DL _MESO Technical Manual
Release 2.7

M. A. Seaton and W. Smith

Mar 21, 2022

CONTENTS:

Acknowledgements

DL_MESO General Information

2.1 DeSCIIPtiON . . . v v v v e

2.2 Functionality o . e e e e e e e e e e e

23 Requirements L e e e e

2.4 The DL_MESO Directory Structure o vt vt ittt e e e e e e

2.5 Disclaimer e e e

2.6 Copyright e e e e e e e e e e e 5
27 AUthOrs e e e e e 5
2.8 Suggestions and Bug Reports oL e 5
Introduction to DL_MESO Technical Manual 7
3.1 PUIPOSE . . v o e e e e e e e e e e 7
32 SHUCUIE o oo e e e e e e e 7
DL_MESO_LBE Programming Background 9
4.1 BasicConCepts i e e e e e e e e e e e 9
4.2 Parallelisation strateg@ies L. L. e e e 10
43 Datastorageot e e e e e e e e e e e e e e e e e e 11
4.4 ColliSIONS .« v v v v e e e e e e e e e 13
4.5 Propagation e e e e e e e e e e e e e e e e e e e 14
4.6 Fluidinteractions i e e e e e e e e 15
4.7 Rheologicalmodels L 16
4.8 Boundaryconditions Lo 16
4.9 Readinginputfiles e e 17
410 Writingoutput files e e e e e e e e e e e e 18
DL_MESO_LBE Code Description 19
5.1 Ibehpp . o o 19
5.2 plbehpp . . . e e e e e e e 57
5.3 slbehpp . . . o e e e e e 66
54 plbecpp . . . o e e e 68
55 slbecpp e e 69
5.6 IbpRUNPAR.cppand IbpRUNSER.cpp i e 69
5.7 plbecustom.cpp, slbecustom.cpp and slbecombine.cpp 72
5.8 IbpBASIC.CPD . . v o o e e e e e e e 72
5.9 JbpGET.CPD . .« . o v o o e e e e e e e 78
5.10 IbpMODEL.CPD + . o o v v e e e e e e e e 93
501 IbpSUB.CPP .+« o o o e e e e 94
502 TbpMPLCPD . . . o o e e e e e e e e e e e 105
513 TbpBGKCpp . . o o o e e e e e e 118
514 TbpTRTCPD .« o v v o o e e e e e e e e e e e 142
515 IbpMRT.CPp . . . o o o o e e 167
5.16 IbpCLBE.CPP . . -« o o o e e e 195

5.17 TbpFORCE.CPD . .« o o v o o e e e e e e e e e e e e e e e e e
5.18 TbpRHEOLOGY.CPP .« -« v v v o e
519 1bpIO.CPD « .« v o o e e e e e e e
5.20 IbpIOAGGPAR.cpp and IbpIOAGGSER.cpp o
521 TbpIOVTERLCPD .« o o o o e o e e e e e e e e e
5.22 1IbplOLegacyVTK.Cpp« o o i o e e e e
5.23 1bpIOPIOLD.CPP - v v v v o e e e e e e e e e e e e e e e e e e
5.24 TbpBOUND.LCPD -« v v o e
5.25 1bpBOUNDZouHe.Cpp o v e e e e e e e e e
5.26 1bpBOUNDINamuro.Cpp v v v v vt e
527 IbpBOUNDRegularcpp o v v vt et e e e e e e e e e
5.28 1bpBOUNDKINELC.CPP '+« v v v v v e
5.29 TbpUSER.CPD .+« v v o o e e e e e e e e e e e e e e e e
DL_MESO_LBE Input and Output File Formats

6.1 IDIN.SYS . . o e e e e e e e e e e e e e e e
6.2 IDINSPA e e e e e e e e e e
6.3 Ibindnit oL e e e e e e
6.4 Ibout.dump e e e e e e e
6.5 Ibout™. vis e e e e
6.6 Ibout®.vtk L e e e e
6.7 1bOUt*.q . . . o e e e e e e e e e e e
6.8 lboutinfo L
6.9 IDOULEXL e e e e e e e e e e e
Advice on developing DL_MESO_LBE

7.1 Usermodule: IbpUSER.cpp o . e
7.2 Useofcustomisablecodes e e e
7.3 New collision Operators i it e e e e e e e
7.4 Newinteraction forces L e e e e
7.5 Newrheological models e e e e e
7.6 New boundary conditions e
7.7 Newlattice model e e e e e
7.8 New or modified output file format L
7.9 Modifications to input filereading
Lattice schemes

8.1 D2QO . . e
82 D3QIS . . e
83 D3QI9 . . e e
8.4 D3Q27 . .. e e e
DL_MESO_DPD Programming Background

0.1 BaSiCCONCEPLS . .« v v v o e
9.2 Parallelisation Strate@Ies e e e e e e e e e e e e e e
0.3 Datastorage e e e e e e e e
0.4 CommunicationS vt vttt e e e e e e e e e e e e e e e
9.5 Linked-cell lists for pairwise force calculations
9.6 Forcecalculations e e e
9.7 Many-body DPD e e e
9.8 Intramolecular bond interactionsl e e e e
9.9 Surface interactions e e e e e e
9.10 Electrostatic interactions i i e e e e e e e e e e e e e e
9.11 Force integration and barostats o e e e e e e e e e e e
9.12 System initialisation e e e e e e e e e
9.13 Readinginputfiles e
9.14 Writingoutputfiles L e

10 DL_MESO_DPD Code Description

519
519
523
524
525
526
526
527
528
528

529
529
529
530
530
530
531
531
532
532

535
535
539
542
550

563
563
564
565
567
568
569
570
570
571
571
572
574
575
576

579

10.1 dimesodpd.FOO e e e e e e e e
10.2 constants.FOO L e e
10.3 wvariables.FOO e e
10.4 numeric_container.FOO
10.5 parse_utils.FOO e
10.6 bond_module.FOO e e e
10.7 comms_module.FOO e e
10.8 config_module.FOO L e e
10.9 domain_module.FOO e e e e e e e e
10.10 error_module.FOO e
10.11 ewald_module.FOO e e e
10.12 field_module.FOO e e e e e
10.13 manybody_module.FOO L e e e
10.14 read_module.FOO e e e e e e e e
10.15 run_module.FOO e e
10.16 spme_module.FOO oL e
10.17 start_module.FOO e e e e e
10.18 statistics_module.FOO e
10.19 surface_module.FOO e e
10.20 write_module.FOO e e e
10.21 integrate_dpd_mdvv.FOO
10.22 integrate_dpd_dpdvv.FOO
10.23 integrate_dpd_shardlow.FOO e e
10.24 integrate_lowe.FOO L L e e e e
10.25 integrate_peters.FOO
10.26 integrate_stoyanov.FOO oo

11 DL_MESO_DPD Input and Output Files
11.1 CONTROL e e e e e e e e e
11.2 FIELD e e e e e e e
11.3 CONFIG e e e e e e e e e
T4 eXPOTt . o . v v o e
11.5 REVIVE . . .
11.6 OUTPUT o e e e e e e e e e e e
11.7 HISTORY e e e e e e e e
11.8 CORREL e e e
11.9 Stress_*.d. o o e e e e e

12 Adyvice on developing DL._MESO_DPD
12.1 New conservative interaction forces and potentials
12.2 New wall forces and potentials i e e e e
12.3 New bond, angle and dihedral forces and potentials, .
12.4 Change to many-body DPD calculations
12.5 Changes to electrostatic interaction calculations Lo
12.6 New integration scheme or thermostat
12.7 New or modified output file format e
12.8 Modifications to input filereading e e e

13 DL_MESO_DPD Error Messages
13.1 Messagesrelated toinputfiles L e e e
13.2 Messages for processor-to-processor COmmunicationo v v v v v v b e e e e e
13.3 Messages for runtime iSSUes Lo o e e e e
13.4 Messages related tooutput files oL
13.5 Messages related t0 memoOry USage o ittt e e e e e e e e e e e e

14 DL_MESO GUI Code Description
14.1 dImesoguijava it e e e e e e e e e e e e e e
14.2 dlmesoguiEvtjava e e e
14.3 dIwelcome.java o v i e

797
797
801
804
804
805
806
807
809
810

813
813
814
815
816
816
817
817
817

819
819
827
829
830
830

831
831
832
836

144 dllbejava o o e e e e e e e e e e e e e e e e e e
14.5 Ibesysdim.java o i e e e e e e e e e e e e e e e e e e e
14.6 dldpdjava.
147 dpdsysdim.java e
14.8 setlbeSysjava. L e e
149 setlbeSysEvtjava oL e e
14.10 setFluid.java o o e e e e e e e e e e e e e
14.11 setFluidForce.java o 0 o e e e e e e e e e e e e e
14.12 setFluidInteractjava L e e e e
1413 setSolute.java o o L e e e e e e e e e e e e e
14.14 setThermaljava o o o o e e e e
14.15 setlbeSpa.java o L e e e e e e e e e e e e e e e e e e
14.16 setlbeSpaEvtjava L e e e e e e e e e e e e
14.17 setBound.java e e e e e
14.18 changelbecode.java oL e e e e e e
14.19 changelbeEvtjava L e e
14.20 compilelbe.java oL e e e e e
14.21 compilelbeEvtjava oL e e e e e e e e e e e
14.22 rublbejava o e e e e e e e e
1423 rublbeEvtjava L e
14.24 gatherlbejava L L e e e e e e e e
14.25 gatherlbeEvt.java L e e
14.26 plotlbe.java o e e e e e e e e e e e e e e e e
14.27 plotlbeEvtjava L e e e e e e e e e
14.28 setdpdSys.java oL e e e e e e e e e
14.29 setdpdSysEvtjava L e
14.30 setThermostat.java o o vttt e e e e e e e e
14.31 setBarostat.java o e
14.32 setElectrostatic.java v it i e
14.33 setSurface.java L e e e e e
14.34 setdpdInteract.java Lo e e e e e e e e e e e e e e e
14.35 setdpdInteractEvt.java e
14.36 SEtSPECICS.JAVA . . . v v v v e e e e e e e e e e e e e e e e e e
14.37 setInteraction.java i it e
14.38 setExternal.java L L e e e e e e e e e e e
14.39 changedpdcode.java e
14.40 changedpdEvtjava L . e e e e e
14.41 compiledpd.java oL e e e e e
14.42 compiledpdEvtjava L L e e e e e e e e e e e
14.43 rubdpd.java oL e e e e e e e e
1444 rubdpdEvtjava L L e e e e e e e e e
14.45 gatherdpd.java L. e e e e
14.46 gatherdpdEvt.java L e
14.47 plotdpd.java e e e e e e e e e e e e e e e e e
14.48 plotdpdEvtjava e e e e e e e e e e e e
14.49 dlmesoeditorjava e e e e e e e e e
14.50 dlmesoeditEvtjavao e e e e e e e e e
14.51 msgPaneljava L e e
14.52 msgPanelEvtjava. e e e
14.53 Additional subroutines/functions available in multiple classes

15 DL_MESO Utilities

151 DL_MESO_LBE
152 DL_MESO_DPD e

A DL_MESO Licence Agreement (Academic Purposes)

Bibliography

893
893
896

911

915

CHAPTER
ONE

ACKNOWLEDGEMENTS

DL_MESO was developed under the auspices of the Engineering and Physical Sciences Research Council (EP-
SRC) for the EPSRC’s Collaborative Computational Project for the Computer Simulation of Condensed Phases
(CCPsS).

The members of the CCP5 DL_MESO consortium were:
» David M. Heyes, University of Surrey
¢ Chris M. Care, Sheffield Hallam University
* Peter V. Coveney, University College London
* David Emerson, UKRI STFC Daresbury Laboratory
* Rob English, North East Wales Institute
¢ Andrea Ferrante, Novidec
* Jan Halliday, Sheffield Hallam University
* John Harding, University of Sheffield
 Sebastian Reich, Imperial College
¢ Bill Smith, UKRI STFC Daresbury Laboratory
e Patrick B. Warren, Unilever Port Sunlight
* Julia Yeomans, Oxford University

Many other people have given advice and encouragement in the development of DL._MESO. We gratefully ac-
knowledge the support of the following people: Maurice Leslie, Richard Wain, Alexandre Dupuis, Jonathan Chin,
Michael Dupin, Weiming Liu, John Purton, Ilian Todorov, David Bray, Annalaura Del Regno, Olga Lobanova,
Antoine Schlijper, Andrea Ferrante, Massimo Noro, Ian Stott, Neil George, John Hone, Peter Dowding, Kai Luo
and the UK Consortium for Mesoscale Engineering Sciences (UKCOMES), Luke Mason, Sergi Siso and Terry
Hewitt.

Particular thanks go to Rongshan Qin at The Open University as the original author of the Lattice Boltzmann
Equation source code (DL_MESO_LBE) and the DL_MESO graphical user interface, Jianping Meng at UKRI
STFC Daresbury Laboratory for his contributions to DL_MESO_LBE, Richard Anderson at UKRI STFC Dares-
bury Laboratory, Ard van Bergen at Novidec and Bill Swope at IBM for their contributions to the Dissipative
Particle Dynamics source code (DL_MESO_DPD), and Michael Johnston and Leopold Grinberg at IBM for their
extensive optimisation work on both codes.

DL_MESO Technical Manual, Release 2.7

2 Chapter 1. Acknowledgements

CHAPTER
TWO

DL_MESO GENERAL INFORMATION

2.1 Description

DL_MESO is a general purpose mesoscopic simulation package developed at Daresbury Laboratory by Dr
Michael Seaton under the auspices of the Engineering and Physical Sciences Research Council (EPSRC) for
the EPSRC’s Collaborative Computational Project for the Computer Simulation of Condensed Phases (CCP5) and
the High-End Computing UK Consortium on Mesoscale Engineering Sciences (UKCOMES). The package is the
property of the UKRI Science and Technology Facilities Council (STFC).

DL_MESO is issued free under licence to academic institutions pursuing scientific research of a non-commercial
nature. All recipients of the code must first agree to the terms and conditions of the licence and register with us
to be kept aware of new developments and discovered bugs. Commercial organisations interested in acquiring the
package should approach the Scientific Computing Department, UKRI STFC Daresbury Laboratory in the first
instance. Daresbury Laboratory is the sole centre for distribution of the package. Under no account is it to be
redistributed to third parties without consent of the owners.

DL_MESO contains two mesoscale simulation methods:
* Lattice Boltzmann Equation (included with version 1.0 and later)

¢ Dissipative Particle Dynamics (included with version 2.0 and later)

2.2 Functionality

The following is a list of the features that DL_MESO currently supports. Users are reminded that we are interested
in hearing what other features could be usefully incorporated. We obviously have ideas of our own and CCP5 and
UKCOMES strongly influence developments, but other input would be welcome nevertheless.

2.2.1 Lattice Boltzmann Equation
DL_MESO_LBE can simulate fluid (lattice-gas) systems using the Lattice Boltzmann Equation (LBE). The fol-
lowing properties and features are currently available:

e Multiple fluid components, solutes and coupled heat transfers [154]

* Collisions: Bhatnagar-Gross-Krook (BGK) single-relaxation-time [10], Two-Relaxation-Time (TRT) [42],
Multiple-Relaxation-Time (MRT) [73][159][134] or cascaded LBE (CLBE) [35][33]

* Forcing methods: Martys/Chen [91], Equal Difference Method (EDM) [69], Guo [49], He [54]

* Rheological models: Newtonian, power law, Bingham plastic [11], Herschel-Bulkley plastic [55], Casson
[19], Carreau-Yasuda [17][152]

* Boundary conditions: Periodic, bounce-back (including stationary objects), constant pressure/velocity at
planar surfaces [158][63][74][5]

* Mesoscale interactions: Shan-Chen pseudopotential method [118][119], Lishchuk continuum-based method
[81], Swift free-energy method [136][135]

DL_MESO Technical Manual, Release 2.7

* Initial conditions can either be determined by DL_MESO_LBE or specified by the user

2.2.2 Dissipative Particle Dynamics

DL_MESO_DPD can model DPD particles (‘beads’) with soft or hard potential fields, along with thermostatting
dissipative and random forces or a similarly pairwise thermostatting scheme. The following properties and features
are currently available:

* Choice of integrators/thermostats: standard Velocity Verlet, DPD Velocity Verlet [40], Lowe-Andersen [83],
Peters [100] and Stoyanov-Groot [131]

* Constant volume (NVT) or constant pressure (NPT) simulations with Berendsen [8] or Langevin [64]
barostats

 User selection of interaction lengths, conservative and dissipative force parameters for each species and
between unlike species

* Bond stretching, angles and dihedrals between beads in user-defined ‘molecules’

* Potentials: standard Groot-Warren DPD [46], density-dependent (many-body) DPD [97][140], Lennard-
Jones [66], Weeks-Chandler-Andersen [147]

* Electrostatic potentials between charged beads using modified Ewald summations [44][146], optionally
using Smooth Particle Mesh Ewald [31]

e Boundaries: Periodic, hard reflecting walls with optional short-range repulsions (DPD [105] or Weeks-
Chandler-Andersen), frozen particle walls, Lees-Edwards periodic shearing boundaries [76]

* Initial conditions can either be determined by DL_MESO_DPD or specified by the user

2.3 Requirements

2.3.1 Software requirements

 Standard C++ Compiler for LBE source code, DL_MESO_LBE
* Standard Fortran (2003 or later) Compiler for DPD source code, DL_MESO_DPD

GNU Make (included in standard Unix/Linux distributions; can be installed for Windows)
* Message Passing Interface version 2 (MPI-2) or higher (if parallel execution required)
* JAVA 2 Version 1.4 or higher (if GUI is to be used)

Versions of the codes exist that use Open Multi-Processing (OpenMP) to divide up calculations on each processor
core among threads, which require compilers that can link in OpenMP libraries: the majority of recent standard
C++ and Fortran compilers are able to do this. For Smooth Particle Mesh Ewald calculations in the DPD code,
either the FFTW 3.x or IBM ESSL Fast Fourier Transform (FFT) libraries may be used in place of the internal
FFT solver.

2.3.2 System requirements

DL_MESO is designed to work in both serial and parallel running; it can be run on standalone machines, clusters
and supercomputers. The code has been tested on Solaris, Windows XP/7, IBM p690+ HPCx, PowerPC 450 Blue
Gene/P, PowerPC A2 Blue Gene/Q, Cray XT4/XT6 HECToR, Cray XC30 ARCHER and Intel Xeon E5-2670
(Sandy Bridge) machines.

4 Chapter 2. DL_MESO General Information

DL_MESO Technical Manual, Release 2.7

2.4 The DL_MESO Directory Structure

The supplied version of DL._MESO is a zip file dl_meso_2.x, where x is a generation number: this unpacks as a
directory dl_meso Beneath the top level of this directory are a number of subdirectories:

* LBE - containing the LBE source code

* DPD - containing the DPD source code

* JAVA - containing the GUI source code

¢ MAN - containing the DL._MESO user manual
¢ DEMO - containing test cases for DL._MESO
* WORK - an example ‘working directory’

2.5 Disclaimer

Neither UKRI STFC, CCPS5 nor any of the authors of the DL_MESO package guarantee that the package is free
from error. Neither do they accept responsibility for any loss or damage that results from its use.

2.6 Copyright

© UKRI STFC Daresbury Laboratory 2022

2.7 Authors

Dr Michael Seaton and Prof. William Smith
Scientific Computing Department

UKRI STFC Daresbury Laboratory
Sci-Tech Daresbury

Warrington

WA4 4AD

United Kingdom

2.8 Suggestions and Bug Reports

We encourage users to send suggestions for improvements and new features for DL._MESO, including bug reports
and subroutines, as well as any additional test cases that demonstrate its features. All of these should be sent to
michael.seaton@stfc.ac.uk

2.4. The DL_MESO Directory Structure 5

DL_MESO Technical Manual, Release 2.7

6 Chapter 2. DL_MESO General Information

CHAPTER
THREE

INTRODUCTION TO DL_MESO TECHNICAL MANUAL

This chapter gives an overview of the DL_MESO Technical Manual, including its purpose and how it is structured.

3.1 Purpose

This Technical Manual is intended as a guide on how DL._MESO has been written and structured, and how its
codes can be modified. It is intended to be used by code developers and advanced users (e.g. user-developers) who
wish to augment DL._MESO_LBE or DL_MESO_DPD to include new functionalities or modify existing ones,
primarily to catry out or disseminate new scientific research.

This manual is intended to be complementary to the DL_MESO User Manual. The User Manual is intended to help
users get their Lattice Boltzmann Equation (LBE) and Dissipative Particle Dynamics (DPD) simulations running
and to set out the features available in each code (including their theoretical background), while the Technical
Manual is focussed more on how the codes implement the algorithms and features. Some details on algorithmic
implementations are included in the User Manual primarily to enable users to get a simulation running, particularly
on larger computing platforms, while this manual includes further details to enable user-developers to implement
new features.

3.2 Structure

The manual is divided broadly into four sections:
e DL_MESO_LBE (LBE code written in C++)
« DL_MESO_DPD (DPD code written in Fortran)
e DL_MESO GUI (written in Java)
e DL_MESO Utilities
The DL_MESO_LBE and DL_MESO_DPD sections both include chapters providing:
* Programming background
* Detailed code description
* Input and output file formats
* Advice on how to develop the code
* Additional information for the code

The programming background includes the algorithm in use and the basic concepts for coding it up, the strategies
used to parallelise calculations, what is stored in memory during a calculation (and how it is laid out), details on
how key parts of the algorithm (including various functionalities) have been implemented, and how files are read
into the code and simulation data are written.

The detailed code description for each code goes through the various modules, listing the functions, subroutines
and any variables contained inside them, which are later described in more detail, including how functions and

DL_MESO Technical Manual, Release 2.7

subroutines are called in the code and the input and/or output variables. These descriptions are based on automated
documentation for DL_MESO_LBE and DL._MESO_DPD created using Doxygen, which has been converted into
reStructuredText (reST) for Sphinx to generate the Technical Manual.

The chapters on input and output file formats are augmented forms of the equivalent chapters in the DL,_MESO
User Manual, which go into further detail about the file formats required for user-developers to create utilities or
scripts to read and/or manipulate them. While some details about the available options for input files are included
in these chapters, the user-developer is directed to the User Manual for complete lists of e.g. keywords.

The advice chapters provide some contextual information on how the codes can be modified to include new
functionalities or modify currently-available ones. These include suggestions on where changes need to be made
or where new code can be added, as well as which pre-existing subroutines and functions can be used as ‘templates’
for writing new code.

The additional information chapter includes information that may be relevant for the user-developer for im-
plementing their changes, which are modified versions of appendices in the DL MESO User Manual. For
DL_MESO_LBE, this includes the lattice schemes used in the codes, including how each lattice link is identi-
fied and consequently how e.g. Multiple-Relaxation-Time (MRT) collision operator matrices are defined. For
DL_MESO_DPD, a list of available error and warning messages is provided.

The DL_MESO GUI section consists of a single chapter containing a detailed code description for the Graphi-
cal User Interface (GUI), primarily to help user-developers make minor changes to the GUI to incorporate their
changes made in DL_MESO_LBE or DL_MESO_DPD. The DL._MESO Utilities chapter consists of a single
chapter listing the available utilities for preparing DL_MESO_LBE and DL_MESO_DPD simulations and pro-
cessing their results: while these are not as rigorously described as the main codes and GUI, sufficient information
about the utilities (and file formats) has been provided to enable user-developers to create their own.

8 Chapter 3. Introduction to DL_MESO Technical Manual

CHAPTER
FOUR

DL_MESO_LBE PROGRAMMING BACKGROUND

4.1 Basic concepts

DL_MESO_LBE solves the Lattice Boltzmann Equation:
fi (@ + &AL+ At) — f; (Z,t) = C; + FAt 4.1

where f; (Z, t) is a distribution function describing the probability of finding particles at time ¢ and position Z with
a particular momentum moving them along a lattice link vector €; to neighbouring grid points in a time period of
At. The available lattice link vectors, including the number of Cartesian dimensions they cover, define several of
the parameters used in LBE calculations and form a lattice scheme that is often described by DnQm, where n is
the number of dimensions (normally 2 or 3) and m is the total number of available link vectors, including any rest

vector with zero distance'.

The macroscopic density of the fluid at a given position and time is equal to the sum of the associated distribution
functions over all lattice links:

p(fat) = me

while the fluid momentum is given as the first moment of distribution functions (summed product of distribution
functions and link vectors):

Ty

(&,t) = p(Z.0) W (F,t) = Y _ fiés.
The governing equation (4.1) can be divided into separate processes for collisions:
fi (Z,t7) = f; (Z,t) + C; + FiAt 4.2)

where a collision operator C; and forcing term to apply forces to the fluid F; can be applied, resulting in post-
collisional distribution functions at time ¢+, and propagation:

[i (B + &0t t+ At) = f; (#,t7) (4.3)

which moves collided distribution functions along lattice links to neighbouring grid points. It is worth noting
that (excluding calculations of forces) the collision process operates entirely locally to each grid point, while
propagation of distribution functions only extends to nearest neighbouring grid points.

The collision process can take many different forms, although the simplest is the Bhatnagar-Gross-Krook (BGK)
approximation [10]:

C; =

A
—T—; [Fi (7,8) — 9 (p(@, 1), (7, 1), 4.4

—

where 77 is a single relaxation time that can be related to the kinematic viscosity of the fluid, and f;? (p, @)
is the local equilibrium distribution function for the given fluid density and velocity. More complex collision

! The lattice schemes currently available in DL_MESO_LBE are D2Q9, D3Q15, D3Q19 and D3Q27. Most but not all features are available
for each lattice scheme: the main exceptions are no Swift free-energy interactions available for D3Q27 and no cascaded LBE collisions are
available for D3Q15.

append:lattice

DL_MESO Technical Manual, Release 2.7

operators are available with additional relaxation times or frequencies to improve the numerical stability of LBE
calculations and/or to control additional hydrodynamic properties, while it is also possible to apply non-constant
viscosity rheological models with local values of 7 for each grid point calculated from shear rates (velocity
gradients).

The forcing term F;; can be used to apply forces to the fluid. As well as constant body forces (e.g. gravity), these
can include interaction forces calculated at each grid point related to gradients of values such as fluid density: the
gradients can be calculated from values in surrounding grid points by using stencils.

Propagation is achieved by moving the post-collisional distribution functions along the lattice links to neighbour-
ing grid points. No further calculation is required for this step, although care is needed to ensure the distribution
functions reach their destination grid points without being overwritten and remain with the same lattice links.

The LBE method can be extended to multiple fluid systems by defining distribution functions for individual fluids
existing on the same grid: interaction forces between fluids can be calculated and (depending on the interaction
scheme) the distribution functions for individual fluids can be collided separately and propagated. A similar
approach can be taken to include diffusion of solutes in a fluid and/or heat transfer: the additional distribution
functions represent solute concentration or temperature respectively, using the fluid velocity to calculate local
equilibrium distribution functions and the relaxation time (7., 7;) to control the mass or thermal diffusivity.

Boundary conditions are applied by devising distribution functions going back into the bulk system for lattice
points representing a boundary. The simplest class of boundary condition include bounce back - reflection of
distribution functions - that can be applied to any lattice point to provide a no-slip (zero velocity) condition.
Outflow boundary conditions use copies of distribution functions in nearby grid poiints, while other schemes exist
to apply constant values of fluid velocity, densities, solute concentrations and temperature by calculating ‘missing’
distribution functions based on the other available values. Each lattice point can be assigned a number to specify
the type of boundary condition it includes and the direction in which it is applied.

4.2 Parallelisation strategies

DL_MESO_LBE consists of two methods to divide computational work among the available processor cores and
threads:

» Equipartition domain decomposition
* Multithreading of main calculation loops

Domain decomposition involves the division of computational work among the available processor cores, with
each core carrying out a section of the calculation with as little input from other cores as possible. This strategy
is particularly effective for LBE calculations, since the application of collisions at each grid point is generally the
most computationally intensive part and does not require input from other grid points. As such, each processor
core is assigned its own section of the entire lattice - described as a subdomain - and applies collisions solely to
its own grid points. To ensure each processor core carries out similar amounts of computational work, the lattice
is divided as equally as possible among the available cores - fArrangeProcessors() - with each core’s subdomain
selected based on its number: fDefineDomain(). This form of equipartition domain decomposition works well,
particularly since the number of grid points held by each processor core can remain constant throughout the
simulation.

While propagation and interaction force calculations do require information originating from surrounding grid
points, including those found on neighbouring processor cores, these can be achieved by defining a boundary halo
of additional grid points around the subdomain. The information for the boundary halo - distribution functions,
interaction forces etc. - can be shared between pairs of processor cores using MPI (Message Passing Interface)
communications. In the case of DL_MESO_LBE, these are normally carried out after defining MPI derived data
types to specify vectors of data being sent and received by each core - fDefineMessage()” - and determining which
cores are nearest neighbours in each direction: fDefineNeighbours(). The MPI communications themselves are
carried out using a series of non-blocked send/receive calls applied sequentially in each Cartesian direction (4=,
+y and, if needed, £2) to ensure edges and corners are also dealt with correctly. As well as dealing with internal

2 There is a compile-time option available in DL_MESO_LBE, DPackbuf, to alternatively pack the data being communicated into an
array, communicate (send/receive) the data and then unpack the data into the appropriate places in memory. This approach can exploit OpenMP
multithreading to speed up packing and unpacking the arrays. There is also another compile-time option, DMP Iold, that makes use of older
names for MPI routines (subsequently changed from MPI-2 onwards) to create derived data types.

10 Chapter 4. DL_MESO_LBE Programming Background

DL_MESO Technical Manual, Release 2.7

boundaries between subdomains, these communications to boundary halos also enable periodic boundaries across
opposite sides of the entire simulation grid.

For each simulation time step, the distribution functions f; (Z,t) - f/NonBlockCommunication() - need to be com-
municated to boundary halos at the start to enable properties for interaction forces (e.g. fluid densities) to be
calculated. Interaction models that require force calculations based on gradients of phase indices or densities will
require these properties to be communicated - fIndexNonBlockCommunication() - before the interaction forces
themselves are communicated: fForceNonBlockCommunication(). These communications and local calculations
of body forces provide all the information needed to apply collisions to all grid points, including those in the
boundary halo, and no further communications will then be needed for the propagation stage. The boundary con-
dition values for grid points in the boundary halo can also be communicated - fBoundNonBlockCommunication()
- although this is generally only required once at the start while setting up the simulation.

Compared to the serial version, the parallel version of DL_MESO_LBE includes an additional module -
IbpMPI.cpp - which includes functions and subroutines to avoid using MPI calls directly in the main body of
the code. There are separate main source code files for the two versions of DL_MESO_LBE - plbe.cpp for
parallel running, slbe.cpp for serial running - as well as parallel and serial versions of modules with the main
calculation loops - I[bpRUNPAR.cpp and IbpRUNSER.cpp - and subroutines to aggregate data for file writing:
IbplOAGGPAR.cpp and IbplOAGGSER.cpp.

When running DL MESO_LBE in serial (i.e. on a single processor core), the boundary halo is not essential as the
distribution functions and other data values for all lattice points are already available. By default, DL._MESO_LBE
will not include a boundary halo for serial running and will instead use modulo functions to find neighbouring
grid points that cross periodic boundaries. A customisable version of the serial DL_MESO_LBE code - slbecom-
bine.cpp - enables the use of the boundary halo when running on a single processor core with additional subrou-
tines - fsPeriodic(), fsindexPeriodic(), fsForcePeriodic() and fsBoundPeriodic() - to copy the relevant values into
the additional grid points.

The main sections for each timestep - collisions, propagation and calculation of interaction forces - can additionally
be sped up by dividing loop iterations among available threads. This has been enabled in DL_MESO_LBE by
adding OpenMP directives to the main calculation loops, instructing the available threads to divide up the lattice
points among themselves. A single loop is used wherever possible (particularly for collisions and at least part of
propagations) over all available grid points to make division between threads as simple as possible. In the cases
where nested loops are required (e.g. to go through all grid points apart from those in the boundary halo), an
OpenMP directive to collapse these loops for division among threads is used. This form of optimisation can be
used with both the parallel and serial versions of DL_MESO_LBE: in the case of the parallel version, OpenMP
multithreading can be used alongside domain decomposition with MPI to speed up the computational performance
of each individual core. No alternative source code files are needed as the OpenMP directives do not require
changes to how the fundamental calculations in LBE are performed and are ignored if the compile-time option
(normally a compiler flag such as —fopenmp) is not invoked.

4.3 Data storage

DL_MESO_LBE uses one-dimensional arrays to store its main calculational properties for individual grid points:
* [bf - Distribution functions f;
e [bphi - Boundary condition numbers
* [bneigh - Indicators of boundaries in neighbouring grid points
* [bboundnorm - Surface normals for solid-fluid interfacial forces

* [bft - Interaction values (pseudopotentials for Shan-Chen interactions, interfacial normals for Lishchuk in-
teractions, density and concentration gradients for Swift interactions)

e [binterforce - Interaction forces acting on fluids due to fluid/phase interfaces
* [bheatforce - Convective heat forces acting on fluids (calculated using Boussinesq approximation)

* |bomega - Fluid relaxation frequencies

4.3. Data storage 11

DL_MESO Technical Manual, Release 2.7

Each array is either the size of the number of available grid points, 1bdm.touter, or an integer multiple of
this number. This total number of grid points for a processor’s subdomain is the product of 1bdm.xouter
(IV;), 1bdm.youter (IVy) and 1bdm. zouter (V,), which include any boundary halo points. The coordinate
number of an individual grid point given as Cartesian coordinates (z,y, z) (where 0 < z < N,,0 < y < N, and
0 < z < N,) can be calculated’ as:

l=(xNy+y)N.+z

with z always equal to zero and N, = 1 for two-dimensional simulations. This means the z-coordinate changes
most quickly with grid point location, followed by the y-coordinate and then the z-coordinate.

