto a grid and using number of
spatial dimensions to determine which elements should be active (usable).

Parameters

dim int Number of spatial dimensions

14.16 setlbeSpaEvt.java

Events for Set LBE Space.

Implements actions for Set LBE Space (including pop-up windows for setting properties for planar/edge bound-
aries): saving information to new lbin.spa file and adding information to lbin.sys file, launching pop-up windows,
obtaining velocities/fluid densities/solute concentrations/temperatures from text boxes, adding solid obstacles and
setting porous media (both to memory) on button clicks, enabling buttons and text boxes based on drop-down
(combo) box selections.

14.16. setlbeSpaEvt.java 853

DL_MESO Technical Manual, Release 2.7

14.16.1 Classes

• class setlbeSpaEvt

14.16.2 Function/Subroutine Documentation

setlbeSpaEvt

public setlbeSpaEvt(setlbeSpa setspace)
public setlbeSpaEvt(setBound boundlbe)

Sets currently open Set LBE Space window and LBE Boundary Conditions pop-up window to check for user
actions and implement actions in response.

Parameters

setspace setdpdInteract Instance of current Change DPD Code window
boundlbe setBound Instance of LBE Boundary Conditions pop-up window

topBoundIssue

void topBoundIssue(String topbis)

Adds boundary condition codes to lbin.spa file for top boundary of simulation box: used for all boundary con-
ditions based on the start of a ‘word’ specifying a general type, e.g. constant velocity/density, constant solute
concentration/bounceback and constant temperature/bounceback.

Parameters

topbis String Start of boundary condition ‘word’ for top boundary

downBoundIssue

void downBoundIssue(String topbis)

Adds boundary condition codes to lbin.spa file for bottom boundary of simulation box: used for all boundary
conditions based on the start of a ‘word’ specifying a general type, e.g. constant velocity/density, constant solute
concentration/bounceback and constant temperature/bounceback.

Parameters

topbis String Start of boundary condition ‘word’ for bottom boundary

leftBoundIssue

void leftBoundIssue(String topbis)

Adds boundary condition codes to lbin.spa file for left boundary of simulation box: used for all boundary con-
ditions based on the start of a ‘word’ specifying a general type, e.g. constant velocity/density, constant solute
concentration/bounceback and constant temperature/bounceback.

Parameters

topbis String Start of boundary condition ‘word’ for left boundary

854 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

rightBoundIssue

void rightBoundIssue(String topbis)

Adds boundary condition codes to lbin.spa file for right boundary of simulation box: used for all boundary con-
ditions based on the start of a ‘word’ specifying a general type, e.g. constant velocity/density, constant solute
concentration/bounceback and constant temperature/bounceback.

Parameters

topbis String Start of boundary condition ‘word’ for left boundary

frontBoundIssue

void frontBoundIssue(String topbis)

Adds boundary condition codes to lbin.spa file for front boundary of simulation box: used for all boundary con-
ditions based on the start of a ‘word’ specifying a general type, e.g. constant velocity/density, constant solute
concentration/bounceback and constant temperature/bounceback. (Only applied for three-dimensional simula-
tions.)

Parameters

topbis String Start of boundary condition ‘word’ for front boundary

backBoundIssue

void backBoundIssue(String topbis)

Adds boundary condition codes to lbin.spa file for back boundary of simulation box: used for all boundary con-
ditions based on the start of a ‘word’ specifying a general type, e.g. constant velocity/density, constant solute
concentration/bounceback and constant temperature/bounceback. (Only applied for three-dimensional simula-
tions.)

Parameters

topbis String Start of boundary condition ‘word’ for back boundary

checkexist

void checkexist()

Writes boundary condition codes to lbin.spa file based on pull-down (combo) boxes for all main boundaries, and
write boundary condition types and values (velocities, fluid densities, solute concentrations, temperatures and
heating rates) to lbin.sys file. (Instigated by clicking

14.16. setlbeSpaEvt.java 855

DL_MESO Technical Manual, Release 2.7

addpore

void addpore(String str1,
double porefr,
int tx,
int ty,
int tz)

Determines lattice points to apply bounceback boundary condition for a porous medium based on a given porosity
and randomised selection, and writes relevant boundary condition codes to lbin.spa file.

Parameters

str1 String Boundary condition ‘word’ describing required type of bounceback boundary condition
porefr double Pore fraction for fluid points in porous medium, given as percentage
tx int Total number of grid points in x-dimension
ty int Total number of grid points in y-dimension
tz int Total number of grid points in z-dimension

addBlock

void addBlock(String str1,
int xpos,
int ypos,
int xdis,
int ydis)

Determines lattice points to apply bounceback and blank site boundary conditions for a two-dimensional rectan-
gular region starting at the bottom-left corner and extending by set numbers of lattice points in horizontal and
vertical directions, and writes relevant boundary condition codes to lbin.spa file.

Parameters

str1 String Boundary condition ‘word’ describing required type of (bounceback) boundary condition for
outside of rectangular box

xpos int Position of bottom-left corner of rectangle (x-coordinate)
ypos int Position of bottom-left corner of rectangle (y-coordinate)
xdis int Extent of rectangle in x-dimension
ydis int Extent of rectangle in y-dimension

addblock

void addblock(String str1,
int xpos,
int ypos,
int zpos,
int xdis,
int ydis,
int zdis)

Determines lattice points to apply boundary conditions for a three-dimensional cuboidal region starting at the
bottom-left-back corner and extending by set numbers of lattice points in all three Cartesian directions, and writes
relevant boundary condition codes to lbin.spa file. This subroutine is used to add both cuboidal obstacles and main
boundaries on the outside of the simulation box.

Parameters

856 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

str1 String Boundary condition ‘word’ describing required type of boundary condition for outside of
cuboidal box

xpos int Position of bottom-left-back corner of cuboid (x-coordinate)
ypos int Position of bottom-left-back corner of cuboid (y-coordinate)
zpos int Position of bottom-left-back corner of cuboid (z-coordinate)
xdis int Extent of cuboid in x-dimension
ydis int Extent of cuboid in y-dimension
zdis int Extent of cuboid in z-dimension

addsphere

void addsphere(String str1)

Determines lattice points to apply bounceback and blank site boundary conditions for a sphere, reading the co-
ordinates of the centre and the radius from text boxes in Set LBE Space window, and writes relevant boundary
condition codes to lbin.spa file.

Parameters

str1 String Boundary condition ‘word’ describing required type of bounceback boundary condition

addcylinder

void addcylinder(String str1)

Determines lattice points to apply bounceback and blank site boundary conditions for a cylinder, reading the
coordinates of the centre and the radius from text boxes in Set LBE Space window, and writes relevant boundary
condition codes to lbin.spa file.

Parameters

str1 String Boundary condition ‘word’ describing required type of bounceback boundary condition

addpoint

void addpoint(String str1)

Applies a bounceback boundary condition to an individual lattice point, reading its coordinates from text text
boxes in Set LBE Space window, and writes the relevant boundary condition code to lbin.spa file.

Parameters

str1 String Boundary condition ‘word’ describing required type of bounceback boundary condition

14.16. setlbeSpaEvt.java 857

DL_MESO Technical Manual, Release 2.7

setboundarycond

void setboundarycond(int bc,
int[] bcsel,
int dim,
int totf,
int totc,
int tott,
double[] vel,
double[] velos,
double[] velospf,
int[] pf,
double[] dens,
double[] conc,
double[] temp,
double[] tempdt)

Launches LBE Boundary Conditions pop-up window with supplied boundary, boundary condition, numbers of
dimensions, fluids, solutes and temperature fields, and properties at boundaries.

Parameters

bc int Boundary condition (0 = top, 1 = bottom, 2 = left, 3 = right, 4 = front, 5 = back)
bcsel int[] Selected boundary condition type (based on pull-down box in Set LBE Space window)
dim int Number of spatial dimensions
totf int Number of fluids
totc int Number of solutes
tott int Number of temperature fields
vel double[] Fixed velocities at boundaries
velos double[] Oscillating velocity amplitudes at boundaries
velospf double[] Oscillating frequencies or periods at boundaries
pf int[] Switches to indicate using frequencies or periods for oscillating boundaries
dens double[] Fixed fluid densities at boundaries
conc double[] Fixed solute concentrations at boundaries
temp double[] Fixed temperatures at boundaries
tempdt double[] Heating rates at boundaries

fConvert

int fConvert(String str1)

Function to convert a boundary condition ‘word’ into a numerical code for writing to a lbin.spa file.

Parameters

str1 String Boundary condition ‘word’

858 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.17 setBound.java

Pop-up window for LBE Boundary Conditions.

Sets up pop-up window for LBE Boundary Conditions (obtained from buttons in Set LBE Space), setting labels,
adding and filling text boxes for specified values for constant velocities, fluid densities etc. (either default values or
taken from lbin.sys file read in by Define LBE System window), a pull-down (combo) box to specify planar/edge
boundary (initially selected based on the button pressed in Set LBE Space window, but can be changed while
pop-up window is open), and buttons to set boundary values to memory and close window (setlbeSpaEvt.java
uses values stored in memory when appending to lbin.sys file).

14.17.1 Classes

• class setBound

14.17.2 Function/Subroutine Documentation

setBound

public setBound(int bc,
int[] bcsel,
int dim,
int totf,
int totc,
int tott,
double[] vel,
double[] velos,
double[] velospf,
int[] pf,
double[] dens,
double[] conc,
double[] temp,
double[] tempdt)

Sets up LBE Boundary Conditions pop-up window for DL_MESO GUI, laying out elements onto a grid and
using supplied boundary, boundary condition, numbers of dimensions, fluids, solutes and temperature fields, and
properties at boundaries to set up the text fields, pull-down (combo) boxes etc.

Parameters

14.17. setBound.java 859

DL_MESO Technical Manual, Release 2.7

bc int Boundary condition (0 = top, 1 = bottom, 2 = left, 3 = right, 4 = front, 5 = back)
bcsel int[] Selected boundary condition type (based on pull-down box in Set LBE Space window)
dim int Number of spatial dimensions
totf int Number of fluids
totc int Number of solutes
tott int Number of temperature fields
vel double[] Fixed velocities at boundaries
velos double[] Oscillating velocity amplitudes at boundaries
velospf double[] Oscillating frequencies or periods at boundaries
pf int[] Switches to indicate using frequencies or periods for oscillating boundaries
dens double[] Fixed fluid densities at boundaries
conc double[] Fixed solute concentrations at boundaries
temp double[] Fixed temperatures at boundaries
tempdt double[] Heating rates at boundaries

14.18 changelbecode.java

Window for Change LBE Code.

Sets up window for Change LBE Code, including pull-down (combo) boxes to select text editor and
DL_MESO_LBE code module file, text fields for editors and files not included in pull-down boxes, and button to
edit selected file with editor.

14.18.1 Classes

• class changelbecode

14.18.2 Function/Subroutine Documentation

changelbecode

public changelbecode()

Sets up Change LBE Code window for DL_MESO GUI, laying out elements onto a grid.

14.19 changelbeEvt.java

Events for Change LBE Code.

Implements actions for Change LBE Code, including selecting text editor and DL_MESO_LBE code module file
in pull-down (combo) boxes and text boxes, and pressing EDIT button.

860 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.19.1 Classes

• class changelbeEvt

14.19.2 Function/Subroutine Documentation

changedlbeEvt

public changelbeEvt(changelbecode in)

Sets currently open Change LBE Code window as window to check for user actions and implement actions in
response.

Parameters

in changelbecode Instance of current Change LBE Code window

14.20 compilelbe.java

Window for Compile LBE Code.

Sets up window for Compile LBE Code, including pull-down (combo) boxes to select C++ compiler and
DL_MESO_LBE code version, text fields for compilers not included in pull-down box and compiler flags, and a
button to compile code.

14.20.1 Classes

• class compilelbe

14.20.2 Function/Subroutine Documentation

compilelbe

public compilelbe()

Sets up Compile LBE Code window for DL_MESO GUI, laying out elements onto a grid.

14.21 compilelbeEvt.java

Events for Compile LBE Code.

Implements actions for Compile LBE Code, including selecting C++ compiler, compiler flags and
DL_MESO_LBE code version, and pressing button to compile code.

14.20. compilelbe.java 861

DL_MESO Technical Manual, Release 2.7

14.21.1 Classes

• class compilelbeEvt

14.21.2 Function/Subroutine Documentation

compilelbeEvt

public compilelbeEvt(compilelbe in)

Sets currently open Compile LBE Code window as window to check for user actions and implement actions in
response.

Parameters

in compilelbe Instance of current Compile LBE Code window

14.22 rublbe.java

Window for Run LBE Program.

Sets up window for Run LBE Program, including pull-down (combo) box and text field to select command re-
quired to launch DL_MESO_LBE, and button to Run LBE code.

14.22.1 Classes

• class rublbe

14.22.2 Function/Subroutine Documentation

rublbe

public rublbe()

Sets up Plot LBE Results window for DL_MESO GUI, laying out elements onto a grid.

14.23 rublbeEvt.java

Events for Run LBE Program.

Implements actions for Run LBE Program, including selecting command for launching DL_MESO_LBE, and
pressing Run LBE button.

862 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.23.1 Classes

• class rublbeEvt

14.23.2 Function/Subroutine Documentation

rublbeEvt

public rublbeEvt(rublbe in)

Sets currently open Run LBE Program window as window to check for user actions and implement actions in
response.

Parameters

in rublbe Instance of current Run LBE Program window

14.24 gatherlbe.java

Window for Gather LBE Data.

Sets up window for Gather LBE Data, including pull-down (combo) boxes to select file type (utility to launch)
and available data in files, and a button to Gather data.

14.24.1 Classes

• class gatherlbe

14.24.2 Function/Subroutine Documentation

gatherlbe

public gatherlbe()

Sets up Gather LBE Data window for DL_MESO GUI, laying out elements onto a grid.

14.25 gatherlbeEvt.java

Events for Gather LBE Data.

Implements actions for Gather LBE Data, including selecting utility and command-line options from pull-down
(combo) boxes, and running utility when Gather data button is clicked.

14.24. gatherlbe.java 863

DL_MESO Technical Manual, Release 2.7

14.25.1 Classes

• class gatherlbeEvt

14.25.2 Function/Subroutine Documentation

gatherlbeEvt

public gatherlbeEvt(gatherlbe in)

Sets currently open Gather LBE Data window as window to check for user actions and implement actions in
response.

Parameters

in gatherlbe Instance of current Gather LBE Data window

14.26 plotlbe.java

Window for Plot LBE Results.

Sets up window for Plot LBE Results, including pull-down (combo) box to select pre-installed software package to
launch, text field for other packages not included in pull-down box, check box to run program in terminal window,
and button to launch package for plotting results from DPD calculation.

14.26.1 Classes

• class plotlbe

14.26.2 Function/Subroutine Documentation

plotlbe

public plotlbe()

Sets up Plot LBE Results window for DL_MESO GUI, laying out elements onto a grid.

14.27 plotlbeEvt.java

Events for Plot LBE Results.

Implements actions for Plot LBE Results, including selecting plotting software package in pull-down (combo) and
text box, and pressing Plot data button.

864 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.27.1 Classes

• class plotlbeEvt

14.27.2 Function/Subroutine Documentation

plotlbeEvt

public plotlbeEvt(plotlbe in)

Sets currently open Plot LBE Results window as window to check for user actions and implement actions in
response.

Parameters

in plotlbe Instance of current Plot LBE Results window

14.28 setdpdSys.java

Window for Define DPD System.

Sets up window for Define DPD System, including pull-down (combo) boxes for system volume, trajectory save
level, restart, thermostat, barostat, electrostatics and surface options, checkboxes for frozen bead walls, global
bonds, ignoring CONFIG, overriding particle indices and OpenMP critical options, text boxes to type in values,
and buttons to open existing CONTROL file, save information to CONTROL file and open pop-up windows for
thermostat, barostat, electrostatics and surface parameters.

14.28. setdpdSys.java 865

DL_MESO Technical Manual, Release 2.7

14.28.1 Classes

• class setdpdSys

14.28.2 Function/Subroutine Documentation

setdpdSys

public setdpdSys()

Sets up Define DPD System window for DL_MESO GUI, laying out elements onto a grid.

14.29 setdpdSysEvt.java

Events for Define DPD System.

Implements actions for Define DPD System (including pop-up windows for setting thermostat, barostat, electro-
statics and surface parameters): opening CONTROL file into GUI on clicking OPEN button, reading values from
text fields, pull-down (combo) boxes and checkboxes, and saving information to CONTROL file on clicking SAVE
button (and saving values from pop-up boxes into memory when relevant save buttons are clicked).

14.29.1 Classes

• class setdpdSysEvt

14.29.2 Function/Subroutine Documentation

setdpdSysEvt

public setdpdSysEvt(setdpdSys ini)
public setdpdSysEvt(setThermostat theini)
public setdpdSysEvt(setBarostat barini)
public setdpdSysEvt(setElectrostatic eleini)
public setdpdSysEvt(setSurface surini)

Sets currently open Define DPD System window and pop-up windows to check for user actions and implement
actions in response.

Parameters

ini setdpdSys Instance of current Define DPD System window
theini setThermostat Instance of DPD Thermostat Properties pop-up window
barini setBarostat Instance of DPD Barostat Properties pop-up window
eleini setElectrostatic Instance of DPD Electrostatic Properties pop-up window
surini setSurface Instance of DPD Surface Properties pop-up window

866 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

setthermostatparameter

void setthermostatparameter(int ityp,
double at)

Launches DPD Thermostat Properties pop-up window with thermostat type and current value of parameter.

Parameters

ityp int Thermostat type (needs to be equal to 4 to open window for Stoyanov-Groot thermostat)
at double Stoyanov-Groot thermostat parameter 𝛼 for pairwise Nosé-Hoover forces

setbarostatparameter

void setbarostatparameter(int btyp,
double ab,
double bb,
double cb,
boolean iso)

Launches DPD Barostat Properties pop-up window with barostat type, current values of parameters and isotropic
switch.

Parameters

btyp int Barostat type
ab double First barostat parameter
bb double Second barostat parameter
cb double Third barostat parameter
iso boolean Switch indicating if using isotropic/semi-isotropic ensemble

setelectroparameter

void setelectroparameter(int etyp,
int pb,
int coe,
int bl,
int blrel,
double ae,
double be,
double ce,
int k1,
int k2,
int k3,
int mxs,
boolean ge)

Launches DPD Electrostatic Properties pop-up window with electrostatics/smearing type, switches, permittivity
coefficient or Bjerrum length, smearing length etc.

Parameters

14.29. setdpdSysEvt.java 867

DL_MESO Technical Manual, Release 2.7

etyp int Selected electrostatics/smearing type (based on pull-down box in Define DPD System win-
dow)

pb int Switch for pull-down box selecting permittivity coefficient or Bjerrum length
coe int Switch for pull-down box selecting real-space convergence or relative error
bl int Switch for pull-down box indicating length or beta for charge smearing
blrel int Switch for pull-down box indicating how charge smearing length and beta are related
ae double Permittivity coefficient/Bjerrum length
be double Real-space convergence/relative error
ce double Smearing length/beta
k1 int Maximum reciprocal vector (x-component)
k2 int Maximum reciprocal vector (y-component)
k3 int Maximum reciprocal vector (z-component)
mxs int B-spline interpolation order for SPME
ge boolean Switch for matching real-space convergence and charge smearing length for Gaussian smear-

ing

setsurfaceparameter

void setsurfaceparameter(int sftyp,
int sx,
int sy,
int sz,
double woff,
double vx,
double vy,
double vz)

Launches DPD Surface Properties pop-up window with barostat type, current values of parameters and isotropic
switch.