Multiplying [by the number of values per grid point for the given array provides the starting location for data at
that point.

The distribution functions f; in [bf are stored in blocks ordered by link vector i, with the distribution functions for
each fluid, solute and temperature field stored in that order. If a phase field ¢ is in use®, this value is placed at the
end. For instance, if two fluids (numbered O and 1), a temperature field and a phase field are being modelled on a
D2Q9 lattice (with 0 < ¢ < 9), the distribution functions at each grid point would be stored as follows:

f(g)af(}ahOaf?vfllvhlvfgvf217h27f??af?}ah3afz?afivhﬁlvfgvfgvhfnfGOvféah(i»f?af713h7afgvf817h87¢

The total number of distribution functions per grid point is given as [bsitelength, equal to the product of the number
of lattice links per grid point 1bsy.nqg (/N,) and the sum of the numbers of fluids (1bsy.nf, Ny), solutes
(1bsy.nc, N.) and temperature fields (1bsy.nt, IV;), plus the number of phase fields (1bsy.pf,). The
above choice of ordering in memory has been made for better exploitation of cache when applying propagation,
particularly when multiple fluids, solutes and temperature fields are in use, while a subsequent link’s distribution
function for a given fluid/solute/temperature field can be found by increasing the array index by Ny + N, 4 Nj.
Since macroscopic properties - e.g. velocity, fluid density - can be calculated directly from distribution functions
immediately prior to collisions or when writing output files, no additional arrays are required to store values of
these properties.

The boundary condition numbers in /bphi are stored in an integer array: only one integer is required per grid
point, the values of which are given in the input file /bin.spa. Similarly, the indicators of boundary conditions in
neighbouring grid points in /bneigh also only require one integer per grid point, although these are calculated in
the subroutine fNeighbourBoundary() based on a search of values of /bphi and used to describe how derivatives of
properties should be calculated for each lattice point.

The array with fluid relaxation frequencies /bomega includes blocks with values of w; = # for all fluids at
each grid point. The convective heat force array /bheatforce includes the Boussinesq approximation (temperature-
dependent) forces calculated for all fluids at each grid point, with the z-, y- and z-components of force for each
fluid together in memory, e.g. for three fluids at a given grid point:
F) F) . F) F} F) F} F F} F?

The size of the interaction force array [binterforce depends upon the fluid interaction model in use. It can be
identical to the size of Ibheat force (with each grid point requiring three values per fluid) when Shan-Chen pseu-
dopotential interactions are in use, as forces for individual fluids are calculated. If Lishchuk continuum-based
interactions are selected, however, only a single force is needed per grid point, which is applied to all fluids
simultaneously during collisions.

Similarly, the size of the array /bft will depend on the fluid interaction model, with each grid point storing:
* Ny values for Shan-Chen interactions to store pseudopotentials for each fluid;

w values for Lishchuk interactions to store interfacial normals for each pair of fluids (not including

each fluid with itself); or

* 4Ny values for Swift interactions to store first-order and second-order derivatives of densities and concen-
trations (three Cartesian coordinates for first-order, a single value for second-order).

3 This formula is used by the function fGetNodePosi(), while the fGetCoord() subroutine can be used to obtain the inverse (Cartesian
coordinates) by using integer division and modulo functions.

4 No available interaction model in DL_MESO_LBE currently makes use of it: it has been provided as an option for further functionality
expansion, but users currently should specify zero for the number of phase fields in the input file /bin.sys.

12 Chapter 4. DL_MESO_LBE Programming Background

DL_MESO Technical Manual, Release 2.7

A single triple of Cartesian coordinates for surface normals are stored in the array [bboundnorm for each grid
point, which are used to calculate solid-fluid interactions for the Lishchuk continuum-based algorithm.

4.4 Collisions

Four general forms of particle collisions are available in DL_MESO_LBE:
* Bhatnagar-Gross-Krook (BGK) single relaxation time
¢ Two-Relaxation-Time (TRT)
e Multiple Relaxation Time (MRT) based on raw moments of distribution functions
» Cascaded Lattice Boltzmann Equation (CLBE) based on central moments of distribution functions

Each of these are available in modules - (bpBGK.cpp, IbpTRT.cpp, IbpMRT.cpp and [bpCLBE.cpp - which include
the subroutines required to carry out collisions at all available grid points for each processor core. There are two
main classes of subroutines in each module:

* Subroutines with loops over all grid points, e.g. fCollisionBGK()

 Subroutines to carry out collisions for all fluids, solutes or temperature fields at a single grid point, e.g.
[SiteFluidCollisionBGK()

with the former calling the latter for each lattice site that contains fluid?, sending in calculated values of (variable)
fluid densities and velocities, as well as a pointer indicating the first distribution function value for the required lat-
tice site. The site collision subroutines include calls to other subroutines to calculate values required for collisions,
e.g. local equilibrium distribution functions f;? in fGetEquilibriumF(), forcing terms in fGetMomentForceGuo()
etc., apply (4.2) and overwrite the initial distribution functions f; (&, t) in the /bf array with post-collisional values,

f i (f ’ t+)
There are several variations for each collision scheme based on whether or not fluids are compressible, the type of
fluid interactions in use and the chosen method of applying forces to fluids.

The site subroutines include variants for compressible and incompressible fluids, which use different local equi-
librium distribution functions f;? and (in the case of incompressible fluids) can use both constant and variable
fluid densities. The subroutines with loops generally include two loops for compressible and incompressible flu-
ids apart from Swift free-energy based interactions and CLBE collisions, both of which can only be applied to
compressible fluids.

Shan-Chen interactions between fluids require a slightly different definition for the overall velocity of the fluids
that takes their relaxation times into account: this is dealt with in the loop subroutines by using the fGetSpeed-
ShanChenAllMassSite() and fGetSpeedShanChenlncomAllMassSite() subroutines to calculate fluid densities and
velocity instead of the usual fGetSpeedAllMassSite() and fGetSpeedIncomAllMassSite() subroutines.

The collisions for Lishchuk interactions are applied to all fluids simultaneously by calculating ‘achromatic’ distri-
bution functions, i.e.

flzz.fvaa

applying the collision and then re-segregating the distribution functions along interfacial normals between pairs of
fluids. The process of carrying out achromatic collisions and segregation are available in site collision subroutines,
e.g. fSiteFluidCollisionBGKLishchuk(), that can take interfacial normals between pairs of fluids as an additional
input sent from loop subroutines, e.g. fCollisionBGKLishchuk(). An alternative to applying interaction forces
between fluids is also available in the form of forcing terms with interfacial normals, which are enacting in both
site and loop subroutines such as fSite FluidCollisionBGKLishchukLocal() and fCollisionBGKLishchukLocal() re-
spectively.

5 Boundary points for constant fluid velocity/density, solute concentration and temperature conditions must be included in collisions for
the boundary schemes currently available in DL_MESO_LBE and are referred to as ‘wet nodes’ due to their inclusion of fluid. Blank and
bounce back boundary sites do not need to be collided as their distribution functions are either set to zero or given post-collisional values from
neighbouring grid points.

4.4. Collisions 13

DL_MESO Technical Manual, Release 2.7

Collisions for Swift interactions can be applied either to one or two fluid systems: in the case of two fluid systems,
the distribution functions for total fluid density and concentration (related to difference in densities between fluids)
are both collided. For both one- and two-fluid systems, gradients of density (and concentration) need to be passed
into the site collision subroutines, e.g. fSiteFluidCollisionBGKSwiftOneFluid(), to make use of more complex
local equilibrium distribution functions that include these gradients for interfacial tension terms.

Each type of collision can incorporate forces acting on the fluids using one of four different forcing schemes:

¢ Martys-Chen: adjustment of velocity used in local equilibrium distribution functions f;? for collisions to
include forces

* Equal Difference Method (EDM): additional forcing term F; based on differences in f;¢ with and without
the effect of forces on fluid velocity

¢ Guo method: adjusted fluid velocity in f;? and additional forcing term F; designed to give correct fluid
behaviour

* He method: adjusted fluid velocity in f;? and additional forcing term F; determined from derivative of
Maxwell-Boltzman local equilibrium distribution functions

and each of these is applied in both site and loop subroutines: the default forcing scheme is Martys-Chen.

4.5 Propagation

The propagation subroutines in DL_MESO_LBE enact (4.3), moving post-collisional distribution functions
fi (Z,tT) along the relevant lattice links é; to neighbouring grid points in preparation for the next simulation
timestep. The distribution functions in the array /bf for all fluids, solutes and temperature fields are moved: any
phase field values remain in place as these are not specific to particular lattice links.

The simplest form of propagation is enacted in the subroutine fPropagationTwoLattice(). In this instance, the
distribution functions in /bf for each fluid/solute/temperature field and link vector are copied into a temporary
array equal in size to at least the total number of grid points in the subdomain®, each value from position & being
placed at the intended destination grid point & 4 é;At. The values in the temporary array are then copied back to
Ibf in the appropriate places. While this method is clear, easy to understand and can be applied to the lattice points
in any order, its use of two loops over all grid points per distribution function to move them and the copying of
large numbers of values between arrays requires a lot of memory accesses and data storage. While the subroutine
remains in DL._MESO_LBE as its original implementation of propagation, it is not used by default.

The other two propagation subroutines are based on a swap algorithm [93]. This approach carries out two sets
of swaps of distribution functions: the first set of swaps is applied to distribution functions for each lattice point
between conjugate lattice links, i.e. f; (Z) is swapped for f; (Z) when é; = —é;, while the second set of swaps is
a reversal but with the neighbouring point, i.e. f; (Z) is swapped with f; (¥ + é;). To make it easier to carry out
swaps between conjugal lattice links, the links for each lattice scheme are arranged in memory so that &; = —¢é;

forl <i< Ny —1 Nyt

t— (assuming link zero is a ‘rest’ link, €y = 0), where j =1 +

The two sets of swaps can either be carried out in two separate loops as in fPropagationSwap() or combined in a
single loop over all grid points (including the boundary halo) as in fPropagationCombinedSwap(). The combined
simulataneous swaps can only work if a boundary halo of grid points is included and the lattice links are ordered
so the first half (1 < ¢ < qu_l) are all directed to lattice points that have previously been through at least
the first swap stage. As such, the combined swap implementation is the default for parallel running that uses a
boundary halo but no OpenMP multithreading (as this can break the required sequence of swaps), while the other
implementations of DL._MESO_LBE make use of the two separate loops in fPropagationSwap(), which can have

OpenMP applied to each loop in turn to speed them up by assigning each iteration to different threads.

6 The subroutine reuses the /bft array, overwriting any pseudopotentials, interfacial normals or density/concentration gradients that are now
no longer needed after collisions have taken place.

14 Chapter 4. DL_MESO_LBE Programming Background

append:lattice

DL_MESO Technical Manual, Release 2.7

4.6 Fluid interactions

The module [bpFORCE.cpp includes all of the subroutines required for DL_MESO_LBE to calculate interaction
forces and other related properties among the fluids in the simulation. These forces and other properties typically
rely upon gradient calculations of properties related to fluid densities in some way:

* Pseudopotentials for Shan-Chen interactions
¢ Phase indices for Lishchuk interactions, used to calculate interfacial normals
¢ Fluid density (and concentration) for Swift interactions

While the gradient calculations for each interaction method differ, they each rely upon using values of the property
in surrounding grid points. As such, DL_MESO_LBE identifies grid points on the very edge of the subdomain
in the array /bouter (the number of these points given by /boutersize), which require modulo functions to find
neighbouring lattice points across periodic boundaries. These points are located within layers of thickness 1lbdm.
owidx, lbdm.owidy and lbdm.owidz, which are set to either the boundary halo size 1bdm.bwid or 1
(whichever is larger) for all active Cartesian coordinates (i.e. 1bdm. owidz is set to O for two-dimensional simu-
lations), while the array /bouter stores both the one-dimensional coordinate number [and the Cartesian coordinates
(4, j, k) for each point. As such, two sets of subroutines exist to calculate gradients at a given grid point: one type
works on grid points near the edge of the subdomain and uses modulo functions to find neighbouring points across
periodic boundaries, while the other works on grid points away from the subdomain edge and does not require
modulo functions to find neighbours.

As with collisions, the module includes a number of subroutines with loops through the available grid points
- excluding any in the boundary halo - to calculate forces and/or gradients. For instance, the forces for Shan-
Chen interactions can be calculated using fInteractionForceShanChen() for parallel calculations - which excludes
grid points in the boundary halo - or fsInteractionForceShanChen() for serial calculations that include grid points
right at the edges of the lattice. In the case of the parallel version, the values of forces or gradients for lattice
points in the boundary halo are obtained by applying a communication - fForceNonBlockCommunication() for
forces, fIndexNonBlockCommunication() for gradient-based properties (interfacial normals for Lishchuk inter-
actions, density/concentration gradients for Swift interactions) - to copy in values from neighbouring processor
cores.

The subroutines in this module that do not require separated calculations for grid points near and far from the edge
of the subdomain (and therefore do not subsequently require communications for running in parallel) include:

e fInteractionForceZero() - zeros all interaction and convective heat forces

e fCalcPotential_ShanChen() - calculates pseudopotential values for Shan-Chen interactions for all grid points
(including the boundary halo)’

e fCalcPhaselndex_LishchukLocal() - calculates interfacial normals for Lishchuk interactions in an entirely
local manner for all grid points (using an approximation for the phase index gradient based on distribution
functions for each grid point)

e fCalcForce_Boussinesq() - calculates temperature-dependent heat convection forces using the Boussinesq
approximation at a given grid point

e fConvectionForceBoussinesq() - calculates temperature-dependent heat convection forces using the Boussi-
nesq approximation at all grid points

All three interaction methods can include interactions between fluids and solid surfaces represented by lattice sites
with specified boundary conditions. The array /bneigh is used for these interactions to identify the sites where
they take place (at grid points adjacent to solid boundaries) and how the gradients need to be calculated (e.g. using
one-sided gradient approximations to use fluid points further away from the boundary).

7 The pseudopotentials in Shan-Chen interactions can be selected to give specific equation of states as functions of fluid density p and
temperature 7. Four of these equations of state - Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson and Carnahan-Starling-Redlich-
Kwong - include more complex dependences on temperature, which can either be fixed across the system (in the input file /bin.sys) or vary
locally at each grid point using temperature field distribution functions: as such, these equations come in both constant and variable temperature
forms. (This is also the case for calculations of bulk pressures p; used for Swift interactions, although these are mainly calculated during the
collision step.)

4.6. Fluid interactions 15

DL_MESO Technical Manual, Release 2.7

4.7 Rheological models

While the default hydrodynamic behaviour in DL_MESO_LBE is for constant kinematic viscosities v for each
fluid - represented as relaxation times 77 - DL_MESO_LBE allows for alternative rheological models to be ap-
plied. The array /bomega is used to store relaxation frequencies (reciprocals of relaxation times) for all fluids
at each grid point (including any boundary halo points), which can be updated with appropriate values based on
specified rheological models for local shear rates (velocity gradients).

The shear rates at each grid point are calculated from the non-equilibrium part of the momentum flux tensor:

Y= [2) SapSas
a,B

which is itself calculated using distribution functions and a collision matrix A that includes the relaxation fre-
quency calculated during the previous timestep:

3 e
Sap = “oAl zi:ei,aei,,@ zj:Aij (fi = 1)

Subroutines in /bpRHEOLOGY.cpp are available to calculate the shear rate ~ at individual grid points based on
the collision scheme in use, e.g. fGetShearRateBGK() for BGK collisions. These are called by the subroutine
[GetSystemOmega() before it calls fGetRelaxationFrequency() to calculate a new relaxation frequency for each
grid point and fluid based on the rheological model and the shear rate. The relaxation frequencies in /bomega are
included when writing the restart file [bout.dump to ensure the simulation can be resumed from where it left off.

4.8 Boundary conditions

The array /bphi is used by DL_MESO_LBE to identify grid points with boundary conditions: the values in this
array are read in from the input file /bin.spa, which identifies each boundary condition by a number indicating its
type, the direction in which it is applied and which properties are being specified (e.g. fluid velocity or densities,
solute concentrations and/or temperature). A full list of available boundary codes is given in Chapter 6 of the
DL_MESO User Manual, while an overview is given in Table 6.4 and Table 6.5.

The default value for the boundary code in /bphi is 0, which indicates no boundary condition is applied at that grid
point, other than periodic boundaries if the point is at the outside of the simulation grid. If a boundary halo is in
use, a boundary code of 10 is used at each of its grid points to indicate its location if no other boundary conditions
need to be applied: this code ensures the grid point is involved in collisions but is omitted from sums of fluid
densities and momenta used in diagnostic messages printed by DL_MESO_LBE.

A boundary code of 11 is used to indicate a blank site, e.g. one that is inside a solid object but not at a grid point
adjacent to fluid. A code of 12 applies an on-grid bounce-back boundary condition, which provides a no-slip
condition (zero fluid velocity) at a wall and is obtained by reversing distribution functions at the grid point once
propagation has taken place. A mid-grid bounce-back condition is indicated by a boundary code of 13 and is
implemented by copying and reflecting post-collisional distribution functions going into the boundary grid point.
All three boundary types here can be applied at any arbitrary lattice point and their implementations do not depend
upon direction (i.e. where the nearest fluid points happen to be).

All other boundary condition types available in DL_MESO_LBE include indications of the direction in which
they are applied. Outflow conditions are implemented directly in DL_MESO_LBE, since either only four or six
directions need to be considered as they are limited to those orthogonal to the outer surfaces or edges of the
simulation grid. (First and second order accurate schemes are available, which make use of distribution functions
from one or two fluid points beyond the boundary point respectively: the choice for these is made by the user in
the [bin.sys input file.)

Other directional boundaries are treated in DL_MESO_LBE based on their types: planar surfaces, concave edges
and concave corners. Only one direction for each of these needs to be implemented directly for each boundary
condition scheme and each lattice scheme, as the inputs and outputs parameters for the subroutines (specifically
distribution functions, velocities, forces and density/concentration gradients for Swift interactions) can be rear-
ranged when called to give the correct results for other directions. The codes used in /bphi for these boundaries

16 Chapter 4. DL_MESO_LBE Programming Background

append:lattice

DL_MESO Technical Manual, Release 2.7

are represented as numbers between 100 and 899: the last two digits indicate direction, while the first digit
specifies whether a constant fluid velocity or density condition is needed along with constant solute concentra-
tion/temperature or bounce back for these properties. The quantities being held constant at these boundaries are
specified in /bin.sys for planar surfaces in three-dimensional simulations or concave edges in two-dimensional
simulations. Corners and edges use one fluid property (velocity or densities/concentrations/temperature) from
intersecting surface/edge boundaries and either take fluid densities or other properties from a nearby fluid point or
assume zero fluid velocity.

Four boundary condition schemes are currently available in DL_MESO_LBE for constant fluid velocity and den-
sity conditions:

* Zou-He: [bpBOUNDZouHe.cpp

* Inamuro: [bpBOUNDInamuro.cpp

* Regularised: /bpBOUNDRegular.cpp
e Kinetic: [bpBOUNDKinetic.cpp

and each scheme has its own module with subroutines to implement the boundaries for each available lat-
tice scheme. For instance, constant velocity conditions using the Zou-He scheme with a D2Q9 Ilattice are
found in fD2Q9VFZouHe(), which calls fD2Q9VCEZouHe() for edges (as defined for the bottom edge) and
JD2Q9VCCZouHe() for corners (defined for the bottom-left corner): the selection of lattice and boundary scheme
for this kind of condition is made in the fFixedSpeedFluid() subroutine. Boundary conditions for constant solute
concentrations and temperatures are currently limited to the Zou-He and Inamuro schemes.

4.9 Reading input files

Four input files can be read by DL_MESO_LBE at the start of a simulation: /bin.sys with simulation parameters,
[bin.spa with boundary conditions, /bin.init with initial conditions and /bout.dump to restart a previous simulation.
The first three of these are (human-readable) text files, while the /bout.dump file is written in binary (see below).
All processor cores read each of these files in the current version of DL_MESO_LBE, although the assignment of
boundary conditions, initial conditions and restart data in each core will depend on whether or not the specified
grid points exist in its subdomain.

The [bin.sys consists of lines, each with a word at the start and a value (either a number or another word) separated
by spaces and/or tab characters. The subroutines reading this file - fDefineSystem() and fInputParameters() - use
the C++ function getline to extract each line in turn as a string, before applying the fReadString() function
to find the word and value as individual strings. The word string is then compared with specific key words for
simulation properties, and the value string is either compared with other key words or parsed using the function
[StringToNumber() to give a number for assignment to a variable or array. The fDefineSystem() subroutine restricts
itself to searching for fundamental properties for the simulation: spatial dimensions and discrete speeds (number
of lattice links) to give the lattice scheme, numbers of fluids, solutes, temperature and phase fields, the total size of
the lattice, the boundary halo size, whether or not the fluids are exactly incompressible, if the simulation is being
restarted, the collision/forcing type, interaction type, and output file format. Many of these values are used to
define array sizes, for storing the data used directly for simulations (e.g. distribution functions, interaction forces)
and for parameters used to describe each fluid/solute/temperature field (e.g. relaxation times). These, along with
initial and boundary conditions, are then read in by the fInputParameters() subroutine.

Both the [bin.spa and [bin.init files consist of lines of numbers. Each line of each file starts with three integers
indicating integer Cartesian coordinates of a grid point, which are followed by the required data at that point
(boundary code in lbin.spa, velocity, fluid densities, solute concentrations and temperatures in [bin.init). These
numbers are read in directly from the filestream for the opened file and the value(s) assigned to the grid point
if it exists in the current subdomain. (When running a two-dimensional simulation, only grid points where the
z-coordinate is equal to O will be accepted.) The subroutines fReadSpaceParameter() and fReadlnitialState() are
used to read in the /bin.spa and [bin.init files respectively.

If a simulation restart is requested in the /bin.sys file and a [bout.dump can be found, the subroutine fReadRestart()
will read the latter file. Some basic information about the simulation is read in first as a series of integers and
compared with the information provided in /bin.sys: mismatches in lattice scheme, grid size, numbers of fluids,
solutes, temperature and phase fields cannot be reconciled and will cause DL_MESO_LBE to halt with at least one

4.9. Reading input files 17

append:lattice
append:lattice

DL_MESO Technical Manual, Release 2.7

error message stating the mismatch(es). The timestep at which the simulation previously stopped and the number
of output files previously written are also among the basic information, as well as whether or not incompressible
fluids were used: while a mismatch in this latter property is not fatal for restarting a DL._MESO_LBE simulation,
the value in lbout.dump indicates that constant densities py then immediately follow. After these data, the Cartesian
coordinates identifying all grid points are then read in one set at a time: if the grid point is found inside the current
processor core’s subdomain, the distribution functions and fluid relaxation frequencies for that grid point are
then read in and assigned to the arrays. All of the data in the [bout.dump is provided in binary format using the
endianness of the computer that previously ran the simulation, although utilities also exist in DL_MESO to read
and manipulate this data.

4.10 Writing output files

The main output files written by DL._MESO_LBE are in one of three different formats: XML-based structured
grid VTK (lbout*.vts), structured grid Legacy VTK (lbout*.vtk) or Plot3D (I/bout*.q). While the exact formats of
the files differ, the details about how they are prepared and written are very similar.

By default, each processor core will write its own file for each trajectory frame (a snapshot of the simulation
at a given timestep). This option can be overridden using the output_combine keywords in [bin.sys, which
tell DL_MESO_LBE to combine data from processor cores along specific Cartesian axes onto a single processor
core, which then produces a single output file for that group of processor cores. If all dimensions are requested for
combination of output data, DL_MESO_LBE will switch on the option to use MPI-10 instead of full combination
of data: multiple groups of processor cores are still created to combine data in all but one dimension (z-dimension
for three-dimensional simulations, y-dimension for two-dimensional simulations)in slices, but each group’s root
core writes concurrently to a single output file at unique locations to ensure the data are written in the required
order.

The fCreatelOGroups() subroutine sets up groups of processor cores that will share their data, determines the
extent of the grid that each group will cover and creates MPI communicators to enable each group to gather their
data on to a root core that will end up writing to its output file. A series of subroutines, e.g. fGroupDensities()
for fluid densities, are available to gather together data required for file-writing and are called by subroutines
specifying what is written to each file for the given format (e.g. fOutputVTK() for XML-based VTK files). In
these subroutines, each processor core puts together the required values into an array (swapping bits if requested)
before this data is gathered together into a larger array in the groups’ root cores and then reordered with the x-
coordinate as the fastest changing coordinate (followed by the y- and z-coordinates). Subroutines are then called,
e.g. [WriteVTKFloatBinaryData(), to get the root processor core for each group to write the data to the file as a
stream of numbers: if MPI-1O is in use, the MPI subroutine MPI_File_write_at is used to place the data in
the appropriate place in the file. (If any text is required before or after the data, e.g. XML tags, this can also be
added by the appropriate I/O groups.)

The [bout.dump restart file is prepared in a similar fashion to other output files. The subroutine fGroupGather-
RestartData() - as called by the fWriteRestart() subroutine - brings together the grid point coordinates for each
individual processor core or each I/O group of processor cores, as well as the distribution functions and relaxation
frequencies for all fluids at each grid point. After writing the important simulation data required for a restart
(lattice scheme, grid size etc.) and constant fluid densities if incompressible fluids are in use, the grid point co-
ordinates are written by every core or I/O group (using MPI-IO to do this concurrently if running in parallel) to
form a single block of integer numbers, before the distribution functions and relaxation frequencies are written as
a single block of double precision floating-point numbers. Unlike other output files, only a single /bout.dump file
is ever produced at a time regardless of the number of processor cores used to run the simulation.

18 Chapter 4. DL_MESO_LBE Programming Background

CHAPTER
FIVE

DL_MESO_LBE CODE DESCRIPTION

This chapter lists and describes the subroutines, functions, variables, datatypes etc. in DL_MESO_LBE, based on
output generated using Doxygen with annotations in the code.

5.1 Ibe.hpp

5.1.1 Summary

Common variables and arrays when running DL_MESO_LBE in both serial and parallel. Required variables and
arrays for LBE calculations that are applicable for both serial and parallel running of DL_MESO_LBE (made
globally accessible with global.hpp).

5.1.2 Classes

* struct sSystem
Structure for system information.
e struct sDomain

Structure for domain information.

5.1.3 Enumerations

e enum BoundaryType :: {

PST =21, PSD =22, PSL = 23, PSR = 24, PSF = 25, PSB =26, CCTRB =27, CCTLB
=28, CCDLB =29, CCDRB = 30, CCTRF =31, CCTLF = 32, CCDLF = 33, CCDRF
= 34, CETR = 43, CETL = 44, CEDL = 45, CEDR = 46, CETF = 47, CELF = 48,
CEDF =49, CERF =50, CETB =51, CELB = 52, CEDB = 53, CERB = 54

}

Types of boundary conditions.

19

DL_MESO Technical Manual, Release 2.7

5.1.4 Variables

o sSystem lbsy
System information for LBE simulation.
* sDomain Ibdm
Domain information for LBE simulation.
e double [biniv [3]
Initial fluid velocities.
e double lbtopv [3]
Fluid velocity at top boundary.
e double [bbotv [3]
Fluid velocity at bottom boundary.
e double Ibfrov [3]
Fluid velocity at front boundary.
e double lbbacv [3]
Fluid velocity at back boundary.
e double lblefv [3]
Fluid velocity at left boundary.
e double lbrigv [3]
Fluid velocity at right boundary.
e double Ilbtopvoscil [3]
Oscillating fluid velocity at top boundary.
e double [bbotvoscil [3]
Oscillating fluid velocity at bottom boundary.
* double Ibfrovoscil [3]
Oscillating fluid velocity at front boundary.
e double [bbacvoscil [3]
Oscillating fluid velocity at back boundary.
* double Iblefvoscil [3]
Oscillating fluid velocity at left boundary.
e double lbrigvoscil [3]
Oscillating fluid velocity at right boundary.
* double Ibtopvfg
Angular frequency of oscillating fluid velocity at top boundary.
* double lbbotvfg
Angular frequency of oscillating fluid velocity at bottom boundary.
e double Ibfrovfg
Angular frequency of oscillating fluid velocity at front boundary.
* double lbbacvfg

Angular frequency of oscillating fluid velocity at back boundary.

20 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

double Iblefvfg

Angular frequency of oscillating fluid velocity at left boundary.
double lbrigvfg

Angular frequency of oscillating fluid velocity at right boundary.

int [btopvbc

Flag indicating kind of velocity boundary condition at top boundary.
int Ibbotvbc

Flag indicating kind of velocity boundary condition at bottom boundary.
int Ilbfrovbe

Flag indicating kind of velocity boundary condition at front boundary.
int [bbacvbc

Flag indicating kind of velocity boundary condition at back boundary.
int Iblefvbe

Flag indicating kind of velocity boundary condition at left boundary.
int lbrigvbc

Flag indicating kind of velocity boundary condition at right boundary.
double «x lbincp

Constant fluid densities.

double « lbinip

Initial fluid densities.

double « lbtopp

Fluid densities at top boundary.

double « Ibbotp

Fluid densities at bottom boundary.

double = [bfrop

Fluid densities at front boundary.

double « lbbacp

Fluid densities at back boundary.

double =« [blefp

Fluid densities at left boundary.

double « lbrigp

Fluid densities at right boundary.

double « Ibinic

Initial solute concentrations.

double «x lbtopc

Solute concentrations at top boundary.

double « Ibbotc

Solute concentrations at bottom boundary.

5.1.

Ibe.hpp

DL_MESO Technical Manual, Release 2.7

double = [bfroc

Solute concentrations at front boundary.
double «x lbbacc

Solute concentrations at back boundary.
double =« [blefc

Solute concentrations at left boundary.
double «x lbrigc

Solute concentrations at right boundary.
double lbsyst

Constant system temperature.
double lbinit

Initial temperature.

double lbtopt

Temperature at top boundary.
double Ibbott

Temperature at bottom boundary.
double Ibfrot

Temperature at front boundary.
double Ilbbact

Temperature at back boundary.
double Ibleft

Temperature at left boundary.
double lbrigt

Temperature at right boundary.
double lbsysdt

System-wide heating rate.

double lbtopdt

Heating rate at top boundary.
double lbbotdt

Heating rate at bottom boundary.
double Ibfrodt

Heating rate at front boundary.
double Ibbacdt

Heating rate at back boundary.
double Iblefdt

Heating rate at left boundary.
double lbrigdt

Heating rate at right boundary.

22

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int [btotstep

Total number of simulation timesteps.

int lbequstep

Number of equilibration timesteps.

int Ilbsave

Output file writing frequency.

int Ibdump

Simulation restart file writing frequency.
int [bcurstep

Current timestep number.

int [bsteer

Flag for computational steering.

int [bmpiio

Flag for writing output files using MPI-I10O.
int [brestart

Flag for restarting a previous simulation.
double Ilbcalctime

Total specified calculation time (in seconds) for simulation.
double lbnoise

Noise intensity for fluid densities.

double Ilbtrtmagic

Two relaxation time (TRT) ‘magic number’.
double lbgasconst

Universal gas constant.

double = Ibtf

Fluid relaxation frequencies.

double « Ibtfbulk

Fluid bulk relaxation frequencies.

double = lbtfclb3

Third-order relaxation frequencies for CLBE collisions.
double « [btfclb4

Fourth-order relaxation frequencies for CLBE collisions.
double «x Ibtc

Solute relaxation frequencies.

double x Ibtt

Thermal relaxation frequencies.

double lbtmob

Free-energy concentration relaxation frequency for mobility between two fluid species.

5.1.

Ibe.hpp

DL_MESO Technical Manual, Release 2.7

e int « Ibscpot
Pseudopotential types for fluids.
e int « lbwet
Solid-fluid wetting type.
e double Ibfewet [4]
Surface free energy parameters for Swift free-energy interactions.
e int [bfeeos
Fluid equation of state for Swift free-energy interactions.
e int [bfepot
Chemical potential type for Swift free-energy interactions.
* int lbgradord
Accuracy of gradient approximation for solid-fluid interactions.
e int lbbctyp
Type of constant velocity or density boundary conditions.
e int [bsbctyp
Type of constant solute concentration boundary conditions.
e int Ibtbctyp
Type of constant temperature boundary conditions.
e double lbkappa
Surface tension parameter.
* double lbfemob
Fluid mobility parameter.
* double «* Ibg
Fluid-fluid interaction parameters.
* double =« lbgwall
Solid-fluid interaction parameters.
* double =« [bseg
Fluid-fluid segregation parameters for Lishchuk continuum-based interactions.
* double «* lbpsiO
Parameters for 1994 Shan-Chen pseudopotential model.
* double =« lbcritt
Fluid critical temperatures.
e double = lbcritp
Fluid critical pressures.
* double =« lbeosa
Fluid attraction coefficients for equations of state.
e double =« [beosb

Fluid finite volume coefficients for equations of state.