Parameters

sftyp int Surface type (0 = frozen bead walls, 1 = Lees-Edwards shearing boundaries, 2 = hard surfaces
with specular reflection, 3 = hard surfaces with bounceback reflection)

sx int Flag indicating presence of surfaces orthogonal to x-axis
sy int Flag indicating presence of surfaces orthogonal to y-axis
sz int Flag indicating presence of surfaces orthogonal to z-axis
woff dou-

ble
Distance offset from box boundaries to apply surface reflections

vx dou-
ble

Vacuum gap for electrostatic interactions in x-direction

vy dou-
ble

Vacuum gap for electrostatic interactions in y-direction

vz dou-
ble

Vacuum gap for electrostatic interactions in z-direction

868 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

savethermo

void savethermo()

Reads value for thermostat parameter from text box in DPD Thermostat Properties pop-up window and stores it
in memory before closing window.

savebaro

void savebaro()

Reads values for barostat parameters from text boxes and checkbox in DPD Barostat Properties pop-up window
and stores them in memory before closing window.

saveelectro

void saveelectro()

Reads values for electrostatic parameters from text boxes, pull-down (combo) boxes and checkboxes in DPD
Electrostatics Properties pop-up window and stores them in memory before closing window.

savesurface

void savesurface()

Reads values for surface parameters from text boxes and checkboxes in DPD Surface Properties pop-up window
and stores them in memory before closing window.

savedpd

void savedpd()

Creates new CONTROL file (or overwrites existing one) after reading in values from text boxes, pull-down
(combo) boxes and checkboxes in Define DPD System window, also using values previously obtained from pop-up
windows.

opendpd

void opendpd()

Opens and reads CONTROL file, storing values required for pop-up windows (on thermostat, barostat, electrostat-
ics and surfaces) in memory and writing or setting values in text boxes, pull-down (combo) boxes and checkboxes
in Define DPD System window.

14.29. setdpdSysEvt.java 869

DL_MESO Technical Manual, Release 2.7

14.30 setThermostat.java

Pop-up window for DPD Thermostat Properties.

Sets up pop-up window for DPD Thermostat Properties (obtained from button in Define DPD System), setting
labels for text boxes based on selected thermostat type (only used for Stoyanov-Groot thermostat) and filling text
box with any already provided value from CONTROL file (setdpdSysEvt.java reads value from this box when
saving CONTROL file).

14.30.1 Classes

• class setThermostat

14.30.2 Function/Subroutine Documentation

setThermostat

public setThermostat(int it,
double at)

Sets up DPD Thermostat Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and
using supplied thermostat type and parameter to set up the text fields etc.

Parameters

it int Thermostat type (needs to be equal to 4 to open window for Stoyanov-Groot thermostat)
at double Stoyanov-Groot thermostat parameter 𝛼 for pairwise Nosé-Hoover forces

14.31 setBarostat.java

Pop-up window for DPD Barostat Properties.

Sets up pop-up window for DPD Barostat Properties (obtained from button in Define DPD System), setting labels
for text boxes based on selected barostat type and filling text boxes and isomer checkbox with any already provided
values from CONTROL file (setdpdSysEvt.java reads values from these boxes when saving CONTROL file).

870 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.31.1 Classes

• class setBarostat

14.31.2 Function/Subroutine Documentation

setBarostat

public setBarostat(int bt,
double ab,
double bb,
double cb,
boolean iso)

Sets up DPD Barostat Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and using
supplied barostat type, parameters and isotropic switch to determine its contents.

Parameters

bt int Barostat type
aa double First barostat parameter
bb double Second barostat parameter
cc double Third barostat parameter
iso boolean Switch indicating if using isotropic/semi-isotropic ensemble

14.32 setElectrostatic.java

Pop-up window for DPD Electrostatic Properties.

Sets up pop-up window for DPD Electrostatic Properties (obtained from button in Define DPD System), setting
labels for text boxes (including pull-down combo boxes to select permittivity/Bjerrum length, reciprocal vector
extent/relative error, charge smearing length/beta parameter, relationship between charge smearing length and
beta parameter) based on selected electrostatic type and filling text boxes with any already provided values from
CONTROL file (setdpdSysEvt.java reads values from these boxes when saving CONTROL file).

14.32. setElectrostatic.java 871

DL_MESO Technical Manual, Release 2.7

14.32.1 Classes

• class setElectrostatic

14.32.2 Function/Subroutine Documentation

setBound

public setElectrostatic(int et,
int pb,
int coe,
int bl,
int blrel,
double ae,
double be,
double ce,
int k1,
int k2,
int k3,
int mxs,
boolean ge)

Sets up DPD Electrostatic Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and
using supplied electrostatics/smearing type, parameters, selections for relationships between parameters etc. to set
up the text fields, pull-down (combo) boxes etc.

Parameters

872 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

et int Selected electrostatics/smearing type (based on pull-down box in Define DPD System win-
dow)

pb int Switch for pull-down box selecting permittivity coefficient or Bjerrum length
coe int Switch for pull-down box selecting real-space convergence or relative error
bl int Switch for pull-down box indicating length or beta for charge smearing
blrel int Switch for pull-down box indicating how charge smearing length and beta are related
ae double Permittivity coefficient/Bjerrum length
be double Real-space convergence/relative error
ce double Smearing length/beta
k1 int Maximum reciprocal vector (x-component)
k2 int Maximum reciprocal vector (y-component)
k3 int Maximum reciprocal vector (z-component)
mxs int B-spline interpolation order for SPME
ge boolean Switch for matching real-space convergence and charge smearing length for Gaussian smear-

ing

14.33 setSurface.java

Pop-up window for DPD Surface Properties.

Sets up pop-up window for DPD Surface Properties (obtained from button in Define DPD System), setting la-
bels for text boxes and checkboxes based on selected surface type, and filling text boxes and checkboxes with
any already provided values from CONTROL file (setdpdSysEvt.java reads values from these boxes when saving
CONTROL file).

14.33.1 Classes

• class setSurface

14.33.2 Function/Subroutine Documentation

setSurface

public setSurface(int srft,
int sx,
int sy,
int sz,
double walloff,
double vgpx,
double vgpy,
double vgpz)

Sets up DPD Surface Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and using
supplied surface type, dimensions with surfaces, distance offset for reflections and electrostatics vacuum gap to
set up the text fields etc.

14.33. setSurface.java 873

DL_MESO Technical Manual, Release 2.7

Parameters

srft int Surface type (0 = frozen bead walls, 1 = Lees-Edwards shearing boundaries, 2 = hard surfaces
with specular reflection, 3 = hard surfaces with bounceback reflection)

sx int Flag indicating presence of surfaces orthogonal to x-axis
sy int Flag indicating presence of surfaces orthogonal to y-axis
sz int Flag indicating presence of surfaces orthogonal to z-axis
walloffdou-

ble
Distance offset from box boundaries to apply surface reflections

vgpx dou-
ble

Vacuum gap for electrostatic interactions in x-direction

vgpy dou-
ble

Vacuum gap for electrostatic interactions in y-direction

vgpz dou-
ble

Vacuum gap for electrostatic interactions in z-direction

14.34 setdpdInteract.java

Window for Set DPD Interactions.

Sets up window for Set DPD Interactions, including a spinner for the number of particle species, buttons to open
pop-up windows for particle species, interactions and external fields, to launch utility to create molecular data, to
open, edit and save FIELD file (needed for DL_MESO_DPD), pull-down (combo) boxes to select external fields
and editor for modifying FIELD file.

874 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.34.1 Classes

• class setdpdInteract

14.34.2 Function/Subroutine Documentation

setdpdInteract

public setdpdInteract()

Sets up Set DPD Interactions window for DL_MESO GUI, laying out elements onto a grid.

14.35 setdpdInteractEvt.java

Events for Set DPD Interactions.

Implements actions for Set DPD Interactions (including pop-up windows for setting species, interactions and
external field parameters): opening FIELD file into GUI, running molecule data generation utility, editing FIELD
file and saving information to FIELD file on button clicks, saving species, interaction and external field paramters
in memory on button clicks in pop-up windows, selecting options in drop-down (combo) boxes and reading values
from text fields and drop-down boxes.

14.35.1 Classes

• class setdpdInteractEvt

14.35.2 Function/Subroutine Documentation

setdpdInteractEvt

public setdpdInteractEvt(setdpdInteract setinteractions)
public setdpdInteractEvt(setSpecies speini)
public setdpdInteractEvt(setInteraction interactdpd)
public setdpdInteractEvt(setExternal externdpd)

Sets currently open Set DPD Interactions window and pop-up windows to check for user actions and implement
actions in response.

Parameters

setinteractions setdpdInteract Instance of current Change DPD Code window
speini setSpecies Instance of Set DPD Species Properties pop-up window
interactdpd setInteraction Instance of Set DPD Interaction Properties pop-up window
externdpd setExternal Instance of Set DPD External Field Properties pop-up window

14.35. setdpdInteractEvt.java 875

DL_MESO Technical Manual, Release 2.7

setspecies

void setspecies(int totspe,
String[] names,
double[] masses,
double[] charges,
int[] numbers,
int[] frozen)

Launches Set DPD Species Properties pop-up window with current values of species numbers, names, masses,
charges, unbonded populations and frozen flags.

Parameters

totspe int Number of particle species
names String[] Names of particle species
masses double[] Masses of particle species
charges double[] Charges (valencies) of particle species
numbers int[] Population of particle species excluding molecules
frozen int[] Flags indicating if particles species are frozen or not

savespecies

void savespecies()

Reads values for species names, masses, charges, unbonded populations and frozen flags from text boxes in Set
DPD Species Properties pop-up window and stores them in memory before closing window.

setinteract

void setinteract(int totspe,
String[] names,
int ktyp,
double aa,
double bb,
double cc,
double dd,
double ee,
double gamm,
double dist,
int sftyp,
int srfktyp,
double srfaa,
double srfdist,
boolean froz,
int wallspe,
double wallrho,
double wallthick)

Launches DPD Interaction Properties pop-up window with number and names of species, and interaction param-
eter values for the first species pair (between two particles of the first particle species).

Parameters

876 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

totspe int Number of particle species
names String[] Names of particle species (as previously set in DPD Set Species pop-up window
ktyp int Interaction type for specified species pair
aa double Interaction energy parameter 𝐴𝑖𝑗

bb double Interaction energy parameter 𝐵𝑖𝑗

cc double Interaction energy parameter 𝐶𝑖𝑗

dd double Interaction energy parameter 𝐷𝑖𝑗

ee double Interaction energy parameter 𝐸𝑖𝑗

gamm double Dissipative force parameter 𝛾𝑖𝑗 or collision frequency Γ𝑖𝑗

dist double Distance parameter 𝜎𝑖𝑗 or interaction cutoff distance 𝑟𝑐,𝑖𝑗
sftyp int Surface type (selecting item for pull-down box)
srfktyp int Surface/wall interaction type
srfaa double Surface interaction energy parameter 𝐴𝑤𝑎𝑙𝑙,𝑖

srfdist double Surface distance parameter 𝜎𝑤𝑎𝑙𝑙,𝑖 or 𝑧𝑐,𝑖
froz boolean Switch for frozen bead walls
wallspe int Species number for frozen bead walls
wallrho double Particle density for frozen bead walls
wallthick double Thickness of frozen bead walls

setexternal

void setexternal(int exttype,
double ex,
double ey,
double ez)

Launches DPD External Field Properties pop-up window with the external field type and value.

Parameters

et int Selected external field type (based on pull-down box in Set DPD Interactions window)
ex double External field value (x-component)
ey double External field value (y-component)
ez double External field value (z-component)

saveexternal

void saveexternal()

Reads values for external field from text boxes in Set DPD External Field Properties pop-up window and stores
them in memory before closing window.

14.36 setSpecies.java

Pop-up window for DPD Species Properties.

Sets up pop-up window for DPD Species Properties (obtained from button in Set DPD Interactions after spec-
ifying number of species), setting labels, adding text boxes for species names, masses, charges and unbonded
number (i.e. not included in molecules) and checkboxes to indicate if species is frozen or not - all either using
default values or those previously read from FIELD file - and buttons to save values in memory and close window
(setdpdInteractEvt.java uses values stored in memory when saving FIELD file).

14.36. setSpecies.java 877

DL_MESO Technical Manual, Release 2.7

14.36.1 Classes

• class setSpecies

14.36.2 Function/Subroutine Documentation

setSpecies

public setSpecies(int totsp,
String[] name,
double[] mass,
double[] charge,
int[] pop,
int[] frozen)

Sets up DPD Species Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and using
supplied number, names, masses, charges, unbonded populations and frozen parameters of particle species to set
up the text fields etc.

Parameters

totsp int Number of particle species
name String[] Names of particle species
mass double[] Masses of particle species
charge double[] Charges (valencies) of particle species
pop int[] Population of particle species excluding molecules
frozen int[] Flags indicating if particles species are frozen or not

14.37 setInteraction.java

Pop-up window for DPD Interaction Properties.

Sets up pop-up window for DPD Interaction Properties (obtained from button in Set DPD Interactions), setting
labels, adding pull-down (combo) boxes with available particle species and interaction types, filling text boxes
with current parameter values (if opening for first time, either default values or those previously read from FIELD
file), and buttons to set values for each species pair in memory and to close window (setdpdInteractEvt.java uses
values set in memory when saving FIELD file).

878 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.37.1 Classes

• class setInteraction

14.37.2 Function/Subroutine Documentation

setInteraction

public setInteraction(int totsp,
String[] name,
int ktype,
double aaparam,
double bbparam,
double ccparam,
double ddparam,
double eeparam,
double gammaparam,
double distparam,
int srftyp,
int srfktype,
double srfaaparam,
double srfdistparam,
boolean wall,
int wallspe,
double wallrho,
double wallthic)

Sets up DPD Interaction Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and using
supplied number and names of particle species, interaction type and parameters for a specified species pair, surface
type and parameters etc. to set up the text fields, pull-down (combo) boxes etc.

Parameters

14.37. setInteraction.java 879

DL_MESO Technical Manual, Release 2.7

totsp int Number of particle species
name String[] Names of particle species (as previously set in DPD Set Species pop-up window
ktype int Interaction type for specified species pair
aaparam double Interaction energy parameter 𝐴𝑖𝑗

bbparam double Interaction energy parameter 𝐵𝑖𝑗

ccparam double Interaction energy parameter 𝐶𝑖𝑗

ddparam double Interaction energy parameter 𝐷𝑖𝑗

eeparam double Interaction energy parameter 𝐸𝑖𝑗

gammaparam double Dissipative force parameter 𝛾𝑖𝑗 or collision frequency Γ𝑖𝑗

distparam double Distance parameter 𝜎𝑖𝑗 or interaction cutoff distance 𝑟𝑐,𝑖𝑗
srftyp int Surface type (selecting item for pull-down box)
srfktyp int Surface/wall interaction type
srfaaparam double Surface interaction energy parameter 𝐴𝑤𝑎𝑙𝑙,𝑖

srfdistparam double Surface distance parameter 𝜎𝑤𝑎𝑙𝑙,𝑖 or 𝑧𝑐,𝑖
wall boolean Switch for frozen bead walls
wallspe int Species number for frozen bead walls
wallrho double Particle density for frozen bead walls
wallthic double Thickness of frozen bead walls

14.38 setExternal.java

Pop-up window for DPD External Field Properties.

Sets up pop-up window for DPD External Field Properties (obtained from button in Set DPD Interactions), setting
labels based on selected external field type, filling text boxes with current parameter values (if opening for first
time, either default values or those previously read from FIELD file), and buttons to save to memory and to close
window (setdpdInteractEvt.java uses values set in memory when saving FIELD file).

14.38.1 Classes

• class setExternal

14.38.2 Function/Subroutine Documentation

setExternal

public setExternal(int et,
double ex,
double ey,
double ez)

Sets up DPD External Field Properties pop-up window for DL_MESO GUI, laying out elements onto a grid and
using supplied external field type and values to set up the text fields etc.

880 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

Parameters

et int Selected external field type (based on pull-down box in Set DPD Interactions window)
ex double External field value (x-component)
ey double External field value (y-component)
ez double External field value (z-component)

14.39 changedpdcode.java

Window for Change DPD Code.

Sets up window for Change DPD Code, including pull-down (combo) boxes to select text editor and
DL_MESO_DPD code module file, text fields for editors and files not included in pull-down boxes, and button to
edit selected file with editor.

14.39.1 Classes

• class changedpdcode

14.39.2 Function/Subroutine Documentation

changedpdcode

public changedpdcode()

Sets up Change DPD Code window for DL_MESO GUI, laying out elements onto a grid.

14.40 changedpdEvt.java

14.40.1 Summary

Events for Change DPD Code.

Implements actions for Change DPD Code, including selecting text editor and DL_MESO_DPD code module file
in pull-down (combo) boxes and text boxes, and pressing EDIT button.

14.40.2 Classes

• class changedpdEvt

14.40.3 Function/Subroutine Documentation

changeddpdEvt

public changedpdEvt(changedpdcode in)

Sets currently open Change DPD Code window as window to check for user actions and implement actions in
response.

Parameters

14.39. changedpdcode.java 881

DL_MESO Technical Manual, Release 2.7

in changedpdcode Instance of current Change DPD Code window

14.41 compiledpd.java

Window for Compile DPD Code.

Sets up window for Compile DPD Code, including pull-down (combo) boxes to select Fortran compiler,
DL_MESO_DPD code version and FFT solver, text fields for compilers not included in pull-down box and com-
piler flags, and buttons to create Makefile and compile code.

14.41.1 Classes

• class compiledpd

14.41.2 Function/Subroutine Documentation

compiledpd

public compiledpd()

Sets up Compile DPD Code window for DL_MESO GUI, laying out elements onto a grid.

14.42 compiledpdEvt.java

Events for Compile DPD Code.

Implements actions for Compile DPD Code, including selecting Fortran compiler and compiler flags,
DL_MESO_DPD code version and FFT solver, and pressing buttons to create Makefile and compile code.

14.42.1 Classes

• class compiledpdEvt

14.42.2 Function/Subroutine Documentation

compiledpdEvt

public compiledpdEvt(compiledpd in)

Sets currently open Compile DPD Code window as window to check for user actions and implement actions in
response.

Parameters

in compiledpd Instance of current Compile DPD Code window

882 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

makefilemake

public void makefilemake()

Creates Makefile for compiling DL_MESO_DPD based on selected inputs in Compile DPD Code window.

14.43 rubdpd.java

Window for Run DPD Program.

Sets up window for Run DPD Program, including pull-down (combo) box and text field to select command re-
quired to launch DL_MESO_DPD, and button to Run DPD code.

14.43.1 Classes

• class rubdpd

14.43.2 Function/Subroutine Documentation

rubdpd

public rubdpd()

Sets up Run DPD Program window for DL_MESO GUI, laying out elements onto a grid.

14.44 rubdpdEvt.java

Events for Run DPD Program.

Implements actions for Run DPD Program, including selecting command for launching DL_MESO_DPD, and
pressing Run DPD button.

14.44.1 Classes

• class rubdpdEvt

14.44.2 Function/Subroutine Documentation

rubdpdEvt

public rubdpdEvt(rubdpd in)

Sets currently open Run DPD Program window as window to check for user actions and implement actions in
response.

Parameters

in rubdpd Instance of current Run DPD Program window

14.43. rubdpd.java 883

DL_MESO Technical Manual, Release 2.7

14.45 gatherdpd.java

Window for Process DPD Data.

Sets up window for Process DPD Data, including pull-down (combo) boxes to select property to calculate (utility
to launch), available species and molecule types (taken from available FIELD file) and data level option for
creating CONFIG files, text boxes for user-inputted numbers, a checkbox for utility-dependent option and a button
to Process data.

14.45.1 Classes

• class gatherdpd

14.45.2 Function/Subroutine Documentation

gatherdpd

public gatherdpd()

Sets up Process DPD Data window for DL_MESO GUI, laying out elements onto a grid, and reading FIELD file
to obtain species and molecule names for pull-down (combo) boxes.

14.46 gatherdpdEvt.java

Events for Process DPD Data.

Implements actions for Process DPD Data, including selecting utility from pull-down (combo) boxes, applying
utility-dependent labels and activating other pull-down boxes based on this choice, and running utility when
Process data button is clicked, taking in selections and user-specified values to provide command-line options.

14.46.1 Classes

• class gatherdpdEvt

14.46.2 Function/Subroutine Documentation

gatherdpdEvt

public gatherdpdEvt(gatherdpd in)

Sets currently open Process DPD Data window as window to check for user actions and implement actions in
response.

Parameters

in gatherdpd Instance of current Process DPD Data window

884 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.47 plotdpd.java

Window for Plot DPD Results.

Sets up window for Plot DPD Results, including pull-down (combo) box to select pre-installed software package
to launch, text field for other packages not included in pull-down box, check box to run program in terminal
window, and button to launch package for plotting results from DPD calculation.

14.47.1 Classes

• class plotdpd

14.47.2 Function/Subroutine Documentation

plotdpd

public plotdpd()

Sets up Plot DPD Results window for DL_MESO GUI, laying out elements onto a grid.

14.48 plotdpdEvt.java

Events for Plot DPD Results.

Implements actions for Plot DPD Results, including selecting plotting software package in pull-down (combo)
and text box, and pressing Plot data button.

14.48.1 Classes

• class plotdpdEvt

14.48.2 Function/Subroutine Documentation

plotdpdEvt

public plotdpdEvt(plotdpd in)

Sets currently open Plot DPD Results window as window to check for user actions and implement actions in
response.

Parameters

in plotdpd Instance of current Plot DPD Results window

14.47. plotdpd.java 885

DL_MESO Technical Manual, Release 2.7

14.49 dlmesoeditor.java

Window for DL_MESO GUI Text Editor.

Sets up pop-up window for DL_MESO GUI internal text editor with scrollable text area for file contents and
buttons to save file and exit editor (close window).

14.49.1 Classes

• class dlmesoeditor

14.49.2 Function/Subroutine Documentation

dlmesoeditor

public dlmesoeditor(String str1)

Sets up DL_MESO GUI Text Editor window (including area for text with scrollbars, save and exit buttons) and
opens specified file.

Parameters

in str1 Name of file to open in DL_MESO GUI text editor

14.50 dlmesoeditEvt.java

Events for DL_MESO GUI Text Editor.

Implements actions for DL_MESO GUI internal text editor, including pressing buttons to save file and exit (to
close window).

14.50.1 Classes

• class dlmesoeditEvt

14.50.2 Function/Subroutine Documentation

dlmesoeditEvt

public dlmesoeditEvt(dlmesoeditor in)

Sets currently open DL_MESO GUI Text Editor as window to check for user actions and implement actions in
response.

Parameters

in dlmesoeditor Instance of current DL_MESO GUI Text Editor window

886 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.51 msgPanel.java

Message panel.

Provides pop-up window to provide error, warning and information messages to the user in reaction to events or
selected values for supplied properties.

14.51.1 Classes

• class msgPanel

14.51.2 Function/Subroutine Documentation

msgPanel

public msgPanel(String phrase)

Opens pop-up window with supplied message and close button.

Parameters

phrase String Message to display in pop-up window

14.52 msgPanelEvt.java

Events for message panel.

Implements actions for pop-up message window, particularly pressing button to close window.

14.52.1 Classes

• class msgPanelEvt

14.52.2 Function/Subroutine Documentation

msgPanelEvt

public msgPanelEvt(msgPanel in)

Sets currently open message window as window to check for user actions and implement actions in response.

Parameters

in msgPanel Instance of current message pop-up window

14.51. msgPanel.java 887

DL_MESO Technical Manual, Release 2.7

14.53 Additional subroutines/functions available in multiple
classes

14.53.1 addItem

private void addItem(JPanel p,
JComponent c,
int x,
int y,
int width,
int height,
int align)

Adds item to a window using GridBag at a given position within a grid with a width, height and alignment.

Parameters

p JPanel Window (panel) to which item is to be added
c JComponent Component (item) to add to window
x int x-coordinate of grid location (column number)
y int y-coordinate of grid location (row number)
width int Width of item in grid blocks (enables span)
height int Height of item in grid blocks (enables span)
align int Alignment of item (given as GridBagConstraints)

14.53.2 addItemFill

private void addItemFill(JPanel p,
JComponent c,
int x,
int y,
int width,
int height,
int align,
int fill)

private void addItemFill(JPanel p,
JComponent c,
int x,
int y,
int width,
int height,
double weightx,
double weighty,
int align,
int fill)

Adds item to a window using GridBag at a given position within a grid with a width, height and alignment, filling
the grid block horizontally or vertically and optionally adding space horizontally and vertically.

Parameters

888 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

p JPanel Window (panel) to which item is to be added
c JComponent Component (item) to add to window
x int x-coordinate of grid location (column number)
y int y-coordinate of grid location (row number)
width int Width of item in grid blocks (enables span)
height int Height of item in grid blocks (enables span)
weightx double Additional horizontal space
weighty double Additional vertical space
align int Alignment of item (given as GridBagConstraints)
fill int Item fill (given as GridBagConstraints)

14.53.3 addItemPadding

private void addItemPadding(JPanel p,
JComponent c,
int x,
int y,
int width,
int height,
int align,
int padding)

Adds item to a window using GridBag at a given position within a grid with a width, height and alignment, filling
the grid block horizontally or vertically and adding a specified amount of padding space around the item (constant
in all directions).

Parameters

p JPanel Window (panel) to which item is to be added
c JComponent Component (item) to add to window
x int x-coordinate of grid location (column number)
y int y-coordinate of grid location (row number)
width int Width of item in grid blocks (enables span)
height int Height of item in grid blocks (enables span)
align int Alignment of item (given as GridBagConstraints)
padding int Amount of padding to add (in pixels)

14.53.4 addItemSpacing

private void addItemSpacing(JPanel p,
JComponent c,
int x,
int y,
int width,
int height,
int align,
int inset1,
int inset2)

Adds item to a window using GridBag at a given position within a grid with a width, height and alignment, filling
the grid block horizontally or vertically and adding a specified amount of padding space above and below the item.

Parameters

14.53. Additional subroutines/functions available in multiple classes 889

DL_MESO Technical Manual, Release 2.7

p JPanel Window (panel) to which item is to be added
c JComponent Component (item) to add to window
x int x-coordinate of grid location (column number)
y int y-coordinate of grid location (row number)
width int Width of item in grid blocks (enables span)
height int Height of item in grid blocks (enables span)
align int Alignment of item (given as GridBagConstraints)
inset1 int Amount of padding to add above item (in pixels)
inset2 int Amount of padding to add below item (in pixels)

14.53.5 dledit

void dledit(String str)

Launches DL_MESO GUI Text Editor (dlmesoeditor.java) and opens specified text file.

Parameters

str String Name of file to open in DL_MESO GUI Text Editor

14.53.6 ierr

void ierr(String errinfo)

Opens message panel (msgPanel.java) with specified error message for user.

Parameters

errinfo String Error message to display to user in panel

14.53.7 isMac

public static boolean isMac()

Returns true if current operating system is macOS (Mac OS X).

14.53.8 isUnix

public static boolean isUnix()

Returns true if current operating system is Unix, Linux or similar.

890 Chapter 14. DL_MESO GUI Code Description

DL_MESO Technical Manual, Release 2.7

14.53.9 isWindows

public static boolean isWindows()

Returns true if current operating system is Windows.

14.53. Additional subroutines/functions available in multiple classes 891

DL_MESO Technical Manual, Release 2.7

892 Chapter 14. DL_MESO GUI Code Description

CHAPTER

FIFTEEN

DL_MESO UTILITIES

DL_MESO includes a number of utility programs which are not directly needed for Lattice Boltzmann or DPD
simulations but are useful both for producing files required as inputs for those calculations and to process output
files for visualization and analysis. These may be found in the /LBE/utility and /DPD/utility directories.

Compilation can either be carried out individually or collectively using makefiles: each utility directory includes
a makefile to compile all the utilities therein and the working directory /WORK includes one to compile both sets
for use with the GUI1. The latter can be invoked using the command

make -f Makefile-utils

Some further details on these utilities can be found in the README files in the source directories.

15.1 DL_MESO_LBE

All utilities for the LBE code can be run at the command line with optional arguments, e.g.

utility.exe [arguments]

for Windows machines, or

./utility.exe [arguments]

for machines running Unix, Linux or Mac (Mac OS X or macOS) operating systems. One command line argument
all LBE utilities have in common is -h (for help), which will give a brief description of the utility and its available
command line arguments before quitting. All utilities that work on input or output files should be run in the same
directory as those files, which should have the default names for those types (lbin.sys, lbout*.vts, lbout*.q etc.).

15.1.1 lbeinitcreate.cpp

lbeinitcreate.cpp is a utility written in C++ to create initialisation files (lbin.init) to override the default initial
conditions. This utility can add fluid drops to the system (either circular in 2D or spherical in 3D) and rectangular
‘sources’ of specified solute concentrations or temperature to a system.

If c++ is the command for the available C++ compiler, the executable init.exe can be produced by typing

c++ -o init.exe lbeinitcreate.cpp

and run at the command line.

A pre-existing lbin.sys file needs to exist in the directory where the utility is run, as this provides information
on the dimensions and size of the simulation system, the numbers of fluids and initial and constant densities for
each fluid, the number of solutes, whether or not a thermal lattice is included and the default initial velocity. This

1 If using the GUI and the utilties are to be compiled manually or in their source directories, copies of the executables are required in the
directory from which the GUI is to be launched, e.g. /WORK.

893

DL_MESO Technical Manual, Release 2.7

information is displayed on the screen when the utility is run: if no lbin.sys file can be found, an error message
will be displayed and the utility will terminate.

If a single fluid is specified in the lbin.sys file with different initial and constant densities, the utility will ask for
the number of drops to be added to the system: for each drop, the user will need to specify its radius, where its
centre is located on the lattice grid and its density. If more than one fluid is specified in the lbin.sys file, the utility
will then attempt to determine the continuous fluid for the system from the initial densities and, if necessary, ask
the user to identify it. The utility will then ask for the number of drops to be added to the system: for each drop,
the user will need to specify the fluid, its radius, where its centre is located on the lattice grid and its density. (Note
that it is possible for a drop to extend beyond the grid boundaries if periodic boundaries are in use, but the drop
centre must be within those boundaries.)

If any solutes are to be included, the utility will ask for the number of solute ‘sources’ (i.e. regions of constant
solute concentration): for each source, it will then ask for the solute number, the required concentration, the
location of one corner of the rectangular source and its extent in each dimension (which can extend beyond
periodic boundaries). Similarly, if a temperature grid is included in the system, the utility will ask for the number
of temperature ’sources’, followed by the required temperature and the location of the corner and the extent of the
source.

Once all of the above information is obtained, the utility will then create the lbin.init file, which specifies the
grid points, velocities, fluid densities, solute concentrations and temperatures for any locations in the system that
require non-default initial conditions.

15.1.2 lbeplot3dgather.cpp

lbeplot3dgather.cpp is a utility written in C++ to gather Plot3D output files produced by the parallel version of
DL_MESO_LBE and produce a single structure file (lbtout.xyz or lbtout.xy) and a single set of solution files
(lbtout*.q) for visualisation of the entire system.

If c++ is the command for the available C++ compiler, the executable plot3d.exe can be produced by typing

c++ -o plot3d.exe lbeplot3dgather.cpp

and either run at the command line or via the GUI under Gather LBE Data.

All lbout*.xyz and lbout*.q files should be copied to the directory including the executable (if necessary) before
running, as well as the lbout.info file to give information on the sizes of integers and floating point numbers.
No user input is required, although the utility will stop with an error message if no lbout.info file is available. No
other error messages are produced, so care should be taken to ensure no solution files are missing.

15.1.3 lbevtkgather.cpp

lbevtkgather.cpp is a utility written in C++ to gather Structured Grid XML-formatted VTK output files produced
by the parallel version of DL_MESO_LBE (lbout*.vts) and produce a set of linking files (lbtout*.pvts) for visual-
isation of the entire system.

If c++ is the command for the available C++ compiler, the executable vtk.exe can be produced by typing

c++ -o vtk.exe lbevtkgather.cpp

and either run at the command line or via the GUI under Gather LBE Data.

All lbout*.vts files should be copied to the directory including the executable (if necessary) before running, as
well as the lbout.info and lbout.ext files to give information about the number of writing processors used for the
simulation (i.e. the number of files per frame) and the extents of each piece.

The executable for this utility can be run with any of the following command line arguments:

• -a

Create linking files for output files that contain all properties from the LBE simulation (fluid densities,
fluid mass fractions, solute concentrations and temperatures)

894 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

• -d

Create linking files for output files that contain a single fluid density

• -f

Create linking files for output files that contain a single fluid mass fraction

• -c

Create linking files for output files that contain a single solute concentration

• -t

Create linking files for output files that just contain temperatures

If no command-line argument is specified, the utility will assume all properties are contained in the output files.
(If the GUI is used, the level of data to link together can be selected using the pulldown list in the Gather LBE
Data panel.) No other user input is required, but error messages will be produced if either of the files lbout.info
and lbout.ext are missing. No other error messages are produced, so care should be taken to ensure no VTK files
for the pieces are missing, particularly since these files are required for plotting as the linking files do not include
the data.

15.1.4 lbedumpvtk.cpp

lbedumpvtk.cpp is a utility written in C++ to create an XML-formatted structured VTK file (lbdump.vts) from the
lbout.dump restart file generated by DL_MESO_LBE. The resulting file can be used to visualise the system at the
point when the restart data was written (e.g. when the simulation was terminated) and verify the simulation is
proceeding as expected, even when no other output files are generated.

If c++ is the command for the available C++ compiler, the executable dump_to_vtk.exe can be produced by
typing

c++ -o dump_to_vtk.exe lbedumpvtk.cpp

and either run at the command line or via the GUI under Gather LBE Data. No other files are needed to create
the VTK file, as the lbout.dump file includes all required data for visualisation.

15.1.5 lbedumpinit.cpp

lbedumpinit.cpp is a utility written in C++ to create an initialisation file lbin.init from the lbout.dump restart file
generated by DL_MESO_LBE. The resulting file can be used to start a new simulation from the state of a previous
one.

If c++ is the command for the available C++ compiler, the executable dump_to_init.exe can be produced
by typing

c++ -o dump_to_init.exe lbedumpinit.cpp

and either run at the command line or via the GUI under Gather LBE Data. No other files are needed to create
the lbin.init file, as the lbout.dump file includes all required data for determining the state of the simulation (i.e.
macroscopic properties at each grid point).

15.1. DL_MESO_LBE 895

DL_MESO Technical Manual, Release 2.7

15.2 DL_MESO_DPD

All utilities for the DPD code can be run at the command line with optional arguments, e.g.

utility.exe [arguments]

for Windows machines, or

./utility.exe [arguments]

for machines running Unix, Linux or Mac (Mac OS X or macOS) operating systems. One command line argument
all DPD utilities have in common is -h (for help), which will give a brief description of the utility and its available
command line arguments before quitting. All utilities that work on input or output files should be run in the
same directory as those files, which should have the default names for those types (CONTROL, FIELD, export,
HISTORY etc.).

15.2.1 convert-input.cpp

convert-input.cpp is a utility written in C++ to read DPD input files created for earlier versions of DL_MESO (up
to version 2.4) and create CONTROL and FIELD files formatted in the style for versions 2.7 and later.

This utility can be compiled to produce the executable convert.exe with the command

c++ -o convert.exe convert-input.cpp

if c++ is the command for the available C++ compiler.

This utility can be run with any (or all) of these optional command line arguments:

• -c [CONTROL]

Uses a CONTROL file as input called [CONTROL]

• -f [FIELD]

Uses a FIELD file as input called [FIELD]

• -m [MOLECULE]

Uses a MOLECULE file as input called [MOLECULE]

• -v

Verbose option: writes out data read from input files on to the screen or standard output

Note that if the default names are used for input, the old CONTROL and FIELD files are renamed after being read
(to CONTROL.old and FIELD.old) to prevent them being overwritten with the new versions of those files. (The
MOLECULE file is no longer required and therefore does not need to be renamed.)

15.2.2 molecule-generate.cpp

molecule-generate.cpp is a utility written in C++ to generate the input files required for modelling particles in
DPD simulations that are bonded together, i.e. molecules. A random flight generation system is used to generate
the coordinates of bonded beads – which can form branched molecule chains – a constant distance apart within a
cube of a size specified by the user, which will be used by DL_MESO_DPD to insert the molecule into the system.

This utility can be compiled to produce the executable molecule.exe with the command

• c++ -o molecule.exe molecule-generate.cpp

if c++ is the command for the available C++ compiler. This utility can be run from the command line or via the
GUI in Set DPD Molecules (which runs the utility in a new command line/shell window).

This utility can be run with any (or all) of these optional command line arguments:

896 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

• -p

Write data to a separate file (molecule) instead of a FIELD file: this is used by the GUI to insert molecular
data into the FIELD file it generates

• -s n [SPEC1] [SPEC2] ... [SPECn]

Define 𝑛 particle species and provide their names ([SPEC1], [SPEC2] to [SPECn])

If a FIELD file exists in the same directory as the executable with species data and the -s command-line option
is not used, the number of species and their names will be read from it; otherwise the user will be asked to enter
this information and this will be written to a new FIELD file (if the separate file is not specified). The user will
then be asked for the number of molecules required, the numbers of bond, angles and dihedrals and their types
and parameters.

For each molecule, the user is asked for its name, the number to be included in the system and whether or not
isomers of the molecule can be included. The side length for the cube inside which the molecule will fit is then
required, followed by the bond length, the number of molecule chains and the number of particles for each chain.
If the chain in question is not the first (primary) chain, the user will also be asked for a pre-existing bead number
as the starting point for the chain.