24 Chapter 5. DL_MESO_LBE Code Description

double «x lbacentric
Fluid acentric factors for equations of state.

double « [bscquad

Weighting factors for quadratic Shan-Chen pseudopotential forces.

double = [bbdforce

Constant body forces on fluids.

double x lboscilforce

Amplitudes of oscillating forces on fluids.
double x Ibbousforce

Boussinesq buoyancy forces on fluids.
double = lbheatforce

Heat convection forces.

double «x lbinterforce

Interfacial forces.

double lboscilfreq

Angular frequency of oscillating forces acting on fluids.
int Ibbdforcetyp

Flag indicating kind of body forces acting on fluids.
double x lbomega

Fluid relaxation frequencies at lattice points.
int * lbrheo

Rheological models for fluids.

double « lbrheoa

Parameters a for rheological models.
double «x lbrheob

Parameters b for rheological models.
double « [brheoc

Parameters c for rheological models.
double x lbrheod

Parameters d for rheological models.
double « lbrheopower

Power-law indices for rheological models.
double « Ibf

Distribution functions.

double « [bft

Pseudopotentials, interfacial normals or density/concentration gradients.

double = lbfeq

Local equilibrium distribution functions.

5.1.

Ibe.hpp

DL_MESO Technical Manual, Release 2.7

DL_MESO Technical Manual, Release 2.7

int * lbphi

Boundary condition properties (phase fields).

int * lbneigh

Neighbouring point properties.

double « Ibboundnorm

Surface normals for lattice points.

int * lbvx

Link vectors (x-components).

int « lbvy

Link vectors (y-components).

int * lbvz

Link vectors (z-components).

int Ibfevx [19]

Gradient stencil for Swift free-energy interactions (x-component).
int Ibfevy [19]

Gradient stencil for Swift free-energy interactions (y-component).
int Ibfevz [19]

Gradient stencil for Swift free-energy interactions (z-component).
int * lbopv

Conjugate lattice links.

int * lbspair

List of fluid pairs.

double x lbw

Link weights.

double « [bvwx

Products of x-components of link vector and weights.

double x lbvwy

Products of y-components of link vector and weights.

double x lbvwz

Products of z-components of link vector and weights.

double x lbwi

Velocity link weights for Swift free-energy interaction local equilibrium distribution functions.
double = Ibw0

Density link weights for Swift free-energy interaction local equilibrium distribution functions.
double x lbwpt

Bulk pressure/surface tension link weights for Swift free-energy interaction local equilibrium distribution
functions.

double * [bwxx

Surface tension (xx-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

26

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

double = lbwyy

Surface tension (yy-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

double =* lbwzz

Surface tension (zz-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

double =« [bwxy

Surface tension (xy-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

double * lbwxz

Surface tension (xz-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

double x lbwyz

Surface tension (yz-direction) link weights for Swift free-energy interaction local equilibrium distribution
functions.

double = lbwgam

Galilean invariance link weights for Swift free-energy interaction local equilibrium distribution functions.
double x lbwdel

Galilean invariance link weights for Swift free-energy interaction local equilibrium distribution functions.
double «x [btr

Multiple relaxation time (MRT) transformation matrix.

double « Ilbtrinv

Multiple relaxation time (MRT) inverse transformation matrix.

double lbmrts [8]

Tuneable collision frequencies for multiple relaxation time (MRT) collisions.
double lbmrtw [3]

Tuneable parameters for moments for multiple relaxation time (MRT) collisions.
int [bsitelength

Number of distribution functions per lattice point.

double lbdx

Grid spacing in ‘real world’ units.

double Ibdt

Timestep in ‘real world’ units.

double lbcs

Lattice speed of sound.

double lbessq

Square of lattice speed of sound.

double lbressq

Reciprocal of the square of lattice speed of sound.

double lbsoundv

Speed of sound of fluid 0.

5.1.

Ibe.hpp 27

DL_MESO Technical Manual, Release 2.7

e double lbreynolds

Reynolds number for LBE simulation.
* double [lbkinetic

Kinematic viscosity of fluid 0.
* double [bbousth

High temperature for Boussinesq approximation.
* double lbboustl

Low temperature for Boussinesq approximation.
* double lbevaplim

Evaporation limit for fluid density.
e unsigned long =« [bouter

List of lattice points at outer edge of subdomain.
e int lboutersize

Number of lattice points in outer edge region of subdomain.
* int bigend

Flag for big endianness of system.
* double timetotal

Total calculation time in seconds.
¢ int gVersion

Output file number.
e int collide

Collision type.
e int interact

Interaction type.
e int incompress

Flag for incompressible fluids.
e int nonnewtonian

Flag for variable fluid relaxation times (non-Newtonian rheology).
* int outformat

Output file format.
* int postequil

Flag for post-equilibration state.

28 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.1.5 Class Documentation

struct sSystem

Structure for system information (e.g. numbers of dimensions and lattice links per grid point, fluids, solutes,
temperature fields, size of lattice).

Table 5.1: Class Members

int | nc | Number of solutes in LBE simulation: helps specify the total number of lattices for the simulation,
as each solute exists on its own lattice. If at least one solute is in use, only one fluid can currently
be used.

int | nd | Number of dimensions for lattice and simulation: used to specify lattice scheme

int | nf | Number of fluids in LBE simulation: helps specify the total number of lattices for the simulation,
as each fluid exists on its own lattice

int | nq | Number of lattice link vectors from each grid point: used to specify lattice scheme

int | nt | Number of temperature fields in LBE simulation, which can either be 0 or 1: helps specify the total
number of lattices for the simulation, as the temperature field exists on its own lattice

int | nx | Number of grid points in x-direction for LBE simulation

int | ny | Number of grid points in y-direction for LBE simulation

int | nz | Number of grid points in z-direction for LBE simulation. This value needs to be set to 1 for two-
dimensional simulations.

int | pf | Number of phase fields in LBE simulation: this property is currently not used in DL_MESO_LBE
for any of its interaction models, but only one value per phase field per grid point is required

struct sDomain

Structure for domain information (e.g. processor number, numbers of processors, boundary halo size, dimensions
of lattice subdomain).

5.1. Ibe.hpp 29

DL_MESO Technical Manual, Release 2.7

Table 5.2: Class Members

int | bwid| Size of boundary halo to receive communications from neighbouring processors.
int | owidk Size of boundary region at edge of lattice (used to apply modulo functions for periodic boundaries)
in x-direction. This value is set to the default of 1.
int | owidy Size of boundary region at edge of lattice (used to apply modulo functions for periodic boundaries)
in y-direction. This value is set to the default of 1.
int | owidz Size of boundary region at edge of lattice (used to apply modulo functions for periodic boundaries)
in z-direction. This value is set to O for two-dimensional simulations and 1 for three-dimensional
simulations.
int | rank | Number (rank) of current processor: used to identify processor.
int | size | Total number of processors involved in LBE calculation.
int | touter Total number of grid points (including the boundary halo) held by the current processor for its
lattice subdomain.
int | xcor | Position of current processor within system given as the x-component of a Cartesian coordinate.
int | xdim| Total number of processors for current LBE calculation in x-direction.
int | xe Highest x-coordinate for lattice subdomain of current processor (excluding boundary halo).
int | xin- | Number of grid points in x-direction for the lattice subdomain of current processor excluding the
ner | boundary halo.
int | xoutgr Number of grid points in x-direction for the lattice subdomain of current processor including the
boundary halo.
int | xs Lowest x-coordinate for lattice subdomain of current processor (excluding boundary halo).
int | ycor | Position of current processor within system given as the y-component of a Cartesian coordinate.
int | ydim| Total number of processors for current LBE calculation in y-direction.
int | ye Highest y-coordinate for lattice subdomain of current processor (excluding boundary halo).
int | yin- | Number of grid points in y-direction for the lattice subdomain of current processor excluding the
ner | boundary halo.
int | youtgr Number of grid points in y-direction for the lattice subdomain of current processor including the
boundary halo.
int | ys Lowest y-coordinate for lattice subdomain of current processor (excluding boundary halo).
int | zcor | Position of current processor within system given as the z-component of a Cartesian coordinate.
int | zdim| Total number of processors for current LBE calculation in z-direction. This value is set to 1 for
two-dimensional simulations.
int | ze Highest z-coordinate for lattice subdomain of current processor (excluding boundary halo).
int | zin- | Number of grid points in z" -direction for the lattice subdomain of current processor excluding the
ner | boundary halo.
int | zouter Number of grid points in z-direction for the lattice subdomain of current processor including the
boundary halo.
int | zs Lowest z-coordinate for lattice subdomain of current processor (excluding boundary halo).

Enumeration Type Documentation

BoundaryType

enum BoundaryType

Numerical identifiers for constant density/velocity, concentration and temperature boundary points based on di-
rection. All of these are in use for three-dimensional LBE simulations: two-dimensional simulations make use
of concave edges and corners pointing to the front (CCTRF, CCDTLF, CCDLF, CCDRF, CETF, CELF, CEDF,
CERF).

30

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.3: Enumerator

PST

Planar surface (bottom) pointing upwards.

PSD

Planar surface (top) pointing downwards.

PSL

Planar surface (right) pointing to the left.

PSR

Planar surface (left) pointing to the right.

PSF

Planar surface (back) pointing to the front.

PSB

Planar surface (front) pointing to the back.

CCTRB

Concave corner (bottom-left-front) pointing upwards, to the right and back.

CCTLB

Concave corner (bottom-right-front) pointing upwards, to the left and back.

CCDLB

Concave corner (top-right-front) pointing downwards, to the left and back.

CCDRB

Concave corner (top-left-front) pointing downwards, to the right and back.

CCTRF

Concave corner (bottom-left-back) pointing upwards, to the right and front.

CCTLF

Concave corner (bottom-right-back) pointing upwards, to the left and ftont.

CCDLF

Concave corner (top-right-back) pointing downwards, to the left and front.

CCDRF

Concave corner (top-left-back) pointing downwards, to the right and front.

CETR

Concave edge (bottom-left) pointing upwards to the right.

CETL

Concave edge (bottom-right) pointing upwards to the left.

CEDL

Concave edge (top-right) pointing downwards to the left.

CEDR

Concave edge (top-left) pointing downwards to the right.

CETF

Concave edge (bottom-back) pointing upwards to the front.

CELF

Concave edge (right-back) pointing to the left and front.

CEDF

Concave edge (top-back) pointing downwards to the front.

CERF

Concave edge (left-back) pointing to the right and front.

CETB

Concave edge (bottom-front) pointing to the top and back.

CELB

Concave edge (right-front) pointing to the left and back.

CEDB

Concave edge (top-front) pointing to the bottom and back.

CERB

Concave edge (left-front) pointing to the right and back.

Variable Documentation

bigend

extern int bigend

Flag to indicate whether or not the system stores binary numbers in big endian order (1 = big endian, 0 = little

endian).

collide

extern int collide

Parameter for type of collisions and forcing scheme, used to select collision subroutines for simulation.

5.1. Ibe.hpp

31

DL_MESO Technical Manual, Release 2.7

incompress

extern int incompress

Flag to indicate whether or not fluids are fully incompressible (1 = fully incompressible, 0 = mildly compressible).

interact

extern int interact

Parameter for type of interactions between fluids and/or phases, used to select main simulation loop.

Ibacentric

extern doublex lbacentric

Acentric factors w for fluids, used in equations of state applied by Shan-Chen pseudopotential and Swift free-
energy interaction models.

Ibbacc

extern doublex lbbacc

Concentrations of solutes at back boundary when using constant concentration boundary condition.

Ibbacdt

extern double lbbacdt

Constant rate of change of temperature at back boundary when using temperature boundary condition.

Ibbacp

extern doublex lbbacp

Densities of fluids at back boundary when using constant density boundary condition.

Ibbact

extern double lbbact

Temperature at back boundary when using constant temperature boundary condition.

32 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibbacv

extern double lbbacv[3]

Velocity for fluids at back boundary when using constant velocity boundary condition.

Ibbacvbc

extern int lbbacvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at back boundary when using
constant velocity boundary condition (0 = off, 1 = on).

Ibbacvfq

extern double lbbacvfqg

Angular frequency of fluid velocity sinusoidal oscillations applied at back boundary when using constant velocity
boundary condition.

Ibbacvoscil

extern double lbbacvoscil[3]

Amplitude of velocity for fluids at back boundary varying sinusoidally with time when using constant velocity
boundary condition.

Ibbctyp

extern int lbbctyp

Type of boundary conditions in use for constant fluid velocities or densities (0 = Zou-He, 1 = Inamuro, 2 =
regularised, 10 = simple Zou-He, 11 = kinetic).

Ibbdforce

extern doublex lbbdforce

Constant body forces (e.g. gravity) acting on each fluid, applied using forcing terms during collisions.

Ibbdforcetyp

extern int lbbdforcetyp

Flag to indicate whether or not to include sinusoidal oscillation in time to forces acting on all fluids (0 = off, 1 =
on).

5.1. Ibe.hpp 33

DL_MESO Technical Manual, Release 2.7

Ibbotc

extern doublex lbbotc

Concentrations of solutes at bottom boundary when using constant concentration boundary condition.

Ibbotdt

extern double lbbotdt

Constant rate of change of temperature at bottom boundary when using temperature boundary condition.

Ibbotp

extern doublex lbbotp

Densities of fluids at bottom boundary when using constant density boundary condition.

Ibbott

extern double lbbott

Temperature at bottom boundary when using constant temperature boundary condition.

Ibbotv

extern double lbbotv[3]

Velocity for fluids at bottom boundary when using constant velocity boundary condition.

Ibbotvbc

extern int lbbotvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at bottom boundary when using
constant velocity boundary condition (0 = off, 1 = on).

Ibbotvfq

extern double lbbotvfqg

Angular frequency of fluid velocity sinusoidal oscillations applied at bottom boundary when using constant ve-
locity boundary condition.

34 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibbotvoscil

extern double lbbotvoscil[3]

Amplitude of velocity for fluids at bottom boundary varying sinusoidally with time when using constant velocity
boundary condition.

Ibboundnorm

extern doublex lbboundnorm

Normals of surfaces at lattice points for calculating solid-fluid interfacial forces using Lishchuk continuum-based
interactions.

Ibbousforce

extern doublex lbbousforce

Products of gravitational acceleration and volumetric expansivity g5 for fluids, used to determine temperature-
dependent buoyancy forces for Boussinesq approximation.

Ibbousth

extern double lbbousth

Maximum system temperature used in temperature-dependent forces for Boussinesq approximation 75,.

Ibboustl

extern double lbboustl

Minimum system temperature used in temperature-dependent forces for Boussinesq approximation 7j.

Ibcalctime

extern double lbcalctime

Total wall time (in seconds) to run DL_MESO_LBE calculation before writing a restart file (Ibout.dump) and
shutting down. (If this value is zero, the calculation will continue until all timesteps have been completed.)

Ibcritp

extern doublex lbcritp

Critical pressures p,. for fluids, connected to parameters for equations of state.

5.1. Ibe.hpp 35

DL_MESO Technical Manual, Release 2.7

Ibcritt

extern doublex lbcritt

Critical temperatures T, for fluids, connected to parameters for equations of state.

Ibcs

extern double lbcs

Speed of sound for the lattice, cg, given in lattice-based units.

Ibcssq

extern double lbcssqg

Square of the speed of sound for the lattice, c2, given in lattice-based units.

Ibcurstep

extern int lbcurstep

Timestep number for current point in LBE simulation.

Ibdm

extern sDomain lbdm

Domain information for LBE simulation (e.g. extents of lattice held by processors), using struct sDomain structure
to store information.

Ibdt

extern double lbdt

Timestep At given in consistent ‘real world’ units, calculated from the kinetic viscosity and speed of sound in
‘real world’ units and the selected relaxation time for fluid 0. This value is checked to ensure a valid value for the
relaxation time/frequency of fluid O is selected.

Ibdump

extern int lbdump

Interval (number of timesteps) between overwrites of a simulation restart file (Ibout.dump).

36 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibdx

extern double lbdx

Grid spacing between lattice points Az given in consistent ‘real world’ units, calculated from the speed of sound
for fluid 0 and the ‘real world’ timestep size.

Ibeosa

extern doublex lbeosa

Attraction coefficients a for fluids, used in equations of state applied by Shan-Chen pseudopotential and Swift
free-energy interaction models.

Ibeosb

extern doublex lbeosb

Finite volume coefficients b for fluids, used in equations of state applied by Shan-Chen pseudopotential and Swift
free-energy interaction models.

Ibequstep

extern int lbequstep

Number of timesteps required at start of LBE simulation to allow system to settle before applying boundary
conditions and body forces.

Ibevaplim

extern double lbevaplim

Minimum viable fluid density for applying Inamuro and kinetic boundary conditions, and calculating mass frac-
tions and fluid velocities for output files.

Ibf

extern doublex 1bf

Distribution functions (f;, g;, h;) for all lattice points in subdomain: in order of fluid/solute/temperature field,
then lattice link and then lattice point.

5.1. Ibe.hpp 37

DL_MESO Technical Manual, Release 2.7

Ibfeeos

extern int lbfeeos

Selected equation of state for one or two fluids undergoing Swift free-energy interactions.

Ibfemob

extern double lbfemob

Mobility parameter (multiplier) I' between two fluids undergoing Swift free-energy interactions.

Ibfepot

extern int lbfepot

Selected chemical potential between two fluids undergoing Swift free-energy interactions (0 = none, 1 = quartic).

Ibfeq

extern doublex lbfeqg

€q
i

Local equilibrium distribution functions (
collisions.

g:9, hi?) for a lattice point, used during system initialisation and

Ibfevx

extern int lbfevx[19]

Vectors (x-components) for calculating first-order and second-order gradients of density and concentration for
Swift free-energy calculations with reduced microcurrents [102] used at fluid lattice points without neighbouring
boundaries.

Ibfevy

extern int lbfevy[19]

Vectors (y-components) for calculating first-order and second-order gradients of density and concentration for
Swift free-energy calculations with reduced microcurrents [102] used at fluid lattice points without neighbouring
boundaries.

38 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibfevz

extern int lbfevz[19]

Vectors (z-components) for calculating first-order and second-order gradients of density and concentration for
Swift free-energy calculations with reduced microcurrents [102] used at fluid lattice points without neighbouring

boundaries.

Ibfewet

extern double lbfewet [4]

Parameters for surface free energy with Swift free-energy interactions: indices 0 and 1 for linear and quadratic

terms in density, 2 and 3 for linear and quadratic terms in concentration.

Ibfroc

extern doublex lbfroc

Concentrations of solutes at front boundary when using constant concentration boundary condition.

Ibfrodt

extern double lbfrodt

Constant rate of change of temperature at front boundary when using temperature boundary condition.

Ibfrop

extern doublex lbfrop

Densities of fluids at front boundary when using constant density boundary condition.

Ibfrot

extern double lbfrot

Temperature at front boundary when using constant temperature boundary condition.

Ibfrov

extern double lbfrov[3]

Velocity for fluids at front boundary when using constant velocity boundary condition.

5.1. Ibe.hpp

39

DL_MESO Technical Manual, Release 2.7

Ibfrovbc

extern int lbfrovbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at front boundary when using
constant velocity boundary condition (0 = off, 1 = on).

Ibfrovfq

extern double lbfrovfqg

Angular frequency of fluid velocity sinusoidal oscillations applied at front boundary when using constant velocity
boundary condition.

Ibfrovoscil

extern double lbfrovoscil[3]

Amplitude of velocity for fluids at front boundary varying sinusoidally with time when using constant velocity
boundary condition.

Ibft

extern doublex 1bft

Pseudopotentials for Shan-Chen interactions (ordered by fluid), interfacial normals for Lishchuk continuum-based
interactions (ordered by fluid pairs) or gradients of density/concentration for Swift free-energy interactions (all
three components of first-order gradients and then secord-order gradient for density and concentration).

Ibg

extern doublex lbg

Interaction parameters between fluids (including self-interactions) g,s, used for Shan-Chen pseudopotential and
Lishchuk continuum-based interactions.

Ibgasconst

extern double lbgasconst

Universal gas constant R used for equations of state applied in Shan-Chen pseudopotential and Swift free-energy
interactions.

40 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibgradord

extern int lbgradord

Selected accuracy of one-sided gradient approximations used at lattice points next to solid boundaries for Lishchuk
continuum-based phase index gradients and interfacial forces and Swift free-energy solid-fluid interactions.

Ibgwall

extern doublex lbgwall

Interaction parameters between fluids and solid walls g,,q11,q, used for Shan-Chen pseudopotential and Lishchuk
continuum-based interactions.

Ibheatforce

extern doublex lbheatforce

Forces acting on fluids due to heat convection as given by Boussinesq approximation.

Ibincp

extern doublex lbincp

Constant densities for fully incompressible fluids in LBE simulation (used in local equilibrium distribution func-
tions, and as parameters for 1994 Shan-Chen [119] and Qian [106] pseudopotentials).

Ibinic

extern doublex lbinic

Initial default concentrations for solutes at all lattice points in LBE simulation (unless overridden by values in
initial state input file Ibin.init).

Ibinip

extern doublex lbinip

Initial default densities for fluids at all lattice points in LBE simulation (unless overridden by values in initial state
input file Ibin.init).

5.1. Ibe.hpp 41

DL_MESO Technical Manual, Release 2.7

Ibinit

extern double lbinit

Initial default temperature at all lattice points in LBE simulation (unless overriden by values in initial state input
file 1bin.init).

Ibiniv

extern double 1lbiniv[3]

Initial default velocities for fluids at all lattice points in LBE simulation (unless overridden by values in initial
state input file 1bin.init).

Ibinterforce

extern doublex lbinterforce

Forces acting on fluids due to interfaces between fluids or phases (obtained from Shan-Chen pseudopotential or
Lishchuk continuum-based interactions).

Ibkappa

extern double lbkappa

Surface tension parameter x between phases and/or fluids for Swift free-energy intereactions.

Ibkinetic

extern double lbkinetic

Kinematic viscosity (quotient of dynamic viscosity with density) for fluid O given in consistent ‘real world’ units,
used to find actual timestep size.

Iblefc

extern doublex 1lblefc

Concentrations of solutes at left boundary when using constant concentration boundary condition.

Iblefdt

extern double lblefdt

Constant rate of change of temperature at left boundary when using temperature boundary condition.

42 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Iblefp

extern doublex l1lblefp

Densities of fluids at left boundary when using constant density boundary condition.

Ibleft

extern double lbleft

Temperature at left boundary when using constant temperature boundary condition.

Iblefv

extern double 1lblefv[3]

Velocity for fluids at left boundary when using constant velocity boundary condition.

Iblefvbc

extern int lblefvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at left boundary when using
constant velocity boundary condition (0 = off, 1 = on).

Iblefviq

extern double lblefvfqg

Angular frequency of fluid velocity sinusoidal oscillations applied at left boundary when using constant velocity
boundary condition.

Iblefvoscil

extern double lblefvoscil[3]

Amplitude of velocity for fluids at left boundary varying sinusoidally with time when using constant velocity
boundary condition.

Ibmpiio

extern int lbmpiio

Flag to indicate if a single output file per simulation snapshot is to be written using MPI-IO (0 = off, 1 = on).

5.1. Ibe.hpp 43

DL_MESO Technical Manual, Release 2.7

Ilbmrts

extern double lbmrts[8]

System-wide all-fluid collision frequencies for multiple relaxation time (MRT) collisions for non-hydrodynamic
moments intended to enhance the numerical stability of LBE calculations. (Default values are provided for each
lattice scheme but can be overridden by the user.)

Ibmrtw

extern double lbmrtw[3]

System-wide parameters for local equilibrium values of energy-squared and diagonal fourth-order moments used
in multiple relaxation time (MRT) collisions. (Default values are provided for D2Q9, D3Q15 and D3Q19 Iattice
schemes to boost numerical stablity of LBE calculations, which can only be changed by modifying source code:
no values are required for the D3Q27 lattice scheme.)

Ibneigh

extern intx lbneigh

Numbers indicating existence and directions of neighbouring boundary lattice sites, with a number’s hundreds in-
dicating x-dimension, tens indicating y-dimension and units indicating z-dimension. The digits indicate existence
of neighbouring boundary points in particular directions and any fluid points available for calculating gradients of
fluid properties.

Ibnoise

extern double lbnoise

Maximum amplitude of random noise in fluid densities (relative to specified values) when setting up LBE simula-
tion.

Ibomega

extern doublex lbomega

Relaxation frequencies for all fluids at each lattice point: these will change over time when using non-Newtonian
rheological models for fluids.

Ibopv

extern intx lbopv

Lattice links that are conjugates (exact opposites) to current links.

44 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Iboscilforce

extern doublex lboscilforce

Amplitudes of oscillating forces acting on fluids throughout lattice that vary sinusoidally with time.

Iboscilfreq

extern double lboscilfreq

Angular frequency of force sinusoidal oscillations applied at top boundary when using constant velocity boundary
condition.

Ibouter

extern unsigned longx lbouter

List of lattice points (given as one-dimensional positions) at the outer edge of the processor’s subdomain, used to
distinguish boundary halo regions in parallel and lattice points with neighbours on opposite sides of the grid in
serial.

Iboutersize

extern int lboutersize

Total number of lattice points at the outer edge of the processor’s subdomain.

Ibphi

extern intx lbphi

Numbers indicating existence, type and directions for boundary conditions for all lattice points in subdomain.

Ibpsi0

extern doublex lbpsiO

Parameters (multipliers) for 1994 Shan-Chen pseudopotential model [119],).

Ibrecssq

extern double lbrcssqg

Reciprocal of the square of the speed of sound for the lattice, c; 2, given in lattice-based units.

5.1. Ibe.hpp 45

DL_MESO Technical Manual, Release 2.7

Ibrestart

extern int lbrestart

Flag to indicate whether or not to read in the state of a previous simulation from a restart file (Ibout.dump) and
resume that simulation (0 = off, 1 = on).

Ibreynolds

extern double lbreynolds

Reynolds number Re = “L representative of the LBE simulation, used in Plot3D solution files.
y . Iep

Ibrheo

extern intx lbrheo

Identifiers of rheological models for fluids: 0 = constant kinematic viscosity, 1 = constant dynamic viscosity, 2 =
power law, 3 = Bingham plastic, 4 = Herschel-Bulkley, 5 = Casson, 6 = Carreau-Yasuda.

Ibrheoa

extern doublex lbrheoa

First parameters for rheological models (vg, fto OF fioo)-

Ibrheob

extern doublex lbrheob

Second parameters for rheological models (o, o or (Lo — ftoo))-

Ibrheoc

extern doublex lbrheoc

Third parameters for rheological models (A or exponential decay parameter m for models with yield stresses).

Ibrheod

extern doublex lbrheod

Fourth parameters for rheological models (\ or exponential decay parameter m for models with yield stresses).

46 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibrheopower

extern doublex lbrheopower

Indices n for power-law-based rheological models (power law, Herschel-Bulkley, Carreau- Yasuda).

Ibrige

extern doublex lbrigc

Concentrations of solutes at right boundary when using constant concentration boundary condition.

Ibrigdt

extern double lbrigdt

Constant rate of change of temperature at right boundary when using temperature boundary condition.

Ibrigp

extern doublex lbrigp

Densities of fluids at right boundary when using constant density boundary condition.

Ibrigt

extern double lbrigt

Temperature at right boundary when using constant temperature boundary condition.

Ibrigv

extern double lbrigv([3]

Velocity for fluids at right boundary when using constant velocity boundary condition.

Ibrigvbc

extern int lbrigvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at right boundary when using

constant velocity boundary condition (0 = off, 1 = on).

5.1. Ibe.hpp

47

DL_MESO Technical Manual, Release 2.7

Ibrigvfq

extern double lbrigvfqg

Angular frequency of fluid velocity sinusoidal oscillations applied at right boundary when using constant velocity
boundary condition.

Ibrigvoscil

extern double lbrigvoscil([3]

Amplitude of velocity for fluids at right boundary varying sinusoidally with time when using constant velocity
boundary condition.

Ibsave

extern int lbsave

Interval (number of timesteps) between each simulation snapshot written to output file(s).

Ibsbctyp

extern int lbsbctyp

Type of boundary conditions in use for constant solute concentrations: 0 = Zou-He, 1 = Inamuro.

Ibscpot

extern intx lbscpot

Shan-Chen pseudopotential types for fluids to obtain particular equations of state.

Ibscquad

extern doublex lbscquad

Weighting factors between fluids for Shan-Chen interfacial forces with quadratic pseudopotential terms Sgp.

Ibseg

extern doublex lbseg

Post-collisional segregation parameters between fluids 3%°, used for Lishchuk continuum-based interactions.

48 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibsitelength

extern int lbsitelength

Total number of distribution functions per lattice point, equal to the product of the number of links per point and
the sum of numbers of fluids, solutes and temperature fields.

Ibsoundv

extern double lbsoundv

Speed of sound for fluid 0 given in consistent ‘real world’ units, used to find actual grid spacing and timestep
sizes.

Ibspair

extern int+ lbspair

List of unlink fluid pairs to calculate interfacial normals for Lishchuk continuum-based interactions, also used to
calculate interfacial forces and apply post-collisional segregation.

Ibsteer

extern int lbsteer

Flag to indicate if computational steering is to be applied during DL._MESO_LBE run (currently not in use) (0 =
off, 1 = on).

Ibsy

extern sSystem lbsy

System information for LBE simulation (e.g. lattice scheme, system size, numbers of fluids), using struct sSystem
structure to store information.

Ibsysdt

extern double lbsysdt

Constant rate of change of initial system-wide temperature at all lattice points when using temperature fields.

5.1. Ibe.hpp 49

DL_MESO Technical Manual, Release 2.7

Ibsyst

extern double lbsyst

System-wide temperature used in equations of state for Shan-Chen pseudiopotential and Swift free-energy inter-
actions.

Ibtbctyp

extern int lbtbctyp

Type of boundary conditions in use for constant temperatures: 0 = Zou-He, 1 = Inamuro.

Ibtc

extern doublex lbtc

Relaxation frequencies w. = % for solutes, related to (mass) diffusivities.

Ibtf

extern doublex 1lbtf

Relaxation frequencies w = % for fluids (or symmetric relaxation times for TRT collisions), related to kinematic
viscosities. (These are initial values when using non-Newtonian rheological models.)

Ibtfbulk

extern doublex 1btfbulk

Bulk relaxation frequencies wy, = }b for fluids, related to bulk viscosities.

Ibtfclb3

extern doublex lbtfclb3

Third-order relaxation frequencies ws = T% for fluids, used as numerical stability parameters for cascaded LBE
(CLBE) collisions. ‘

Ibtfclb4

extern doublex 1btfclb4d

Fourth-order relaxation frequencies wy = % for fluids, used as numerical stability parameters for cascaded LBE
(CLBE) collisions.

50 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibtmob

extern double lbtmob

Concentration relaxation frequency wy = % between two fluid species with Swift free-energy interactions, related
to mobility.

Ibtopc

extern doublex lbtopc

Concentrations of solutes at top boundary when using constant concentration boundary condition.

Ibtopdt

extern double lbtopdt

Constant rate of change of temperature at top boundary when using temperature boundary condition.

Ibtopp

extern doublex lbtopp

Densities of fluids at top boundary when using constant density boundary condition.

Ibtopt

extern double lbtopt

Temperature at top boundary when using constant temperature boundary condition.

Ibtopv

extern double lbtopv[3]

Velocity for fluids at top boundary when using constant velocity boundary condition.

Ibtopvbc

extern int lbtopvbc

Flag to indicate whether or not to include sinusoidal oscillation in time to velocity at top boundary when using
constant velocity boundary condition (0 = off, 1 = on).

5.1. Ibe.hpp 51

DL_MESO Technical Manual, Release 2.7

Ibtopvfq

extern double lbtopvfqg

Angular frequency of fluid velocity sinusoidal oscillations applied at top boundary when using constant velocity
boundary condition.

Ibtopvoscil

extern double lbtopvoscil[3]

Amplitude of velocity for fluids at top boundary varying sinusoidally with time when using constant velocity
boundary condition.

Ibtotstep

extern int lbtotstep

Total number of timesteps required for LBE simulation.

Ibtr

extern doublex lbtr

Matrix used in multiple relaxation time (MRT) collisions T to transform distribution functions to moments prior
to applying collisions.

Ibtrinv

extern doublex lbtrinv

Matrix used in multiple relaxation time (MRT) collisions T~! to transform moments to distribution functions
after applying collisions.

Ibtrtmagic

’extern double lbtrtmagic

‘Magic number’ for two relaxation time (TRT) symmetric and anti-symmetric relaxation times: A,

(=D -3

52 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibtt

extern doublex lbtt

Relaxation frequencies w; = T% for temperature fields, related to thermal diffusivities (conduction). (Only one
thermal relaxation frequency is currently used.)

Ibvwx

extern doublex lbvwx

Products of x-components of link vectors and the corresponding weighting parameter, w;e; ., used for gradi-
ent calculations and post-collisional segregations in Shan-Chen pseudopotential and Lishchuk continuum-based
interactions.

Ibvwy

extern doublex lbvwy

Products of y-components of link vectors and the corresponding weighting parameter, w;e; ,, used for gradi-
ent calculations and post-collisional segregations in Shan-Chen pseudopotential and Lishchuk continuum-based
interactions.

lbvwz

extern doublex lbvwz

Products of z-components of link vectors and the corresponding weighting parameter, w;e; ., used for gradi-
ent calculations and post-collisional segregations in Shan-Chen pseudopotential and Lishchuk continuum-based
interactions.

lbvx

extern intx lbvx

Link (speed) vectors for the lattice scheme in use (x-components), ¢; ;.

Ibvy

extern intx lbvy

Link (speed) vectors for the lattice scheme in use (y-components), e; ,,.

5.1. Ibe.hpp 53

DL_MESO Technical Manual, Release 2.7

lbvz

extern int+ lbvz

Link (speed) vectors for the lattice scheme in use (z-components), e; ..

Ibw

extern doublex lbw

Weighting parameters for each lattice link w; used to calculate local equilibrium distribution functions (excluding
those for Swift free-energy interactions).

Ibw0

extern doublex 1lbw0

Weighting parameters for each lattice link w{® used for density-dependent terms in local equilibrium distribution
functions for Swift free-energy interactions.

Ibwdel

extern doublex lbwdel

Weighting parameters for each lattice link J; used for Galilean invariance correction terms in local equilibrium
distribution functions for Swift free-energy interactions.

Ibwet

extern int+ lbwet

Type of solid-fluid wetting to be applied at lattice points close to solid boundaries, for either Shan-Chen pseu-
dopotential (0 = density, 1 = potential, 2 = screened potential) or Swift free-energy interactions (0 = none, 1 =
quadratic).

Ibwgam

extern doublex lbwgam

Weighting parameters for each lattice link 7; used for Galilean invariance correction terms in local equilibrium
distribution functions for Swift free-energy interactions.

54 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibwi

extern doublex lbwi

Weighting parameters for each lattice link w; used for velocity-dependent terms in local equilibrium distribution
functions for Swift free-energy interactions.

Ibwpt

extern doublex lbwpt

Weighting parameters for each lattice link w? = w} used for bulk pressure and second-order gradient terms for
surface tension in local equilibrium distribution functions for Swift free-energy interactions.

Ibwxx

extern doublex lbwxx

Weighting parameters for each lattice link w{* used for xx-component first-order gradient terms for surface tension
in local equilibrium distribution functions for Swift free-energy interactions.

Ibwxy

extern doublex lbwxy

Weighting parameters for each lattice link w; ¥ used for xy-component first-order gradient terms for surface tension
in local equilibrium distribution functions for Swift free-energy interactions.

Ibwxz

extern doublex lbwxz

Weighting parameters for each lattice link w;* used for xz-component first-order gradient terms for surface tension
in local equilibrium distribution functions for Swift free-energy interactions.

Ibwyy

extern doublex lbwyy

Weighting parameters for each lattice link w!" used for yy-component first-order gradient terms for surface tension
in local equilibrium distribution functions for Swift free-energy interactions.

5.1. Ibe.hpp 55

DL_MESO Technical Manual, Release 2.7

Ibwyz

extern doublex lbwyz

Weighting parameters for each lattice link w!* used for yz-component first-order gradient terms for surface tension
in local equilibrium distribution functions for Swift free-energy interactions.

lbwzz

extern doublex lbwzz

Weighting parameters for each lattice link w;* used for zz-component first-order gradient terms for surface tension
in local equilibrium distribution functions for Swift free-energy interactions.

nonnewtonian

extern int nonnewtonian

Flag to indicate whether or not fluid relaxation frequencies (and shear rates) are to be calculated for each timestep,
i.e. if a rheological model is to be applied: 0 = no rheology calculations, 1 = calculations of relaxation frequencies
for Newtonian fluids without calculating shear rates, 2 = calculations of shear rates and relaxation frequencies for
non-Newtonian fluids.

outformat

extern int outformat

Flag to indicate format for output files with simulation snapshots: 0 = binary XML-based Vtk, 1 = binary Legacy
VTK, 2 = binary Plot3D, 3 = ANSI/text XML-based VTK, 4 = ANSI/text Legacy VTK, 5 = ANSI/text Plot3D.

postequil

extern int postequil

Flag to indicate whether or not equilibration period has passed (1 = yes, 0 = no): boundary conditions other than
bounce-back and body forces are only applied after equilibration.

qVersion

extern int gVersion

Upcoming number for output file(s) of simulation snapshot, used in filename(s) for output file(s).

56 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

timetotal

extern double timetotal

Total wall time (in seconds) spent on LBE calculations during DL_MESO_LBE run: used to determine efficiency

measure (MLUPS, millions of lattice updates per second).

5.2 plbe.hpp

Common variables and arrays when running DL._MESO_LBE in parallel.

Required variables and arrays for LBE calculations that are applicable for parallel running of DL_MESO_LBE.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<iostream>
<fstream>
<cstdlib>
<ctime>
<cstdio>
<cmath>
<iomanip>
<string>
<cstring>
<sstream>
<vector>
<sys/time.h>
<sys/stat.h>
<mpi.h>
"lbe.hpp"

5.2.1 Classes

e struct sNeighbour

Structure for neighbouring processor information.

* struct sSIOGroup

Structure for I/O group.

5.2.2 Macros

e #define omp_get num_thread

Setting OpenMP number of threads when compiling DL MESO_LBE without OpenMP.

e #define omp_get thread num

Setting OpenMP thread number when compiling DL_MESO_LBE without OpenMP.

5.2. plbe.hpp

57

DL_MESO Technical Manual, Release 2.7

5.2.3 Variables

e sNeighbour lbnb
Neighbour information for LBE simulation on current processor.
* sIOGroup IbIOGroup
I/O group information for LBE simulation on current processor.
e MPI_ Comm ioRootCommunicator
MPI communicator among file writing processors.
e MPI_F1ile output_handle
MPI file handle for writing simulation snapshot output files.
e MPI_File dump_handle
MPI file handle for writing simulation restart files.
e MPI_Datatype lbmsg2x
MPI derived datatype to send/receive distribution functions in x-direction in 2D.
e MPI_Datatype [bmsg2y
MPI derived datatype to send/receive distribution functions in y-direction in 2D.
e MPI_Datatype lbmsg3x
MPI derived datatype to send/receive distribution functions in x-direction in 3D.
* MPI_Datatype lbmsg3y
MPI derived datatype to send/receive distribution functions in y-direction in 3D.
* MPI_Datatype lbmsg3z
MPI derived datatype to send/receive distribution functions in z-direction in 3D.
e MPI_Datatype [bbmsg2x
MPI derived datatype to send/receive boundary conditions (phase fields) in x-direction in 2D.
e MPI_Datatype [bbmsg2y
MPI derived datatype to send/receive boundary conditions (phase fields) in y-direction in 2D.
e MPI_Datatype lbbmsg3x
MPI derived datatype to send/receive boundary conditions (phase fields) in x-direction in 3D.
* MPI_Datatype lbbmsg3y
MPI derived datatype to send/receive boundary conditions (phase fields) in y-direction in 3D.
e MPI_Datatype lbbmsg3z
MPI derived datatype to send/receive boundary conditions (phase fields) in z-direction in 3D.
* MPI_Datatype [bfimsg2x
MPI derived datatype to send/receive interfacial forces in x-direction in 2D.
e MPI_Datatype lbfinsg2y
MPI derived datatype to send/receive interfacial forces in y-direction in 2D.
e MPI_Datatype [bfinsg3x
MPI derived datatype to send/receive interfacial forces in x-direction in 3D.
e MPI_Datatype lbfinsg3y

MPI derived datatype to send/receive interfacial forces in y-direction in 3D.

58 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

e MPI_Datatype lbfinsg3z
MPI derived datatype to send/receive interfacial forces in z-direction in 3D.
e MPI_Datatype lbimsg2x

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in x-direction
in 2D.

* MPI_Datatype lbimsg2y

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in y-direction
in 2D.

e MPI_Datatype lbimsg3x

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in x-direction
in 3D.

e MPI_Datatype [bimsg3y

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in y-direction
in 3D.

e MPI_Datatype lbimsg3z

MPI derived datatype to send/receive interfacial normals or density/concentration gradients in z-direction
in 3D.

e MPI_Datatype lbnmsg2x

MPI derived datatype to send/receive surface normals in x-direction in 2D.
e MPI_Datatype lbnmsg2y

MPI derived datatype to send/receive surface normals in y-direction in 2D.
e MPI_Datatype lbnmsg3x

MPI derived datatype to send/receive surface normals in x-direction in 3D.
e MPI_Datatype lbnmsg3y

MPI derived datatype to send/receive surface normals in y-direction in 3D.
e MPI_Datatype lbnmsg3z

MPI derived datatype to send/receive surface normals in z-direction in 3D.

5.2.4 Class Documentation

struct sNeighbour

Structure for information about communications between processors (e.g. numbers for neighbouring processors,
locations in arrays for sending and receiving data to/from neighbours).

5.2. plbe.hpp 59

DL_MESO Technical Manual, Release 2.7

Table 5.4: Class Members

un- br- | Starting positions in boundary condition (Ibphi) and neighbouring boundary information (Ib-
signed | pos | neigh) arrays for receiving boundary information from neighbouring processors as boundary
long halos.

int

un- bsposg Starting positions in boundary condition (Ibphi) and neighbouring boundary information (lb-
signed neigh) arrays for sending boundary information to neighbouring processors.

long

int

un- fr- Starting positions in interfacial forces array (Ibinterforce) for receiving interfacial forces from
signed | pos | neighbouring processors as boundary halos.

long

int

un- fs- | Starting positions in interfacial forces array (Ibinterforce) for sending interfacial forces to
signed | pos | neighbouring processors.

long

int

un- ir- Starting positions in array for either Lishchuk interfacial normals or Swift free-energy gradi-
signed | pos | ents in density and concentration (Ibft) for receiving normals or gradients from neighbouring
long processors as boundary halos.

int

un- is- | Starting positions in array for either Lishchuk interfacial normals or Swift free-energy gra-
signed | pos | dients in density and concentration (Ibft) for sending normals or gradients to neighbouring
long processors.

int

un- nr- | Starting positions in surface normals (Ibboundnorm) array for receiving surface normals from
signed | pos | neighbouring processors as boundary halos.

long

int

un- nspos Starting positions in surface normals (Ibboundnorm) array for sending surface normals to
signed neighbouring processors.

long

int

int rank | Identifying neighbouring processors by numbers (ranks).

un- rpos | Starting positions in distribution function array (1bf) for receiving distribution functions from
signed neighbouring processors as boundary halos.

long

int

un- spos | Starting positions in distribution function array (Ibf) for sending distribution functions to
signed neighbouring processors.

long

int

struct slOGroup

Structure for information about I/O group for writing output files (e.g. processors in group, identity of root
processor for gathering and writing data to files, extent of lattice covered by group).

60 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Table 5.5: Class Members
MPI_Conrta MPI communicator for entire Cartesian grid of processors in simulation, used to generate I/O

Com- | communicator by specifying combinations in Cartesian directions (subgrid).
muni-
cator

int cart- Coordinates of current processor within entire grid of processors established to divide up
Co- lattice as equally as possible. These coordinates are determined by creating a Cartesian com-
ords[3] | municator and are checked against those predicted in simulation domain setup.

int car- Ending coordinates of the I/O group in terms of numbers of processors (top-right-front cor-
tEnd[3]| ner).

int cart- Starting coordinates of the I/O group in terms of numbers of processors (bottom-left-back
Start[3]| corner).

int gri- Ending coordinates of the section of lattice covered by I/O group (top-right-front corner).
dEnd-
Global[3]

int grid- Starting coordinates of the section of lattice covered by I/O group (bottom-left-back corner).
Start-
Global[3]

int groupld| Number (identifier) for the current I/O group: this is used in output filenames when more than

one file is written per snapshot (i.e. when MPI-1O is not in use).
MPI_Cooam MPI communicator for all processors in the I/O group, used for gathering data to be written

Com- | to output files.
muni-
cator
int rank Number (rank) of current processor in I/O group: used to identify processor within group.
(This value might not be the same as the rank (processor number) for the entire simulation
domain.)

int rootRank Number (rank) of root processor for the I/O group: data for the group is gathered onto this
processor, which then writes it to the output file.

int root- Total number of root processors in all I/O groups, i.e. the total number of processors involved
Size in writing to output files.

int size Total number of processors in the I/O group.

int* | sort- List of one-dimensional grid locations to put each data value in the required sorted order

point for the output file (sorting by x-coordinate as the fastest changing coordinate, followed by
y-coordinate and then z-coordinate) prior to writing the data to the file.

int sub- Flags to indicate in which directions to combine lattice subdomains when forming I/O groups,
grid[3] | i.e. creating I/O groups by collecting together processors in each Cartesian direction.

Macro Definition Documentation

omp_get num_thread

#define omp_get_num_ thread() 1

Sets the number of OpenMP threads to 1 for the function omp_get_num_thread when DL_MESO_LBE is not
compiled with OpenMP.

5.2. plbe.hpp 61

DL_MESO Technical Manual, Release 2.7

omp_get thread_num

#define omp_get_thread num/() 0°

Sets the OpenMP thread number to O for the function omp_get_thread_num when DL_MESO_LBE is not com-
piled with OpenMP.

Variable Documentation

dump_handle

MPI_File dump_handle

MPI file handle to identify simulation restart files (Ibout.dump) when writing data using MPI-10.

ioRootCommunicator

MPI_Comm ioRootCommunicator

MPI communicator among root processors of I/O groups to coordinate writing to output files using MPI-IO.

Ibbmsg2x

MPI_Datatype lbbmsg2x

MPI derived datatype to send and receive boundary conditions (phase fields) in x-directions for a two-dimensional
simulation.

Ibbmsg2y

MPI_Datatype lbbmsg2y

MPI derived datatype to send and receive boundary conditions (phase fields) in y-directions for a two-dimensional
simulation.

Ibbmsg3x

MPI_Datatype lbbmsg3x

MPI derived datatype to send and receive boundary conditions (phase fields) in x-directions for a three-
dimensional simulation.

62 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibbmsg3y

MPI_Datatype lbbmsg3y

MPI derived datatype to send and receive boundary conditions (phase fields) in y-directions for a three-

dimensional simulation.

Ibbmsg3z

MPI_Datatype lbbmsg3z

MPI derived datatype to send and receive boundary conditions (phase fields) in z-directions for a three-dimensional

simulation.

Ibfmsg2x

MPI_Datatype lbfmsg2x

MPI derived datatype to send and receive interfacial forces in x-directions for a two-dimensional simulation.

Ibfmsg2y

MPI_Datatype lbfmsg2y

MPI derived datatype to send and receive interfacial forces in y-directions for a two-dimensional simulation.

Ibfmsg3x

MPI_Datatype lbfmsg3x

MPI derived datatype to send and receive interfacial forces in x-directions for a three-dimensional simulation.

Ibfmsg3y

MPI_Datatype lbfmsg3y

MPI derived datatype to send and receive interfacial forces in y-directions for a three-dimensional simulation.

Ibfmsg3z

MPI_Datatype lbfmsg3z

MPI derived datatype to send and receive interfacial forces in z-directions for a three-dimensional simulation.

5.2. plbe.hpp

63

DL_MESO Technical Manual, Release 2.7

Ibimsg2x

MPI_Datatype lbimsg2x

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in x-directions for
a two-dimensional simulation.

Ibimsg2y

MPI_Datatype lbimsg2y

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in y-directions for
a two-dimensional simulation.

Ibimsg3x

MPI_Datatype lbimsg3x

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in x-directions for
a three-dimensional simulation.

Ibimsg3y

MPI_Datatype lbimsg3y

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in y-directions for
a three-dimensional simulation.

Ibimsg3z

MPI_Datatype lbimsg3z

MPI derived datatype to send and receive interfacial normals or density/concentration gradients in z-directions for
a three-dimensional simulation.

IblOGroup

extern sIOGroup 1lbIOGroup

Information about I/O group for LBE simulation on current processor (e.g. MPI communicators, processor and
lattice extents covered by group).

64 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Ibmsg2x

MPI_Datatype lbmsg2x

MPI derived datatype to send and receive distribution functions in x-directions for a two-dimensional simulation.

Ibmsg2y

MPI_Datatype lbmsg2y

MPI derived datatype to send and receive distribution functions in y-directions for a two-dimensional simulation.

Ibmsg3x

MPI_Datatype lbmsg3x

MPI derived datatype to send and receive distribution functions in x-directions for a three-dimensional simulation.

Ibmsg3y

MPI_Datatype lbmsg3y

MPI derived datatype to send and receive distribution functions in y-directions for a three-dimensional simulation.

Ibmsg3z

MPI_Datatype lbmsg3z

MPI derived datatype to send and receive distribution functions in z-directions for a three-dimensional simulation.

lbnb

extern sNeighbour lbnb[6]

Neighbour information for LBE simulation on current processor (e.g. neighbouring processor ranks, locations for
sending/receiving data).

Ibnmsg2x

MPI_Datatype lbnmsg2x

MPI derived datatype to send and receive surface normals in x-directions for a two-dimensional simulation.

5.2. plbe.hpp 65

DL_MESO Technical Manual, Release 2.7

Ibnmsg2y

MPI_Datatype lbnmsg2y

MPI derived datatype to send and receive surface normals in y-directions for a two-dimensional simulation.

Ibnmsg3x

MPI_Datatype lbnmsg3x

MPI derived datatype to send and receive surface normals in x-directions for a three-dimensional simulation.

Ibnmsg3y

MPI_Datatype lbnmsg3y

MPI derived datatype to send and receive surface normals in y-directions for a three-dimensional simulation.

Ibnmsg3z

MPI_Datatype lbnmsg3z

MPI derived datatype to send and receive surface normals in z-directions for a three-dimensional simulation.

output_handle

MPI_File output_handle

MPI file handle to identify simulation snapshot output files (in XML-based VTK, Legacy VTK or Plot3D formats)
when writing data using MPI-1O.

5.3 slbe.hpp

Common variables and arrays when running DL_MESO_LBE in serial.

Required variables and arrays for LBE calculations that are applicable for serial running of DL_MESO_LBE.

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <ctime>
#include <cstdio>
#include <cmath>
#include <iomanip>
#include <string>
#include <cstring>
#include <sstream>
#include <vector>
#include <sys/time.h>
#include <sys/stat.h>
#include "lbe.hpp"
#include "1bpBASIC.hpp"

(continues on next page)

66 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

(continued from previous page)

#include "1bpGET.hpp"

#include "l1bpIOAGGSER.hpp"
#include "lbpMODEL.hpp"
#include "1bpIO.hpp"

#include "lbpIOPlot3D.hpp"
#include "lbpIOLegacyVTK.hpp"
#include "1bpIOVTK.hpp"
#include "1bpFORCE.hpp"
#include "l1bpRHEOLOGY.hpp"
#include "1bpBGK.hpp"

#include "1bpTRT.hpp"

#include "1bpMRT.hpp"

#include "l1bpCLBE.hpp"
#include "1bpSUB.hpp"

#include "1bpBOUND.hpp"
#include "1bpBOUNDZouHe.hpp"
#include "1bpBOUNDInamuro.hpp"
#include "l1bpBOUNDRegular.hpp"
#include "l1bpBOUNDKinetic.hpp"
#include "1bpUSER.hpp"
#include "1bpRUNSER.hpp"
#include "1bpBASIC.cpp"
#include "1bpGET.cpp"

#include "l1bpIOAGGSER.cpp"
#include "1bpMODEL.cpp"
#include "lbpIO.cpp"

#include "lbpIOPlot3D.cpp"
#include "lbpIOLegacyVTK.cpp"
#include "l1bpIOVTK.cpp"
#include "1bpFORCE.cpp"
#include "1bpRHEOLOGY.cpp"
#include "1bpBGK.cpp"

#include "1bpTRT.cpp"

#include "1bpMRT.cpp"

#include "1bpCLBE.cpp"
#include "1bpSUB.cpp"

#include "1bpBOUND.cpp"
#include "1bpBOUNDZouHe.cpp"
#include "1bpBOUNDInamuro.cpp"
#include "1bpBOUNDRegular.cpp"
#include "l1bpBOUNDKinetic.cpp"
#include "l1bpUSER.cpp"
#include "1bpRUNSER.cpp"

5.3.1 Classes

e struct sSIOGroup

Structure for I/O group. (Common to plbe.hpp.)

5.3. slbe.hpp 67

DL_MESO Technical Manual, Release 2.7

5.3.2 Macros

* #define omp_get num_thread
Setting OpenMP number of threads when compiling DL_MESO_LBE without OpenMP.
e #define omp_get_thread _num

Setting OpenMP thread number when compiling DL_MESO_LBE without OpenMP.

5.3.3 Variables

* sIOGroup IbIOGroup

I/O group information for LBE simulation on current processor.

Variable Documentation

IblIOGroup

IbIOGroup slbe.hpp slbe.hpp IbIOGroup extern sIOGroup lbIOGroup

Information about I/O group for LBE simulation on current processor (e.g. MPI communicators, processor and
lattice extents covered by group).

5.4 plbe.cpp

Main DL._MESO_LBE program for parallel running. (Header file available in plbe.hpp.)

Main DL_MESO_LBE program to run LBE simulations in parallel using Message Passing Interface (MPI) for
processor-to-processor communications and optionally using OpenMP multithreading.

5.4.1 Functions

e int main()

Main program for running DL._MESO_LBE in parallel.

5.4.2 Function Documentation

main()

int main (int argc, char x argv([])

The main content of this source file is to read input files, set up the simulation, select the main simulation loop
based on the selected type of interactions between fluids or phases, and close the simulation down after completing
all specified timesteps or running out of calculation time.

Parameters

in | argc | Number of command-line arguments included in command to launch DL_MESO_LBE
in | argv | Character array of command-line arguments

68 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.5 slbe.cpp

Main DL._MESO_LBE program for serial running. (Header file available in slbe.hpp.)
Main DL._MESO_LBE program to run LBE simulations in serial, optionally using OpenMP multithreading.

5.5.1 Functions

e int main()

Main program for running DL._MESO_LBE in serial.

5.5.2 Function Documentation

main()

int main (int argc, char * argv([])

The main content of this source file is to read input files, set up the simulation, select the main simulation loop
based on the selected type of interactions between fluids or phases, and close the simulation down after completing
all specified timesteps or running out of calculation time.

Parameters

in | argc | Number of command-line arguments included in command to launch DL_MESO_LBE
in | argv | Character array of command-line arguments

5.6 IbpRUNPAR.cpp and IbpRUNSER.cpp

Modules with main simulation loops for parallel and serial running. (Header files available as IbpRUNPAR.hpp
and 1bpRUNSER .hpp.)

Subroutines with main simulation loops for LBE simulations in parallel (IbpRUNPAR.cpp) and serial (IbpRUN-
PAR.cpp) based on interaction types.

5.6.1 Functions

The functions shown here are those included in IbpRUNPAR .cpp for parallel LBE simulations: similar ones are
available in IbpRUNSER.cpp for serial LBE simulations with the initial £ changed to fs, e.g. fsNoInteract
in place of fNoInteract.

e int fNolnteract()
Simulation loop for LBE simulations without mesoscopic interactions.
e int fShanChen()
Simulation loop for LBE simulations with Shan-Chen pseudopotential interactions.
e int fShanChenQuadratic()
Simulation loop for LBE simulations with quadratic Shan-Chen pseudopotential interactions.
* int fLishchuk()

Simulation loop for LBE simulations with Lishchuk continuum-based interactions.

5.5. slbe.cpp 69

DL_MESO Technical Manual, Release 2.7

e int fLishchukSpencer()
Simulation loop for LBE simulations with Lishchuk-Spencer continuum-based interactions.
e int fLishchukSpencerTensor()
Simulation loop for LBE simulations with Lishchuk ‘Spencer tensor’ continuum-based interactions.
e int fLishchukLocal()
Simulation loop for LBE simulations with local Lishchuk continuum-based interactions.
e int fSwift()

Simulation loop for LBE simulations with Swift free-energy interactions.
5.6.2 Function Documentation
Note that the first call for each function refers to the parallel version of DL_MESO_LBE (as contained in IbpRUN-
PAR.cpp), while the second refers to the serial version (as contained in IbpRUNSER.cpp). The major differences

between the two functions are additional calls for core-to-core communications in the parallel version and alter-
native interaction calculation routines to include grid points at the system edges for the serial version.

fLishchuk()

int fLishchuk ()
int fsLishchuk ()

Main simulation loop for a LBE simulation with standard Lishchuk continuum-based interactions between fluids
(non-local calculation of interfacial normals, calculation of interfacial forces with interfacial curvatures). By
default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected and
the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fLishchukLocal()

int fLishchukLocal ()
int fsLishchukLocal ()

Main simulation loop for a LBE simulation with fully local Lishchuk continuum-based interactions between fluids
(local calculation of interfacial normals, application of direct interaction forcing term in collisions). By default,
the simulation will run for the specified number of timesteps, but if a calculation time is also selected and the
running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fLishchukSpencer()

int fLishchukSpencer ()
int fsLishchukSpencer ()

Main simulation loop for a parallel LBE simulation with Lishchuk-Spencer continuum-based interactions between
fluids (non-local calculation of interfacial normals, calculation of interfacial forces without interfacial curvatures).
By default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected
and the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

70 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fLishchukSpencerTensor()

int fLishchukSpencerTensor ()
int fsLishchukSpencerTensor ()

Main simulation loop for a LBE simulation with Lishchuk ‘Spencer tensor’ continuum-based interactions between
fluids (non-local calculation of interfacial normals, application of direct interaction forcing term in collisions). By
default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected and
the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fNolnteract()

int fNoInteract ()
int fsNolInteract ()

Main simulation loop for a LBE simulation without mesoscopic interactions between fluids or phases. By default,
the simulation will run for the specified number of timesteps, but if a calculation time is also selected and the
running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

fShanChen()

int fShanChen ()
int fsShanChen ()

Main simulation loop for a LBE simulation with standard Shan-Chen pseudopotential interactions between fluids
or phases. By default, the simulation will run for the specified number of timesteps, but if a calculation time is also
selected and the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated
safely.

fShanChenQuadratic()

int fShanChenQuadratic ()
int fsShanChenQuadratic ()

Main simulation loop for a parallel LBE simulation with Shan-Chen pseudopotential interactions between fluids
or phases with quadratic pseudopotential terms. By default, the simulation will run for the specified number of
timesteps, but if a calculation time is also selected and the running time exceeds this value at the end of an earlier
timestep, the simulation will be terminated safely.

fSwift()

int fSwift ()
int fsSwift ()

Main simulation loop for a LBE simulation with Swift free-energy interactions between fluids or phases. By
default, the simulation will run for the specified number of timesteps, but if a calculation time is also selected and
the running time exceeds this value at the end of an earlier timestep, the simulation will be terminated safely.

5.6. IbpRUNPAR.cpp and IbpRUNSER.cpp 7

DL_MESO Technical Manual, Release 2.7

5.7 plbecustom.cpp, slbecustom.cpp and slbecombine.cpp

Customisable DL_MESO_LBE programs for parallel running (plbecustom.cpp), serial running (slbecustom.cpp)
and serial running with boundary halos (slbecombine.cpp). The standard headers for parallel and serial running,
plbe.hpp and slbe.hpp, are used for these programs.

Customisable versions of DL_MESO_LBE program to run LBE simulations in parallel using Message Passing
Interface (MPI) for processor-to-processor communications (plbecustom.cpp), in serial (slbecustom.cpp) and in
serial with boundary halos (slbecombine.cpp), all optionally using OpenMP multithreading.

5.7.1 Functions

e int main()

Customisable program for running DL_MESO_LBE.

5.7.2 Function Documentation

main()

int main (int argc, char % argv)

The main content of these source files is to set up MPI (if running in parallel), read input files, set up the simulation
(including I/O groups of processors to write output files), run through the main simulation loop, and close the
simulation down after completing all specified timesteps. These versions of the code are intended for advanced
DL_MESO users to select which subroutines are used for force calculations, collisions, output file writing and
communications: these options are effectively hard-coded in and cannot be changed in input files. (This approach
could be used for running LBE simulations with user-created subroutines.) The source file slbecombine.cpp makes
use of boundary halos for serial running (unlike the standard serial code s/be.cpp) and includes calls to subroutines
for filling grid points in the boundary halo with values for distribution functions, interaction forces etc.

Parameters

in | argc | Number of command-line arguments included in command to launch DL_MESO_LBE
in | argv | Character array of command-line arguments

5.8 IbpBASIC.cpp

5.8.1 Summary

Module with general-purpose functions and subroutines required for LBE simulations, such as sorting numbers,
byte-swapping and random number generator. (Header file available as IbpBASIC.hpp.)

5.8.2 Functions

* template <class T> T fCppAbs()
Returns absolute value of input value.

* template <class T> T fCppSign()
Returns sign of input value.

* template <class T> T fReciprocal()

Returns reciprocal while avoiding divisions by zero.

72 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

* template <class T> T fEvapLimit()
Applies evaporation limit for input value.
* template <class T> voidfSwapPair()
Swaps a pair of numbers.
* template <typename T> T fStringToNumber()
Parses a string and returns numbers contained in it.
* template <typename T> T fCppMax()
Finds maximum of a pair of numbers.
* template <typename T> T fCppMin()
Finds minimum of a pair of numbers.
e int fGetNumberOrdered()
Rearranges two or three integers in descending numerical order.
e int fGetNumberOrderFixed()
Rearranges two or three integers in the same numerical order as another set of two or three integers.
* int fBestGrouping()
Distributes grid points among processors as evenly as possible.
e int fCppMod()
Calculates modulo of a value within a given range.
e long fCppMod()
Calculates modulo of a value within a given range.
e int fPrintLine()

3

Prints a line of ‘-* characters.
e int fPrintDoubleLine()
Prints a line of ‘=" characters.
* double fRandom()
Generates a random number between -1 and +1.
* int fBigEndian()
Detects endianness of machine running DL, MESO_LBE.
e void fByteSwap()
Swaps the byte order of a given value or series of values.
* double fCheckTimeSerial()
Outputs time in seconds.
e string fReadString()

Outputs a given ‘word’ in an input string.

5.8. IbpBASIC.cpp 73

DL_MESO Technical Manual, Release 2.7

5.8.3 Function Documentation

fBestGrouping()

int fBestGrouping (int totalgrid,
int totalgroup,
int & indigrid,
int & critigroup)

Based on the total number of grid points in a given direction and the total number of processors in the same
direction, calculate the numbers of grid points per processor to give as even a distribution as possible. This is
achieved by calculating a larger number of grid points and the number of processors to apply this to: the other
processors will use the same number less 1.

Parameters

in total- Total number of grid points in given direction
grid

in | total- Total number of processors over which to split the grid points
group

out | indigrid | Larger number of grid points per processor

out | criti- Number of processors to apply larger number of grid points (beyond which, the number of
group grid points is indigrid-1)

fBigEndian()

int fBigEndian ()

Check to determine the endianness of the computer running DL._MESO_LBE: returns 1 for big endian, O for little
endian.

fByteSwap()

void fByteSwap (void x data,
int len,
int count)

Swaps the byte order of a given array of values to convert between endian types. This subroutine is mainly
required when writing binary files where a specific endianness is required (e.g. binary VTK files are required in
big endian).

Parameters

in,out | data | Values in an array (of any type) for swapping endianness
in len Length of a single value in input array in bytes
in count | Number of values in array

74 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCheckTimeSerial()

double fCheckTimeSerial ()

Checks the time since the first call of the function obtained from system clock. This function is used to time
DL_MESO_LBE simulations run in serial: there is an alternative function to do the same for parallel calculations
(fCheckTimeMPI).

fCppAbs()

template <class T>
T fCppAbs (T a)

Finds and returns the absolute value of an inputted number by removing its negative sign if less than zero.

Parameters

[in | a | Number whose absolute value is to be found.

fCppMax()

template <typename T>
T fCppMax (T & a, T & Db)

Finds the larger of two inputted numbers and returns the larger number’s value.

Parameters

in | a | First number to compare.
in | b | Second number to compare.

fCppMin()

template <typename T>
T fCppMin (T & a, T & Db)

Finds the smaller of two inputted numbers and returns the smaller number’s value.

Parameters

in | a | First number to compare.
in | b | Second number to compare.

fCppMod()

int fCppMod (int a, int D)
long fCppMod (long a, long b)

Ensures a given value (a) is within a given range (0 to b-1), so the value immediately beyond the maximum value
equals the minimum, and vice versa, i.e. the output equals a — b when a > b or a + b when a < 0. This function
is useful for applying periodic boundary conditions.

Parameters

5.8. IbpBASIC.cpp 75

DL_MESO Technical Manual, Release 2.7

in,out | a | Value to find modulo of (i.e. output is in range O to b-1)
in b | Range within which value should fit

fCppSign()

template <class T>
T fCppSign (T a)

Finds and returns the sign of an inputted number (giving +1 for a positive number, -1 for a negative number, or 0
for zero.)

Parameters

] in \ a \ Number whose sign is to be found. ‘

fEvapLimit()

template <class T>
T fEvaplLimit (T a)

Returns an input number if it is larger than the small number set as the evaporation limit: if the number is smaller,
zero is returned.

Parameters

] in \ a \ Number to assess compared with evaporation limit.

fGetNumberOrdered()

int fGetNumberOrdered (int & iox, int & ioy)
int fGetNumberOrdered (int & iox, int & ioy, int & ioz)

Rearranges two or three integers to put them into descending numerical order, i.e. largest to smallest.

Parameters

in,out | &iox | First integer
in,out | &ioy | Second integer
in,out | &ioz | Third integer

fGetNumberOrderFixed()

int fGetNumberOrderFixed (int & iox, int & ioy, int & ioz, int ix, int iy, int iz)
int fGetNumberOrderFixed (int & iox, int & ioy, int ix, int iy)

Rearranges two or three integers to put them into the same numerical order as another set of two or three integers.

Parameters

76 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out | &iox | First integer to sort
in,out | &ioy | Second integer to sort
in,out | &ioz | Third integer to sort

in ix First integer as basis of sorting
in iy Second integer as basis of sorting
in iz Third integer as basis of sorting

fPrintDoubleLine()

int fPrintDoublelLine ()

Prints a line of 76 ‘=" characters to standard output as part of a DL_MESO_LBE run.

fPrintLine()

int fPrintLine ()

Prints a line of 76 ‘- characters to standard output as part of a DL_MESO_LBE run.

fRandom()

double fRandom ()

Applies a single linear congruential random number generator:
Up = (atp—1+¢) (mod m)

to generate a random number between -1 and +1 for initailising LBE simulations with random noise in fluid
densities. This random number generator applies a seed based on the processor number (rank) the first time this
function is called, so different results will be obtained when using different numbers of processors.

fReadString()

string fReadString (string line, int 1)

Reads a given string delimited by spaces and outputs the ‘i’-th word from that string: this function is used when
reading input files.