After this, the default species for the beads in the molecule will be requested: the user will then be asked enter
the bead numbers for each of the other species (0 can be entered to finish specifying bead numbers). If more than
one bond type is to be included, the user will be asked to select the default bond type and then select the bonds
that are of different types by typing the index bead number (and optionally the destination bead if more than one
is available). Bond angles and/or dihedrals can also be selected by typing in the index bead number and then
selecting the required bead triple or quadruple if more than one is available.

The molecules will either be appended to the FIELD file in the correct format with positions for the beads relative
to each molecule’s centre of mass, or the data will be written to the separate molecule file. Note that the FIELD
file will not be quite complete after running this utility: data for unbonded interactions and external force fields
may be required (if it is created from scratch using the utility) and a close directive will be required at the end.

15.2.3 export_config.F90

export_config.F90 is a utility written in Fortran to produce a configuration file (CONFIG) from DL_MESO_DPD
restart files (export), which can be used as a starting point for new simulations. Since a limited amount of data is
included in restart files, the FIELD file for the simulation is also needed to provide some additional information.

The source code for this utility can be used for export files created by both the serial and parallel versions of
DL_MESO_DPD. If the utility is to be run on a different machine to the one used for DPD calculations, care
should be taken to ensure the utility can read files with the same endianness by using a compiler flag to force big
or little endianness.

If the available Fortran compiler is invoked by the command f90, the executable export_config.exe can
be produced by typing

f90 -o export_config.exe export_config.F90

and either run at the command line or by using the GUI in Process DPD Data after entering the number of
processes used in the required field and selecting the required CONFIG file key in the pulldown list.

The executable for this utility can be run with any of the following command line arguments:

• -k 𝑖

Set CONFIG file key, levcfg, to 𝑖 (0 = positions only, 1 = positions and velocities, 2 = positions, velocities
and forces)

• -s

Write particles to CONFIG file after sorting them in order by particle number

• -u

Write particles to CONFIG file without sorting them

15.2. DL_MESO_DPD 897

DL_MESO Technical Manual, Release 2.7

If no command-line argument is given, the utility will ask the user to type in the CONFIG file key and assume the
particles are not sorted before writing to the file. (Note that particles in export files produced by the serial version
of DL_MESO_DPD will be automatically in numerical order.)

15.2.4 export_image_vtf.F90

export_image_vtf.F90 is a utility written in Fortran to produce a VTF format trajectory file (export.vtf) from
DL_MESO_DPD restart files (export) that can be visualized in VMD [60] to give a snapshot of the last simulation
timestep. Since a limited amount of data is included in restart files, the FIELD file for the simulation is needed to
provide some additional information.

The source code for this utility can be used for export files created by both the serial and parallel versions of
DL_MESO_DPD: if the utility is to be run on a different machine to the one used for DPD calculations, care
should be taken to ensure the utility can read files with the same endianness by using a compiler flag to force big
or little endianness.

If the available Fortran compiler is invoked by the command f90, the executable export_image_vtf.exe
can be produced by typing

f90 -o export_image_vtf.exe export_image_vtf.F90

and either run at the command line or by using the GUI in Process DPD Data. The optional commend-line
argument -s can be used to sort the particles into order of global particle index. So long as both the export
and FIELD files are available in the same directory, the utility will produce the VTF trajectory file without any
prompting.

15.2.5 export_image_xml.F90

export_image_xml.F90 is a utility written in Fortran to produce a trajectory file in GALAMOST [157] XML
format (export.xml) from DL_MESO_DPD restart files (export) that can be visualized in OVITO [132] to give a
snapshot of the last simulation timestep. Since a limited amount of data is included in restart files, the FIELD file
for the simulation is needed to provide some additional information.

The source code for this utility can be used for export filez created by both the serial and parallel versions of
DL_MESO_DPD: if the utility is to be run on a different machine to the one used for DPD calculations, care
should be taken to ensure the utility can read files with the same endianness by using a compiler flag to force big
or little endianness.

If the available Fortran compiler is invoked by the command f90, the executable export_image_xml.exe
can be produced by typing

f90 -o export_image.exe export_image_xml.f90

and either run at the command line or by using the GUI in Process DPD Data. So long as both the export
and FIELD files are available in the same directory, the utility will produce the XML trajectory file without any
prompting.

15.2.6 history_config.F90

history_config.F90 is a utility written in Fortran to take DL_MESO_DPD trajectory output data files (HISTORY)
and produce a configuration file (CONFIG) from them, which can be used as a starting point for new simulations.

The source code for this utility reads HISTORY files generated by both the serial and parallel versions of
DL_MESO_DPD respectively: because HISTORY files include a number in their headers as an endianness check,
the utility should be able to read these files created on different machines. The utility outputs data for every parti-
cle for the selected trajectory frame: the maximum level of data (particle positions, velocities and forces) is fixed
by the HISTORY file but the user can choose up to that particular level to write to the CONFIG file.

898 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

If f90 is the command for the available Fortran compiler, the executable history_config.exe can be pro-
duced by typing

f90 -o history_config.exe history_config.F90

and either run at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with any of the following command line arguments:

• -k 𝑖

Set CONFIG file key, levcfg, to 𝑖 (0 = positions only, 1 = positions and velocities, 2 = positions, velocities
and forces)

• -f 𝑖

Use trajectory data in frame 𝑖 of HISTORY file for configuration in CONFIG file

• -l 𝑖

Use last frame of trajectory data in HISTORY file for configuration in CONFIG file

• -s

Write particles to CONFIG file after sorting them in order by particle number

• -u

Write particles to CONFIG file without sorting them

If no command-line argument is given or the CONFIG file key or trajectory frame number are out of range for the
given HISTORY file, the utility will ask the user to type in valid numbers for the CONFIG file key (if more than
positions are available) and trajectory frame number (unless the last one is selected at the command line), as well
as assume that the particles are not sorted when writing to the CONFIG file.

15.2.7 traject_vtf.F90

The Fortran utility traject_vtf.F90 reads in HISTORY output data files generated by DL_MESO_DPD and pro-
duces a VTF format trajectory file (traject.vtf) that can visualize the simulation using VMD [60], such that snap-
shots at the recorded timesteps and animations can be produced. An option exists to produce separate VTF format
trajectory files for unbonded particles (traject_bead.vtf) and bonded particles in molecules (traject_mole.vtf), and
another option exists to write the structure and coordinates into separate files (traject.vsf and traject.vcf respec-
tively).

The source code for this utility reads HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD: since HISTORY files include a number in their headers as an endianness check, the utility
should be able to read these files created on different machines. The utility outputs every particle for all recorded
timesteps, including bond data for particles in molecules represented as residues.

If f90 is the command for the available Fortran compiler, the executable traject_vtf.exe can be produced
by typing

f90 -o traject_vtf.exe traject_vtf.F90

and either run at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with the following optional command line arguments:

• -b

Write trajectory data to separate files for bonded and unbonded particles

• -s

Write particles to traject.vtf file after sorting them in order by particle number

• -u

Write particles to traject.vtf file without sorting them

• -sc

15.2. DL_MESO_DPD 899

DL_MESO Technical Manual, Release 2.7

Separate structure and coordinates into traject.vsf and traject.vcf files respectively (option can be used with
-b)

By default, a single trajectory file will be written and the particles will not be sorted into order of global index
number.

15.2.8 traject_selected_vtf.F90

The Fortran utility traject_selected_vtf.F90 works in a similar fashion to traject_vtf.F90 but allows the user to
select which particles and timesteps to output to the trajectory file. If f90 is the command for the available
Fortran compiler, the executable trajects_vtf.exe can be produced by typing

f90 -o trajects_vtf.exe traject_selected_vtf.F90

and run at the command line (note that it cannot be invoked using the GUI). The executable for this utility can be
run with the following optional command line arguments:

• -s

Write particles to traject.vtf file after sorting them in order by particle number

• -u

Write particles to traject.vtf file without sorting them

• -sc

Separate structure and coordinates into traject.vsf and traject.vcf files respectively

By default the particles will not be sorted into order of global index number. Beyond these, the user will be shown
information about the contents of the HISTORY file and asked to type in what is required in the traject.vtf file.

The user will then need to choose which particles are to be written to the VTF file (or VSF and VCF files): the
utility will first show the user how many particles (total and unbonded) are in each frame of the HISTORY file, as
well as the names and numbers of particle species and molecule types. The user will then be asked to select one
of the following options to include in the file(s):

1. All particles

2. A contiguous range of particles based on global particle indices

3. All particles belonging to particular species and molecule types

4. Individual particle numbers

5. Individual molecule numbers

and based on this choice, further questions will be asked to select the range of particle indices, species or molecule
types, particle numbers or molecule numbers respectively. The user will then be shown the number of available
trajectory frames in the HISTORY file and asked to select which one to start with, which one to end with and the
frequency to write to the output file(s) (i.e. whether or not to skip over frames).

15.2.9 traject_xml.F90

The Fortran utility traject_xml.F90 reads in HISTORY output data files generated by DL_MESO_DPD and pro-
duces a series of numbered trajectory files in GALAMOST [157] XML format (traject_*.xml) that can be used
to visualize the simulation using OVITO [132]. If molecules are present, the bond data are included in these files
and can be shown in snapshots and animations generated by OVITO.

The source code for this utility reads HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD: since HISTORY files include a number in their headers as an endianness check, the utility
should be able to read these files created on different machines. The utility outputs every particle for all recorded
timesteps, including bond data for particles in molecules. (Each molecule type is used to identify the types of
bonds between particles.)

900 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

If f90 is the command for the available Fortran compiler, the executable traject_xml.exe can be produced
by typing

f90 -o traject_xml.exe traject_xml.F90

and either run at the command line or via the GUI in Process DPD Data.

No command line arguments are required to run this utility. A series of trajectory files will be written: because
global index numbers cannot be explicitly assigned in this format, the particles’ data are sorted by global index
before being written to the files. If velocities are included in the HISTORY file, these will also be written to the
trajectory files.

15.2.10 traject_selected_xml.F90

The Fortran utility traject_selected_xml.F90 works in a similar fashion to traject_xml.F90 but allows the user to
select which particles and timesteps to output to the trajectory files. If f90 is the command for the available
Fortran compiler, the executable trajects_xml.exe can be produced by typing

f90 -o trajects_xml.exe traject_selected_xml.F90

and run at the command line (note that it cannot be invoked using the GUI). The user will be shown information
about the contents of the HISTORY file and asked to type in what is required in the traject_*.xml files.

The user will then need to choose which particles are to be written to the XML files: the utility will first show the
user how many particles (total and unbonded) are in each frame of the HISTORY file, as well as the names and
numbers of particle species and molecule types. The user will then be asked to select one of the following options
to include in the file(s):

1. All particles

2. A contiguous range of particles based on global particle indices

3. All particles belonging to particular species and molecule types

4. Individual particle numbers

5. Individual molecule numbers

and based on this choice, further questions will be asked to select the range of particle indices, species or molecule
types, particle numbers or molecule numbers respectively. The user will then be shown the number of available
trajectory frames in the HISTORY file and asked to select which one to start with, which one to end with and the
frequency to write to the output file(s) (i.e. whether or not to skip over frames).

15.2.11 isosurfaces.F90

The Fortran utility isosurfaces.F90 reads in HISTORY output data files generated by DL_MESO_DPD and pro-
duces grid-based density maps at each recorded timestep for a specified species in Legacy VTK format for vi-
sualization of isosurfaces. It also calculates the second moment of the isosurface normal distribution, whose
eigenvalues can be used to determine the mesophase for the system.

The source code for this utility can read HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD: an endianness check to their headers will allow the utility to work out which endianness to
use for reading them. An executable isosurfaces.exe can be created by typing

f90 -o isosurfaces.exe isosurfaces.F90

if f90 is the command for the available Fortran compiler. This can be run either at the command line or via the
GUI in Process DPD Data.

The executable for this utility can be run with the following command line arguments:

• -b [SPECIES]

15.2. DL_MESO_DPD 901

DL_MESO Technical Manual, Release 2.7

Use particle species [SPECIES] to create density maps (either name or number based on its order in the
FIELD file)

• -p 𝑓

Set spacing between grid points to 𝑓 (overriding default value of 0.25)

• -s 𝑓

Set Gaussian standard deviation 𝜎 to 𝑓 (overriding default value of 0.4)

• -sf 𝑖

Start collecting and writing data from frame 𝑖 of HISTORY file (overriding default value of 1)

• -sl 𝑖

Finish collecting and writing data at frame 𝑖 of HISTORY file (overriding default value of last available
frame)

• -tf 𝑖

Set frequency of frames used from HISTORY file to 𝑖 (overriding default value of 1)

For instance, if isosurfaces of species TAIL are required with a target grid spacing of 0.2 and a Gaussian standard
deviation of 0.5 between frames 4 and 10 every 2 frames, the utility can be launched using one of the following
commands (depending on operating system):

isosurfaces.exe -b TAIL -p 0.2 -s 0.5 -sf 4 -sl 10 -tf 2
./isosurfaces.exe -b TAIL -p 0.2 -s 0.5 -sf 4 -sl 10 -tf 2

Note that if no species is specified at the command line, the user will be asked to choose one based on the contents
of the HISTORY file.

For each recorded timestep, the volume of every particle is smeared using a Gaussian function of standard devia-
tion 𝜎:

𝑓(𝑟⃗) =
1

(2𝜋𝜎2)
3
2

exp

(︃
−|𝑟⃗ − 𝑟⃗𝑖|2

2𝜎2

)︃

where 𝑟⃗𝑖 is the position of particle 𝑖. All points on a regular orthogonal grid within a distance of 3𝜎 from the
particle position are assigned contributions from this smearing function. The resulting totals for all particles of the
specified species are subsequently written to Legacy VTK files named density_.vtk. The densities can then
be used to construct the isosurface normal distribution 𝑝(𝑛⃗), using the mean value of density over the system as
the threshold for isosurfaces. Its second moment

M =

∫︁
𝑛⃗𝑛⃗𝑝(𝑛⃗)𝑑𝑛⃗

gives an indication of how the particles in the species are arranged in the system. The three eigenvalues of the
second moment (𝜇1, 𝜇2, 𝜇3) can be used as mesophase order [105][143]: 𝜇1 ≈ 𝜇2 ≈ 𝜇3 indicates an isotropic
mesophase, 𝜇1 ≪ 𝜇2, 𝜇3 indicates a hexagonal mesophase and 𝜇1, 𝜇2 ≪ 𝜇3 indicates a lamellar mesophase. The
eigenvalues are written to a file named moment, which contains columns for the time and the three eigenvalues
in numerical order: this file can be imported into graph plotting software to display how the system mesophase
changes over time.

15.2.12 radius.F90

The Fortran utility radius.F90 reads in HISTORY output data files generated by DL_MESO_DPD and calculates
the end-to-end distances and radii of gyration at each recorded timestep for all molecules in the system, as well as
finding the time-averaged distributions of end-to-end distances for each molecule type.

The source code for this utility can read HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD. If f90 is the command for the available Fortran compiler, the executable radius.exe can
be produced by typing

902 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

f90 -o radius.exe radius.F90

and run either at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with the following command line arguments:

• -c 𝑓

Set maximum end-to-end distance for distribution to 𝑓 (overriding default value of 2.0)

• -d 𝑓

Set histogram spacing for distribution to 𝑓 (overriding default value of 0.05)

• -sf 𝑖

Start collecting and writing data from frame 𝑖 of HISTORY file (overriding default value of 1)

• -sl 𝑖

Finish collecting and writing data at frame 𝑖 of HISTORY file (overriding default value of last available
frame)

• -tf 𝑖

Set frequency of frames used from HISTORY file to 𝑖 (overriding default value of 1)

Note that if the HISTORY file includes no molecules, the utility will stop with an error message.

For each recorded timestep and all molecules, the end-to-end distance along the main molecular branch and the
radius of gyration

𝑅2
𝑔 =

1

𝑁

𝑁∑︁
𝑖

(𝑟⃗𝑖 − 𝑟⃗𝑚𝑒𝑎𝑛)
2

are calculated, where 𝑁 is the number of particles in the molecule and 𝑟⃗𝑚𝑒𝑎𝑛 =
∑︀𝑁

𝑖 𝑚𝑖𝑟⃗𝑖∑︀𝑁
𝑖 𝑚𝑖

is the centre-of-mass
for the molecule. Files named *radius_* * are produced for each molecule type: these text files contain columns
for the time, root mean squared end-to-end distance, the mean squared end-to-end distance and root mean squared
radius of gyration over all molecules of the specified type, which can be plotted using graph plotting software.

A single file named MOLDIST is also produced to give the time-averaged distributions of end-to-end distance for
every molecule type, normalised to give

∫︀∞
0

4𝜋𝑟2𝑑𝑟 𝑔(𝑟) = 1. The file starts with two lines, the first giving the
name of the simulation and the second with the number of timesteps used and the number of distance divisions
used (the number of shells). The distributions for each molecule type are then given, starting with a line giving
the molecule name and followed by columns with the radius 𝑟 (the mid-point for each shell) and the distribution
𝑔(𝑟): each type is separated by two blank lines.

15.2.13 dipole.F90

The Fortran utility dipole.F90 reads in HISTORY output data files generated by DL_MESO_DPD and calculates
the total dipole moments for each molecule type, autocorrelation functions of dipole moments and (optionally)
their Fourier transforms.

The source code for this utility can read HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD, regardless of which endianness is used. If f90 is the command for the available Fortran
compiler, the executable dipole.exe can be produced by typing

f90 -o dipole.exe dipole.F90

and run either at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with the following command line arguments:

• -n 𝑖

Set number of bins to calculate dipole autocorrelation functions (DAFs) to 𝑖

• -fft

15.2. DL_MESO_DPD 903

DL_MESO Technical Manual, Release 2.7

Calculate Fourier Transforms of dipole autocorrelation functions

• -fc 𝑖

Set number of bins for DAFs to 𝑖 (overriding default value of maximum between 500 and double the
number of bins for DAF calculations)

• -sf 𝑖

Start collecting and writing data from frame 𝑖 of HISTORY file (overriding default value of 1)

• -sl 𝑖

Finish collecting and writing data at frame 𝑖 of HISTORY file (overriding default value of last available
frame)

• -tf 𝑖

Set frequency of frames used from HISTORY file to 𝑖 (overriding default value of 1)

If no value for the number of bins for dipole autocorrelation functions is given in the command line or it exceeds
the number of frames in the HISTORY file (or the number used based on starting/finishing frames and frequency),
the user will be asked to type one in. Note that no Fourier transforms for the dipole autocorrelation functions will
be calculated unless the -fft command line argument is used.

For each recorded timestep, the total dipole moment for each molecule is calculated using the formula 𝑝 =∑︀
𝑖 𝑞𝑖𝑟⃗𝑖, where 𝑞𝑖 is the charge on particle 𝑖 (obtained from the HISTORY file) and 𝑟⃗𝑖 is the position of that

particle with adjustments made for periodic boundary conditions where necessary. These dipole moments are
summed up for each molecule type to give the total dipole moment 𝑃 . Files named dipole_ are produced for
each molecule type: these text files contain columns for the time, 𝑥-, 𝑦- and 𝑧-components of the dipole moment,
the squared dipole moment 𝑃 2 and the ratio of the squared dipole moment 𝑃 2 to volume (𝑃

2

𝑉).