Parameters

in | line | String to be read
in |1 Number of word in input string to output

fReciprocal()

template <class T>
T fReciprocal (T a)

Finds and returns the reciprocal of an inputted number if the number is not equal to zero: if the number is zero,
the function returns zero to avoid divisions by zero.

Parameters

[in | a | Number whose reciprocal is to be found.

5.8. IbpBASIC.cpp 77

DL_MESO Technical Manual, Release 2.7

fStringToNumber()

template <typename T>
T fStringToNumber (const string & text)

Takes a string as input and returns any numbers found inside: if no number can be found, this function returns a
value of zero.

Parameters

| in [text | String to parse and find numbers. |

fSwapPair()

template <class T>
void fSwapPair (T & a, T & Db)

Takes a pair of numbers and swaps their values, each returning the other’s original value.

Parameters

in | a | First number to swap.
in | b | Second number to swap.

5.9 IbpGET.cpp

Module with routines to calculate fluid, solute and temperature properties at lattice points. (Header file available
as IbpGET.hpp.)

Functions and subroutines to calculate memory locations for grid points, find fluid velocities, densities and mass
fractions, solute concentrations and temperature, and overall fluid masses and momentum for subdomain. Many
of these are used during LBE calculations to e.g. determine local equilibrium distribution functions, while others
are used in output files and to report on the progress of a LBE simulation.

5.9.1 Functions

* long fGetNodePosi()

Calculates the position of a grid point in a one-dimensional array from its two- or three-dimensional Carte-
sian coordinates.

e int fGetCoord()

Calculates the two- or three-dimensional Cartesian coordinates of a grid point from its one-dimensional
array position.

Calculates the two-dimensional Cartesian coordinates of a grid point from its one-dimensional array posi-
tion.

* double fGetOneMassSite()

Calculates the density of a single fluid at a grid point using distribution functions.
e int fGetAllMassSite()

Calculates the densities of all fluids at a grid point using distribution functions.
* double fGetTotMassSite()

Calculates the total mass density of all fluids at a grid point using distribution functions.

78 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int fGetAllConcSite()

Calculates the concentrations of all solutes at a grid point using distribution functions.
double fGetOneMassDomain()

Calculates the total mass of a specific fluid in the simulation subdomain.

double fGetOneMassSwiftDomain()

Calculates the total mass of a specific fluid in the simulation subdomain when using Swift free-energy
interactions.

double fGetTotMassDomain()

Calculates the total mass of all fluids in the simulation subdomain.

double fGetFracSite()

Calculates the mass fraction of a single fluid at a grid point using distribution functions.
double fGetFracSwiftSite()

Calculates the mass fraction of a single fluid at a grid point using distribution functions when using two-fluid
Swift free-energy interactions.

int fGetOneSpeedsSite()
Calculates the macroscopic speed of a specific compressible fluid at a grid point using distribution functions.
int fGetOneSpeedlncomsSite()

Calculates the macroscopic speed of a specific incompressible fluid at a grid point using distribution func-
tions.

int fGetOneMomentSite()

Calculates the macroscopic momentum of a specific fluid at a grid point using distribution functions.
int fGetTotMomentSite()

Calculates the macroscopic momentum of all fluids at a grid point using distribution functions.

int fGetTotMomentDomain()

Calculates the total momentum of all fluids in the simulation subdomain.

int fGetTotMomentSwiftDomain()

Calculates the total momentum of all fluids in the simulation subdomain when using Swift free-energy
interactions.

int fGetSpeedSite()
Calculates the macroscopic velocity of all compressible fluids at a grid point using distribution functions.
int fGetSpeedAllMassSite()

Calculates the macroscopic velocity and densities of all compressible fluids at a grid point using distribution
functions.

int fGetSpeedlncomSite()
Calculates the macroscopic velocity of all incompressible fluids at a grid point using distribution functions.
int fGetSpeedincomAllMassSite()

Calculates the macroscopic velocity and variable densities of all incompressible fluids at a grid point using
distribution functions.

int fGetSpeedShanChensSite()

Calculates the macroscopic velocity of all compressible fluids at a grid point using distribution functions
when using Shan-Chen interactions.

5.9.

IbpGET.cpp 79

DL_MESO Technical Manual, Release 2.7

e int fGetSpeedShanChenAllMassSite()

Calculates the macroscopic velocity and densities of all compressible fluids at a grid point using distribution
functions when using Shan-Chen interactions.

* int fGetSpeedShanChenlncomsSite()

Calculates the macroscopic velocity of all incompressible fluids at a grid point using distribution functions
when using Shan-Chen interactions.

* int fGetSpeedShanChenlncomAllMassSite()

Calculates the macroscopic velocity and variable densities of all incompressible fluids at a grid point using
distribution functions when using Shan-Chen interactions.

e float fGetOneDirecSpeedSite()

Calculates component of compressible fluid velocity at specified grid point.
* float fGetOneDirecSpeedIncomSite()

Calculates component of incompressible fluid velocity at specified grid point.
* float fGetOneDirecSpeedSwiftSite()

Calculates component of compressible fluid velocity at specified grid point when using Swift free-energy
interactions.

* double fGetOneConcSite()
Calculates the concentration of a single solute at a grid point using distribution functions.
* double fGetTemperatureSite()

Calculates the temperature at a grid point using distribution functions.

5.9.2 Function Documentation

fGetAllConcSite()

int fGetAllConcSite (double x rho, double * startpos)

Returns the concentrations of all solutes at a given lattice point by summing up solute distribution functions, i.e.
=gt
i

Since the distribution functions for each grid point are sorted by fluid, solutes and temperature field and then by
lattice link, this subroutine will only give the correct densities if the starting position for the pointer is gy for solute
0.

Parameters

out | rho Solute concentrations at given lattice point
in | startpos | Pointer for distribution function of solute O in link 0.

80 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetAllMassSite()

int fGetAllMassSite (double * rho, double * startpos)
int fGetAllMassSite (double x rho, int xpos, int ypos, int zpos)
int fGetAllMassSite (double x rho, long tpos)

Returns the densities of all fluids at a given lattice point by summing up distribution functions, i.e.
pr=> I
i

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid (plus solutes
and temperature field) and then by lattice link, this subroutine will only give the correct densities if the starting
position for the pointer is f; for fluid 0.

Parameters

out | rho Fluid densities at given lattice point

in startpos | Pointer for distribution function of fluid O in link O.

in | Xpos Coordinate of lattice point (x-component)

in ypos Coordinate of lattice point (y-component)

in | zpos Coordinate of lattice point (z-component)

in | tpos Position of lattice site in one-dimensional form
fGetCoord()

int fGetCoord (long tpos, int & xpos, int & ypos)
int fGetCoord (long tpos, int & xpos, int & ypos, int & zpos)

Depending on which interface is used, returns the two- or three-dimensional Cartesian coordinates of a lattice
point specified by a one-dimensional array position.

Parameters
in | tpos | Position of lattice site in one-dimensional form
out | xpos | Coordinate of lattice point (x-component)
out | ypos | Coordinate of lattice point (y-component)
out | zpos | Coordinate of lattice point (z-component)
fGetFracSite()

double fGetFracSite (int fpos, double % startpos)
double fGetFracSite (int fpos, int xpos, int ypos, int zpos)
double fGetFracSite (int fpos, long tpos)

Returns the mass fraction of a single fluid at a given lattice point by summing up distribution functions, i.e.

P szza

P B Zi,af'ia

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid (plus solutes
and temperature field) and then by lattice link, this function will only give the correct mass fraction if the starting
position for the pointer is f; for fluid 0. If the total mass of all fluids is less than the evaporation limit (a very small
number, set to 108 by default), the returned mass fraction will be zero.

Parameters

5.9. IbpGET.cpp 81

DL_MESO Technical Manual, Release 2.7

in | fpos Number of fluid whose mass fraction is to be determined at given lattice point

in | startpos | Pointer for distribution function of fluid O in link 0

in | xpos Coordinate of lattice point (x-component)

in | ypos Coordinate of lattice point (y-component)

in | zpos Coordinate of lattice point (z-component)

in | tpos Position of lattice site in one-dimensional form
fGetFracSwiftSite()
double fGetFracSwiftSite (int fpos, double x startpos) double
fGetFracSwiftSite (int fpos, int xpos, int ypos, int zpos) double

fGetFracSwiftSite (int fpos, long tpos)

Returns the mass fraction of a single fluid at a given lattice point when using two-fluid Swift free-energy interac-
tions. This function uses fluid concentrations to determine the mass fractions, i.e.

0,1 1

25(1i¢)

p

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid density and
concentration (plus solutes and temperature field) and then by lattice link, this function will only give the correct
mass fraction if the starting position for the pointer is fy for fluid densities.

Parameters
in | fpos Number of fluid whose mass fraction is to be determined at given lattice point
in | startpos | Pointer for distribution function of fluid density in link 0
in | xXpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

fGetNodePosi()

inline long fGetNodePosi (int xpos, int ypos)
inline long fGetNodePosi (int xpos, int ypos, int zpos)

Returns a one-dimensional position in arrays for e.g. distribution functions based on the Cartesian coordinates for
a two- or three-dimensional simulation: this value follows the standard data structure for C++ (i.e. row-major)
with the z-component as the fastest changing coordinate, followed by the y-component and then the x-component.

Parameters

in | xpos | Coordinate of lattice point (Xx-component)
in | ypos | Coordinate of lattice point (y-component)
in | zpos | Coordinate of lattice point (z-component)

82 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetOneConcSite()

double fGetOneConcSite (int cpos, int xpos, int ypos, int zpos)
double fGetOneConcSite (int cpos, long tpos)

Returns the concentration of a single solute at a given lattice point by summing up solute distribution functions,
ie.

=g
7

The solute and three-dimensional Cartesian coordinates or one-dimensional grid position are inputs for this func-
tion, which point to the required starting distribution function for the given solute (go).

Parameters

in | cpos | Number of solute whose concentration is to be determined at given lattice point
in | xpos | Coordinate of lattice point (x-component)

in | ypos | Coordinate of lattice point (y-component)

in | zpos | Coordinate of lattice point (z-component)

in | tpos | Position of lattice site in one-dimensional form

fGetOneDirecSpeedincomSite()

float fGetOneDirecSpeedIncomSite (int dire, double * startpos)
float fGetOneDirecSpeedIncomSite (int dire, int xpos, int ypos, int zpos)
float fGetOneDirecSpeedIncomSite (int dire, long tpos)

Returns the specified component of velocity for all incompressible fluids at a given lattice point by summing
moments of distribution functions, i.e.

a
_sum; o fieia

U = p
Z(LPO

where pg is the constant density for fluid a. The result is output as a single-precision float (real) number: this
function is intended for obtaining fluid velocities to write to output files. Three different interfaces for the function
are available with different inputs to specify the lattice point and/or the starting distribution function. Since the
distribution functions for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice
link, this function will only give the correct velocity and densities if the starting position for the pointer is f; for
fluid 0.

Parameters
in | dire Component of velocity to output (0 =x, 1 =y,2=12)
in | startpos | Pointer for distribution function of fluid O in link 0.
in | xpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

5.9. IbpGET.cpp 83

DL_MESO Technical Manual, Release 2.7

fGetOneDirecSpeedSite()

float fGetOneDirecSpeedSite (int dire, double * startpos)
float fGetOneDirecSpeedSite (int dire, int xpos, int ypos, int zpos)
float fGetOneDirecSpeedSite (int dire, long tpos)

Returns the specified component of velocity for all compressible fluids at a given lattice point by summing mo-
ments of distribution functions, i.e.

a
sUM; o fi'€i

Z'L,a fl(l '

The result is output as a single-precision float (real) number: this function is intended for obtaining fluid velocities
to write to output files. Three different interfaces for the function are available with different inputs to specify
the lattice point and/or the starting distribution function. Since the distribution functions for each grid point are
sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only give the correct
velocity and densities if the starting position for the pointer is fy for fluid 0.

Uy =

Parameters
in | dire Component of velocity to output (0=x, 1 =y, 2=12)
in | startpos | Pointer for distribution function of fluid O in link 0.
in | xpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

fGetOneDirecSpeedSwiftSite()

float fGetOneDirecSpeedSwiftSite (int dire, double * startpos)
float fGetOneDirecSpeedSwiftSite (int dire, int xpos, int ypos, int zpos)
float fGetOneDirecSpeedSwiftSite (int dire, long tpos)

Returns the specified component of velocity for all compressible fluids at a given lattice point when using Swift
free-energy interactions by summing moments of density distribution functions, i.e.

sum; fie;i o
E:iﬁ

The result is output as a single-precision float (real) number: this function is intended for obtaining fluid velocities
to write to output files. Three different interfaces for the function are available with different inputs to specify
the lattice point and/or the starting distribution function. Since the distribution functions for each grid point are
sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only give the correct
velocity and densities if the starting position for the pointer is fj for the density distribution functions.

U =

Parameters
in | dire Component of velocity to output (0=x, 1 =y,2=12)
in | startpos | Pointer for distribution function of fluid O in link 0.
in | xpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

84 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetOneMassDomain()

double fGetOneMassDomain (int fpos)

Returns the total mass of a specified fluid in the current processor’s simulation subdomain (i.e. its section of the
lattice). This function excludes all boundary lattice sites, including those indicating boundary halos for communi-
cations between processors (which avoids double counting if summed up later).

Parameters

| in [fpos | Number of fluid whose total mass is to be found |

fGetOneMassSite()

double fGetOneMassSite (double * startpos)
double fGetOneMassSite (int fpos, int xpos, int ypos, int zpos)
double fGetOneMassSite (int fpos, long tpos)

Returns the density of a single fluid at a given lattice point by summing up distribution functions, i.e.
pr=> ff
i

Three different interfaces for the function are available with different inputs to specify the fluid, lattice point and/or
the starting distribution function. For each grid point, the distribution functions are sorted by fluid (plus solutes
and temperature field) and then by lattice link, so the starting position for the pointer will be f; for the given fluid.

Parameters
in | startpos | Pointer for distribution function of specified fluid in link O.
in | fpos Number of fluid whose density is to be found
in | xpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

fGetOneMassSwiftDomain()

double fGetOneMassSwiftDomain (int fpos)

Returns the total mass of a specified fluid in the current processor’s simulation subdomain (i.e. its section of the
lattice) when using Swift free-energy interactions. This function returns the actual mass for the specified fluid
from the total masses and the fluid concentrations ¢ at each grid point, i.e.

1
pht = 5/)(1 +¢)

This function excludes all boundary lattice sites, including those indicating boundary halos for communications
between processors (which avoids double counting if summed up later).

Parameters

] in \ fpos \ Number of fluid whose total mass in the subdomain is to be found ‘

5.9. IbpGET.cpp 85

DL_MESO Technical Manual, Release 2.7

fGetOneMomentSite()

int fGetOneMomentSite (double * speed, double * startpos)
int fGetOneMomentSite (double * speed, int fpos, int xpos, int ypos, int zpos)
int fGetOneMomentSite (double * speed, int fpos, long tpos)

Returns the momentum (product of density and velocity) of a single fluid at a given lattice point by summing up
distribution functions, i.e.

pa:Zfiaéi

(2

This subroutine will work for both mildly compressible and fully incompressible fluids. Three different interfaces
for the function are available with different inputs to specify the fluid, lattice point and/or the starting distribution
function. For each grid point, the distribution functions are sorted by fluid (plus solutes and temperature field) and
then by lattice link, so the starting position for the pointer will be f for the given fluid.

Parameters
out | speed Momentum of specified fluid at given lattice point
in startpos | Pointer for distribution function of specified fluid in link 0
in fpos Number of fluid whose momentum is to be determined at given lattice point
in | xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

fGetOneSpeedincomSite()

int fGetOneSpeedIncomSite (double * speed, double * startpos, double rho0)

Returns the velocity of a single incompressible fluid at a given lattice point by summing up distribution functions,
ie.

6
where pf is the constant density for fluid a. Three different interfaces for the function are available with different
inputs to specify the fluid (or its constant density), lattice point and/or the starting distribution function. For each

grid point, the distribution functions are sorted by fluid (plus solutes and temperature field) and then by lattice
link, so the starting position for the pointer will be f, for the given fluid.

Parameters
out | speed Velocity of specified fluid at given lattice point
in startpos | Pointer for distribution function of specified fluid in link 0
in rho0 Constant density for specified fluid
in | fpos Number of fluid whose velocity is to be determined at given lattice point
in Xpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in Zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

86 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetOneSpeedSite()

int fGetOneSpeedSite (double * speed, double * startpos)
int fGetOneSpeedSite (double * speed, int fpos, int xpos, int ypos, int zpos)
int fGetOneSpeedSite (double * speed, int fpos, long tpos)

Returns the velocity of a single compressible fluid at a given lattice point by summing up distribution functions,
ie.

% = Zz f) :i
2 fi
Three different interfaces for the function are available with different inputs to specify the fluid, lattice point and/or

the starting distribution function. For each grid point, the distribution functions are sorted by fluid (plus solutes
and temperature field) and then by lattice link, so the starting position for the pointer will be f; for the given fluid.

Parameters
out | speed Velocity of specified fluid at given lattice point
in startpos | Pointer for distribution function of specified fluid in link 0
in fpos Number of fluid whose velocity is to be determined at given lattice point
in Xpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in Zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

fGetSpeedAliMassSite()

int fGetSpeedAllMassSite (double * speed,
double * rho,
double * startpos)

Returns the velocity and densities of all compressible fluids at a given lattice point by summing up distribution
functions, i.e.

Zi,a fzaél
Zi,a fza

U:

and
Pt = Z fit-

Since the distribution functions for each grid point are sorted by fluid (plus solutes and temperature field) and then
by lattice link, this function will only give the correct velocity and densities if the starting position for the pointer
is fo for fluid 0.

Parameters

out | speed Velocity of all fluids at given lattice point
out | rho Fluid densities at given lattice point
in startpos | Pointer for distribution function of fluid O in link O.

5.9. IbpGET.cpp 87

DL_MESO Technical Manual, Release 2.7

fGetSpeedincomAllMassSite()

int fGetSpeedIncomAllMassSite (double * speed,
double * rho,
double * startpos)

Returns the velocity and variable densities of all incompressible fluids at a given lattice point by summing up
distribution functions, i.e.

Yo e
20 PO

ﬁ:

and
Pt = Z fit

where p§ is the constant density for fluid a. Since the distribution functions for each grid point are sorted by fluid
(plus solutes and temperature field) and then by lattice link, this function will only give the correct velocity and
densities if the starting position for the pointer is fo for fluid 0.

Parameters

out | speed Velocity of all fluids at given lattice point
out | rho Variable fluid densities at given lattice point
in startpos | Pointer for distribution function of fluid 0 in link O.

fGetSpeedincomSite()

int fGetSpeedIncomSite (double * speed, double *» startpos)
int fGetSpeedIncomSite (double * speed, int xpos, int ypos, int zpos)
int fGetSpeedIncomSite (double * speed, long tpos)

Returns the velocity of all incompressible fluids at a given lattice point by summing up distribution functions, i.e.

E:@aj?éi
20 PO

where pg is the constant density for fluid a. Three different interfaces for the function are available with different
inputs to specify the lattice point and/or the starting distribution function. Since the distribution functions for each
grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only
give the correct velocity if the starting position for the pointer is fo for fluid 0.

ﬁ:

Parameters
out | speed Velocity of all fluids at given lattice point
in startpos | Pointer for distribution function of fluid O in link O.
in | xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

88 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetSpeedShanChenAllMassSite()

int fGetSpeedShanChenAllMassSite (double * speed,
double * rho,
double x startpos,
double * omega)

Returns the velocity and densities of all compressible fluids at a given lattice point when using Shan-Chen pseu-
dopotential interactions by summing up distribution functions (weighting with relaxation frequencies for the ve-
locity [91]), i.e.

oW fie
Zi,a wafia

’L_[::

and
Pt = Z it

where :math:” omega™a = tau_{f,a}*{-1}" is the relaxation frequency of fluid a. Since the distribution functions
for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this function
will only give the correct velocity and densities if the starting position for the pointer is fj for fluid 0.

Parameters

out | speed Velocity of all fluids at given lattice point

out | rho Fluid densities at given lattice point

in startpos | Pointer for distribution function of fluid O in link O

in omega | Relaxation frequencies for all fluids at given lattice point

fGetSpeedShanChenincomAllMassSite()

int fGetSpeedShanChenIncomAllMassSite (double * speed,
double * rho,
double * startpos,
double * omega)

Returns the velocity and variable densities of all icompressible fluids at a given lattice point when using Shan-
Chen pseudopotential interactions by summing up distribution functions (weighting with relaxation frequencies
for the velocity [91]), i.e.

diawfite
D WP

’lj:

and
=200

where :math:” omega”a = tau_{f,a}*{-1}" is the relaxation frequency of fluid a and p§ is the constant density for
the same fluid. Since the distribution functions for each grid point are sorted by fluid (plus solutes and temperature
field) and then by lattice link, this function will only give the correct velocity and densities if the starting position
for the pointer is f; for fluid 0.

Parameters

out | speed Velocity of all fluids at given lattice point

out | tho Fluid densities at given lattice point

in startpos | Pointer for distribution function of fluid 0 in link 0.

in omega | Relaxation frequencies for all fluids at given lattice point

5.9. IbpGET.cpp 89

DL_MESO Technical Manual, Release 2.7

fGetSpeedShanChenlncomSite()

int fGetSpeedShanChenIncomSite (double * speed, double x startpos, double * omega)
int fGetSpeedShanChenIncomSite (double x speed, int xpos, int ypos, int zpos)
int fGetSpeedShanChenIncomSite (double * speed, long tpos)

Returns the velocity of all incompressible fluids at a given lattice point when using Shan-Chen pseudopotential
interactions by summing up distribution functions weighted by relaxation frequencies [91], i.e.

L Xaw e
U="3% Jaa
Za W Po
where w® = 7, 1s the relaxation frequency of fluid a and p§ is the constant density for the same fluid. Three

different 1nterfaces for the function are available with different inputs to specify the lattice point and/or the starting
distribution function (and the relaxation frequencies if using the latter). Since the distribution functions for each
grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this function will only
give the correct velocity if the starting position for the pointer is f; for fluid 0.

Parameters

out | speed Velocity of all fluids at given lattice point
in startpos | Pointer for distribution function of fluid O in link O
in | omega | Relaxation frequencies for all fluids at given lattice point

in | xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in tpos Position of lattice site in one-dimensional form

fGetSpeedShanChenSite()

int fGetSpeedShanChenSite (double * speed, double » startpos, double * omega)
int fGetSpeedShanChenSite (double * speed, int xpos, int ypos, int zpos)
int fGetSpeedShanChenSite (double x speed, long tpos)

Returns the velocity of all compressible fluids at a given lattice point when using Shan-Chen pseudopotential
interactions by summing up distribution functions weighted by relaxation frequencies [91], i.e.
L 2w e

u =

Zi,a wafia

where w® =7, ! is the relaxation frequency of fluid a. Three different interfaces for the function are available with
different 1nputs to specify the lattice point and/or the starting distribution function (and the relaxation frequencies
if using the latter). Since the distribution functions for each grid point are sorted by fluid (plus solutes and
temperature field) and then by lattice link, this function will only give the correct velocity if the starting position
for the pointer is f; for fluid 0.

Parameters

out | speed Velocity of all fluids at given lattice point
in startpos | Pointer for distribution function of fluid O in link O
in | omega | Relaxation frequencies for all fluids at given lattice point

in Xpos Coordinate of lattice point (x-component)
in | ypos Coordinate of lattice point (y-component)
in Zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

90 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetSpeedSite()

int fGetSpeedSite (double * speed, double * startpos)
int fGetSpeedSite (double x speed, int xpos, int ypos, int zpos)
int fGetSpeedSite (double * speed, long tpos)

Returns the velocity of all compressible fluids at a given lattice point by summing up distribution functions, i.e.

Ei,a fﬁél
Zi,a f'La

Three different interfaces for the function are available with different inputs to specify the lattice point and/or the
starting distribution function. Since the distribution functions for each grid point are sorted by fluid (plus solutes
and temperature field) and then by lattice link, this function will only give the correct velocity if the starting
position for the pointer is f; for fluid O.

7__[:

Parameters
out | speed Velocity of all fluids at given lattice point
in startpos | Pointer for distribution function of fluid O in link O.
in | xpos Coordinate of lattice point (x-component)
in ypos Coordinate of lattice point (y-component)
in | zpos Coordinate of lattice point (z-component)
in | tpos Position of lattice site in one-dimensional form

fGetTemperatureSite()

double fGetTemperatureSite (long tpos)
double fGetTemperatureSite (long xpos, long ypos, long zpos)

Returns the temperature at a given lattice point by summing up temperature distribution functions, i.e.
T=> hi
i

The one-dimensional grid point or three-dimensional Cartesian coordinates are inputs for this function, which
point to the required starting distribution function for the temperature field (hg).

Parameters

in | tpos | Position of lattice site in one-dimensional form
in | xpos | Coordinate of lattice point (Xx-component)
in | ypos | Coordinate of lattice point (y-component)
in | zpos | Coordinate of lattice point (z-component)

fGetTotMassDomain()

double fGetTotMassDomain ()

Returns the total mass of all fluids in the current processor’s simulation subdomain (i.e. its section of the lattice).
This function excludes all boundary lattice sites, including those indicating boundary halos for communications
between processors (which avoids double counting if summed up later).

5.9. IbpGET.cpp 91

DL_MESO Technical Manual, Release 2.7

fGetTotMassSite()

double fGetTotMassSite (double * startpos)
double fGetTotMassSite (long tpos)

Returns the total density of all fluids at a given lattice point by summing up distribution functions, i.e.
p= I
1,a

Either the distribution function pointer or the one-dimensional grid point is the input for this function. Since the
distribution functions for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice
link, this function will only give the correct total density if the starting position for the pointer is fj for fluid 0.

Parameters

in | startpos | Pointer for distribution function of fluid O in link 0.
in | tpos Position of lattice site in one-dimensional form

fGetTotMomentDomain()

int fGetTotMomentDomain (double * momentum)

Returns the total momentum of all fluids in the current processor’s simulation subdomain (i.e. its section of the
lattice). This function excludes all boundary lattice sites, including those indicating boundary halos for communi-
cations between processors (which avoids double counting if summed up later).

Parameters

] momentum \ Total momentum of fluids at all fluid sites in simulation subdomain

fGetTotMomentSite()

int fGetTotMomentSite (double x momentum, double * startpos)

Returns the momentum (product of density and velocity) of all fluids at a given lattice point by summing up
distribution functions, i.e.

p= Zfiaéi
i,a

This subroutine will work for both mildly compressible and fully incompressible fluids. Since the distribution
functions for each grid point are sorted by fluid (plus solutes and temperature field) and then by lattice link, this
function will only give the correct momentum if the starting position for the pointer is fy for fluid 0.

Parameters

out | momentum | Momentum of all fluids at given lattice point
in startpos Pointer for distribution function of specified fluid in link 0.

92 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetTotMomentSwiftDomain()

int fGetTotMomentSwiftDomain (double * momentum)

Returns the total momentum of all fluids in the current processor’s simulation subdomain (i.e. its section of the
lattice) when using Swift free-energy interactions. This function only uses sums moments of the distribution
functions for fluid density - concentration distribution functions used in two-fluid models do not contribute to this
property - and excludes all boundary lattice sites, including those indicating boundary halos for communications
between processors (which avoids double counting if summed up later).

5.10 IbpMODEL.cpp

Module to set up lattice-based weighting functions, link vectors and multiple relaxation time (MRT) transforma-
tion matrices. (Header file available as IbpMODEL.hpp.)

5.10.1 Functions

e int D2QY()

Sets up lattice-based parameters, vectors and transformation matrices for D2Q09 lattice scheme.
e int D3QI15()

Sets up lattice-based parameters, vectors and transformation matrices for D3Q15 lattice scheme.
e int D3QI19()

Sets up lattice-based parameters, vectors and transformation matrices for D3Q19 lattice scheme.
e int D30Q27()

Sets up lattice-based parameters, vectors and transformation matrices for D3Q27 lattice scheme.

5.10.2 Detailed Description

Subroutines to set up speeds of sound c,, weighting functions for local equilibrium distribution functions w; (in-
cluding those for Swift free-energy interactions if applicable), vectors for links between lattice points é;, products
of weighting functions and link vectors for gradient stencils used in Shan-Chen pseudopotential and Lishchuk
continuum-based interactions, first-order and second-order gradient stencils for Swift free-energy interactions (if
applicable), conjugate link identifiers, and the multiple relaxation time (MRT) transformation matrix T and its
inverse T~!. (Transformation matrices for cascaded LBE collisions are not set up in these routines as these are
dependent on fluid velocities at each lattice point.)

5.10.3 Function Documentation

D2Q9()

int D2Q9 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradi-
ent stencils, conjugate links and MRT transformation matrices [73] for the D2Q9 (two-dimensional, nine lattice
vectors) lattice scheme. If using Swift free-energy interactions, these will include the weighting parameters for the
free-energy local equilibrium distribution functions and microcurrent-reducing stencils for first-order and second-
order gradients [102].

5.10. IbpMODEL.cpp 93

DL_MESO Technical Manual, Release 2.7

D3Q15()

int D3Q15 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradient
stencils, conjugate links and MRT transformation matrices [159] for the D3Q15 (three-dimensional, fifteen lattice
vectors) lattice scheme. If using Swift free-energy interactions, these will include the weighting parameters for the
free-energy local equilibrium distribution functions and microcurrent-reducing stencils for first-order and second-
order gradients [102].

D3Q19()

int D3Q19 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradient
stencils, conjugate links and MRT transformation matrices [159] for the D3Q19 (three-dimensional, nineteen
lattice vectors) lattice scheme. If using Swift free-energy interactions, these will include the weighting parameters
for the free-energy local equilibrium distribution functions and microcurrent-reducing stencils for first-order and
second-order gradients [102].

D3Q27()

int D30Q27 ()

Sets values for speeds of sound, local equilbrium distribution function weighting parameters, link vectors, gradient
stencils, conjugate links and MRT transformation matrices [134] for the D3Q27 (three-dimensional, twenty-seven
lattice vectors) lattice scheme. No Swift free-energy interactions are currently available for this lattice scheme.

5.11 IbpSUB.cpp

Module with important subroutines and functions for LBE calculations. (Header file available as 1bpSUB.hpp.)

Subroutines and functions required to carry out key parts of LBE simulations, e.g. propagation, calculate local
equilibrium distribution functions, allocate and deallocate arrays.

5.11.1 Functions

* void fWeakMemory()

Prints error message due to lack of memory for array allocation.
e int fMemoryAllocation()

Allocates memory for LBE calculations.
e int fFreeMemory()

Frees allocated memory for LBE calculations.
e int fSetSerialDomain()

Determines the domain parameters for the serial LBE calculation.
* int fSetSerialDomainBuffer()

Determines the domain parameters for the serial LBE calculation with a boundary halo.
e int fStartDLMESO()

Announces start of DL_MESO_LBE calculation.

94 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

e int fFinishDLMESO()
Announces end of DL_MESO_LBE calculation.
* int fsPrintDomainlnfo()
Prints information about numbers of threads to standard output.
e int fGetModel()
Initialises lattice-related arrays based on lattice scheme in use.
* int fMarkBoundArea3D()
Assigns boundary conditions for boundary halos of three-dimensional systems.
e int fMarkBoundArea2D()
Assigns boundary conditions for boundary halos of two-dimensional systems.
* int fMarkBoundArea()
Assigns boundary conditions for lattice points making up boundary halos.
* int fGetEquilibriumF()
Calculates local equilibrium distribution functions for a mildly compressible fluid.
* int fGetEquilibriumFIncom()
Calculates local equilibrium distribution functions for a fully incompressible fluid.
e int fGetEquilibriumFSwiftOneFluid()

Calculates local equilibrium distribution functions for one mildly compressible fluid with Swift free-energy
interactions.

* int fGetEquilibriumFSwiftTwoFluid()

Calculates local equilibrium distribution functions for two mildly compressible fluids with Swift free-energy
interactions.

e int fGetEquilibriumFCLBED2Q9()

Calculates local equilibrium distribution functions for a mildly compressible fluid undergoing CLBE colli-
sions on a D2Q9 lattice.

* int fGetEquilibriumFCLBED3Q19()

Calculates local equilibrium distribution functions for a mildly compressible fluid undergoing CLBE colli-
sions on a D3Q19 Iattice.

e int fGetEquilibriumFCLBED3Q27()

Calculates local equilibrium distribution functions for a mildly compressible fluid undergoing CLBE colli-
sions on a D3Q27 lattice.

* double fGetBulkPressureSwift()
Calculates buik pressure for Swift free-energy interactions.
* double fGetPotential Swift()
Calculates potential for two-fluid Swift free-energy interactions.
* double fGetLambdaSwift()
Calculates Galilean invariance correction factor for fluids undergoing Swift free-energy interactions.
* int fGetEquilibriumC()
Calculates local equilibrium distribution functions for a solute.
e int fGetEquilibriumT()

Calculates local equilibrium distribution functions for temperature.

5.11. IbpSUB.cpp 95

DL_MESO Technical Manual, Release 2.7

e int flnitializeSystem()

Initialises distribution functions for LBE calculation.
* int fPropagationTwoLattice()

Carries out propagation stage using a two-lattice algorithm.
e int fPropagationSwap()

Carries out propagation stage using a swap-based algorithm.
* int fPropagationCombinedSwap()

Carries out propagation stage using a combined swap-based algorithm.

5.11.2 Function Documentation

fFinishDLMESO()

int fFinishDLMESO ()

Prints messages at the end of a DL_MESO_LBE calculation indicating the elapsed calculation time, the efficiency
measure (Millions of Lattice Updates Per Second), the finishing time and possible citations for publishing results
to standard output.

fFreeMemory()

int fFreeMemory ()

Deallocates the arrays previously used for a Lattice Boltzmann Equation (LBE) calculation when
DL_MESO_LBE closes down.

fGetBulkPressureSwift()

double fGetBulkPressureSwift (double rho,
double phi,
double T)

Calculates and returns the bulk pressure at a given lattice point for Swift free-energy interactions, based on the
selected equation of state:

¢ Ideal lattice gas:

¢ Shan-Chen 1993 model [118]:
2 1o o —-£
Py = pes + 565900 (1 —e PO)

¢ Shan-Chen 1994 model [119]:

200

1 _
Py = pci + icigd)ge o

¢ Qian model [106]:

c29p50”

Py = pc? + 5
(po +p)

96 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

* Density model:

¢ Ideal gas:

¢ van der Waals:

1
Py = pc + zcigp”

* Carnahan-Starling-van der Waals [16]:

2
Py = pRT
pRT 2
P = _
0T 1 - bp
1 2 _ 43
Py — pRT (W) o
(1-9)

* Redlich-Kwong [110]:

* Soave-Redlich-Kwong [128]:

* Peng-Robinson [99]:

P pRT ap?
0= -
L=bp VT (1+bp)
pRT aa(T,,w)p?
Py = -
1—-0bp 14+bp
pRT aa (T, w) p?
Py

- 1—bp 1+2bp—b2p?

* Carnahan-Starling-Redlich-Kwong [16]:

l+¢+¢”—¢° ap’
Py = pRT —
e ((1-¢)°) VT (1+ bp)

where R is the universal gas constant, a and b are species-dependent coefficients, « is a function dependent on the
ratio of temperature to critical temperature 7, = T'/T, and acentric factor w, and ¢ = %p for Carnahan-Starling
equations of state. The temperatures used in some equations of state can either be specified system-wide or at each
lattice point if heat effects are coupled to fluid flows with an additional lattice.

If two fluids are being simulated, the following additional contribution due to mixing:

is added to the bulk pressure, where a is the parameter used for the potential between the two fluids.

_ 12 34

Parameters
in | rho | Fluid density at lattice site p
in | phi | Fluid concentration at lattice site (only used for two-fluid interactions) ¢
in | T Temperature at lattice site

5.11. IbpSUB.cpp

97

DL_MESO Technical Manual, Release 2.7

fGetEquilibriumC()

int fGetEquilibriumC (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a solute [62]:

9 =w,C {1 + 2
c

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL._MESO_LBE).

Parameters

out | feq | Local equilibrium distribution functions for solute at given lattice site
in | v Fluid velocity at lattice site o
in | rho | Solute concentration at lattice site C'

fGetEquilibriumF()

int fGetEquilibriumF (double x feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid:

. 3(6;-@) 9 @)’ 3ul
F = wip 1+ c? + 2ct C2e2

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL._MESO_LBE).

Parameters

out | feq | Local equilibrium distribution functions for given lattice site
in | v Fluid velocity at lattice site 4
in rho | Fluid density at lattice site p

fGetEquilibriumFCLBED2Q9()

int fGetEquilibriumFCLBED2Q9 (double x feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid undergoing cascaded LBE
(CLBE) collisions on a two-dimenensional D2Q9 lattice. The distribution functions are obtained by an inverse
transformation of the local equilibrium central moments:

feq _ T_lN_lﬁeq.

These local equilibrium distribution functions are an approximation of the Maxwell-Boltzmann (general) local

equilibrium distribution function, which was used to derive the local equilibrium central moments Me4. Since
the CLBE collisions are carried out using central moments, this subroutine is mainly used to initialise simulations
using these collisions.

Parameters

98 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

out | feq | Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site
in rho | Fluid density at lattice site p

fGetEquilibriumFCLBED3Q19()

int fGetEquilibriumFCLBED3Q19 (double * feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid undergoing cascaded LBE
(CLBE) collisions on a three-dimenensional D3Q19 lattice. The distribution functions are obtained by an inverse
transformation of the local equilibrium central moments:

f_’eq — T—lN—lj\'}eq.

These local equilibrium distribution functions are an approximation of the Maxwell-Boltzmann (general) local

equilibrium distribution function, which was used to derive the local equilibrium central moments Me4. Since
the CLBE collisions are carried out using central moments, this subroutine is mainly used to initialise simulations
using these collisions.

Parameters

out | feq | Local equilibrium distribution functions for given lattice site
in |v Fluid velocity at lattice site i
in | rho | Fluid density at lattice site p

fGetEquilibriumFCLBED3Q27()

int fGetEquilibriumFCLBED3Q27 (double x feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for a mildly compressible fluid undergoing cascaded LBE
(CLBE) collisions on a three-dimenensional D3Q27 lattice. The distribution functions are obtained by an inverse
transformation of the local equilibrium central moments:

f_'eq _ T_lN_lj\}eq.

These local equilibrium distribution functions are an approximation of the Maxwell-Boltzmann (general) local

equilibrium distribution function, which was used to derive the local equilibrium central moments Me. Since
the CLBE collisions are carried out using central moments, this subroutine is mainly used to initialise simulations
using these collisions.

Parameters

out | feq | Local equilibrium distribution functions for given lattice site
in v Fluid velocity at lattice site o
in | rho | Fluid density at lattice site p

5.11. IbpSUB.cpp 99

DL_MESO Technical Manual, Release 2.7

fGetEquilibriumFIncom()

int fGetEquilibriumFIncom (double x feq,
double * v,
double rho,
double rho0)

Calculates the local equilibrium distribution functions for a fully incompressible fluid [53]:

3(é; -) +9(éi-ﬁ)2 3u2H

c? 2ct 2c2

[=wi {p+po

as required for collisions and system initialisation, which uses a constant density pg and a variable density p as
an analogue for pressure. This expression is only suitable for square lattices (i.e. those currently implemented in
DL_MESO_LBE).

Parameters

out | feq Local equilibrium distribution functions for given lattice site
in | v Fluid velocity at lattice site

in rho | Variable fluid density at lattice site p

in | thoO | Constant fluid density at lattice site pg

fGetEquilibriumFSwiftOneFluid()

int fGetEquilibriumFSwiftOneFluid (double * feq,
double * v,
double rho,
double p0,
double lambda,
double * delta)

Calculates the local equilibrium distribution functions for one mildly compressible fluid with Swift free-energy
interactions [136][102]:

1
7 =wdp +w; [p {(éi)+ 5 (6 @)? - 2u2} +A{3(& @) (& - Vp)+ [vi (€ - &) + 6] (- Vp)}| +wl Py — wikpV?p

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL_MESO_LBE) apart from D3Q27, for which no free-energy scheme currently exists.

Parameters
out | feq Local equilibrium distribution functions for given lattice site
in | v Fluid velocity at lattice site @
in | rho Fluid density at lattice site p
in p0 Bulk pressure at lattice site (determined from equation of state) Py
in | lambda | Correction parameter for Galilean invariance (determined from equation of state) A
in delta First-order and second-order derivatives of density

100 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetEquilibriumFSwiftTwoFluid()

int fGetEquilibriumFSwiftTwoFluid (double * feq,
double * v,
double rho,
double phi,
double p0,
double pot,
double lambda,
double * delta)

Calculates the local equilibrium distribution functions for two mildly compressible fluids with Swift free-energy
interactions [135][103] as required for collisions and system initialisation, both for density distribution functions:

3 1
Fi = w®p+ w [p {(éi - U) + B (é:-@)° - 2“2} +A{3(&; - @) (& - Vp) + [yi (éi - &) + 6] (@ - Vp)}| + wl Py — wik(pV?

and for concentration distribution functions:
eq __ 00 ~ — 3 “ N2 1 2 p
g =wi ¢+ wi¢ (ei~u)+§(ei~u) - U + wlTp.

These expressions are only suitable for square lattices (i.e. those currently implemented in DL_MESO_LBE)
apart from D3Q27, for which no free-energy scheme currently exists.

Parameters
out | feq Local equilibrium distribution functions for given lattice site
in \ Fluid velocity at lattice site @
in rho Fluid density at lattice site p
in phi Fluid concentration at lattice site ¢
in pO Bulk pressure at lattice site (determined from equation of state) Py
in | pot Potential at lattice site (determined from equation of state and free energy functional)
in lambda | Correction parameter for Galilean invariance (determined from equation of state) A
in | delta First-order and second-order derivatives of density and concentration

fGetEquilibriumT()

int fGetEquilibriumT (double =+ feq,
double * v,
double rho)

Calculates the local equilibrium distribution functions for temperature [62]:

heq = wiT |:1 —+ >
C

as required for collisions and system initialisation. This expression is only suitable for square lattices (i.e. those
currently implemented in DL_MESO_LBE).

Parameters

out | feq | Local equilibrium distribution functions for solute at given lattice site
in v Fluid velocity at lattice site
in rho | Temperature at lattice site 7'

5.11. IbpSUB.cpp 101

DL_MESO Technical Manual, Release 2.7

fGetLambdaSwift()

double fGetLambdaSwift (double rho,
double omega,
double T)

Calculates and returns the correction factor to ensure Galilean invariance for one or two fluids undergoing Swift
free-energy interactions, based on the governing equation of state:

At\? P,

where P is the bulk pressure obtained for the equation of state and v is the kinematic viscosity of the fluids (which
can be obtained using relaxation frequencies). This expression reduces to zero in the case of a lattice gas with the
equation of state Py = c2p.

Parameters
in | rho Fluid density at lattice site p
in | omega | Relaxation frequency of fluid(s) at lattice site w
in | T Temperature at lattice site

fGetModel()

int fGetModel ()

Assigns values for link vectors, weighting parameters for local equilibrium distribution functions, conjugate links
and transformation matrices for multiple relaxation time (MRT) collision schemes based on the selected lattice
model (numbers of space dimensions and discrete velocities) and mesophase interaction model.

fGetPotentialSwift()

double fGetPotentialSwift (double phi, double d2phi)

Calculates and returns the potential at a given lattice point for two-fluid Swift free-energy interactions, using the
following expression for a double well potential:

p=a(-6+¢) - V%,

where a is a parameter that can control the surface tension between the two fluids and the interfacial width.

Parameters

in | phi Fluid concentration at lattice site ¢
in | d2phi | Second-order derivative of fluid concentration V2¢

finitializeSystem()

int fInitializeSystem ()

Sets the starting distribution functions for a Lattice Boltzmann Equation (LBE) calculation based on initial val-
ues for fluid velocity, densities, solute concentrations and temperatures at each lattice point. Local equilibrium
distribution functions are used to obtain initial values for distribution functions: the exact forms for these depend
on whether or not the fluids are compressible, if cascaded LBE (CLBE) collisions or Swift free-energy interac-
tions are in use. The initial fluid densities can be varied by random ‘noise’ with a maximum fluctuation given by

102 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

the user: this can be used for multiple fluid/phase simulations to give initial density gradients that can instigate
separation. This subroutine makes use of initial conditions specified in the input system file (Ibin.sys) as defaults
for all fluid lattice sites: an initial state input file (Ibin.init) can be used to override these defaults at any specified
lattice sites.

fMarkBoundArea()

int fMarkBoundArea ()

Assigns boundary conditions to the edges of a subdomain indicating the lattice points making up the boundary
halo for LBE calculations. This subroutine is essential for parallel calculations to indicate lattice points involved
in processor-to-processor communications and for serial calculations that use a non-zero boundary halo: serial
calculations that do not require a boundary halo do not need to call this subroutine.

fMarkBoundArea2D()

int fMarkBoundArea2D ()

Assigns boundary conditions to the edges of a subdomain indicating the lattice points making up the boundary halo
for LBE calculations in a two-dimensional lattice. The assigned boundary condition (phase field) code indicates
lattice sites that are otherwise fluid (non-boundary) points and are treated as such for e.g. collisions.

fMarkBoundArea3D()

int fMarkBoundArea3D ()

Assigns boundary conditions to the edges of a subdomain indicating the lattice points making up the boundary
halo for LBE calculations in a three-dimensional lattice. The assigned boundary condition (phase field) code
indicates lattice sites that are otherwise fluid (non-boundary) points and are treated as such for e.g. collisions.

fMemoryAllocation()

int fMemoryAllocation ()

Allocates the main arrays for a Lattice Boltzmann Equation (LBE) calculation: distribution functions, inter-
action type-dependent property (Shan-Chen pseudopotentials, Lishchuk interfacial normals, gradients of den-
sity/concentration for Swift free-energy interactions), initial and boundary conditions, lattice weighting parame-
ters and link vectors, interaction forces, simulation parameters etc.

fPropagationCombinedSwap()

int fPropagationCombinedSwap ()

Shifts distribution functions to neighbouring lattice points along link vectors by systematic swapping of post-
collisional distribution functions [93], initially at each lattice point and then between them within the same loop.
This routine should not be modified unless the storage structure for distribution functions is changed. This routine
provides an efficient propagation method for calculations in DL_MESO_LBE, but it can only be used when there is
a boundary halo in use, as the swaps between lattice points require both points to have already swapped distribution
functions among their conjugate links (which cannot happen when modulo functions are in use). As such, it is
therefore the default propagation method in DL_MESO_LBE for parallel calculations when OpenMP is not in
use.

5.11. IbpSUB.cpp 103

DL_MESO Technical Manual, Release 2.7

fPropagationSwap()

int fPropagationSwap ()

Shifts distribution functions to neighbouring lattice points along link vectors by systematic swapping of post-
collisional distribution functions [93], initially at each lattice point and then between them in two separate loops.
This routine should not be modified unless the storage structure for distribution functions is changed. This routine
provides an efficient propagation method for both serial and parallel calculations in DL_MESO_LBE as it uses
less memory and can be carried out over multiple OpenMP threads: it is therefore the default propagation method
in DL_MESO_LBE for serial calculations and parallel calculations when OpenMP is in use.

fPropagationTwolL attice()

int fPropagationTwoLattice ()

Shifts distribution functions to neighbouring lattice points along link vectors by copying values to an additional
second lattice and copying the values back into the main distribution function array afterwards. This routine should
not be modified unless the storage structure for distribution functions is changed and provides the least efficient
propagation method available in DL_MESO_LBE: for this reason it is not the method used by default.

fSetSerialDomain()

int fSetSerialDomain ()

Sets the sizes of the lattice based on inputted values, ignoring the boundary halo size (as modulo functions can
be used to deal with periodic boundaries), and sets a grid boundary region close to the edge of the domain to
find neighbouring lattice points for e.g. interaction forces more efficiently. This subroutine is only used for serial
DL_MESO_LBE runs: an alternative subroutine exists for parallel running (fDefineDomain()).

fSetSerialDomainBuffer()

int fSetSerialDomainBuffer ()

Sets the sizes of the lattice based on inputted values, using the boundary halo size to find outer lattice extents, and
sets a grid boundary region close to the edge of the domain to find neighbouring lattice points for e.g. interaction
forces more efficiently. This subroutine is an alternative to fSetSerialDomain() that is not normally used by default
and is a serial equivalent to the fDefineDomain() subroutine used for parallel calculations.

fsPrintDomaininfo()

int fsPrintDomainInfo ()

Prints the number of available threads to the standard output if OpenMP is in use. This subroutine is only used
for serial calculations: an alternative subroutine for parallel running (fPrintDomainlnfo()) that also indicates the
number of processors in use. If DL_MESO_LBE is not compiled with OpenMP, this message is not printed.

104 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fStartDLMESO()

int £StartDLMESO ()

Prints messages at the start of a DL_MESO_LBE calculation indicating the code version (with minor revision
number and release date), authors, contributors, copyright message and starting time to standard output.

fWeakMemory()

inline void fWeakMemory ()

Prints error message and stops DL_MESO_LBE if there is insufficient memory available to allocate arrays for
LBE calculations.

5.12 IbpMPl.cpp

Module with functions and subroutines required for parallel running using MPI. (Header file available as
IbpMPLhpp.)

Functions and subroutines required to set up parallel LBE calculations using the Message Passing Interface (MPI),
including processor-to-processor communications, global summations, simulation setup over multiple processors

etc.

5.12.1 Functions

int fStartMPI()

Starts off MPI for a parallel simulation by DL_MESO_LBE.
int fCloseMPI()

Closes MPI after completion of DL_MESO_LBE calculation in a controlled manner.
int fGetRank()

Returns number (rank) of current processor.

int fGetSize()

Returns total number of available processors.

int fAllReady()

Synchronises all processors before continuing.

int fGlobalValue()

Applies a global summation to an integer, long integer or double-precision floating-point array and broad-
casts result to all processors in either the original array or as a new array.

int fGlobalProduct()

Applies a global product to an integer or double-precision floating-point array and broadcasts result to all
processors.

double fCheckTimeMPI()
Outputs time in seconds.
int fArrangeProcessors()

Arrange processors to best fit system dimensions.

5.12.

IbpMPl.cpp 105

DL_MESO Technical Manual, Release 2.7

int fGetProcessCoordinate()

Determine processor coordinate for current processor.

int fGetDomainSize()

Distribute lattice points among all available processors.

int fErrorIlnArray()

Checks for and report errors in determined lattice dimensions.

int fDefineDomain()

Determines the domain parameters for the parallel LBE calculation.

int fDefineMessage()

Defines vector messages for system to communicate calculational properties between processors.
int fDefineNeighbours()

Defines the neighbouring processors and data locations for processor-to-processor communications.
int fNonBlockComm2DX()

Passes distribution functions in x-direction for two-dimensional LBE simulation.

int fNonBlockComm2DY()

Passes distribution functions in y-direction for two-dimensional LBE simulation.

int fNonBlockComm2D()

Passes distribution functions to boundary halos for two-dimensional LBE simulation.

int fNonBlockComm3DX()

Passes distribution functions in x-direction for three-dimensional LBE simulation.

int fNonBlockComm3DY()

Passes distribution functions in y-direction for three-dimensional LBE simulation.

int fNonBlockComm3DZ()

Passes distribution functions in z-direction for three-dimensional LBE simulation.

int fNonBlockComm3D()

Passes distribution functions to boundary halos for three-dimensional LBE simulation.

int fNonBlockCommunication()

Passes distribution functions to boundary halos for LBE simulation.

int fPrintDomainlnfo()

Prints information about numbers of processors and threads to standard output.

int fBroadcast()

Broadcasts an integer across all processors.

int fMPISetoffSteer()

Creates file to prevent reading in input files when using computational steering (in parallel).
int fMPICheckSteer()

Checks for file indicating steering is occurring and reads in input files if it does not exist (in parallel).
int fBoundNonBlockComm2DX()

Passes boundary conditions in x-direction for two-dimensional LBE simulation.

106

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int fBoundNonBlockComm2DY()

Passes boundary conditions in y-direction for two-dimensional LBE simulation.
int fBoundNonBlockComm2D()

Passes boundary conditions to boundary halos for two-dimensional LBE simulation.
int fBoundNonBlockComm3DX()

Passes boundary conditions in x-direction for three-dimensional LBE simulation.
int fBoundNonBlockComm3DY()

Passes boundary conditions in y-direction for three-dimensional LBE simulation.
int fBoundNonBlockComm3DZ()

Passes boundary conditions in z-direction for three-dimensional LBE simulation.
int fBoundNonBlockComm3D()

Passes boundary conditions to boundary halos for three-dimensional LBE simulation.
int fBoundNonBlockCommunication()

Passes boundary conditions to boundary halos for LBE simulation.

int fForceNonBlockComm2DX()

Passes interaction forces in x-direction for two-dimensional LBE simulation.
int fForceNonBlockComm2DY()

Passes interaction forces in y-direction for two-dimensional LBE simulation.
int fForceNonBlockComm2D()

Passes interfacial forces to boundary halos for two-dimensional LBE simulation.
int fForceNonBlockComm3DX()

Passes interaction forces in x-direction for three-dimensional LBE simulation.
int fForceNonBlockComm3DY()

Passes interaction forces in y-direction for three-dimensional LBE simulation.
int fForceNonBlockComm3DZ()

Passes interaction forces in z-direction for three-dimensional LBE simulation.
int fForceNonBlockComm3D()

Passes interfacial forces to boundary halos for three-dimensional LBE simulation.
int fForceNonBlockCommunication()

Passes interfacial forces to boundary halos for LBE simulation.

int fIndexNonBlockComm2DX()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in x-direction for two-
dimensional LBE simulation.

int fIndexNonBlockComm2DY()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in y-direction for two-
dimensional LBE simulation.

int fIndexNonBlockComm2D()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients to boundary halos for
two-dimensional LBE simulation.

5.12.

IbpMPl.cpp 107

DL_MESO Technical Manual, Release 2.7

e int fIndexNonBlockComm3DX()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in x-direction for three-
dimensional LBE simulation.

* int fIndexNonBlockComm3DY()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in y-direction for three-
dimensional LBE simulation.

e int flndexNonBlockComm3DZ()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients in z-direction for three-
dimensional LBE simulation.

e int flndexNonBlockComm3D()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients to boundary halos for
three-dimensional LBE simulation.

e int flndexNonBlockCommunication()

Passes Lishchuk phase indices or Swift free-energy density/concentration gradients to boundary halos for
LBE simulation.

e int fPrintSystemMass()
Calculates and prints total and individual fluid masses in entire system.
e int fPrintSystemMomentum()

Calculates and prints total fluid momentum in entire system.

5.12.2 Function Documentation

fAllReady()

int fAllReady ()

Pauses running until all processors are sychronised and have reached a given point in the code: needed when all
processors need to be involved with what happens subsequently (i.e. are all ready to continue).

fArrangeProcessors()

int fArrangeProcessors ()

Determine the numbers of available processors in each dimension to best fit the lattice grid, i.e. to give as square
or cubic subdomains as possible:

Ne Ny N-
P, P, P

where N, and P, are the numbers of lattice points and processors respectively in dimension «. (The total number
of processors is P, P, P,, where P, = 1 for two-dimensional simulations.)

108 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fBoundNonBlockComm2D()

int fBoundNonBlockComm2D ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete two-dimensional LBE calculations. This
subroutine is used to set off the communications in the required directions.

fBoundNonBlockComm2DX()

int fBoundNonBlockComm2DX ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +x and
-x directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into the
boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockComm2DY()

int fBoundNonBlockComm2DY ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +y and
-y directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into the
boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockComm3D()

int fBoundNonBlockComm3D ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete three-dimensional LBE calculations.
This subroutine is used to set off the communications in the required directions.

fBoundNonBlockComm3DX()

int fBoundNonBlockComm3DX ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +x
and -x directions to generate boundary halos required to complete three-dimensional LBE calculations, using
unblocked MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into
the boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockComm3DY()

int fBoundNonBlockComm3DY ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +y
and -y directions to generate boundary halos required to complete three-dimensional LBE calculations, using
unblocked MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into
the boundary condition, neighbouring point and surface normal arrays as boundary halos.

5.12. IbpMPl.cpp 109

DL_MESO Technical Manual, Release 2.7

fBoundNonBlockComm3DZ()

int fBoundNonBlockComm3DZ ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information in +z
and -z directions to generate boundary halos required to complete three-dimensional LBE calculations, using
unblocked MPI calls. MPI derived datatypes are used to send and receive data vectors that are placed directly into
the boundary condition, neighbouring point and surface normal arrays as boundary halos.

fBoundNonBlockCommunication()

int fBoundNonBlockCommunication ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete LBE calculations. This subroutine is
used to choose in which directions the communications should take place based on the number of dimensions in
the system.

fBroadcast()

int fBroadcast (int * iteml)

Broadcasts an integer from processor O to all processors.

Parameters

[in | item] [Integer to be broadcast to all processors

fCheckTimeMPI()

double fCheckTimeMPI ()

Checks the time since the first call of the function obtained from MPI wall time. This function is used to time
DL_MESO_LBE simulations run in parallel: there is an alternative function to do the same for serial calculations
(fCheckTimeSerial()).

fCloseMPI()

int fCloseMPI ()

Calls MPI routine to close all communications to end the DL_MESO_LBE after a successful calculation.

fDefineDomain()

int fDefineDomain ()

Obtains processor rank (number) and the total number of processors, arranges the processors to best fit the spec-
ified lattice domain, determines where the current processor is located within the system, distribute lattice points
among the processors and check to ensure at least one lattice point is assigned to each processor. This subroutine
is only used for parallel DL._MESO_LBE runs: an alternative subroutine exists for serial running (fSezSerialDo-
main()).

110 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fDefineMessage()

int fDefineMessage ()

Defines MPI derived datatypes to specify vectors of data (distribution functions, boundary condition properties,
interaction forces and phase indices or density/concentration gradients) to send and receive between neighbouring
processors as boundary halos. The subroutines used by default to create the MPI derived datatypes are based on
MPI-2 x or later, although a compile-time option is available to substitute MPI-1.x subroutines. Another compile-
time option is available to pack and unpack data into and from one-dimensional buffer arrays as an alternative
to using MPI derived datatypes: this subroutine allocates the buffer arrays required to carry out this form of
communication.

fDefineNeighbours()

int fDefineNeighbours ()

Determines which processors are neighbours to the current processor in up to six directions (+x, -X, +y, -y, +Z,
-z), and the starting locations in memory for data to send to neighbours and data received from neighbours as
boundary halos.

fErrorinArray()

int fErrorInArray ()

Checks that the processor’s lattice dimensions without boundary halos are at least 1 in all dimensions for simula-
tion: if any of them are zero, an error message is printed to standard output and DL_MESO_LBE stops.

fForceNonBlockComm2D()

int fForceNonBlockComm2D ()

Sends and receives interfacial forces between neighbouring processors to generate boundary halos required to
complete two-dimensional LBE calculations. This subroutine is used to set off the communications in the required
directions.

fForceNonBlockComm2DX()

int fForceNonBlockComm2DX ()

Sends and receives interaction forces in +x and -x directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

5.12. IbpMPl.cpp 111

DL_MESO Technical Manual, Release 2.7

fForceNonBlockComm2DY()

int fForceNonBlockComm2DY ()

Sends and receives interaction forces in +y and -y directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fForceNonBlockComm3D()

int fForceNonBlockComm3D ()

Sends and receives interfacial forces between neighbouring processors to generate boundary halos required to
complete three-dimensional LBE calculations. This subroutine is used to set off the communications in the re-
quired directions.

fForceNonBlockComm3DX()

int fForceNonBlockComm3DX ()

Sends and receives interaction forces in +x and -x directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fForceNonBlockComm3DY()

int fForceNonBlockComm3DY ()

Sends and receives interaction forces in +y and -y directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fForceNonBlockComm3DZ()

int fForceNonBlockComm3DZ ()

Sends and receives interaction forces in +z and -z directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

112 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fForceNonBlockCommunication()

int fForceNonBlockCommunication ()

Sends and receives boundary condition (phase field), neighbouring point and surface normal information between
neighbouring processors to generate boundary halos required to complete LBE calculations. This subroutine is
used to choose in which directions the communications should take place based on the number of dimensions in

the system.

fGetDomainSize()

int fGetDomainSize

0

Determines the number of lattice points for each processor (both including and excluding boundary halo points),
based on the best fit to the numbers of processors in each direction, and sets grid boundary regions close to the
edges of each processor’s subdomain.

fGetProcessCoordinate()

int fGetProcessCoordinate ()

Find the location of the current processor within the grid of processors as a Cartesian coordinate.

fGetRank()

int fGetRank

0

Finds rank (number) of current processor, which can range from 0 to the number of processors less 1.

fGetSize()

int fGetSize

()

Finds the total number of processors available for DL_MESO_LBE to run.

fGlobalProduct()

int fGlobalProduct

(double * wvqua, int nnum)

Carries out an MPI_Allreduce operation on an array of double-precision floating-point or integer numbers to find
the products for all elements across all processors and share the result in the same array.

Parameters
in,out | vqua | Double-precision floating-point or integer array on which to apply global product
in nnum | Size of double-precision floating-point or integer array

5.12. IbpMPI.

cpp

113

DL_MESO Technical Manual, Release 2.7

fGlobalValue()

int fGlobalValue
int fGlobalValue
int fGlobalValue
int fGlobalValue
int fGlobalValue
int fGlobalValue

double * vqua, int nnum)

double * vqua, int nnum, double * vtot)

int % vqua, int nnum)

int % vqua, int nnum, int *x vtot)

long int % vqua, int nnum)

long int * vqua, int nnum, long int x vtot)

(
(
(
(
(
(

Carries out an MPI_Allreduce operation on an array of double-precision floating-point, integer or long integer
numbers to find the sums for all elements across all processors and share the result either in the same array or as a
new array.

Parameters
in,[out] | vqua | Double-precision floating-point, integer or long integer array on which to apply global sum-
mation
in nnum | Size of double-precision floating-point, integer or long integer array
out vtot Double-precision floating-point, integer or long integer array with resulting global summa-
tion

fiIndexNonBlockComm2D()

int fIndexNonBlockComm2D ()

Sends and receives Lishchuk phase indices or Swift free-energy density/concentration gradients between neigh-
bouring processors to generate boundary halos required to complete two-dimensional LBE calculations. This
subroutine is used to set off the communications in the required directions.

fiIndexNonBlockComm2DX()

int fIndexNonBlockComm2DX ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +x and -x
directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fiIndexNonBlockComm2DY()

int fIndexNonBlockComm2DY ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +y and -y
directions to generate boundary halos required to complete two-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

114 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fiIndexNonBlockComm3D()

int fIndexNonBlockComm3D ()

Sends and receives Lishchuk phase indices or Swift free-energy density/concentration gradients between neigh-
bouring processors to generate boundary halos required to complete three-dimensional LBE calculations. This
subroutine is used to set off the communications in the required directions.

fiIndexNonBlockComm3DX()

int fIndexNonBlockComm3DX ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +x and -x
directions to generate boundary halos required to complete three-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fiIndexNonBlockComm3DY()

int fIndexNonBlockComm3DY ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +y and -y
directions to generate boundary halos required to complete three-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fiIndexNonBlockComm3DZ()

int fIndexNonBlockComm3DZ ()

Sends and receives Lishchuk phase indices or Swift-free energy density and concentration gradients in +z and -z
directions to generate boundary halos required to complete three-dimensional LBE calculations, using unblocked
MPI calls. By default, MPI derived datatypes are used to send and receive data vectors that are placed directly
into the phase index/gradient array as boundary halos. If the compile-time alternative option is invoked, the data
is packed into one-dimensional buffer arrays, communicated and unpacked on arrival: this approach can be sped
up using OpenMP multithreading on buffer packing and unpacking.

fiIndexNonBlockCommunication()

int fIndexNonBlockCommunication ()

Sends and receives Lishchuk phase indices or Swift free-energy density/concentration gradients between neigh-
bouring processors to generate boundary halos required to complete LBE calculations. This subroutine is used
to choose in which directions the communications should take place based on the number of dimensions in the
system.

5.12. IbpMPl.cpp 115

DL_MESO Technical Manual, Release 2.7

fMPICheckSteer()

int fMPICheckSteer ()

Checks for the existence of a file called notsteer, which was created to prevent DL_MESO_LBE from starting a
new simulation when computaional steering is applied. If the files does not exist, read in system and space property
files. This routine is for parallel calculations: an atlnerative routine exists for serial running (fCheckSteer()), but
neither routine is currently in use in the main DL_MESO_LBE code.

fMPISetoffSteer()

int fMPISetoffSteer ()

Creates a file called notsteer to prevent DL_MESO_LBE from starting a new simulation by reading in system and
space property files when a LBE simulation is computationally steered. This routine is for parallel calculations:
an alternative routine exists for serial running (fSetoffSteer()), but neither routine is currently in use in the main
DL_MESO_LBE code.

fNonBlockComm2D()

int fNonBlockComm2D ()

Sends and receives distribution functions between neighbouring processors to generate boundary halos required to
complete two-dimensional LBE calculations. This subroutine is used to set off the communications in the required
directions.

fNonBlockComm2DX()

int fNonBlockComm2DX ()

Sends and receives distribution functions in +x and -x directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockComm2DY()

int fNonBlockComm2DY ()

Sends and receives distribution functions in +y and -y directions to generate boundary halos required to complete
two-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

116 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fNonBlockComm3D()

int fNonBlockComm3D ()

Sends and receives distribution functions between neighbouring processors to generate boundary halos required
to complete three-dimensional LBE calculations. This subroutine is used to set off the communications in the
required directions.

fNonBlockComm3DX()

int fNonBlockComm3DX ()

Sends and receives distribution functions in +x and -x directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockComm3DY()

int fNonBlockComm3DY ()

Sends and receives distribution functions in +y and -y directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockComm3DZ()

int fNonBlockComm3DZ ()

Sends and receives distribution functions in +z and -z directions to generate boundary halos required to complete
three-dimensional LBE calculations, using unblocked MPI calls. By default, MPI derived datatypes are used to
send and receive data vectors that are placed directly into the distribution function array as boundary halos. If the
compile-time alternative option is invoked, the data is packed into one-dimensional buffer arrays, communicated
and unpacked on arrival: this approach can be sped up using OpenMP multithreading on buffer packing and
unpacking.

fNonBlockCommunication()

int fNonBlockCommunication ()

Sends and receives distribution functions between neighbouring processors to generate boundary halos required
to complete LBE calculations. This subroutine is used to choose in which directions the communications should
take place based on the number of dimensions in the system.