The dipole autocorrelation function for each molecule type is calculated as𝐶(𝑡) =
⟨
𝑃 (0) · 𝑃 (𝑡)

⟩
over the number

of time steps given by the user, ensemble averaging across all possible samples from the given trajectory data. A
single file called DIPOLEDAT is produced, containing the DAFs for all available molecule types. Starting with
two lines – the first with the simulation name, the second with the total number of timesteps used and the number
of time steps used for DAFs – the names and data for each molecule type is given, the latter in columns for
time 𝑡, the absolute value of the ensemble averaged DAF 𝐶(𝑡) and the value scaled with the value at 𝑡 = 0 (i.e.
𝑍(𝑡) = 𝐶(𝑡)

𝐶(0)). The data for each molecule type are separated by two blank lines.

If the Fourier transforms are requested, this appears in an additional file called DIPOLEFFT, which is similarly
formatted to DIPOLEDAT apart from the data for each molecule type, which are the frequency 𝑘 and the real and
imaginary terms of the Fourier transform 𝑆(𝑘) (i.e. ℜ(𝑆(𝑘)) and ℑ(𝑆(𝑘))).

15.2.14 rdf.F90

rdf.F90 is a utility written in Fortran that can read in HISTORY output data files generated by DL_MESO_DPD and
determine radial distribution functions (RDFs) between all pairs of particle species (including self-interactions).

The source code for this utility can read HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD. It can exploit OpenMP multithreading to speed up RDF calculations: the source code includes
directives to use different blocks of code depending on whether or not it is compiled with OpenMP, which re-
quire preprocessing. (The source code filename extension .F90 should automatically invoke the compiler’s C
preprocessor.)

If f90 is the command for the available Fortran compiler, the executable rdf.exe can be produced by typing
either

f90 -o rdf.exe rdf.F90

for the serial (single thread) version, or by typing

f90 -o rdf.exe -openmp rdf.F90

904 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

for the OpenMP multithreaded version, substituting -openmp with the required compiler flag for invoking
OpenMP (e.g. -fopenmp for gfortran).

The utility can either be run at the command line or via the GUI in Process DPD data. A number of command
line arguments can be used after the command:

• -c 𝑓

Set maximum distance between pairs of particles to 𝑓 (overriding default value of 2.0)

• -d 𝑓

Set histogram spacing for radial distribution function calculations to 𝑓 (overriding default value of 0.05)

• -fft

Calculate Fourier Transforms of radial distribution functions (structure factors)

• -fc 𝑖

Set number of bins for structure factors to 𝑖 (overriding default value of maximum between 500 and double
the number of bins for RDF calculations)

• -sf 𝑖

Start collecting and writing data from frame 𝑖 of HISTORY file (overriding default value of 1)

• -sl 𝑖

Finish collecting and writing data at frame 𝑖 of HISTORY file (overriding default value of last available
frame)

• -tf 𝑖

Set frequency of frames used from HISTORY file to 𝑖 (overriding default value of 1)

Note that no Fourier transforms for the radial distribution functions will be calculated unless the -fft command
line argument is used.

At each recorded timestep, linked-cell lists for the particles are created and used to determine the particle-particle
distances between pairs within the maximum distance 𝑟𝑐. These distances are used to increase counters for the
appropriate histogram bins (of width ∆𝑟) for each species pair. The sums of these histograms are averaged over
time to give 𝑛(𝑟) (the mean number of particles in the bin at distance 𝑟) and the radial distribution function is
given as

𝑔(𝑟) =
𝑛(𝑟)

4𝜋𝑟2∆𝑟𝜌

where 𝜌 is the mean particle density. The Fourier transform of 𝑔(𝑟) gives the structure factor:

𝑆(𝑘) = 1 +
4𝜋𝜌

𝑘

∫︁ ∞

0

(𝑔(𝑟) − 1)𝑟 sin(𝑘𝑟)𝑑𝑟

which is a property that can be measured experimentally using e.g. X-ray diffraction.

A single file RDFDAT containing all radial distribution function data is produced. Starting with two lines – the
first giving the simulation name, the second giving the number of timesteps and the number of histogram bins
used – the names and the data for each species pair are given, the latter in columns for the radius 𝑟 (the mid-point
for each shell), the RDF 𝑔(𝑟) and the sum of 𝑔(𝑟) (the average number of particles of one type within 𝑟 around a
particle of the other). The data for each species pair are separated by two blank lines and an additional data set of
the same form is given for all particles regardless of species type at the end of the file.

If the Fourier transforms are requested, an additional RDFFFT file is created. This file has a similar format to
RDFDAT, except that the data is given in two columns: one for the frequency 𝑘 and the other for 𝑆(𝑘) (the Fourier
transform of 𝑔(𝑟) − 1).

15.2. DL_MESO_DPD 905

DL_MESO Technical Manual, Release 2.7

15.2.15 rdfmol.F90

rdfmol.F90 is a utility written in Fortran that can read in HISTORY output data files generated by DL_MESO_DPD
and determine radial distribution functions (RDFs) between all pairs of molecules by type (including self-
interactions).

The source code for this utility can read HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD. It can exploit OpenMP multithreading to speed up calculations: the source code includes di-
rectives to use different blocks of code depending on whether or not it is compiled with OpenMP.

If f90 is the command for the available Fortran compiler, the executable rdfmol.exe can be produced by
typing either

f90 -o rdfmol.exe rdfmol.F90

for the serial (single thread) version, or by typing

f90 -o rdfmol.exe -openmp rdfmol.F90

for the OpenMP multithreaded version, substituting -openmp with the required compiler flag for invoking
OpenMP.

The utility can either be run at the command line or via the GUI in Process DPD data. A number of command
line arguments can be used after the command:

• -c 𝑓

Set maximum distance between pairs of particles to 𝑓 (overriding default value of 2.0)

• -d 𝑓

Set histogram spacing for radial distribution function calculations to 𝑓 (overriding default value of 0.05)

• -fft

Calculate Fourier Transforms of radial distribution functions (structure factors)

• -fc 𝑖

Set number of bins for DAFs to 𝑖 (overriding default value of maximum between 500 and double the
number of bins for RDF calculations)

• -sf 𝑖

Start collecting and writing data from frame 𝑖 of HISTORY file (overriding default value of 1)

• -sl 𝑖

Finish collecting and writing data at frame 𝑖 of HISTORY file (overriding default value of last available
frame)

• -tf 𝑖

Set frequency of frames used from HISTORY file to 𝑖 (overriding default value of 1)

Note that no Fourier transforms for the radial distribution functions will be calculated unless the -fft command
line argument is used.

At each recorded timestep, the centres of mass for each molecule are determined (taking periodic or shearing
boundaries into account) and these coordinates are assigned to linked-cell lists, which are used to determine the
distances between pairs of molecules within the maximum distance 𝑟𝑐. These distances are used to fill histograms
with bin sizes of ∆𝑟 and are later time-averaged and divided by the shell volumes (as for standard RDFs) to give
the radial distribution functions between molecule types. Fourier transforms of molecular RDFs give structure
factors for the molecules.

The standard output from this utility is the file RDFMOLDAT: this is formatted in a similar manner to RDFDAT
(as described for rdf.F90) except the RDF data is given by molecule type pairs. If Fourier transforms are requested,
these are given in the file RDFMOLFFT and formatted similarly to RDFFFT.

906 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

15.2.16 local.F90

local.F90 is a utility written in Fortran that can read in HISTORY output data files generated by DL_MESO_DPD
and produce series of Legacy VTK format files containing statistical properties – number of beads, density, com-
positions per particle and molecule types, temperature and mean velocity, local stress tensors – in cuboidal subdi-
visions of the simulation volume for plotting and/or visualization.

The source code for this utility can read HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD: the utility can be used on different machines to the one used for DPD calculations as it includes
an endianness check for reading data from the file. If f90 is the command for the available Fortran compiler, the
executable local.exe can be produced by typing

f90 -o local.exe local.F90

and either run at the command line or via the GUI in Process DPD Data after entering the number of divisions
required in each dimension.

This utility can be run with the following command line arguments specifying the number of divisions in each
dimension:

• -nx 𝑖

Set number of system divisions in 𝑥-dimension to 𝑖

• -ny 𝑖

Set number of system divisions in 𝑦-dimension to 𝑖

• -nz 𝑖

Set number of system divisions in 𝑧-dimension to 𝑖

• -av 𝑖

Only write time-averaged data (suppress files for each frame)

• -sf 𝑖

Start collecting and writing data from frame 𝑖 of HISTORY file (overriding default value of 1)

• -sl 𝑖

Finish collecting and writing data at frame 𝑖 of HISTORY file (overriding default value of last available
frame)

• -tf 𝑖

Set frequency of frames used from HISTORY file to 𝑖 (overriding default value of 1)

If these values are not set at the command line, the user will be asked to enter these values.

Unless the -av option is selected, files named local_*.vtk are produced for all the specified time steps after
equilibration containing the data for each cuboidal cell. The level of data available in the HISTORY files (i.e.
keytrj: 0 = particle positions, 1 = particle positions and velocities, 2 = particle positions, velocities and forces)
dictates which of the following properties are output:

• the number of unfrozen beads

• densities for each bead species

• volume fractions for bead species

• volume fractions for molecule types (including a ‘type’ for all unbonded beads)

• the mean velocity for all unfrozen beads

• overall temperature

• partial temperatures for each dimension (i.e. for dimension 𝛼, 𝑇𝛼 =
∑︀

𝑖 𝑚𝑖𝑣
2
𝑖,𝛼

𝑁)

• local pressure tensors (based on Method of Planes [138])

15.2. DL_MESO_DPD 907

DL_MESO Technical Manual, Release 2.7

An additional file, averages.vtk, is also produced with time-averaged values for the species densities, velocities,
overall and partial temperatures, and local pressure tensor in each cuboidal cell based on the starting/finishing
frames and frequency selected.

The scalar properties (including compositions) may be considered to act across the entire volumes of the cells,
while the velocities and pressure tensors are representative of the cell centres.

15.2.17 widom_insertion.F90

widom_insertion.F90 is a utility written in Fortran that can carry out Widom insertions to determine excess
chemical potentials [149][150]. This utility reads in trajectories from HISTORY output data files generated by
DL_MESO_DPD, along with relevant simulation and interaction information from CONTROL and :field input
files, and randomly inserts a user-selected particle or molecule at different positions (and orientations) in the sim-
ulation box. The change in potential energy due to each insertion of particle or molecule 𝑖 (∆𝑈𝑖) is measured and
an ensemble average can be used to calculate the excess chemical potential, i.e.

𝜇𝑒𝑥
𝑖 = −𝑘𝐵𝑇 ln

⟨
exp

(︂
−∆𝑈𝑖

𝑘𝐵𝑇

)︂⟩
for a constant volume ensemble, or

𝜇𝑒𝑥
𝑖 = −𝑘𝐵𝑇 ln

⎛⎝
⟨
𝑉 exp

(︁
−Δ𝑈𝑖

𝑘𝐵𝑇

)︁⟩
⟨𝑉 ⟩

⎞⎠
for simulations with varying volume (constant pressure, surface area or surface tension).

The source code for this utility can read HISTORY files generated by the serial and parallel versions of
DL_MESO_DPD: endianness checks in the utility mean it should be possible to run the utility on a different
machine to that used to generate the trajectory data. It can exploit OpenMP multithreading to speed up calcu-
lations: the source code includes directives to use different blocks of code depending on whether or not it is
compiled with OpenMP.

If f90 is the command for the available Fortran compiler, the executable widom.exe can be produced by typing

f90 -o widom.exe widom_insertion.F90

for the serial (single thread) version, or by typing

f90 -o widom.exe -openmp widom_insertion.F90

for the OpenMP multithreaded version, substituting -openmp with the required compiler flag for invoking
OpenMP (e.g. -fopenmp for gfortran). The utility can be run either at the command line or via the GUI in
Process DPD Data.

This utility can be run with the following command line arguments:

• -p [SPECIES]

Insert a single particle of species [SPECIES] for each trial insertion

• -m [MOLE]

Insert a molecule of type [MOLE] for each trial insertion

• -rm

Use a randomly chosen molecule in each trajectory frame as a template for molecule trial insertion
(overriding default of configuration given in FIELD file)

• -n 𝑖

Set number of trial insertions per trajectory frame to 𝑖

• -sf 𝑖

Start accumulating statistics on trial insertions from trajectory frame 𝑖 (overriding default of 1)

908 Chapter 15. DL_MESO Utilities

DL_MESO Technical Manual, Release 2.7

• -sl 𝑖

Stop accumulating statistics on trial insertions at trajectory frame 𝑖 (overriding default of last available
frame)

• -r 𝑖

Set random number generator seed to 𝑖 (only if RNDSEED file is unavailable)

The particle or molecule type and the number of trial insertions per frame are essential to carry out Widom
insertions: if these are not included in the command line, the user will be asked to type in these data.

The utility will produce two files: a file called RNDSEED giving the final state of the random number generator
(which can be used as the initial state for future calculations), and one called CHEMPOT_*, ending with the name
of the bead species or molecule being inserted. The latter plottable file contains five columns with the time (in
DPD units), the ‘instantaneous’ block-averaged excess chemical potential for the trajectory frame and its standard
deviation, the time-averaged excess chemical potential and its standard deviation. The utility will also output the
same information for each trajectory timestep to the screen or standard output.

15.2. DL_MESO_DPD 909

DL_MESO Technical Manual, Release 2.7

910 Chapter 15. DL_MESO Utilities

APPENDIX

A

DL_MESO LICENCE AGREEMENT (ACADEMIC PURPOSES)

1. DEFINITIONS AND INTERPRETATION

1.1. In this Licence Agreement the following expressions have the meanings set opposite:

Academic Purposes fundamental or basic research or academic teaching, including any funda-
mental research that is funded by any public or charitable body, but not any purpose that
generates revenue (as opposed to grant income) for the Licensee or any third party. Any
research that is wholly or partially sponsored by any profit making organisation or that is
carried out for the benefit of any profit-making organisation is not an Academic Purpose;

a Derived Work any modification of, or enhancement or improvement to, any of the DL_MESO
Software and any software or other work developed or derived from any of the DL_MESO
Software;

the DL_MESO Software the release and version of the DL_MESO Software downloaded by
the Licensee from the DL_MESO Website immediately after the Licensee agrees to the
terms and conditions of this Licence Agreement;

the DL_MESO Website the website with the URL http://www.ccp5.ac.uk/DL_MESO, and any
website that from time to time replaces that website;

a Harmful Element any virus, worm, time bomb, time lock, drop dead device, trap and access
code or anything else that might disrupt, disable, harm or impede the operation of any infor-
mation system, or that might corrupt, damage, destroy or render inaccessible any software,
data or file on, or that may allow any unauthorised person to gain access to, any information
system or any software, data or file on it;

Intellectual Property patents, trade marks, service marks, registered designs, copyrights,
database rights, design rights, know-how, confidential information, applications for any of
the above, and any similar right recognised from time to time in any jurisdiction, together
with all rights of action in relation to the infringement of any of the above;

the Licence Period the period beginning when the Licensee agrees to the terms and conditions
of this Licence Agreement and downloads the DL_MESO Software from the DL_MESO
Website and ending on the termination of this Licence Agreement under clause 5.2.

2. LICENCE

2.1. UKRI STFC grants the Licensee an indefinite, non-exclusive, non-transferable, royalty free licence
to use, copy, modify, and enhance the DL_MESO Software during the Licence Period on the terms and
conditions of this Licence Agreement provided that:

2.1.1. the Licensee may not distribute any of the DL_MESO Software or any Derived Work to
any third party, or share their use with any third party (whether free of charge or otherwise), and
the Licensee may not sub-license the use of any of the DL_MESO Software to any third party
unless, in each case, that third party has complied with clause 2.3 below;

2.1.2. the Licensee may not use the DL_MESO Software on behalf of, or for the benefit of, any
third party (including, without limitation, using it to provide bureau, outsourcing or application
services or facilities management services) party unless that third party has complied with clause
2.3 below; and

911

http://www.ccp5.ac.uk/DL_MESO

DL_MESO Technical Manual, Release 2.7

2.1.3. the DL_MESO Software and any Derived Work may be used by the Licensee and its
employees and registered students for Academic Purposes only.

2.2. If the Licensee wishes to use the DL_MESO Software or any Derived Work in any way except for
Academic Purposes, or wishes to distribute or make the DL_MESO Software or any Derived Work available
to any third party for non-Academic Purposes, it must obtain a commercial licence from UKRI STFC. UKRI
STFC may refuse to grant the Licensee a commercial licence. If UKRI STFC agrees to grant a commercial
licence, that licence will be on such terms and conditions as UKRI STFC sees fit.

2.3. If the Licensee wishes to carry out any collaboration for Academic Purposes with any third party and
that third party needs to use the DL_MESO Software in connection with that collaboration, or if the Licensee
wishes to make the DL_MESO Software available online to any third party for Academic Purposes, the
Licensee must direct that third party to the DL_MESO Website. That third party may use the DL_MESO
Software and any Derived Work (whether obtained from UKRI STFC or from the Licensee) only if it has
completed the registration process on the DL_MESO Website and agreed to the terms and conditions of the
Licence Agreement for the use of the DL_MESO Software for Academic Purposes that then appear on the
DL_MESO Website.

2.4. This Licence Agreement allows the Licensee to use only the release or version of the DL_MESO
Software downloaded by the Licensee from the DL_MESO Website immediately after the Licensee agrees
to the terms and conditions of this Licence Agreement; the Licensee must acquire a new licence for any
future release or version of the DL_MESO Software that it wishes to use.

2.5. The Licensee will not tamper with, or remove, any copyright or other proprietary notice or any dis-
claimer that appears on or in any part of the DL_MESO Software, and will reproduce the same in all copies
of any of the DL_MESO Software and in all Derived Works.

3. WARRANTIES AND LIABILITY

3.1. The DL_MESO Software is provided for Academic Purposes free of charge. Therefore UKRI STFC
gives no warranty and makes no representation in relation to the DL_MESO Software or any assistance or
advice that UKRI STFC may give in connection with the DL_MESO Software. The Licensee will indemnify
UKRI STFC against any and all claims arising as a result of the Licensee having made any of the DL_MESO
Software or any Derived Work available to any third party.

3.2. Before using any of the DL_MESO Software, the Licensee will check that the DL_MESO Software
does not contain any Harmful Element. UKRI STFC does not warrant that the DL_MESO Software will run
without interruption or be error free, or be free from any Harmful Element. UKRI STFC is not obliged to
provide any support or error correction service, assistance or advice in relation to the DL_MESO Software,
but the Licensee may access any error corrections and online assistance that UKRI STFC chooses to make
available on the DL_MESO Website from time to time. If UKRI STFC does provide that sort of service,
assistance or advice, subject to clause 3.7, UKRI STFC will not be liable for any loss or damage suffered
by the Licensee as a result.