5.12. IbpMPl.cpp 117

DL_MESO Technical Manual, Release 2.7

fPrintDomaininfo()

int fPrintDomainInfo ()

Prints the number of available OpenMP threads per processor and the number of processors (including the extents
of their subdomains within the overall lattice) to the standard output. This subroutine is only used for parallel
calculations: an alternative subroutine for serial running (fsPrintDomainlnfo()).

fPrintSystemMass()

int fPrintSystemMass ()

Calculates both the total mass and the individual masses of all fluids in the entire simulation lattice and prints the
results to the standard output. This subroutine can only be used for parallel calculations: an alternative routine
(fPrintDomainMass()) is available for printing total and individual fluid masses in serial.

fPrintSystemMomentum()

int fPrintSystemMomentum ()

Calculates the total momentum of all fluids in the entire simulation lattice and prints the result to the standard out-
put. This subroutine can only be used for parallel calculations: an alternative routine (fPrintDomainMomentum())
is available for printing the total momentum in serial.

fStartMPI()

int fStartMPI (int argc, char * argv([])

Starts the Message Passing Interface (MPI) for the instance of DL_MESO_LBE.

Parameters

in | argc | Number of command-line arguments included in command to launch DL_MESO_LBE
in | argv | Character array of command-line arguments

5.13 IbpBGK.cpp

Module with routines for Bhatnagar-Gross-Krook (BGK) single relaxation time collisions. (Header file available
as IbpBGK.hpp.)

Applies collisions to grid points using a single relaxation time scheme, known as Bhatnagar-Gross-Krook (BGK),
on each fluid, i.e.

fi (fvt) — fz‘eq (p(f,t) vﬁ(fvt))‘

T

fi (f7t+) = f’L (fat) -

where f;? is the local equilibrium distribution function (dependent on macroscopic fluid density p and velocity
). Similar collisions can also be applied to solutes and temperature fields.

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [34]
:cite: ‘martys1996 force scheme applies a modified velocity for calculating local equilibrium distribution func-
tions:

118 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

(., FAt o s =
Fz—f1q<pau+p>fzq(pvu)

The Guo scheme [49] both adjusts the velocity for local equilibrium distribution functions to v = @ + FAt and
includes the following forcing term for BGK collisions:

1 i —U €T, | =
Fi={1-—]w; #4—%62‘ - F
27y c Cs

and the He scheme [54] uses the same adjusted velocity and the following forcing term for BGK collisions:

1 =4 _,
F; = (1—) f12 (é;, —0)-F.
27y) pci

5.13.1 Functions

e int fSiteFluidCollisionBGK()

Applies BGK collisions to all compressible fluids at a given lattice site with standard forcing.
e int fSiteFluidlncomCollisionBGK()

Applies BGK collisions to all incompressible fluids at a given lattice site with standard forcing.
e int fSiteFluidCollisionBGKEDM()

Applies BGK collisions to all compressible fluids at a given lattice site with EDM forcing.
e int fSiteFluidlncomCollisionBGKEDM()

Applies BGK collisions to all incompressible fluids at a given lattice site with EDM forcing.
e int fSiteFluidCollisionBGKGuo()

Applies BGK collisions to all compressible fluids at a given lattice site with Guo forcing.
e int fSiteFluidlncomCollisionBGKGuo()

Applies BGK collisions to all incompressible fluids at a given lattice site with Guo forcing.
e int fSiteFluidCollisionBGKHe()

Applies BGK collisions to all compressible fluids at a given lattice site with He forcing.
e int fSiteFluidlncomCollisionBGKHe()

Applies BGK collisions to all incompressible fluids at a given lattice site with He forcing.
e int fSiteFluidCollisionBGKLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

e int fSiteFluidincomCollisionBGKLishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

e int fSiteFluidCollisionBGKEDMLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

e int fSiteFluidlncomCollisionBGKEDM Lishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

5.13. IbpBGK.cpp 119

DL_MESO Technical Manual, Release 2.7

int fSiteFluidCollisionBGKGuoLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidlncomCollisionBGKGuoLishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionBGKHeLishchuk()

Applies BGK collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidIncomCollisionBGKHeLishchuk()

Applies BGK collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionBGKLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidIncomCollisionBGKLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionBGKEDMLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidlncomCollisionBGKEDMLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionBGKGuoLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidIncomCollisionBGKGuoLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionBGKHeLishchukLocal()

Applies BGK collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidincomCollisionBGKHeLishchukLocal()

Applies BGK collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionBGKSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with standard forcing and Swift
free-energy interactions.

int fSiteFluidCollisionBGKSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with standard forcing and Swift
free-energy interactions.

120

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int fSiteFluidCollisionBGKEDMSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with EDM forcing and Swift free-
energy interactions.

int fSiteFluidCollisionBGKEDMSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with EDM forcing and Swift free-
energy interactions.

int fSiteFluidCollisionBGKGuoSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with Guo forcing and Swift free-
energy interactions.

int fSiteFluidCollisionBGKGuoSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with Guo forcing and Swift free-
energy interactions.

int fSiteFluidCollisionBGKHeSwiftOneFluid()

Applies BGK collisions to one compressible fluid at a given lattice site with He forcing and Swift free-
energy interactions.

int fSiteFluidCollisionBGKHeSwiftTwoFluid()

Applies BGK collisions to two compressible fluids at a given lattice site with He forcing and Swift free-
energy interactions.

int fSiteSoluteCollisionBGK()

Applies BGK collisions to all solutes at a given lattice site with standard forcing.

int fSiteThermalCollisionBGK()

Applies BGK collisions to temperature field at a given lattice site with standard forcing.
int fCollisionBGK()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forc-
ing.

int fCollisionBGKEDM()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing.
int fCollisionBGKGuo()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing.
int fCollisionBGKHe()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing.
int fCollisionBGKShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
for Shan-Chen interactions.

int fCollisionBGKEDMShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
for Shan-Chen interactions.

int fCollisionBGKGuoShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing for
Shan-Chen interactions.

int fCollisionBGKHeShanChen()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing for
Shan-Chen interactions.

5.13.

IbpBGK.cpp 121

DL_MESO Technical Manual, Release 2.7

int fCollisionBGKLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
and Lishchuk interactions provided as interfacial forces.

int fCollisionBGKEDMLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
and Lishchuk interactions provided as interfacial forces.

int fCollisionBGKGuoLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing
and Lishchuk interactions provided as interfacial forces.

int fCollisionBGKHeLishchuk()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing and
Lishchuk interactions provided as interfacial forces.

int fCollisionBGKLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
and Lishchuk interactions provided as an additional forcing term.

int fCollisionBGKEDMLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
and Lishchuk interactions provided as an additional forcing term.

int fCollisionBGKGuoLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing
and Lishchuk interactions provided as an additional forcing term.

int fCollisionBGKHeLishchukLocal()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing and
Lishchuk interactions provided as an additional forcing term.

int fCollisionBGKSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with standard forcing
for Swift free-energy interactions.

int fCollisionBGKEDMSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with EDM forcing
for Swift free-energy interactions.

int fCollisionBGKGuoSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with Guo forcing for
Swift free-energy interactions.

int fCollisionBGKHeSwift()

Applies collision steps for all fluids, solutes and temperature fields using BGK scheme with He forcing for
Swift free-energy interactions.

122

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.13.2 Function Documentation

fCollisionBGK()

int fCollisionBGK ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field us-
ing single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing. This version of the collisions
uses the standard values for macroscopic fluid velocity at each site, i.e.

Zi,a fi'éi
Ei,a fﬁ '

’L_[:

fCollisionBGKEDM()

int fCollisionBGKEDM ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing. This version of
the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

Zi,a flaél
Zi,a f'La

’L_[:

fCollisionBGKEDMLishchuk()

int fCollisionBGKEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid
collisions and segregation. The interfacial forces are applied using the main forcing scheme: this approach can be
used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKEDMLishchukLocal()

int fCollisionBGKEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid
collisions and segregation. The interfacial forces are applied using separate forcing terms: this approach can be
used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionBGKEDMShanChen()

int fCollisionBGKEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing. This version of
the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

Y0 L

2,a T¢

— ’ f
’u:

Sialk

i,a T¢

5.13. IbpBGK.cpp 123

DL_MESO Technical Manual, Release 2.7

fCollisionBGKEDMSwift()

int fCollisionBGKEDMSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Equal Difference Method (EDM) [69] forcing and Swift free-
energy interactions (enacted using modified local equilibrium distribution functions to incorporate density and
concentration gradients).

fCollisionBGKGuo()

int fCollisionBGKGuo ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Guo [49] forcing. This version of the collisions uses the standard
values for macroscopic fluid velocity at each site, i.e.

Zi,a flaél
Zi,a fl(l. '

ﬁ:

fCollisionBGKGuoLishchuk()

int fCollisionBGKGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions, using Guo [49] forcing, achromatic fluid collisions and segregation.
The interfacial forces are applied using the main forcing scheme: this approach can be used with the original
Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKGuoLishchukLocal()

int fCollisionBGKGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Guo [49] forcing, achromatic fluid collisions and segregation.
The interfacial forces are applied using separate forcing terms: this approach can be used with the Lishchuk
‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionBGKGuoShanChen()

int fCollisionBGKGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field us-
ing single relaxation time BGK collisions with Guo [49] forcing. This version of the collisions uses the following
values for macroscopic fluid velocity at each site, i.e.

S fié
i,a T
— f
u =
Yo
i,a T¢

124 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionBGKGuoSwift()

int fCollisionBGKGuoSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with Guo [49] forcing and Swift free-energy interactions (enacted
using modified local equilibrium distribution functions to incorporate density and concentration gradients).

fCollisionBGKHe()

int fCollisionBGKHe ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing. This version of the collisions uses the standard
values for macroscopic fluid velocity at each site, i.e.

Zi,a fi'éi
Zi,a f1a

’L_[:

fCollisionBGKHeLishchuk()

int fCollisionBGKHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions, using He [54] forcing, achromatic fluid collisions and segregation.
The interfacial forces are applied using the main forcing scheme: this approach can be used with the original
Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKHeLishchukLocal()

int fCollisionBGKHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing, achromatic fluid collisions and segregation. The
interfacial forces are applied using separate forcing terms: this approach can be used with the Lishchuk ‘Spencer
tensor’ and local Lishchuk interaction models.

fCollisionBGKHeShanChen()

int fCollisionBGKHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing. This version of the collisions uses the following
values for macroscopic fluid velocity at each site, i.e.

Y0 L

i,a T¢

— ’ f
’u =

Sia

i,a T

5.13. IbpBGK.cpp 125

DL_MESO Technical Manual, Release 2.7

fCollisionBGKHeSwift()

int fCollisionBGKHeSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with He [54] forcing and Swift free-energy interactions (enacted using
modified local equilibrium distribution functions to incorporate density and concentration gradients).

fCollisionBGKLishchuk()

int fCollisionBGKLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions
and segregation. The interfacial forces are applied using the main forcing scheme: this approach can be used with
the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionBGKLishchukLocal()

int fCollisionBGKLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions
and segregation. The interfacial forces are applied using separate forcing terms: this approach can be used with
the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionBGKShanChen()

int fCollisionBGKShanChen ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field us-
ing single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing. This version of the collisions
uses the following values for macroscopic fluid velocity at each site, i.e.

30 2
2,a T¢
— ’ f
u =
Sia
i,a T

fCollisionBGKSwift()

int fCollisionBGKSwift ()

Loops through all available lattice sites and applies collisions to all fluids, all solutes and any temperature field
using single relaxation time BGK collisions with standard (Martys-Chen) [91] forcing and Swift free-energy inter-
actions (enacted using modified local equilibrium distribution functions to incorporate density and concentration
gradients).

126 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGK()

int fSiteFluidCollisionBGK (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double *» bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionBGKEDM()

int fSiteFluidCollisionBGKEDM (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionBGKEDMLishchuk()

int fSiteFluidCollisionBGKEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
FE(EAT) = =i (B)+ B w5 - hap
P bra P

5.13. IbpBGK.cpp 127

DL_MESO Technical Manual, Release 2.7

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionBGKEDMLishchukLocal()

int fSiteFluidCollisionBGKEDMLishchukLocal (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except
Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

wiﬂabgabpapb A o 21)

F,ab = C‘Slp?’TfAt (nabﬁab — I) : (eiei — Cy

7

and re-separating the fluids using D’Ortona segregation [25]:

a (= 4+ _pa = 1+ ab papbA ~
fi (‘T7t) =—fi (ZE,t) +Zﬂ Wi =56 * Nab
P bra P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionBGKEDMSwiftOneFluid()

int fSiteFluidCollisionBGKEDMSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Equal Difference Method (EDM) [69] forcing.

128 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKEDMSwiftTwoFluid()

int fSiteFluidCollisionBGKEDMSwiftTwoFluid (double * startpos,

double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Equal Difference Method
(EDM) [69] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKGuo()

int fSiteFluidCollisionBGKGuo (double x startpos,

double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

5.13. IbpBGK.cpp

129

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKGuoLishchuk()

int fSiteFluidCollisionBGKGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

a a b
f’Lq (f7t+) = %fz (fatJr) + Zﬂabwip P éz . ﬁab

2
b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionBGKGuoLishchukLocal()

int fSiteFluidCollisionBGKGuoLishchukLocal (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

wiﬁabgabpapb

Fob —
cipdTrAt

7 (ﬁabﬁab - I) : (ézél — CgI)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
Jo(F47) = i (@ 00) + 3 Bt

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

130 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKGuoSwiftOneFluid()

int fSiteFluidCollisionBGKGuoSwiftOneFluid (double * startpos,

double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKGuoSwiftTwoFluid()

int fSiteFluidCollisionBGKGuoSwiftTwoFluid (double * startpos,

double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.13. IbpBGK.cpp

131

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKHe()

int fSiteFluidCollisionBGKHe (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionBGKHeLishchuk()

int fSiteFluidCollisionBGKHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

a a b
fz’a (fvt+) = %f’t (:Eat—i_) + Zﬁabwip 2P éz : ﬁab

b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionBGKHeLishchukLocal()

int fSiteFluidCollisionBGKHeLishchukLocal (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

132 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

wiﬂabgabpapb

Fob —
cip3TAt

: (aviiap = 1) : (:6i = 1)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
£1(@.07) = Th @) + 3w

éi : ﬁab
b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionBGKHeSwiftOneFluid()

int fSiteFluidCollisionBGKHeSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double » gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.13. IbpBGK.cpp 133

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKHeSwiftTwoFluid()

int fSiteFluidCollisionBGKHeSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double » gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionBGKLishchuk()

int fSiteFluidCollisionBGKLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

a a b
fi(@t") = %fi (Z,t7) + Zﬂabwvzp P és - frap

2
b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

134 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKLishchukLocal()

int fSiteFluidCollisionBGKLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk inter-
facial forces, which are applied using a direct forcing term [129]:

wiﬂabgabpapb A .)

Fb = (T E (eiei — 1

! cip3TAt

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
i th) = ek (Z,t%) + Zﬂabwi e €i - Nab

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionBGKSwiftOneFluid()

int fSiteFluidCollisionBGKSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double x bodyforce,
double T)

Applies single relaxation time (BGK) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.13. IbpBGK.cpp 135

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionBGKSwiftTwoFluid()

int fSiteFluidCollisionBGKSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies single relaxation time (BGK) collisions to two fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying standard (Martys-Chen)
[91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidincomCollisionBGK()

int fSiteFluidIncomCollisionBGK (double % startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionBGKEDM()

int fSiteFluidIncomCollisionBGKEDM (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

136 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionBGKEDMLishchuk()

int fSiteFluidIncomCollisionBGKEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
Ii (f, t+) = ?fz (f, t+) + ZﬂabwipTéi “ b

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionBGKEDMLishchukLocal()

int fSiteFluidIncomCollisionBGKEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except
Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

F(lb _ wiﬁabgabpapb

Ao (s 2
v C%pBTfAt (nabnab - I) : (eiei — CSI)

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
FE@EAT) = S fi (B 7) +) B wi i - ey
P ba P

5.13. IbpBGK.cpp 137

DL_MESO Technical Manual, Release 2.7

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidincomCollisionBGKGuo()

int fSiteFluidIncomCollisionBGKGuo (double * startpos,
double x sitespeed,
double * omega,
double * rho,
double » bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionBGKGuoLishchuk()

int fSiteFluidIncomCollisionBGKGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

p* p*p"
.fz’a (f7 t+) = ?fl ('fa t+) + ZﬂabwipTéi ' ﬁab

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

138 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidincomCollisionBGKGuoLishchukLocal()

int fSiteFluidIncomCollisionBGKGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

F_ab _ wiﬁabgabpapb

i C§p3TfAt (ﬁabﬁab - I) : (ézél — C?I)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
fia (fvt+) = %fz (fatJr) + Zﬂabwip 2p éz . ﬁab

b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidincomCollisionBGKHe()

int fSiteFluidIncomCollisionBGKHe (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

5.13. IbpBGK.cpp 139

DL_MESO Technical Manual, Release 2.7

fSiteFluidincomCollisionBGKHeLishchuk()

int fSiteFluidIncomCollisionBGKHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

a a b
f’Lq (f7t+) = %fz (fatJr) + Zﬂabwip P éz . ﬁab

2
b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionBGKHeLishchukLocal()

int fSiteFluidIncomCollisionBGKHeLishchukLocal (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which
are applied using a direct forcing term [129]:

F_ab _ wiﬁabgabpapb

; Ey— (Rapfiap — I) ¢ (E;6; — c21)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
Jo(F47) = i (@ 00) + 3 Bt

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

140 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidincomCollisionBGKLishchuk()

int fSiteFluidIncomCollisionBGKLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
I (f, t+) = ?fz (f, t+) + ZﬂabwipTéi “fap

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionBGKLishchukLocal()

int fSiteFluidIncomCollisionBGKLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies single relaxation time (BGK) collisions to all fluids at a given lattice site, operating on achromatic distri-
bution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk inter-
facial forces, which are applied using a direct forcing term [129] :

F_ab _ wiﬁabgabpapb

; Ey— (Rapfiap — I) ¢ (E;6; — c21)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
Jo(F47) = i (@ 00) + 3 Bt

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in p hasein- | Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.13. IbpBGK.cpp 141

DL_MESO Technical Manual, Release 2.7

fSiteSoluteCollisionBGK()

int fSiteSoluteCollisionBGK (double x startpos, double * sitespeed)

Applies single relaxation time (BGK) collisions to all solutes at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for diffusion of solutes.

Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site

fSiteThermalCollisionBGK()

int fSiteThermalCollisionBGK (double % startpos, double * sitespeed)

Applies single relaxation time (BGK) collisions to temperature field at a given lattice site, operating on the distri-
bution functions provided, using the local equilibrium distribution functions for heat diffusion.

Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site

5.14 IbpTRT.cpp

Module with routines for two relaxation time (TRT) collisions.

Applies collisions to grid points using a two relaxation time (TRT) scheme [42] on each fluid. This scheme is
based on splitting distribution functions (including local equilibrium values) into symmetric fz* = % (fi +15)
and anti-symmetric f;' = % (fi — f;) parts, using values in conjugate links to construct them, i.e. é; = —é;. The
collision operator is defined as:

+ (7 #) _ feOT 7 (= — (7) — fEO— 7 77
I (f;’,t*‘):fi(f,t)—fi (@, t) — f; 7—J(rp(ﬂc,ﬁ),u(x,t)) @Y f; TEp(x,t),u(m,t)).

where 71 and 77 are respectively the symmetric and anti-symmetric relaxation times. The symmetric relaxation
time controls fluid kinematic viscosity in an identical fashion to the single relaxation time 7 used in BGK col-
lisions, while the anti-symmetric relaxation time is chosen to enhance numerical stability: this can be specified

using a ‘magic number’:
1 1
Ao = AN, = <T+ -) (T —) .
2 2
To simplify the implementation, the collsions can be re-expressed using full distribution functions:

f @) = f @ - (@, t) = £ (p (&, 1) i (& 1) fi (@) = f7 (p(@1), 4 (7, D)

Tp Tn

27 1~
TH—7—"

_ 2rtr™ _
where 7, = = and 7, =

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [91] force scheme
applies a modified velocity for calculating local equilibrium moments:

I Tfﬁﬁﬁ
U=u-+ ,
p

142 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

FAt
Fi:fieq <P;ﬁ+ ,0>

The Guo scheme [49] both adjusts the velocity for local equilibrium distribution functions to v = 4 +
includes the following forcing term for TRT collisions [115]:

1 e —U & -T - 1 é; —U é;-7 -
F=11- w; é | - F — w; | -2 J éi|l - F

_fieq(pvﬁ)'

FAt

5 and

and the He scheme [54] uses the same adjusted velocity and the following forcing term for TRT collisions:

1 N B -
FZ:(1_2)flz(ei—v)-F— j—z(ej—v)~F.
Tf,P PCs 2Tf,17 PCs

5.14.1 Functions

* double fTRTOmegaAntisymmetric()
Calculates antisymmetric relaxation frequency for TRT collisions.
e int fSiteFluidCollisionTRT()
Applies TRT collisions to all compressible fluids at a given lattice site with standard forcing.
e int fSiteFluidincomCollisionTRT()
Applies TRT collisions to all incompressible fluids at a given lattice site with standard forcing.
e int fSiteFluidCollisionTRTEDM()
Applies TRT collisions to all compressible fluids at a given lattice site with EDM forcing.
e int fSiteFluidlncomCollisionTRTEDM()
Applies TRT collisions to all incompressible fluids at a given lattice site with EDM forcing.
e int fSiteFluidCollisionTRTGuo()
Applies TRT collisions to all compressible fluids at a given lattice site with Guo forcing.
e int fSiteFluidlncomCollisionTRTGuo()
Applies TRT collisions to all incompressible fluids at a given lattice site with Guo forcing.
e int fSiteFluidCollisionTRTHe()
Applies TRT collisions to all compressible fluids at a given lattice site with He forcing.
e int fSiteFluidlncomCollisionTRTHe()
Applies TRT collisions to all incompressible fluids at a given lattice site with He forcing.
* int fSiteFluidCollisionTRTLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

e int fSiteFluidincomCollisionTRTLishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

e int fSiteFluidCollisionTRTEDMLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

5.14. IbpTRT.cpp 143

DL_MESO Technical Manual, Release 2.7

int fSiteFluidincomCollisionTRTEDM Lishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionTRTGuoLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segrega-
tion when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidincomCollisionTRTGuoLishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionTRTHeLishchuk()

Applies TRT collisions to all compressible fluids at a given lattice site with He forcing and phase segregation
when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidincomCollisionTRTHeLishchuk()

Applies TRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionTRTLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidincomCollisionTRTLishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionTRTEDMLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidincomCollisionTRTEDM LishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionTRTGuoLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segrega-
tion when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidincomCollisionTRTGuoLishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionTRTHeLishchukLocal()

Applies TRT collisions to all compressible fluids at a given lattice site with He forcing and phase segregation
when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidincomCollisionTRTHeLishchukLocal()

Applies TRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionTRTSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with standard forcing and Swift
free-energy interactions.

144

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int fSiteFluidCollisionTRTSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with standard forcing and Swift
free-energy interactions.

int fSiteFluidCollision TRTEDMSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with EDM forcing and Swift free-
energy interactions.

int fSiteFluidCollisionTRTEDMSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with EDM forcing and Swift free-
energy interactions.

int fSiteFluidCollisionTRTGuoSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with Guo forcing and Swift free-
energy interactions.

int fSiteFluidCollisionTRTGuoSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with Guo forcing and Swift free-
energy interactions.

int fSiteFluidCollisionTRTHeSwiftOneFluid()

Applies TRT collisions to one compressible fluid at a given lattice site with He forcing and Swift free-energy
interactions.

int fSiteFluidCollisionTRTHeSwiftTwoFluid()

Applies TRT collisions to two compressible fluids at a given lattice site with He forcing and Swift free-
energy interactions.

int fCollisionTRT()

Applies collision steps for all fluids using TRT scheme with standard forcing, and solutes and temperature
fields using BGK scheme..

int fCollisionTRTEDM()

Applies collision steps for all fluids using TRT scheme with EDM forcing, and solutes and temperature
fields using BGK scheme..

int fCollisionTRTGuo()

Applies collision steps for all fluids using TRT scheme with Guo forcing, and solutes and temperature fields
using BGK scheme.

int fCollisionTRTHe()

Applies collision steps for all fluids using TRT scheme with He forcing, and solutes and temperature fields
using BGK scheme.

int fCollisionTRTShanChen()

Applies collision steps for all fluids using TRT scheme with standard forcing for Shan-Chen interactions,
and solutes and temperature fields using BGK scheme.

int fCollisionTRTEDMShanChen()

Applies collision steps for all fluids using TRT scheme with EDM forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

int fCollisionTRTGuoShanChen()

Applies collision steps for all fluids using TRT scheme with Guo forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

5.14.

IbpTRT.cpp 145

DL_MESO Technical Manual, Release 2.7

int fCollisionTRTHeShanChen()

Applies collision steps for all fluids using TRT scheme with He forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

int fCollisionTRTLishchuk()

Applies collision steps for all fluids using TRT scheme with standard forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionTRTEDMLishchuk()

Applies collision steps for all fluids using TRT scheme with EDM forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionTRTGuoLishchuk()

Applies collision steps for all fluids using TRT scheme with Guo forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionTRTHeLishchuk()

Applies collision steps for all fluids using TRT scheme with He forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionTRTLishchukLocal()

Applies collision steps for all fluids using TRT scheme with standard forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

int fCollisionTRTEDMLishchukLocal()

Applies collision steps for all fluids using TRT scheme with EDM forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

int fCollisionTRTGuoLishchukLocal()

Applies collision steps for all fluids using TRT scheme with Guo forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

int fCollisionTRTHeLishchukLocal()

Applies collision steps for all fluids using TRT scheme with He forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

int fCollisionTRTSwift()

Applies collision steps for all fluids using TRT scheme with standard forcing for Swift free-energy interac-
tions, and solutes and temperature fields using BGK scheme.

int fCollisionTRTEDMSwift()

Applies collision steps for all fluids using TRT scheme with EDM forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

int fCollisionTRTGuoSwift()

Applies collision steps for all fluids using TRT scheme with Guo forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

int fCollisionTRTHeSwift()

Applies collision steps for all fluids using TRT scheme with He forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

146

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.14.2 Function Documentation

fCollisionTRT()

int fCollisionTRT ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation
time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity at each
site, 1.e.

Zi,a flaél
Zi,a fl(l. '

ﬁ:

fCollisionTRTEDM()

int fCollisionTRTEDM ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using single
relaxation time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid
velocity at each site, i.e.

Zi,a fiaéi
Zi,a f'La

U=

fCollisionTRTEDMLishchuk()

int fCollisionTRTEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer
interaction models.

fCollisionTRTEDMLishchukLocal()

int fCollisionTRTEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using separate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk
interaction models.

5.14. IbpTRT.cpp 147

DL_MESO Technical Manual, Release 2.7

fCollisionTRTEDMShanChen()

int fCollisionTRTEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using
single relaxation time BGK collisions. This version of the collisions uses the following values for macroscopic
fluid velocity at each site, i.e.

>0 L

i,a T¢

— f
u:

et

i,a T¢

fCollisionTRTEDMSwift()

int fCollisionTRTEDMSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Equal DIfference Method (EDM) [69] forcing and Swift free-energy interactions (enacted using mod-
ified local equilibrium distribution functions to incorporate density and concentration gradients), and all solutes
and any temperature field using single relaxation time BGK collisions.

fCollisionTRTGuo()

int fCollisionTRTGuo ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

Zi,a fiaé’i
Zi,a fza

ﬁ:

fCollisionTRTGuoLishchuk()

int fCollisionTRTGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionTRTGuoLishchukLocal()

int fCollisionTRTGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

148 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionTRTGuoShanChen()

int fCollisionTRTGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

ra s
ia T

f

Siatr
i,a T¢

f

’17::

fCollisionTRTGuoSwift()

int fCollisionTRTGuoSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with Guo [49] forcing and Swift free-energy interactions (enacted using modified local equilibrium distribu-
tion functions to incorporate density and concentration gradients), and all solutes and any temperature field using
single relaxation time BGK collisions.

fCollisionTRTHe()

int fCollisionTRTHe ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

2ia fié
Zi@ fza

l_[:

fCollisionTRTHeLishchuk()

int fCollisionTRTHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionTRTHeLishchukLocal()

int fCollisionTRTHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

5.14. IbpTRT.cpp 149

DL_MESO Technical Manual, Release 2.7

fCollisionTRTHeShanChen()

int fCollisionTRTHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) col-
lisions with with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

ra s
ia T

f

Siatr
i,a T¢

f

’17::

fCollisionTRTHeSwift()

int fCollisionTRTHeSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with He [54] forcing and Swift free-energy interactions (enacted using modified local equilibrium distribu-
tion functions to incorporate density and concentration gradients), and all solutes and any temperature field using
single relaxation time BGK collisions.

fCollisionTRTLishchuk()

int fCollisionTRTLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and
any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using the
main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction
models.

fCollisionTRTLishchukLocal()

int fCollisionTRTLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and
any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using sepa-
rate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

fCollisionTRTShanChen()

int fCollisionTRTShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation
time BGK collisions. This version of the collisions uses the following values for macroscopic fluid velocity at
each site, i.e.

150 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionTRTSwift()

int fCollisionTRTSwift ()

Loops through all available lattice sites and applies collisions to all fluids using two relaxation time (TRT) colli-
sions with standard (Martys-Chen) [91] forcing and Swift free-energy interactions (enacted using modified local
equilibrium distribution functions to incorporate density and concentration gradients), and all solutes and any
temperature field using single relaxation time BGK collisions.

fSiteFluidCollisionTRT()

int fSiteFluidCollisionTRT (double * startpos,
double *» sitespeed,
double * omega,
double * rho,
double *» bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionTRTEDM()

int fSiteFluidCollisionTRTEDM (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

5.14. IbpTRT.cpp 151

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTEDMLishchuk()

int fSiteFluidCollisionTRTEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* s
FEEE) = S (@) + Y B i
P bra p
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site
fSiteFluidCollisionTRTEDMLishchukLocal()
int fSiteFluidCollisionTRTEDMLishchukLocal (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,

double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

B wiﬁabgabpapb

F.ab _ C4p37-fAt (ﬁabﬁab — I) : (ézél — CgI)

7

and re-separating the fluids using D’Ortona segregation [25]:

a a b
Jo(F47) = i (@ 00) + 3 Bt

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

152 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTEDMSwiftOneFluid()

int fSiteFluidCollisionTRTEDMSwiftOneFluid (double * startpos,

double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Equal Difference Method (EDM) [69] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTEDMSwiftTwoFluid()

int fSiteFluidCollisionTRTEDMSwiftTwoFluid (double * startpos,

double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Equal Difference Method
(EDM) [69] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single
relaxation time scheme.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.14. IbpTRT.cpp

153

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTGuo()

int fSiteFluidCollisionTRTGuo (double
double
double
double

double

startpos,
sitespeed,
omega,
rho,
bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionTRTGuoLishchuk()

int fSiteFluidCollisionTRTGuoLishchuk (double =«
double *
double =«
double =«
double *

double =«

startpos,
sitespeed,
omega,

rho,
bodyforce,
phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25] :

a a b
fz’a (fv t+) = %f’t (fa t+) + Zﬁabwippg éz : ﬁab

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionTRTGuoLishchukLocal()

int fSiteFluidCollisionTRTGuoLishchukLocal (double =
double =*
double =«
double =«
double * bodyforce,

double * phaseindex,

int threed)

startpos,
sitespeed,
omega,
rho,

154 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

wiﬂabgabpapb

Fob —
cip3TAt

: (aviiap = 1) : (:6i = 1)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
£1(@.07) = Th @) + 3w

éi : ﬁab
b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionTRTGuoSwiftOneFluid()

int fSiteFluidCollisionTRTGuoSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.14. IbpTRT.cpp 155

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTGuoSwiftTwoFluid()

int fSiteFluidCollisionTRTGuoSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Guo [49] forcing. Colli-
sions of distribution functions for fluid concentration are carried out using a BGK single relaxation time scheme.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTHe()

int fSiteFluidCollisionTRTHe (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionTRTHeLishchuk()

int fSiteFluidCollisionTRTHeLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for

156 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

fza (f) 7fl a +Zﬁabwz a nab

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionTRTHeLishchukLocal()

int fSiteFluidCollisionTRTHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

wiB*g*p*p®

Fob —
cipPTpAt

i (nabnab I) : (ézél — CiI)

and re-separating the fluids using D’Ortona segregation [25]:

fz'a (f):7f7 z,t +Zﬂabw7 a €; - Nap

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.14. IbpTRT.cpp 157

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTHeSwiftOneFluid()

int fSiteFluidCollisionTRTHeSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double » gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTHeSwiftTwoFluid()

int fSiteFluidCollisionTRTHeSwiftTwoFluid (double * startpos,
double » sitespeed,
double * omega,
double * rho,
double » gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying He [54] forcing. Collisions
of distribution functions for fluid concentration are carried out using a BGK single relaxation time scheme.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

158 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTLishchuk()

int fSiteFluidCollisionTRTLishchuk (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
I (f, t+) = ?fz (f, t+) + ZﬂabwipTéi “fap

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionTRTLishchukLocal()

int fSiteFluidCollisionTRTLishchukLocal (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution

functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for

mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

ab ab a b

ab _ wWiBg"p " C(es 2

F" = cApdrrAt (Rapftay = 1) : (€36 = &T)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
Jo(F47) = i (@ 00) + 3 Bt

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.14. IbpTRT.cpp 159

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionTRTSwiftOneFluid()

int fSiteFluidCollisionTRTSwiftOneFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionTRTSwiftTwoFluid()

int fSiteFluidCollisionTRTSwiftTwoFluid (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double x gradient,
double * bodyforce,
double T)

Applies two relaxation time (TRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying standard (Martys-Chen)
[91] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single relax-
ation time scheme.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

160 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidincomCollisionTRT()

int fSiteFluidIncomCollisionTRT (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double *» bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionTRTEDM()

int fSiteFluidIncomCollisionTRTEDM (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionTRTEDMLishchuk()

int fSiteFluidIncomCollisionTRTEDMLishchuk (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
FE(EAT) = =i (B)+ B w5 - hap
P bra P

5.14. IbpTRT.cpp 161

DL_MESO Technical Manual, Release 2.7

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionTRTEDMLishchukLocal()

int fSiteFluidIncomCollisionTRTEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

wiﬂabgabpapb

Fob —
cip3TAt

[(ﬁabﬁab - I) : (élél — C%I)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
fz’a (fvt+) = %fz (fatJr) + Zﬂabwip P éz . ﬁab

b#a p2
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidincomCollisionTRTGuo()

int fSiteFluidIncomCollisionTRTGuo (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Guo [49] forcing.