3.3. UKRI STFC will not be liable to the Licensee to the extent that any loss or damage is caused: by
the Licensee’s failure to implement, or the Licensee’s delay in implementing, any correction or advice in
relation to the DL_MESO Software that UKRI STFC has made available on the DL_MESO Website; or by
the Licensee’s failure to acquire a licence of and to implement any new release or version of the DL_MESO
Software that would have remedied or mitigated the effects of any error, defect, bug or deficiency in the
DL_MESO Software.

3.4. The Licensee acknowledges that proper use of the DL_MESO Software and any Derived Work is
dependent on the Licensee, its employees and students exercising proper skill and care in inputting data and
interpreting the output provided by the DL_MESO Software or that Derived Work. UKRI STFC will not
be liable for the consequences of decisions taken by the Licensee or any other person on the basis of that
output. UKRI STFC does not accept any responsibility for any use which may be made by the Licensee of
that output, nor for any reliance which may be placed on that output, nor for advice or information given in
connection with that output.

3.5. Subject to clause 3.7, UKRI STFC’s liability or any breach of this Licence Agreement, any negligence
or arising in any other way out of the subject matter of this Licence Agreement or the use of the DL_MESO
Software, will not extend to any incidental or consequential damages or losses, or any loss of profits, loss
of revenue, loss of data, loss of contracts or opportunity, whether direct or indirect, even if the Licensee has

912 Appendix A. DL_MESO Licence Agreement (Academic Purposes)

DL_MESO Technical Manual, Release 2.7

advised UKRI STFC of the possibility of those losses arising or if they were or are within UKRI STFC’s
contemplation.

3.6. Subject to clause 3.7, the aggregate liability of UKRI STFC for any and all breaches of this Licence
Agreement, any negligence or arising in any other way out of the subject matter of this Licence Agreement
or the use of the DL_MESO Software will not exceed in total £5000.

3.7. Nothing in this Licence Agreement limits or excludes UKRI STFC’s liability for death or personal
injury caused by its negligence or for any fraud, or for any sort of liability that, by law, cannot be limited or
excluded.

3.8. The express undertakings and given by UKRI STFC in this Licence Agreement and the terms of this
Licence Agreement are in lieu of all warranties, conditions, terms, undertakings and obligations on the part
of UKRI STFC, whether express or implied by statute, common law, custom, trade usage, course of dealing
or in any other way. All of these are excluded to the fullest extent permitted by law.

4. INTELLECTUAL PROPERTY RIGHTS AND ACKNOWLEDGEMENTS

4.1. Nothing in this Licence Agreement assigns or transfers any Intellectual Property Rights in any of the
DL_MESO Software. Those rights are reserved to UKRI STFC.

4.2. The Licensee will ensure that, if any of its employees or students publishes any article or other material
resulting from, or relating to, a project or work undertaken with the assistance of any part of the DL_MESO
Software, that publication will contain the following acknowledgement:

“DL_MESO is a mesoscale simulation package written by R. Qin, W. Smith and M. A. Seaton
and has been obtained from UKRI STFC’s Daresbury Laboratory via the website http://www.
ccp5.ac.uk/DL_MESO”

and cite the following reference:

“M.A. Seaton, R.L. Anderson, S. Metz & W. Smith, Mol. Sim., 39 (10), 796-821 (2013)”.

5. TERMINATION

5.1. This Licence Agreement will take effect and the Licence Period will start when the Licensee has agreed
to the terms and conditions of this Licence Agreement and downloaded the DL_MESO Software from the
DL_MESO Website.

5.2. This Licence Agreement will terminate immediately and automatically if:

5.2.1. the Licensee is in breach of this Licence Agreement; or

5.2.2. the Licensee becomes insolvent, or if an order is made or a resolution is passed for its
winding up (except voluntarily for the purpose of solvent amalgamation or reconstruction), or if
an administrator, administrative receiver or receiver is appointed over the whole or any part of its
assets, or if it makes any arrangement with its creditors.

5.3. The Licensee’s right to use the DL_MESO Software will cease immediately on the termination of this
Licence Agreement, and the Licensee will destroy all copies of the DL_MESO Software that it or any of its
employees or students then holds.

5.4. Clauses 1, 2.2, 3, 4, 5.3, 5.4, 5.5 and 6 will survive the expiry of the Licence Period and the termination
of this Licence Agreement, and will continue indefinitely.

5.5. UKRI STFC may stop providing any assistance or advice in relation to, or any corrections, new releases
or versions of the DL_MESO, and may stop updating or publishing the DL_MESO Website at any time.

6. GENERAL

6.1. Headings: The headings in this Licence Agreement are for ease of reference only; they do not affect its
construction or interpretation.

6.2. Assignment etc: The Licensee may not assign or transfer this Licence Agreement as a whole, or any of
its rights or obligations under it, without first obtaining the written consent of UKRI STFC.

6.3. Illegal/unenforceable provisions: If the whole or any part of any provision of this Licence Agreement is
void or unenforceable in any jurisdiction, the other provisions of this Licence Agreement, and the rest of the

913

http://www.ccp5.ac.uk/DL_MESO
http://www.ccp5.ac.uk/DL_MESO

DL_MESO Technical Manual, Release 2.7

void or unenforceable provision, will continue in force in that jurisdiction, and the validity and enforceability
of that provision in any other jurisdiction will not be affected.

6.4. Waiver of rights: If UKRI STFC fails to enforce, or delays in enforcing, an obligation of the Licensee,
or fails to exercise, or delays in exercising, a right under this Licence Agreement, that failure or delay will
not affect its right to enforce that obligation or constitute a waiver of that right. Any waiver by UKRI STFC
of any provision of this Licence Agreement will not, unless expressly stated to the contrary, constitute a
waiver of that provision on a future occasion.

6.5. Entire agreement: This Licence Agreement constitutes the entire agreement between the parties relating
to its subject matter. The Licensee acknowledges that it has not entered into this Licence Agreement on the
basis of any warranty, representation, statement, agreement or undertaking except those expressly set out
in this Licence Agreement. The Licensee waives any claim for breach of, or any right to rescind this
Licence Agreement in respect of, any representation which is not an express provision of this Licence
Agreement. However, this clause does not exclude any liability which UKRI STFC may have to the Licensee
(or any right which the Licensee may have to rescind this Licence Agreement) in respect of any fraudulent
misrepresentation or fraudulent concealment before the signing of this Licence Agreement.

6.6. Amendments: No variation of, or amendment to, this Licence Agreement will be effective unless it is
made in writing and signed by each party’s representative.

6.7. Third parties: No one who is not a party to this Licence Agreement has any right to prevent the amend-
ment of this Licence Agreement or its termination, and no one except a party to this Licence Agreement
may enforce any benefit conferred by this Licence Agreement, unless this Licence Agreement expressly
provides otherwise.

6.8. Governing law: This Licence Agreement is governed by, and is to be construed in accordance with,
English law. The English Courts will have exclusive jurisdiction to deal with any dispute which has arisen
or may arise out of or in connection with this Licence Agreement, except that UKRI STFC may bring
proceedings against the Licensee or for an injunction in any jurisdiction.

914 Appendix A. DL_MESO Licence Agreement (Academic Purposes)

BIBLIOGRAPHY

[1] Y. Afshar, F. Schmid, A. Pishevar, and S. Worley. Exploiting seeding of random number generators for
efficient domain decomposition parallelization of dissipative particle dynamics. Computer Physics Com-
munications, 184(4):1119–1128, April 2013. doi:10.1016/j.cpc.2012.12.003.

[2] Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. Journal of
Chemical Physics, 72(4):2384–2393, 1980. doi:10.1063/1.439486.

[3] Hans C. Andersen. RATTLE: a “velocity” version of the SHAKE algorithm for molecular dynamics calcu-
lations. Journal of Computational Physics, 52(1):24–34, 1983. doi:10.1016/0021-9991(83)90014-1.

[4] Richard L. Anderson, David J. Bray, Annalaura Del Regno, Michael A. Seaton, Andrea S. Fer-
rante, and Patrick B. Warren. Micelle formation in alkyl sulfate surfactants using dissipative particle
dynamics. Journal of Chemical Theory and Computation, 14(5):2633–2643, 2018. PMID: 29570296.
doi:10.1021/acs.jctc.8b00075.

[5] Santosh Ansumali and Iliya V. Karlin. Kinetic boundary conditions in the lattice Boltzmann method. Phys-
ical Review E, 66:026311, August 2002. doi:10.1103/PhysRevE.66.026311.

[6] Abdel Monim Mohamed Ali Mohamed Hassan Artoli. Mesoscopic computational haemodynamics. PhD
thesis, University of Amsterdam, October 2003.

[7] Pietro Asinari. Generalized local equilibrium in the cascaded lattice Boltzmann method. Physical Review
E, 78:016701, July 2008. doi:10.1103/PhysRevE.78.016701.

[8] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecu-
lar dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8):3684–3690, 1984.
doi:10.1063/1.448118.

[9] Gerhard Besold, Ilpo Vattulainen, Mikko Karttunen, and James M. Polson. Towards better integrators
for dissipative particle dynamics simulations. Physical Review E, 62(6):R7611–R7614, December 2000.
doi:10.1103/PhysRevE.62.R7611.

[10] P. L. Bhatnagar, E. R. Gross, and M. Krook. A model for collision processes in gases. I. Small amplitude
processes in charged and neutral one-component systems. Physical Review, 94(3):511–525, May 1954.
doi:10.1103/PhysRev.94.511.

[11] Eugene C. Bingham. Fluidity and plasticity. McGraw-Hill, first edition, 1922.

[12] J. Boyd, J. Buick, and S. Green. A second-order accurate lattice Boltzmann non-Newtonian flow model.
Journal of Physics A: Mathematical and General, 39(46):14241, 2006. doi:10.1088/0305-4470/39/46/001.

[13] A. J. Briant, P. Papatzacos, and J. M. Yeomans. Lattice Boltzmann simulations of contact line motion in a
liquid-gas system. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 360(1792):485–495, 2002. doi:10.1098/rsta.2001.0943.

[14] I. J. Bush, I. T. Todorov, and W. Smith. A DAFT DL_POLY distributed memory adaptation of the
smoothed particle mesh Ewald method. Computer Physics Communications, 175(5):323–329, September
2006. doi:10.1016/j.cpc.2006.05.001.

[15] R. Byron Bird and Pierre J. Carreau. A nonlinear viscoelastic model for polymer solutions and melts–I.
Chemical Engineering Science, 23(5):427–434, 1968. doi:10.1016/0009-2509(68)87018-6.

915

https://doi.org/10.1016/j.cpc.2012.12.003
https://doi.org/10.1063/1.439486
https://doi.org/10.1016/0021-9991(83)90014-1
https://doi.org/10.1021/acs.jctc.8b00075
https://doi.org/10.1103/PhysRevE.66.026311
https://doi.org/10.1103/PhysRevE.78.016701
https://doi.org/10.1063/1.448118
https://doi.org/10.1103/PhysRevE.62.R7611
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1088/0305-4470/39/46/001
https://doi.org/10.1098/rsta.2001.0943
https://doi.org/10.1016/j.cpc.2006.05.001
https://doi.org/10.1016/0009-2509(68)87018-6

DL_MESO Technical Manual, Release 2.7

[16] Norman F. Carnahan and Kenneth E. Starling. Intermolecular repulsions and the equation of state for fluids.
AIChE Journal, 18(6):1184–1189, 1972. doi:10.1002/aic.690180615.

[17] Pierre J. Carreau, Ian F. MacDonald, and R. Byron Bird. A nonlinear viscoelastic model for poly-
mer solutions and melts–II. Chemical Engineering Science, 23(8):901–911, 1968. doi:10.1016/0009-
2509(68)80024-7.

[18] Mauricio Carrillo-Tripp, Humberto Saint-Martin, and Iván Ortega-Blake. A comparative study of the
hydration of Na+ and K+ with refined polarizable model potentials. Journal of Chemical Physics,
118(15):7062–7073, 2003. doi:10.1063/1.1559673.

[19] N. Casson. Flow equation for pigment oil suspensions of the printing ink type. In C. C. Mill, editor, Rheol-
ogy of disperse systems, 84–102. Pergamon Press, 1959.

[20] Zhenhua Chai, Baochang Shi, Zhaoli Guo, and Fumei Rong. Multiple-relaxation-time lattice Boltzmann
model for generalized Newtonian fluid flows. Journal of Non-Newtonian Fluid Mechanics, 166(5):332–342,
2011. doi:10.1016/j.jnnfm.2011.01.002.

[21] Cheng Chang, Chih-Hao Liu, and Chao-An Lin. Boundary conditions for lattice Boltzmann simula-
tions with complex geometry flows. Computers & Mathematics with Applications, 58(5):940–949, 2009.
doi:10.1016/j.camwa.2009.02.016.

[22] A. Chatterjee. Modification to Lees-Edwards periodic boundary condition for dissipative particle
dynamics simulation with high dissipation rates. Molecular Simulation, 33(15):1233–1236, 2007.
doi:10.1080/08927020701713894.

[23] Shiyi Chen and Gary D. Doolen. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Me-
chanics, 30(1):329–364, 1998. doi:10.1146/annurev.fluid.30.1.329.

[24] Daniele Coslovich, Jean-Pierre Hansen, and Gerhard Kahl. Ultrasoft primitive model of polyionic so-
lutions: Structure, aggregation, and dynamics. Journal of Chemical Physics, 134(24):244514, 2011.
doi:10.1063/1.3602469.

[25] U. D'Ortona, D. Salin, Marek Cieplak, Renata B. Rybka, and Jayanth R. Banavar. Two-color nonlinear
Boltzmann cellular automata: Surface tension and wetting. Physical Review E, 51(4):3718–3728, April
1995. doi:10.1103/PhysRevE.51.3718.

[26] Burkhard Dünweg and Wolfgang Paul. Brownian dynamics simulations without Gaussian random numbers.
International Journal of Modern Physics C, 2(3):817–827, 1991. doi:10.1142/S0129183191001037.

[27] Paul J. Dellar. Bulk and shear viscosities in lattice Boltzmann equations. Physical Review E, 64(3):031203,
August 2001. doi:10.1103/PhysRevE.64.031203.

[28] Michael M. Dupin, Ian Halliday, and Chris M. Care. Simulation of a microfluidic flow-focusing device.
Physical Review E, 73(5):055701, 2006. doi:10.1103/PhysRevE.73.055701.

[29] A. Dupuis and J. M. Yeomans. Modeling droplets on superhydrophobic surfaces: equilibrium states and
transitions. Langmuir, 21(6):2624–2629, 2005. doi:10.1021/la047348i.

[30] Pep Español. Hydrodynamics from dissipative particle dynamics. Physical Review E, 52(2):1734–1742,
August 1995. doi:10.1103/PhysRevE.52.1734.

[31] Ulrich Essmann, Lalith Perera, Max L. Berkowitz, Tom Darden, Hsing Lee, and Lee G. Peder-
sen. A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19):8577–8593, 1995.
doi:10.1063/1.470117.

[32] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik,
369(3):253–287, 1921. doi:10.1002/andp.19213690304.

[33] Linlin Fei, Kai H. Luo, and Qing Li. Three-dimensional cascaded lattice Boltzmann method: im-
proved implementation and consistent forcing scheme. Physical Review E, 97:053309, May 2018.
doi:10.1103/PhysRevE.97.053309.

[34] Linlin Fei and Kai Hong Luo. Consistent forcing scheme in the cascaded lattice Boltzmann method. Phys-
ical Review E, 96:053307, November 2017. doi:10.1103/PhysRevE.96.053307.

916 Bibliography

https://doi.org/10.1002/aic.690180615
https://doi.org/10.1016/0009-2509(68)80024-7
https://doi.org/10.1016/0009-2509(68)80024-7
https://doi.org/10.1063/1.1559673
https://doi.org/10.1016/j.jnnfm.2011.01.002
https://doi.org/10.1016/j.camwa.2009.02.016
https://doi.org/10.1080/08927020701713894
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1063/1.3602469
https://doi.org/10.1103/PhysRevE.51.3718
https://doi.org/10.1142/S0129183191001037
https://doi.org/10.1103/PhysRevE.64.031203
https://doi.org/10.1103/PhysRevE.73.055701
https://doi.org/10.1021/la047348i
https://doi.org/10.1103/PhysRevE.52.1734
https://doi.org/10.1063/1.470117
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1103/PhysRevE.97.053309
https://doi.org/10.1103/PhysRevE.96.053307

DL_MESO Technical Manual, Release 2.7

[35] Linlin Fei, Kai Hong Luo, Chuandong Lin, and Qing Li. Modeling incompressible thermal flows using
a central-moments-based lattice Boltzmann method. International Journal of Heat and Mass Transfer,
120:624–634, 2018. doi:10.1016/j.ijheatmasstransfer.2017.12.052.

[36] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings
of the Institute of Electrical and Electronics Engineers (IEEE), 93(2):216–231, January 2005.
doi:10.1109/JPROC.2004.840301.

[37] A. A. Gavrilov, A. V. Chertovich, and E. Yu. Kramarenko. Dissipative particle dynamics for systems
with high density of charges: implementation of electrostatic interactions. Journal of Chemical Physics,
145(17):174101, 2016. doi:10.1063/1.4966149.

[38] Martin Geier, Andreas Greiner, and Jan G. Korvink. Cascaded digital lattice Boltzmann automata for high
Reynolds number flow. Physical Review E, 73:066705, June 2006. doi:10.1103/PhysRevE.73.066705.

[39] A. Ghoufi and P. Malfreyt. Mesoscale modeling of the water liquid-vapor interface: A surface tension
calculation. Physical Review E, 83:051601, May 2011. doi:10.1103/PhysRevE.83.051601.

[40] J. B. Gibson, K. Chen, and S. Chynoweth. The equilibrium of a velocity-Verlet type algorithm for
DPD with finite time steps. International Journal of Modern Physics C, 10(1):241–261, February 1999.
doi:10.1142/S0129183199000176.

[41] Irina Ginzburg, Frederik Verhaeghe, and Dominique d'Humières. Study of simple hydrodynamic solu-
tions with the two-relaxation-times lattice Boltzmann scheme. Communications in Computational Physics,
3(3):519–581, March 2008. URL: http://www.global-sci.com/freedownload/v3_519.pdf.

[42] Irina Ginzburg, Frederik Verhaeghe, and Dominique d'Humières. Two-relaxation-time lattice Boltzmann
scheme: About parametrization, velocity, pressure and mixed boundary conditions. Communications in
Computational Physics, 3(2):427–478, February 2008. URL: http://www.global-sci.com/freedownload/v3_
427.pdf.

[43] Shuai Gong and Ping Cheng. Numerical investigation of droplet motion and coalescence by an improved
lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 53(0):93–104,
2012. doi:10.1016/j.compfluid.2011.09.013.

[44] Minerva González-Melchor, Estela Mayoral, Mar\'ıa Eugenia Velázquez, and José Alejandre. Electro-
static interactions in dissipative particle dynamics using the Ewald sums. Journal of Chemical Physics,
125(22):224107, 2006. doi:10.1063/1.2400223.

[45] R. D. Groot. Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and
anionic surfactants. Journal of Chemical Physics, 118(24):11265–11277, 2003. doi:10.1063/1.1574800.

[46] Robert D. Groot and Patrick B. Warren. Dissipative particle dynamics: Bridging the gap be-
tween atomistic and mesoscopic simulation. Journal of Chemical Physics, 107(11):4423–4435, 1997.
doi:10.1063/1.474784.

[47] Andrew J. Gunstensen, Daniel H. Rothman, Stéphane Zaleski, and Gianluigi Zanetti. Lat-
tice Boltzmann model of immiscible fluids. Physical Review A, 43(8):4320–4327, April 1991.
doi:10.1103/PhysRevA.43.4320.

[48] Zhaoli Guo, Baochang Shi, and Chuguang Zheng. A coupled lattice BGK model for the Boussinesq equa-
tions. International Journal for Numerical Methods in Fluids, 39(4):325–342, 2002. doi:10.1002/fld.337.

[49] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the forcing term in the lattice
Boltzmann method. Physical Review E, 65(4):046308, April 2002. doi:10.1103/PhysRevE.65.046308.

[50] I. Halliday, A. P. Hollis, and C. M. Care. Lattice Boltzmann algorithm for continuum multicomponent flow.
Physical Review E, 76(2):026708, 2007. doi:10.1103/PhysRevE.76.026708.

[51] I. Halliday, R. Law, C. M. Care, and A. Hollis. Improved simulation of drop dynamics in
a shear flow at low Reynolds and capillary number. Physical Review E, 73(5):056708, 2006.
doi:10.1103/PhysRevE.73.056708.

[52] Cecil Hastings. Approximations for digital computers. Princeton University Press, Princeton, NJ, 1955.

[53] Xiaoyi He and Li-Shi Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation. Jour-
nal of Statistical Physics, 88(3–4):927–944, 1997. doi:10.1023/B:JOSS.0000015179.12689.e4.

Bibliography 917

https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.052
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1063/1.4966149
https://doi.org/10.1103/PhysRevE.73.066705
https://doi.org/10.1103/PhysRevE.83.051601
https://doi.org/10.1142/S0129183199000176
http://www.global-sci.com/freedownload/v3_519.pdf
http://www.global-sci.com/freedownload/v3_427.pdf
http://www.global-sci.com/freedownload/v3_427.pdf
https://doi.org/10.1016/j.compfluid.2011.09.013
https://doi.org/10.1063/1.2400223
https://doi.org/10.1063/1.1574800
https://doi.org/10.1063/1.474784
https://doi.org/10.1103/PhysRevA.43.4320
https://doi.org/10.1002/fld.337
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1103/PhysRevE.76.026708
https://doi.org/10.1103/PhysRevE.73.056708
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4

DL_MESO Technical Manual, Release 2.7

[54] Xinoyi He, Xiaowen Shan, and Gary D. Doolen. Discrete Boltzmann equation model for nonideal gases.
Physical Review E, 57(1):R13–R16, January 1998. doi:10.1103/PhysRevE.57.R13.

[55] Winslow H. Herschel and Ronald Bulkley. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-
Zeitschrift, 39(4):291–300, 8 1926. doi:10.1007/BF01432034.

[56] F. J. Higuera and J. Jiménez. Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters),
9(7):663–668, 1989. doi:10.1209/0295-5075/9/7/009.

[57] R. W. Hockney and J. W. Eastwood. Computer simulation using particles. McGraw-Hill International,
1981.

[58] D. J. Holdych, D. Rovas, J. G. Georgiadis, and R. O. Buckius. An improved hydrodynamics formulation for
multiphase flow Lattice-Boltzmann models. International Journal of Modern Physics C, 9(8):1393–1404,
1998. doi:10.1142/S0129183198001266.

[59] Kainan Hu, Jianping Meng, Hongwu Zhang, Xiao-Jun Gu, David R. Emerson, and Yonghao Zhang. A
comparative study of boundary conditions for lattice Boltzmann simulations of high Reynolds number
flows. Computers & Fluids, 156:1–8, 2017. doi:10.1016/j.compfluid.2017.06.008.

[60] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD: visual molecular dynamics. Journal of
Molecular Graphics, 14(1):33–38, 1996. doi:10.1016/0263-7855(96)00018-5.

[61] M. K. Ikeda, P. R. Rao, and L. A. Schaefer. A thermal multicomponent lattice Boltzmann model. Computers
& Fluids, 101:250–262, 2014. doi:10.1016/j.compfluid.2014.06.006.

[62] Takaji Inamuro, Masato Yoshino, Hiroshi Inoue, Riki Mizuno, and Fumimaru Ogino. A lattice Boltzmann
method for a binary miscible fluid mixture and its application to a heat-transfer problem. Journal of Com-
putational Physics, 179(1):201–215, 2002. doi:10.1006/jcph.2002.7051.

[63] Takaji Inamuro, Masato Yoshino, and Fumimaru Ogino. A non-slip boundary condition for lattice Boltz-
mann simulations. Physics of Fluids, 7(12):2928–2930, 1995. doi:10.1063/1.868766.

[64] Ask F. Jakobsen. Constant-pressure and constant-surface tension simulations in dissipative particle dynam-
ics. Journal of Chemical Physics, 122(12):124901, 2005. doi:10.1063/1.1867374.

[65] Erik Johansson. Simulating fluid flow and heat transfer using dissipative particle dynamics. Project re-
port, Department of Energy Sciences, Faculty of Engineering, Lund University, Department of En-
ergy Sciences, Faculty of Engineering, Lund University, Box 118, 22100 Lund, Sweden, 2012. URL:
http://www.ht.energy.lth.se/fileadmin/ht/Kurser/MVK160/2012/Erik_Johansson.pdf.

[66] J. E. Jones. On the determination of molecular fields. II. From the equation of state of a gas. Proceedings
of the Royal Society of London Series A, 106(738):463–477, October 1924. doi:10.1098/rspa.1924.0082.

[67] Simon Jury, Peter Bladon, Mike Cates, Sujata Krishna, Maarten Hagen, Noel Ruddock, and Patrick Warren.
Simulation of amphiphilic mesophases using dissipative particle dynamics. Physical Chemistry Chemical
Physics, 1(9):2051–2056, 1999. doi:10.1039/A809824G.

[68] J. M. V. A. Koelman and P. J. Hoogerbrugge. Dynamic simulations of hard-sphere suspensions under steady
shear. EPL (Europhysics Letters), 21(3):363–368, 1993. doi:10.1209/0295-5075/21/3/018.

[69] A. L. Kupershtokh and D. A. Medvedev. Lattice Boltzmann equation method in electrohydrodynamic prob-
lems. Journal of Electrostatics, 64(7–9):581–585, 2006. doi:10.1016/j.elstat.2005.10.012.

[70] A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov. On equations of state in a lattice Boltzmann method.
Computers & Mathematics with Applications, 58(5):965–974, 2009. Mesoscopic Methods in Engineering
and Science. doi:10.1016/j.camwa.2009.02.024.

[71] A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, and J. J. Derksen. Three-dimensional binary-liquid lat-
tice Boltzmann simulation of microchannels with rectangular cross sections. Chemical Engineering Jour-
nal, 178:306–316, 2011. doi:10.1016/j.cej.2011.10.010.

[72] Martin Lísal, John K. Brennan, and Josep Bonet Avalos. Dissipative particle dynamics at isothermal, iso-
baric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms. Journal of Chem-
ical Physics, 135(20):204105, 2011. doi:10.1063/1.3660209.

918 Bibliography

https://doi.org/10.1103/PhysRevE.57.R13
https://doi.org/10.1007/BF01432034
https://doi.org/10.1209/0295-5075/9/7/009
https://doi.org/10.1142/S0129183198001266
https://doi.org/10.1016/j.compfluid.2017.06.008
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/j.compfluid.2014.06.006
https://doi.org/10.1006/jcph.2002.7051
https://doi.org/10.1063/1.868766
https://doi.org/10.1063/1.1867374
http://www.ht.energy.lth.se/fileadmin/ht/Kurser/MVK160/2012/Erik_Johansson.pdf
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1039/A809824G
https://doi.org/10.1209/0295-5075/21/3/018
https://doi.org/10.1016/j.elstat.2005.10.012
https://doi.org/10.1016/j.camwa.2009.02.024
https://doi.org/10.1016/j.cej.2011.10.010
https://doi.org/10.1063/1.3660209

DL_MESO Technical Manual, Release 2.7

[73] Pierre Lallemand and Li-Shi Luo. Theory of the lattice Boltzmann method: Dispersion, dissipa-
tion, isotropy, Galilean invariance, and stability. Physical Review E, 61(6):6546–6562, June 2000.
doi:10.1103/PhysRevE.61.6546.

[74] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and Andreas Michler. Straight ve-
locity boundaries in the lattice Boltzmann method. Physical Review E, 77(5):056703, May 2008.
doi:10.1103/PhysRevE.77.056703.

[75] Taehun Lee and Ching-Long Lin. A stable discretization of the lattice Boltzmann equation for simulation
of incompressible two-phase flows at high density ratio. Journal of Computational Physics, 206(1):16–47,
June 2005. doi:10.1016/j.jcp.2004.12.001.

[76] A. W. Lees and S. F. Edwards. The computer study of transport processes under extreme conditions. Journal
of Physics C, 5(15):1921–1928, 1972. doi:10.1088/0022-3719/5/15/006.

[77] Benedict Leimkuhler and Xiaocheng Shang. Pairwise adaptive thermostats for improved accuracy and sta-
bility in dissipative particle dynamics. Journal of Computational Physics, 324:174–193, November 2016.
doi:10.1016/j.jcp.2016.07.034.

[78] M. Leslie and N. J. Gillan. The energy and elastic dipole tensor of defects in ionic crystals calculated by
the supercell method. Journal of Physics C, 18(5):973, 1985. doi:10.1088/0022-3719/18/5/005.

[79] Q. Li, K. H. Luo, and X. J. Li. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase
flows. Physical Review E, 86:016709, July 2012. doi:10.1103/PhysRevE.86.016709.

[80] Qing Li, K. H. Luo, Q. J. Kang, and Q. Chen. Contact angles in the pseudopotential lattice Boltzmann
modeling of wetting. Physical Review E, 90:053301, November 2014. doi:10.1103/PhysRevE.90.053301.

[81] S. V. Lishchuk, C. M. Care, and I. Halliday. Lattice Boltzmann algorithm for surface tension with greatly
reduced microcurrents. Physical Review E, 67(3):036701, March 2003. doi:10.1103/PhysRevE.67.036701.

[82] Qin Lou, Zhaoli Guo, and Baochang Shi. Evaluation of outflow boundary conditions for two-phase lattice
Boltzmann equation. Physical Review E, 87:063301, June 2013. doi:10.1103/PhysRevE.87.063301.

[83] C. P. Lowe. An alternative approach to dissipative particle dynamics. EPL (Europhysics Letters),
47(2):145–151, July 1999. doi:10.1209/epl/i1999-00365-x.

[84] Daniel Lycett-Brown and Kai H. Luo. Multiphase cascaded lattice Boltzmann method. Computers & Math-
ematics with Applications, 67(2):350–362, 2014. doi:10.1016/j.camwa.2013.08.033.

[85] Daniel Lycett-Brown, Kai H. Luo, Ronghou Liu, and Pengmei Lv. Binary droplet collision simu-
lations by a multiphase cascaded lattice Boltzmann method. Physics of Fluids, 26(2):023303, 2014.
doi:10.1063/1.4866146.

[86] John F. Marko and Eric D. Siggia. Stretching DNA. Macromolecules, 28(26):8759–8770, 1995.
doi:10.1021/ma00130a008.

[87] G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. SIAM Review,
6(3):260–264, July 1964.

[88] George Marsaglia, Arif Zaman, and Wai Wan Tsang. Toward a universal random number generator. Statis-
tics and Probability Letters, 9(1):35–39, January 1990. doi:10.1016/0167-7152(90)90092-L.

[89] C. A. Marsh, G. Backx, and M. H. Ernst. Static and dynamic properties of dissipative particle dynamics.
Physical Review E, 56(2):1676–1691, August 1997. doi:10.1103/PhysRevE.56.1676.

[90] Glenn J. Martyna, Mark E. Tuckerman, Douglas J. Tobias, and Michael L. Klein. Explicit re-
versible integrators for extended systems dynamics. Molecular Physics, 87(5):1117–1157, 1996.
doi:10.1080/00268979600100761.

[91] Nicos S. Martys and Hudong Chen. Simulation of multicomponent fluids in complex three-dimensional
geometries by the lattice Boltzmann method. Physical Review E, 53(1):743–750, January 1996.
doi:10.1103/PhysRevE.53.743.

[92] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8(1):3–30,
January 1998. doi:10.1145/272991.272995.

Bibliography 919

https://doi.org/10.1103/PhysRevE.61.6546
https://doi.org/10.1103/PhysRevE.77.056703
https://doi.org/10.1016/j.jcp.2004.12.001
https://doi.org/10.1088/0022-3719/5/15/006
https://doi.org/10.1016/j.jcp.2016.07.034
https://doi.org/10.1088/0022-3719/18/5/005
https://doi.org/10.1103/PhysRevE.86.016709
https://doi.org/10.1103/PhysRevE.90.053301
https://doi.org/10.1103/PhysRevE.67.036701
https://doi.org/10.1103/PhysRevE.87.063301
https://doi.org/10.1209/epl/i1999-00365-x
https://doi.org/10.1016/j.camwa.2013.08.033
https://doi.org/10.1063/1.4866146
https://doi.org/10.1021/ma00130a008
https://doi.org/10.1016/0167-7152(90)90092-L
https://doi.org/10.1103/PhysRevE.56.1676
https://doi.org/10.1080/00268979600100761
https://doi.org/10.1103/PhysRevE.53.743
https://doi.org/10.1145/272991.272995

DL_MESO Technical Manual, Release 2.7

[93] Keijo Mattila, Jari Hyväluoma, Tuomo Rossi, Mats Aspnäs, and Jan Westerholm. An efficient swap al-
gorithm for the lattice Boltzmann method. Computer Physics Communications, 176(3):200–210, February
2007. doi:10.1016/j.cpc.2006.09.005.

[94] Philip M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical
Review, 34(1):57–64, July 1929. doi:10.1103/PhysRev.34.57.

[95] David R. Noble, Shiyi Chen, John G. Georgiadis, and Richard O. Buckius. A consistent hydrody-
namic boundary condition for the lattice Boltzmann method. Physics of Fluids, 7(1):203–209, 1995.
doi:10.1063/1.868767.

[96] Rafik Ouared and Bastien Chopard. Lattice Boltzmann simulations of blood flow: non-Newtonian rheology
and clotting processes. Journal of Statistical Physics, 121:209–221, 2005. doi:10.1007/s10955-005-8415-x.

[97] I. Pagonabarraga and D. Frenkel. Dissipative particle dynamics for interacting systems. Journal of Chemical
Physics, 115(11):5015–5026, 2001. doi:10.1063/1.1396848.

[98] Tasos C. Papanastasiou. Flows of materials with yield. Journal of Rheology, 31(5):385–404, 1987.
doi:10.1122/1.549926.

[99] Ding-Yu Peng and Donald B. Robinson. A new two-constant equation of state. Industrial & Engineering
Chemistry Fundamentals, 15(1):59–64, 1976. doi:10.1021/i160057a011.

[100] E. A. J. F. Peters. Elimination of time step effects in DPD. EPL (Europhysics Letters), 66(3):311–317, May
2004. doi:10.1209/epl/i2004-10010-4.

[101] B. Piaud, M.J. Clifton, S. Blanco, and R. Fournier. Lattice Boltzmann method for colloidal dis-
persions with phase change. Progress in Computational Fluid Dynamics, 8(1–4):129–137, 2008.
doi:10.1504/PCFD.2008.018094.

[102] C. M. Pooley and K. Furtado. Eliminating spurious velocities in the free-energy lattice Boltzmann method.
Physical Review E, 77:046702, April 2008. doi:10.1103/PhysRevE.77.046702.

[103] C. M. Pooley, H. Kusumaatmaja, and J. M. Yeomans. Contact line dynamics in binary lattice Boltzmann
simulations. Physical Review E, 78:056709, November 2008. doi:10.1103/PhysRevE.78.056709.

[104] Kannan N. Premnath and John Abraham. Three-dimensional multi-relaxation time (MRT) lattice-
Boltzmann models for multiphase flow. Journal of Computational Physics, 224(2):539–559, 2007.
doi:10.1016/j.jcp.2006.10.023.

[105] P. Prinsen, P. B. Warren, and M. A. J. Michels. Mesoscale simulations of surfactant dis-
solution and mesophase formation. Physical Review Letters, 89(14):148302, September 2002.
doi:10.1103/PhysRevLett.89.148302.

[106] Y. H. Qian, S. Succi, and S. A. Orszag. Recent advances in lattice Boltzmann computing. In Dietrich
Stauffer, editor, Annual Reviews of Computational Physics III, chapter 6, pages 195–242. World Scientific,
October 1995. doi:10.1142/9789812830647_0006.

[107] D. Quigley and M. I. J. Probert. Langevin dynamics in constant pressure extended systems. Journal of
Chemical Physics, 120(24):11432–11441, 2004. doi:10.1063/1.1755657.

[108] P. Raiskinmäki, A Koponen, J. Merikoski, and J. Timonen. Spreading dynamics of three-dimensional
droplets by the lattice-Boltzmann method. Computational Materials Science, 18(1):7–12, 2000.
doi:10.1016/S0927-0256(99)00095-6.

[109] P. Raiskinmäki, A. Shakib-Manesh, A. Jäsberg, A. Koponen, J. Merikoski, and J. Timonen. Lattice-
Boltzmann simulation of capillary rise dynamics. Journal of Statistical Physics, 107(1–2):143–158, 2002.
doi:10.1023/A:1014506503793.

[110] Otto. Redlich and J. N. S. Kwong. On the thermodynamics of solutions. V. An equation of state. Fugacities
of gaseous solutions. Chemical Reviews, 44(1):233–244, 1949. doi:10.1021/cr60137a013.

[111] M. Revenga, I. Zúñiga, and P. Español. Boundary conditions in dissipative particle dynamics. Computer
Physics Communications, 121–122:309–311, 1999. doi:10.1016/S0010-4655(99)00341-0.

[112] Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman J. C. Berendsen. Numerical integration of the Cartesian
equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computa-
tional Physics, 23(3):327–341, 1977. doi:https://doi.org/10.1016/0021-9991(77)90098-5.

920 Bibliography

https://doi.org/10.1016/j.cpc.2006.09.005
https://doi.org/10.1103/PhysRev.34.57
https://doi.org/10.1063/1.868767
https://doi.org/10.1007/s10955-005-8415-x
https://doi.org/10.1063/1.1396848
https://doi.org/10.1122/1.549926
https://doi.org/10.1021/i160057a011
https://doi.org/10.1209/epl/i2004-10010-4
https://doi.org/10.1504/PCFD.2008.018094
https://doi.org/10.1103/PhysRevE.77.046702
https://doi.org/10.1103/PhysRevE.78.056709
https://doi.org/10.1016/j.jcp.2006.10.023
https://doi.org/10.1103/PhysRevLett.89.148302
https://doi.org/10.1142/9789812830647_0006
https://doi.org/10.1063/1.1755657
https://doi.org/10.1016/S0927-0256(99)00095-6
https://doi.org/10.1023/A:1014506503793
https://doi.org/10.1021/cr60137a013
https://doi.org/10.1016/S0010-4655(99)00341-0
https://doi.org/https://doi.org/10.1016/0021-9991(77)90098-5

DL_MESO Technical Manual, Release 2.7

[113] A. G. Schlijper, P. J. Hoogerbrugge, and C. W. Manke. Computer simulation of dilute polymer so-
lutions with the dissipative particle dynamics method. Journal of Rheology, 39(3):567–579, 1995.
doi:10.1122/1.550713.

[114] M. A. Seaton, I. Halliday, and A. J. Masters. Application of the multicomponent lattice Boltzmann simula-
tion method to oil/water dispersions. Journal of Physics A, 44(10):105502, March 2011. doi:10.1088/1751-
8113/44/10/105502.

[115] Takeshi Seta, Roberto Rojas, Kosuke Hayashi, and Akio Tomiyama. Implicit-correction-based immersed
boundary-lattice Boltzmann method with two relaxation times. Physical Review E, 89:023307, February
2014. doi:10.1103/PhysRevE.89.023307.

[116] Xiaowen Shan. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann
models. Physical Review E, 73(4):047701, 2006. doi:10.1103/PhysRevE.73.047701.

[117] Xiaowen Shan. Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Physical
Review E, 77(6):066702, June 2008. doi:10.1103/PhysRevE.77.066702.

[118] Xiaowen Shan and Hudong Chen. Lattice Boltzmann model for simulating flows with multiple phases and
components. Physical Review E, 47(3):1815–1819, March 1993. doi:10.1103/PhysRevE.47.1815.

[119] Xiaowen Shan and Hudong Chen. Simulation of nonideal gases and liquid-gas phase tran-
sitions by the lattice Boltzmann equation. Physical Review E, 49(4):2941–2948, April 1994.
doi:10.1103/PhysRevE.49.2941.

[120] Tony Shardlow. Splitting for dissipative particle dynamics. SIAM Journal on Scientific Computing,
24(4):1267–1282, 2003. doi:10.1137/S1064827501392879.

[121] Julian C. Shillcock and Reinhard Lipowsky. Equilibrium structure and lateral stress distribution of
amphiphilic bilayers from dissipative particle dynamics simulations. Journal of Chemical Physics,
117(10):5048–5061, 2002. doi:10.1063/1.1498463.

[122] Richard C. Singleton. An algorithm for computing the mixed radix fast Fourier transform. IEEE Transac-
tions on Audio and Electroacoustics, 17(2):93–103, 1969. doi:10.1109/TAU.1969.1162042.

[123] W. Smith. Coping with the pressure! How to calculate the virial. CCP5 Information Quarterly, 26:43–51,
September 1987. URL: https://www.ccp5.ac.uk/sites/www.ccp5.ac.uk/files/infoweb/CCP5_Newsletter_
1987_09_26.pdf.

[124] W. Smith. Molecular dynamics on hypercube parallel computers. Computer Physics Communications, 62(2-
3):229–248, March 1991. doi:10.1016/0010-4655(91)90097-5.

[125] W. Smith. A replicated data molecular dynamics strategy for the parallel Ewald sum. Computer Physics
Communications, 67(3):392–406, January 1992. doi:10.1016/0010-4655(92)90048-4.

[126] W. Smith. Calculating the pressure. CCP5 Information Quarterly, 39:14–20, October 1993. URL: https:
//www.ccp5.ac.uk/sites/www.ccp5.ac.uk/files/infoweb/CCP5_Newsletter_1993_10_39.pdf.

[127] W. Smith, T. R. Forester, and I.T. Todorov. The DL_POLY Classic user manual. STFC, STFC Daresbury
Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom, version 1.0 edition, December
2010.

[128] Giorgio Soave. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engi-
neering Science, 27(6):1197–1203, 1972. doi:10.1016/0009-2509(72)80096-4.

[129] T. J. Spencer, I. Halliday, and C. M. Care. Lattice Boltzmann equation method for multiple immiscible
continuum fluids. Physical Review E, 82(6):066701, December 2010. doi:10.1103/PhysRevE.82.066701.

[130] Timothy J. Spencer, Ian Halliday, and Chris M. Care. A local lattice Boltzmann method for multiple im-
miscible fluids and dense suspensions of drops. Philosophical Transactions of the Royal Society of London
A, 369(1944):2255–2263, 2011. doi:10.1098/rsta.2011.0029.

[131] Simeon D. Stoyanov and Robert D. Groot. From molecular dynamics to hydrodynamics: A novel Galilean
invariant thermostat. Journal of Chemical Physics, 122(11):114112, 2005. doi:10.1063/1.1870892.

[132] Alexander Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the Open Vi-
sualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012, 2010.
doi:10.1088/0965-0393/18/1/015012.

Bibliography 921

https://doi.org/10.1122/1.550713
https://doi.org/10.1088/1751-8113/44/10/105502
https://doi.org/10.1088/1751-8113/44/10/105502
https://doi.org/10.1103/PhysRevE.89.023307
https://doi.org/10.1103/PhysRevE.73.047701
https://doi.org/10.1103/PhysRevE.77.066702
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/PhysRevE.49.2941
https://doi.org/10.1137/S1064827501392879
https://doi.org/10.1063/1.1498463
https://doi.org/10.1109/TAU.1969.1162042
https://www.ccp5.ac.uk/sites/www.ccp5.ac.uk/files/infoweb/CCP5_Newsletter_1987_09_26.pdf
https://www.ccp5.ac.uk/sites/www.ccp5.ac.uk/files/infoweb/CCP5_Newsletter_1987_09_26.pdf
https://doi.org/10.1016/0010-4655(91)90097-5
https://doi.org/10.1016/0010-4655(92)90048-4
https://www.ccp5.ac.uk/sites/www.ccp5.ac.uk/files/infoweb/CCP5_Newsletter_1993_10_39.pdf
https://www.ccp5.ac.uk/sites/www.ccp5.ac.uk/files/infoweb/CCP5_Newsletter_1993_10_39.pdf
https://doi.org/10.1016/0009-2509(72)80096-4
https://doi.org/10.1103/PhysRevE.82.066701
https://doi.org/10.1098/rsta.2011.0029
https://doi.org/10.1063/1.1870892
https://doi.org/10.1088/0965-0393/18/1/015012

DL_MESO Technical Manual, Release 2.7

[133] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford,
2001.

[134] K. Suga, Y. Kuwata, K. Takashima, and R. Chikasue. A D3Q27 multiple-relaxation-time lattice Boltz-
mann method for turbulent flows. Computers & Mathematics with Applications, 69(6):518–529, 2015.
doi:10.1016/j.camwa.2015.01.010.

[135] Michael R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simula-
tions of liquid-gas and binary fluid systems. Physical Review E, 54(5):5041–5052, November 1996.
doi:10.1103/PhysRevE.54.5041.

[136] Michael R. Swift, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulation of nonideal fluids.
Physical Review Letters, 75(5):830–833, July 1995. doi:10.1103/PhysRevLett.75.830.

[137] Ketzasmin A. Terrón-Mejía, Roberto López-Rendón, and Armando Gama Goicochea. Electrostatics in dis-
sipative particle dynamics using Ewald sums with point charges. Journal of Physics: Condensed Matter,
28(42):425101, 2016. doi:10.1088/0953-8984/28/42/425101.

[138] B. D. Todd, Denis J. Evans, and Peter J. Daivis. Pressure tensor for inhomogeneous fluids. Physical Review
E, 52:1627–1638, August 1995. doi:10.1103/PhysRevE.52.1627.

[139] I. T. Todorov and W. Smith. The DL_POLY_4 user manual. STFC, STFC Daresbury Laboratory, Daresbury,
Warrington, Cheshire, WA4 4AD, United Kingdom, version 4.01.0 edition, October 2010.

[140] S. Y. Trofimov, E. L. F. Nies, and M. A. J. Michels. Thermodynamic consistency in dissipative parti-
cle dynamics simulations of strongly nonideal liquids and liquid mixtures. Journal of Chemical Physics,
117(20):9383–9394, 2002. doi:10.1063/1.1515774.

[141] Loup Verlet. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones
molecules. Physical Review, 159(1):98–103, July 1967. doi:10.1103/PhysRev.159.98.

[142] P. B. Warren. Vapor-liquid coexistence in many-body dissipative particle dynamics. Physical Review E,
68(6):066702, December 2003. doi:10.1103/PhysRevE.68.066702.

[143] P. B. Warren, P. Prinsen, and M. A. J. Michels. The physics of surfactant dissolution. Philosophical Trans-
actions of the Royal Society of London A, 361(1805):665–676, 2003. doi:10.1098/rsta.2002.1166.

[144] Patrick B. Warren. No-go theorem in many-body dissipative particle dynamics. Physical Review E,
87:045303, April 2013. doi:10.1103/PhysRevE.87.045303.

[145] Patrick B. Warren and Andrey Vlasov. Screening properties of four mesoscale smoothed charge mod-
els, with application to dissipative particle dynamics. Journal of Chemical Physics, 140(8):084904, 2014.
doi:http://dx.doi.org/10.1063/1.4866375.

[146] Patrick B. Warren, Andrey Vlasov, Lucian Anton, and Andrew J. Masters. Screening properties of Gaus-
sian electrolyte models, with application to dissipative particle dynamics. Journal of Chemical Physics,
138(20):204907, 2013. doi:10.1063/1.4807057.

[147] John D. Weeks, David Chandler, and Hans C. Andersen. Role of repulsive forces in determining
the equilibrium structure of simple liquids. Journal of Chemical Physics, 54(12):5237–5247, 1971.
doi:10.1063/1.1674820.

[148] Dean R. Wheeler, Norman G. Fuller, and Richard L. Rowley. Non-equilibrium molecular dynamics simu-
lation of the shear viscosity of liquid methanol: adaptation of the Ewald sum to Lees-Edwards boundary
conditions. Molecular Physics, 92(1):55–62, 1997. doi:10.1080/002689797170608.

[149] B. Widom. Some topics in the theory of fluids. Journal of Chemical Physics, 39(11):2808–2812, 1963.
doi:10.1063/1.1734110.

[150] B. Widom. Potential-distribution theory and the statistical mechanics of fluids. Journal of Physical Chem-
istry, 86(6):869–872, 1982. doi:10.1021/j100395a005.

[151] Satoru Yamamoto, Yutaka Maruyama, and Shi-aki Hyodo. Dissipative particle dynamics study of sponta-
neous vesicle formation of amphiphilic molecules. Journal of Chemical Physics, 116(13):5842–5849, 2002.
doi:10.1063/1.1456031.

922 Bibliography

https://doi.org/10.1016/j.camwa.2015.01.010
https://doi.org/10.1103/PhysRevE.54.5041
https://doi.org/10.1103/PhysRevLett.75.830
https://doi.org/10.1088/0953-8984/28/42/425101
https://doi.org/10.1103/PhysRevE.52.1627
https://doi.org/10.1063/1.1515774
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRevE.68.066702
https://doi.org/10.1098/rsta.2002.1166
https://doi.org/10.1103/PhysRevE.87.045303
https://doi.org/http://dx.doi.org/10.1063/1.4866375
https://doi.org/10.1063/1.4807057
https://doi.org/10.1063/1.1674820
https://doi.org/10.1080/002689797170608
https://doi.org/10.1063/1.1734110
https://doi.org/10.1021/j100395a005
https://doi.org/10.1063/1.1456031

DL_MESO Technical Manual, Release 2.7

[152] Kenji Yasuda. Investigation of the analogies between viscometric and linear viscoelastic properties of
polystyrene fluids. PhD thesis, Massachusetts Institute of Technology, 1979. URL: http://hdl.handle.net/
1721.1/16043.

[153] In-Chul Yeh and Max L. Berkowitz. Ewald summation for systems with slab geometry. Journal of Chemical
Physics, 111(7):3155–3162, 1999. doi:10.1063/1.479595.

[154] M. Yoshino and T. Inamuro. Lattice Boltzmann simulations for flow and heat/mass transfer problems in a
three-dimensional porous structure. International Journal for Numerical Methods in Fluids, 43(2):183–198,
2003. doi:10.1002/fld.607.

[155] Peng Yuan and Laura Schaefer. Equations of state in a lattice Boltzmann model. Physics of Fluids,
18(4):042101, 2006. doi:10.1063/1.2187070.

[156] Raoyang Zhang and Hudong Chen. Lattice Boltzmann method for simulations of liquid-vapor thermal
flows. Physical Review E, 67(6):066711, June 2003. doi:10.1103/PhysRevE.67.066711.

[157] You-Liang Zhu, Hong Liu, Zhan-Wei Li, Hu-Jun Qian, Giuseppe Milano, and Zhong-Yuan Lu. GALAM-
OST: GPU-accelerated large-scale molecular simulation toolkit. Journal of Computational Chemistry,
34(25):2197–2211, 2013. doi:10.1002/jcc.23365.

[158] Qisu Zou and Xiaoyi He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK
model. Physics of Fluids, 9(6):1591–1598, June 1997. doi:10.1063/1.869307.

[159] Dominique d'Humières, Irina Ginzburg, Manfred Krafczyk, Pierre Lallemand, and Li-Shi Luo. Multiple-
relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal
Society of London A, 360(1792):437–451, 2002. doi:10.1098/rsta.2001.0955.

Bibliography 923

http://hdl.handle.net/1721.1/16043
http://hdl.handle.net/1721.1/16043
https://doi.org/10.1063/1.479595
https://doi.org/10.1002/fld.607
https://doi.org/10.1063/1.2187070
https://doi.org/10.1103/PhysRevE.67.066711
https://doi.org/10.1002/jcc.23365
https://doi.org/10.1063/1.869307
https://doi.org/10.1098/rsta.2001.0955

	Acknowledgements
	DL_MESO General Information
	Description
	Functionality
	Requirements
	The DL_MESO Directory Structure
	Disclaimer
	Copyright
	Authors
	Suggestions and Bug Reports

	Introduction to DL_MESO Technical Manual
	Purpose
	Structure

	DL_MESO_LBE Programming Background
	Basic concepts
	Parallelisation strategies
	Data storage
	Collisions
	Propagation
	Fluid interactions
	Rheological models
	Boundary conditions
	Reading input files
	Writing output files

	DL_MESO_LBE Code Description
	lbe.hpp
	plbe.hpp
	slbe.hpp
	plbe.cpp
	slbe.cpp
	lbpRUNPAR.cpp and lbpRUNSER.cpp
	plbecustom.cpp, slbecustom.cpp and slbecombine.cpp
	lbpBASIC.cpp
	lbpGET.cpp
	lbpMODEL.cpp
	lbpSUB.cpp
	lbpMPI.cpp
	lbpBGK.cpp
	lbpTRT.cpp
	lbpMRT.cpp
	lbpCLBE.cpp
	lbpFORCE.cpp
	lbpRHEOLOGY.cpp
	lbpIO.cpp
	lbpIOAGGPAR.cpp and lbpIOAGGSER.cpp
	lbpIOVTK.cpp
	lbpIOLegacyVTK.cpp
	lbpIOPlot3D.cpp
	lbpBOUND.cpp
	lbpBOUNDZouHe.cpp
	lbpBOUNDInamuro.cpp
	lbpBOUNDRegular.cpp
	lbpBOUNDKinetic.cpp
	lbpUSER.cpp

	DL_MESO_LBE Input and Output File Formats
	lbin.sys
	lbin.spa
	lbin.init
	lbout.dump
	lbout*.vts
	lbout*.vtk
	lbout*.q
	lbout.info
	lbout.ext

	Advice on developing DL_MESO_LBE
	User module: lbpUSER.cpp
	Use of customisable codes
	New collision operators
	New interaction forces
	New rheological models
	New boundary conditions
	New lattice model
	New or modified output file format
	Modifications to input file reading

	Lattice schemes
	D2Q9
	D3Q15
	D3Q19
	D3Q27

	DL_MESO_DPD Programming Background
	Basic concepts
	Parallelisation strategies
	Data storage
	Communications
	Linked-cell lists for pairwise force calculations
	Force calculations
	Many-body DPD
	Intramolecular bond interactions
	Surface interactions
	Electrostatic interactions
	Force integration and barostats
	System initialisation
	Reading input files
	Writing output files

	DL_MESO_DPD Code Description
	dlmesodpd.F90
	constants.F90
	variables.F90
	numeric_container.F90
	parse_utils.F90
	bond_module.F90
	comms_module.F90
	config_module.F90
	domain_module.F90
	error_module.F90
	ewald_module.F90
	field_module.F90
	manybody_module.F90
	read_module.F90
	run_module.F90
	spme_module.F90
	start_module.F90
	statistics_module.F90
	surface_module.F90
	write_module.F90
	integrate_dpd_mdvv.F90
	integrate_dpd_dpdvv.F90
	integrate_dpd_shardlow.F90
	integrate_lowe.F90
	integrate_peters.F90
	integrate_stoyanov.F90

	DL_MESO_DPD Input and Output Files
	CONTROL
	FIELD
	CONFIG
	export
	REVIVE
	OUTPUT
	HISTORY
	CORREL
	Stress_*.d

	Advice on developing DL_MESO_DPD
	New conservative interaction forces and potentials
	New wall forces and potentials
	New bond, angle and dihedral forces and potentials
	Change to many-body DPD calculations
	Changes to electrostatic interaction calculations
	New integration scheme or thermostat
	New or modified output file format
	Modifications to input file reading

	DL_MESO_DPD Error Messages
	Messages related to input files
	Messages for processor-to-processor communication
	Messages for runtime issues
	Messages related to output files
	Messages related to memory usage

	DL_MESO GUI Code Description
	dlmesogui.java
	dlmesoguiEvt.java
	dlwelcome.java
	dllbe.java
	lbesysdim.java
	dldpd.java
	dpdsysdim.java
	setlbeSys.java
	setlbeSysEvt.java
	setFluid.java
	setFluidForce.java
	setFluidInteract.java
	setSolute.java
	setThermal.java
	setlbeSpa.java
	setlbeSpaEvt.java
	setBound.java
	changelbecode.java
	changelbeEvt.java
	compilelbe.java
	compilelbeEvt.java
	rublbe.java
	rublbeEvt.java
	gatherlbe.java
	gatherlbeEvt.java
	plotlbe.java
	plotlbeEvt.java
	setdpdSys.java
	setdpdSysEvt.java
	setThermostat.java
	setBarostat.java
	setElectrostatic.java
	setSurface.java
	setdpdInteract.java
	setdpdInteractEvt.java
	setSpecies.java
	setInteraction.java
	setExternal.java
	changedpdcode.java
	changedpdEvt.java
	compiledpd.java
	compiledpdEvt.java
	rubdpd.java
	rubdpdEvt.java
	gatherdpd.java
	gatherdpdEvt.java
	plotdpd.java
	plotdpdEvt.java
	dlmesoeditor.java
	dlmesoeditEvt.java
	msgPanel.java
	msgPanelEvt.java
	Additional subroutines/functions available in multiple classes

	DL_MESO Utilities
	DL_MESO_LBE
	DL_MESO_DPD

	DL_MESO Licence Agreement (Academic Purposes)
	Bibliography