Parameters

162 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site

in omega (Symmetric) relaxation frequencies for fluids at lattice site

in rho Macroscopic variable fluid densities at lattice site

in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionTRTGuoLishchuk()

int fSiteFluidIncomCollisionTRTGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
i th) = rEk (Z,t%) + Zﬁabwi e €i - Nap

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionTRTGuoLishchukLocal()

int fSiteFluidIncomCollisionTRTGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double x phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

wiB*g*pp’ . ciés — 1)

F,ab — C‘Slp?’TfAt (nabﬁab — I) : (eiei — Cy

7

and re-separating the fluids using D’Ortona segregation [25]:

pa papb
FEEAT) = =i (B)+ B wi—5i - hap
P bra p

Parameters

5.14. IbpTRT.cpp 163

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidincomCollisionTRTHe()

int fSiteFluidIncomCollisionTRTHe (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionTRTHeLishchuk()

int fSiteFluidIncomCollisionTRTHeLishchuk (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial forces) and
re-separating the fluids using D’Ortona segregation [25]:

a a b
fo (70 = %fi @5+ gotw, 20

éi : ﬁab
b#a P
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

164 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidincomCollisionTRTHeLishchukLocal()

int fSiteFluidIncomCollisionTRTHeLishchukLocal (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

Fab _ wiﬂabgabpapb
LT AT AL
Ty

and re-separating the fluids using D’Ortona segregation [25]:

fapfar — I) : (6;6; — 21
()= (X

p* p*p°
fi (@) = ol (Zt7) + > 8w pea AT

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidincomCollisionTRTLishchuk()

int fSiteFluidIncomCollisionTRTLishchuk (double x startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions
for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
I (@ 04) = T f (@ 00) + > B

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

5.14. IbpTRT.cpp 165

DL_MESO Technical Manual, Release 2.7

fSiteFluidincomCollisionTRTLishchukLocal()

int fSiteFluidIncomCollisionTRTLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies two relaxation time (TRT) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

F_ab _ wiﬁabgabpapb

(A C§p3TfAt (ﬁabﬁab - I) : (ézél — C?I)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
fia (fvt+) = %fz (fatJr) + Zﬂabwip 2p éz . ﬁab

b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega (Symmetric) relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fTRTOmegaAntisymmetric()

double fTRTOmegaAntisymmetric (double omegasymmetric, double magic)

Calculates and returns the antisymmetric relaxation frequency w; = T% for two relaxation time (TRT) collisions
: f

using the symmetric relaxation frequency w} = — and the TRT ‘magic number’ Ac,.
7

Parameters

in | omegasymmetric | Symmetric relaxation frequency w}'
in | magic TRT ‘magic number’ A,

166 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

5.15 IbpMRT.cpp

Module with routines for moment-based multiple relaxation time (MRT) collisions. (Header file available as
IbpMRT.hpp.)

Applies collisions to grid points using a (raw) moment-based multiple relaxation time (MRT) scheme on each
fluid. This scheme starts by defining a number of moments of distribution functions involving some combination
of the lattice vectors é;. A vector of moments can be obtained by transforming a vector of distribution functions
using a transformation matrix T':

M=Tf

The equilibrium moments M®4 can be found by using the same transformation matrix with the local equilibrium
distribution functions f¢9: these can be expressed as functions of fluid density and velocity. (The fluid density and
components of momentum make up some of the moments used in this collision scheme.)

A collision matrix A is then used to collide the moments:
M (7)) = M (&,t) — A (M (Z,t) — M (p(Z,1), (7, t))) .

Since the collision matrix is diagonal, the collisions can be carried out individually on each moment, i.e.
M; (7,67) = My (&.0) — s; (M; (£.1) — M2 (p (&,0) @ (3, 1))

The post-collisional moments are then transformed back by using inverses of the transformation matrices to pro-
duce post-collisional distribution functions.

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [91] force scheme
applies a modified velocity for calculating local equilibrium moments:

I TfﬁAf
v=1U+ ,
P

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

ea [o FAL\ o
Fz—f1q<pau+p>—fzq(pvu)

The Guo [49] and He schemes [54] both adjust the velocity for local equilibrium distribution functions to v =
ia+ FQ—%t and include the following forcing terms for MRT collisions as additional moment terms for collisions:

AM = (1 - ;A) STAL,

where S™ are the source terms for the required forcing scheme transformed into moments [104].

MRT collision schemes exist for D2Q9 [73], D3Q15, D3Q19 [159] and D3Q27 [134] lattices: variations also exist
for fully incompressible fluids and Swift free-energy interactions.

5.15.1 Functions

e int fGetMomentEquilibriumF()
Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of compressible fluids.
e int fGetMomentEquilibriumFIncom()

Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of incompressible flu-
ids.

5.15. IbpMRT.cpp 167

DL_MESO Technical Manual, Release 2.7

int fGetMomentEquilibriumFSwiftOneFluid()

Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of one fluid with Swift
free-energy interactions.

int fGetMomentEquilibriumFSwiftTwoFluid()

Calculates local equilibrium moments for multiple relaxation time (MRT) collisions of two fluids with Swift
free-energy interactions.

int fGetMomentForceGuo()

Calculates Guo forcing terms in terms of moments for multiple relaxation time (MRT) collisions.
int fGetMomentForceHe()

Calculates He forcing terms in terms of moments for multiple relaxation time (MRT) collisions.
int fGetMRTCollide()

Calculates the collision frequencies for multiple relaxation time (MRT) collisions based on provided relax-
ation frequencies.

int fSiteFluidCollisionMRT()

Applies MRT collisions to all compressible fluids at a given lattice site with standard forcing.
int fSiteFluidlncomCollisionMRT()

Applies MRT collisions to all incompressible fluids at a given lattice site with standard forcing.
int fSiteFluidCollisionMRTEDM()

Applies MRT collisions to all compressible fluids at a given lattice site with EDM forcing.
int fSiteFluidlncomCollisionMRTEDM()

Applies MRT collisions to all incompressible fluids at a given lattice site with EDM forcing.
int fSiteFluidCollisionMRTGuo()

Applies MRT collisions to all compressible fluids at a given lattice site with Guo forcing.
int fSiteFluidincomCollisionMRTGuo()

Applies MRT collisions to all incompressible fluids at a given lattice site with Guo forcing.
int fSiteFluidCollisionMRTHe()

Applies MRT collisions to all compressible fluids at a given lattice site with He forcing.

int fSiteFluidlncomCollisionMRTHe()

Applies MRT collisions to all incompressible fluids at a given lattice site with He forcing.
int fSiteFluidCollisionMRTLishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidincomCollisionMRTLishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionMRTEDM Lishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidincomCollisionMRTEDM Lishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

168

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int fSiteFluidCollisionMRTGuoLishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidlncomCollisionMRTGuoLishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionMRTHeLishchuk()

Applies MRT collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidIncomCollisionMRTHeLishchuk()

Applies MRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionMRTLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidIncomCollisionMRTLishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionMRTEDMLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with EDM forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidincomCollisionMRTEDM LishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionMRTGuoLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidlncomCollisionMRTGuoLishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with Guo forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionMRTHeLishchukLocal()

Applies MRT collisions to all compressible fluids at a given lattice site with He forcing and phase segrega-
tion when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidincomCollisionMRTHeLishchukLocal()

Applies MRT collisions to all incompressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionMRTSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with standard forcing and Swift
free-energy interactions.

int fSiteFluidCollisionMRTSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with standard forcing and Swift
free-energy interactions.

5.15.

IbpMRT.cpp 169

DL_MESO Technical Manual, Release 2.7

int fSiteFluidCollisionMRTEDMSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with EDM forcing and Swift free-
energy interactions.

int fSiteFluidCollisionMRTEDMSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with EDM forcing and Swift free-
energy interactions.

int fSiteFluidCollisionMRTGuoSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with Guo forcing and Swift free-
energy interactions.

int fSiteFluidCollisionMRTGuoSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with Guo forcing and Swift free-
energy interactions.

int fSiteFluidCollisionMRTHeSwiftOneFluid()

Applies MRT collisions to one compressible fluid at a given lattice site with He forcing and Swift free-
energy interactions.

int fSiteFluidCollisionMRTHeSwiftTwoFluid()

Applies MRT collisions to two compressible fluids at a given lattice site with He forcing and Swift free-
energy interactions.

int fCollisionMRT()

Applies collision steps for all fluids using MRT scheme with standard forcing, and solutes and temperature
fields using BGK scheme..

int fCollisionMRTEDM()

Applies collision steps for all fluids using MRT scheme with EDM forcing, and solutes and temperature
fields using BGK scheme..

int fCollisionMRTGuo()

Applies collision steps for all fluids using MRT scheme with Guo forcing, and solutes and temperature fields
using BGK scheme.

int fCollisionMRTHe()

Applies collision steps for all fluids using MRT scheme with He forcing, and solutes and temperature fields
using BGK scheme.

int fCollisionMRTShanChen()

Applies collision steps for all fluids using MRT scheme with standard forcing for Shan-Chen interactions,
and solutes and temperature fields using BGK scheme.

int fCollisionMRTEDMShanChen()

Applies collision steps for all fluids using MRT scheme with EDM forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

int fCollisionMRTGuoShanChen()

Applies collision steps for all fluids using MRT scheme with Guo forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

int fCollisionMRTHeShanChen()

Applies collision steps for all fluids using MRT scheme with He forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

170

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

e int fCollisionMRTLishchuk()

Applies collision steps for all fluids using MRT scheme with standard forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTEDMLishchuk()

Applies collision steps for all fluids using MRT scheme with EDM forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTGuoLishchuk()

Applies collision steps for all fluids using MRT scheme with Guo forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTHeLishchuk()

Applies collision steps for all fluids using MRT scheme with He forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTLishchukLocal()

Applies collision steps for all fluids using MRT scheme with standard forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTEDMLishchukLocal()

Applies collision steps for all fluids using MRT scheme with EDM forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTGuoLishchukLocal()

Applies collision steps for all fluids using MRT scheme with Guo forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTHeLishchukLocal()

Applies collision steps for all fluids using MRT scheme with He forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTSwift()

Applies collision steps for all fluids using MRT scheme with standard forcing for Swift free-energy interac-
tions, and solutes and temperature fields using BGK scheme.

e int fCollisionMRTEDMSwift()

Applies collision steps for all fluids using MRT scheme with EDM forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

e int fCollisionMRTGuoSwift()

Applies collision steps for all fluids using MRT scheme with Guo forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

e int fCollisionMRTHeSwift()

Applies collision steps for all fluids using MRT scheme with He forcing for Swift free-energy interactions,
and solutes and temperature fields using BGK scheme.

5.15. IbpMRT.cpp 171

DL_MESO Technical Manual, Release 2.7

5.15.2 Function Documentation

fCollisionMRT()

int fCollisionMRT ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relax-
ation time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity
at each site, 1.e.

Zi,a flaél
Zi,a fl(l. '

ﬁ:

fCollisionMRTEDM()

int fCollisionMRTEDM ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using
single relaxation time BGK collisions. This version of the collisions uses the standard values for macroscopic
fluid velocity at each site, i.e.

Zi,a fiaéi
Zi,a f'La

U=

fCollisionMRTEDMLishchuk()

int fCollisionMRTEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer
interaction models.

fCollisionMRTEDMLishchukLocal()

int fCollisionMRTEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all
solutes and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied
using separate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk
interaction models.

172 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionMRTEDMShanChen()

int fCollisionMRTEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using
single relaxation time BGK collisions. This version of the collisions uses the following values for macroscopic
fluid velocity at each site, i.e.

>0 L

i,a T¢

— f
u:

et

i,a T¢

fCollisionMRTEDMSwift()

int fCollisionMRTEDMSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Equal DIfference Method (EDM) [69] forcing and Swift free-energy interactions (enacted using
modified local equilibrium distribution functions to incorporate density and concentration gradients), and all so-
lutes and any temperature field using single relaxation time BGK collisions.

fCollisionMRTGuo()

int fCollisionMRTGuo ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

Zi,a fiaé’i
Zi,a fza

ﬁ:

fCollisionMRTGuoLishchuk()

int fCollisionMRTGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionMRTGuoLishchukLocal()

int fCollisionMRTGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms:
this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

5.15. IbpMRT.cpp 173

DL_MESO Technical Manual, Release 2.7

fCollisionMRTGuoShanChen()

int fCollisionMRTGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

ra s
ia T

f

Siatr
i,a T¢

f

’17::

fCollisionMRTGuoSwift()

int fCollisionMRTGuoSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with Guo [49] forcing and Swift free-energy interactions (enacted using modified local equilibrium
distribution functions to incorporate density and concentration gradients), and all solutes and any temperature
field using single relaxation time BGK collisions.

fCollisionMRTHe()

int fCollisionMRTHe ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK colli-
sions. This version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

2ia fié
Zi@ fza

l_[:

fCollisionMRTHeLishchuk()

int fCollisionMRTHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme:
this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionMRTHeLishchukLocal()

int fCollisionMRTHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature
field using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms:
this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

174 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionMRTHeShanChen()

int fCollisionMRTHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK
collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

ra s
ia T

f

Siatr
i,a T¢

f

’17::

fCollisionMRTHeSwift()

int fCollisionMRTHeSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with He [54] forcing and Swift free-energy interactions (enacted using modified local equilibrium dis-
tribution functions to incorporate density and concentration gradients), and all solutes and any temperature field
using single relaxation time BGK collisions.

fCollisionMRTLishchuk()

int fCollisionMRTLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes
and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using
the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction
models.

fCollisionMRTLishchukLocal()

int fCollisionMRTLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes
and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using sep-
arate forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

fCollisionMRTShanChen()

int fCollisionMRTShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relax-
ation time BGK collisions. This version of the collisions uses the following values for macroscopic fluid velocity
at each site, 1.e.

5.15. IbpMRT.cpp 175

DL_MESO Technical Manual, Release 2.7

fCollisionMRTSwift()

int fCollisionMRTSwift ()

Loops through all available lattice sites and applies collisions to all fluids using multiple relaxation time (MRT)
collisions with standard (Martys-Chen) [91] forcing and Swift free-energy interactions (enacted using modified
local equilibrium distribution functions to incorporate density and concentration gradients), and all solutes and
any temperature field using single relaxation time BGK collisions.

fGetMomentEquilibriumF()

int fGetMomentEquilibriumF (double * meq,
double * p,
double rho)

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based on
transforming the local equilibrium distribution function for mildly compressible fluids. The exact values for each
moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15, D3Q19 [159] and D3Q27 [134] - but these
include the fluid density and components of fluid momentum.

Parameters

out | meq | Local equilibrium central moments
in | p Fluid momentum at lattice site
in rho | Fluid density at lattice site

fGetMomentEquilibriumFIincom()

int fGetMomentEquilibriumFIncom (double * meq,
double * p,
double rho,
double rho0)

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based on
transforming the local equilibrium distribution function for fully incompressible fluids. The exact values for each
moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15, D3Q19 [159] and D3Q27 [134] - but these
include the fluid density and components of fluid momentum.

Parameters

out | meq | Local equilibrium central moments
in | p Fluid momentum at lattice site

in rho Variable fluid density at lattice site
in | thoO | Constant fluid density at lattice site

fGetMomentEquilibriumFSwiftOneFluid()

int fGetMomentEquilibriumFSwiftOneFluid (double * meq,
double * p,
double rho,
double pb,
double lambda,
double * grad)

176 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based on
transforming the local equilibrium distribution function for a single fluid with Swift free-energy interactions. The
exact values for each moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15 and D3Q19 [159]
- but these include the fluid density, components of fluid momentum and bulk pressure (which depends on the
equation of state being applied).

Parameters
out | meq Local equilibrium central moments
in | p Fluid momentum at lattice site
in rho Fluid density at lattice site
in | pb Bulk pressure at lattice site (based on equation of state)
in lambda | Galilean invariance parameter for lattice site (based on equation of state)
in | grad First-order and second-order gradients of fluid density at lattice site

fGetMomentEquilibriumFSwiftTwoFluid()

int fGetMomentEquilibriumFSwiftTwoFluid (double * meq,

double * p,
double rho,
double phi,
double pb,
double mu,
double lambda,
double »* grad)

Calculates local equilibrium values for moments required for multiple relaxation time (MRT) collisions, based
on transforming the local equilibrium distribution function for two fluids with Swift free-energy interactions.
The exact values for each moment depends on the lattice scheme in use - for D2Q9 [73], D3Q15 and D3Q19
[159] - but these include the fluid density, components of fluid momentum, bulk pressure (which depends on the
equation of state being applied) and chemical potential (which depends on the free energy functional). The local
equilibrium distribution functions for concentration are also calculated and included in the output array for BGK
single relaxation time collisions of these distribution functions.

Parameters

out | meq Local equilibrium central moments for density, local equilibrium distribution functions for

concentration

in |p Fluid momentum at lattice site

in rho Fluid density at lattice site

in | phi Fluid concentration at lattice site

in | pb Bulk pressure at lattice site (based on equation of state)

in | mu Chemical potential at lattice site (based on free energy functional)

in lambda | Galilean invariance parameter for lattice site (based on equation of state)

in | grad First-order and second-order gradients of fluid density and concentration at lattice site
fGetMomentForceGuo()

int fGetMomentForceGuo (double * source,
double * v,
double * force)

Calculates moment-based Guo forcing terms for use in multiple relaxation time (MRT) collisions, as obtained by
applying the transformation matrix to Guo source terms [104]:
é—U é-U _,
— { T }
CS

5.15. IbpMRT.cpp 177

DL_MESO Technical Manual, Release 2.7

i.e. §™ = TS. The exact form of moment-based forcing terms will depend on the lattice scheme in use (D2Q9,
D3Q15, D3Q19 or D3Q27) but require both forces and the velocity for each lattice point to calculate.

Parameters
out | source | Moment-based Guo forcing terms Sm
in v Force-corrected fluid velocity at lattice point
in force Forces acting at lattice point
fGetMomentForceHe()

int fGetMomentForceHe (double * source,
double * v,
double * force)

Calculates moment-based He forcing terms for use in multiple relaxation time (MRT) collisions, as obtained by
applying the transformation matrix to He source terms [104]:

I
K3

=2
PCs

(6;—7)-F

i

i.e. S™ = TS. The exact form of moment-based forcing terms will depend on the lattice scheme in use (D2Q9,
D3Q15, D3Q19 or D3Q27) but require both forces and the velocity for each lattice point to calculate.

Parameters

out | source | Moment-based He forcing terms gm
in |V Force-corrected fluid velocity at lattice point
in force Forces acting at lattice point

fGetMRTCollide()

int fGetMRTCollide (double * collide,
double omegashear,
double omegabulk)

Calculates the diagonal collision matrix A used in multiple relaxation time (MRT) collisions. This subroutine
requires inputs for two relaxation frequencies at each lattice point and fluid: the main relaxation frequency w =
Ty ! and the bulk relaxation frequency w, = Ty l}ul - Other system-wide relaxation frequencies - used as tuneable
parameters to enhance numerical stability of calculations - are assigned in this subroutine. Moments for fluid
density and momentum have their relaxation frequencies set to 1 to ensure these properties are conserved.

Parameters

out | collide Diagonal of relaxation frequencies for MRT collision matrix
in | omegashear | Relaxation frequency for fluid (giving kinetic viscosity)
in omegabulk | Bulk relaxation frequency for fluid (giving bulk viscosity)

178 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRT()

int fSiteFluidCollisionMRT (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTEDM()

int fSiteFluidCollisionMRTEDM (double * startpos,
double » sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Equal Difference Method (EDM) [69] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTEDMLishchuk()

int fSiteFluidCollisionMRTEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution

5.15. IbpMRT.cpp 179

DL_MESO Technical Manual, Release 2.7

functions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

fza (f) 7fl a +Zﬁabwz a nab

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionMRTEDMLishchukLocal()

int fSiteFluidCollisionMRTEDMLishchukLocal (double x startpos,
double * sitespeed,
double % omega,
double * omegabulk,
double * rho,
double * bodyforce,

double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
except Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

w; B0 g p® p°

Fab —
cip3TAt

K3

(nabnab - I) (é7él - CEI)

and re-separating the fluids using D’Ortona segregation [25]:

fia (f) 7f£ a +ZﬂabwL a ”L' n ab

b#a
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

180 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRTEDMSwiftOneFluid()

int fSiteFluidCollisionMRTEDMSwiftOneFluid

(double =
double =~
double =«
double =«
double =«
double *
double =«
double T)

startpos,
sitespeed,
omega,
omegabulk,
rho,
gradient,
bodyforce,

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Equal Difference Method (EDM) [69] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in omegabulk | Bulk relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTEDMSwiftTwoFluid()

int fSiteFluidCollisionMRTEDMSwiftTwoFluid

(double =
double =«
double =«
double =*
double =«
double =«
double =*
double T)

startpos,
sitespeed,
omega,
omegabulk,
rho,
gradient,
bodyforce,

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying Equal Difference Method
(EDM) [69] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single

relaxation time scheme.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

5.15. IbpMRT.cpp

181

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRTGuo()

int fSiteFluidCollisionMRTGuo (double =*
double =*
double =*
double =*
double =*

double =«

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTGuoLishchuk()

int fSiteFluidCollisionMRTGuoLishchuk (double =
double =~
double =
double =«
double =«
double =

double =«

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce,
phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fE(zth) = ?fi (Z,t%) + Zﬁabwi 5—€i * Tab

b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site
182 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionMRTGuoLishchukLocal()

int fSiteFluidCollisionMRTGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

Fbe _ wiﬁ“bg“bpapb

N o (5.5 2
v CgpngAt (nabnab - I) : (eiei — CSI)

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
[(@) = ?fi (Z,t%) + Zﬁabwi g €i - Nab

b#a
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

fSiteFluidCollisionMRTGuoSwiftOneFluid()

int fSiteFluidCollisionMRTGuoSwiftOneFluid (double x startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying Guo [49] forcing.

Parameters

5.15. IbpMRT.cpp 183

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

in omega Relaxation frequency for fluid at lattice site

in omegabulk | Bulk relaxation frequency for fluid at lattice site

in rho Macroscopic fluid density at lattice site

in gradient Density gradients (first and second order) at lattice site

in bodyforce | Forces to apply to fluid at lattice site

in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTGuoSwiftTwoFluid()

int fSiteFluidCollisionMRTGuoSwiftTwoFluid

(double =«
double =
double =«
double =~
double «*
double =«
double ~
double T)

startpos,
sitespeed,
omega,
omegabulk,
rho,
gradient,
bodyforce,

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribu-
tion functions provided, using the local equilibrium distribution function for two compressible fluids undergoing
Swift free-energy interactions (for fluid density and concentration calculations) and applying Guo [49] forcing.
Collisions of distribution functions for fluid concentration are carried out using a BGK single relaxation time

scheme.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTHe()

int fSiteFluidCollisionMRTHe (double =
double =«
double =
double =*
double =«

double =

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for mildly compressible fluids and applying
He [54] forcing.

Parameters

184 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

in omega Relaxation frequencies for fluids at lattice site

in omegabulk | Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic fluid densities at lattice site

in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionMRTHeLishchuk()

int fSiteFluidCollisionMRTHeLishchuk (double % startpos, double * sitespeed,
—double * omega, double x omegabulk, double * rho, double * bodyforce, double x|
—phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

a a b
fE (@ tt) = % D(E)+ % ”pf i fiap

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionMRTHeLishchukLocal()

int fSiteFluidCollisionMRTHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces,
which are applied using a direct forcing term [129]:

Fqb _ wiﬁabgabpapb

Ao (5.5 2
i CgpngAt (nabnab - I) : (61‘81‘ — CSI)

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fE(@) ==f (Z.t7) + Zﬂabwi 5—€i " Tap
p = p

Parameters

5.15. IbpMRT.cpp 185

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site
ulk
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidCollisionMRTHeSwiftOneFluid()

int fSiteFluidCollisionMRTHeSwiftOneFluid (double =
double =*
double =*
double =«
double =*
double =*
double =*
double T)

startpos,
sitespeed,
omega,
omegabulk,
rho,
gradient,
bodyforce,

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in omegabulk | Bulk relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTHeSwiftTwoFluid()

int fSiteFluidCollisionMRTHeSwiftTwoFluid (double =

startpos,
sitespeed,
omega,
omegabulk,
rho,
gradient,
bodyforce,

double =*
double =*
double =«
double =*
double =*
double =«
double T)

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for two compressible fluids undergoing Swift
free-energy interactions (for fluid density and concentration calculations) and applying He [54] forcing. Collisions
of distribution functions for fluid concentration are carried out using a BGK single relaxation time scheme.

Parameters

186 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

in omega Relaxation frequencies for fluids at lattice site

in omegabulk | Bulk relaxation frequencies for fluid at lattice site

in rho Macroscopic fluid density and concentration at lattice site

in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site

in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTLishchuk()

int fSiteFluidCollisionMRTLishchuk

(double =
double =*
double =*
double =*
double =«
double =
double =*

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce,
phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including

Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

a a b
Jo(#47) = i (F00) 3 Bt e

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionMRTLishchukLocal()

int fSiteFluidCollisionMRTLishchukLocal

(double =*
double =«
double =*
double =
double =«
double * bodyforce,
double * phaseindex,
int threed)

startpos,
sitespeed,
omega,
omegabulk,
rho,

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic dis-
tribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

B wiﬂabgabpapb

F,ab — C4p3TfAt (ﬁabﬁab — I) : (éiél - C%I)

K3

5.15. IbpMRT.cpp 187

DL_MESO Technical Manual, Release 2.7

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fE(zth) = ?fi (Z,t%) + Zﬂabwi g €; * Nap

b#a
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

fSiteFluidCollisionMRTSwiftOneFluid()

int fSiteFluidCollisionMRTSwiftOneFluid (double x startpos,
double » sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

Applies multiple relaxation time (MRT) collisions to one fluid at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution function for a compressible fluid undergoing Swift
free-energy interactions and applying standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequency for fluid at lattice site
in omegabulk | Bulk relaxation frequency for fluid at lattice site
in rho Macroscopic fluid density at lattice site
in gradient Density gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluid at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidCollisionMRTSwiftTwoFluid()

int fSiteFluidCollisionMRTSwiftTwoFluid (double % startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * gradient,
double * bodyforce,
double T)

188 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies multiple relaxation time (MRT) collisions to two fluids at a given lattice site, operating on the distribu-
tion functions provided, using the local equilibrium distribution function for two compressible fluids undergoing
Swift free-energy interactions (for fluid density and concentration calculations) and applying standard (Martys-
Chen) [91] forcing. Collisions of distribution functions for fluid concentration are carried out using a BGK single

relaxation time scheme.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid density and concentration at lattice site
in gradient Density and concentration gradients (first and second order) at lattice site
in bodyforce | Forces to apply to fluids at lattice site
in T Temperature at lattice site (used for calculating bulk pressure of fluid)

fSiteFluidincomCollisionMRT()

int fSiteFluidIncomCollisionMRT

(double =
double =
double =*
double =«
double =
double =*

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying

standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionMRTEDM()

int fSiteFluidIncomCollisionMRTEDM

(double =
double =*
double =*
double =«
double =*
double =*

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying

Equal Difference Method (EDM) [69] forcing.

Parameters

5.15. IbpMRT.cpp

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

in omega Relaxation frequencies for fluids at lattice site

in omegabulk | Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic variable fluid densities at lattice site

in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionMRTEDMLishchuk()

int fSiteFluidIncomCollisionMRTEDMLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fz'a (f7 t+) = ?.fz (fa t+) + Zﬂabwi p2 éz . ﬁab

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionMRTEDMLishchukLocal()

int fSiteFluidIncomCollisionMRTEDMLishchukLocal (double % startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
except Lishchuk interfacial forces, which are applied using a direct forcing term [129]:

ng - wiﬂabgabpapb

N o (5.5 2
(N Czslpg,rfAt (nabnab - I) : (eiei — CSI)

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fz'a (f7 t+) = 7.]02 (fa t+) + ZﬂabwiTéi . ﬁab
p = p

190 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site
ulk
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

fSiteFluidincomCollisionMRTGuo()

int fSiteFluidIncomCollisionMRTGuo (double =
double =*
double =«
double =*
double =*

double =«

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionMRTGuoLishchuk()

int fSiteFluidIncomCollisionMRTGuoLishchuk (double =
double *
double =«
double =~
double =*
double =«

double =«

startpos,
sitespeed,
omega,
omegabulk,
rho,
bodyforce,
phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Guo [49] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
FE(@ 7)== fi (&,67) + D B wi—g—é - fap
p = p

Parameters

5.15. IbpMRT.cpp 191

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

in omega Relaxation frequencies for fluids at lattice site

in omegabulk | Bulk relaxation frequencies for fluids at lattice site

in rho Macroscopic variable fluid densities at lattice site

in bodyforce | Forces to apply to each fluid at lattice site

in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionMRTGuoLishchukLocal()

int fSiteFluidIncomCollisionMRTGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

Fqb _ wiﬁabgabpapb

o = MRl G = 1) £ (6 =)
S

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
f (@ 44) = S £ (@47) + > B wi i - ey

b#a P
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

fSiteFluidincomCollisionMRTHe()

int fSiteFluidIncomCollisionMRTHe (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce)

192 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on the distribution
functions provided, using the local equilibrium distribution functions for fully incompressible fluids and applying
He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidincomCollisionMRTHeLishchuk()

int fSiteFluidIncomCollisionMRTHeLishchuk (double x startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying He [54] forcing for all forces (including Lishchuk interfacial
forces) and re-separating the fluids using D’Ortona segregation [25]:

a a b
fo (70 = %fi @5+ gotw, 2L

P éi ' ﬁab
b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidincomCollisionMRTHeLishchukLocal()

int fSiteFluidIncomCollisionMRTHeLishchukLocal (double % startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces,

5.15. IbpMRT.cpp 193

DL_MESO Technical Manual, Release 2.7

which are applied using a direct forcing term [129]:

Fqb _

_ wiﬂabgabpapb . 21)
! ctpdTrAt

(nabﬁab — I) : (éléz — Cq

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fE(@th) = e (Z,t7) + Zﬁabwi g €i * lab

b#a
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

fSiteFluidincomCollisionMRTLishchuk()

int fSiteFluidIncomCollisionMRTLishchuk (double * startpos,
double x sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic
distribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution
functions for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces (including
Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

a a b
fo(@) = %fi (@17) + 3 % ”pf

€; - Nap
b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

194 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidincomCollisionMRTLishchukLocal()

int fSiteFluidIncomCollisionMRTLishchukLocal (double * startpos,
double x sitespeed,
double * omega,
double * omegabulk,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies multiple relaxation time (MRT) collisions to all fluids at a given lattice site, operating on achromatic dis-
tribution functions (summed over all fluids for each lattice link) and using the local equilibrium distribution func-
tions for fully incompressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

wiﬂabgabpapb

Fob —
cip3TAt

i (ﬁabﬁab — I) : (éiéi — ch)

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fﬂﬂﬂ=;ﬂmﬂ+2mwi2amb

b#a P
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in rho Macroscopic variable fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

5.16 IbpCLBE.cpp

Module with routines for cascaded lattice Boltzmann equation (CLBE) collisions. (Header file available as 1bp-
CLBE.hpp.)

Applies collisions to grid points using a central moment multiple relaxation time scheme, known as cascaded LBE
(CLBE) [38], on each fluid. This scheme starts by defining a number of central moments of distribution functions,
ie.

T E : P q T
Mpqr — fz (ez’,.’x - uw) (ei,y - uy) (ei,z - uz)
i
which can be related to raw moments, M, = >, fie} xe;{ye{z. In a similar fashion to multiple relaxation time

(MRT) collision schemes, the distribution functions can be transformed into central moments using transformation
matrices:

M= NTf

where the matrix T transforms distribution functions into raw moments and the lower triangular matrix N trans-
forms raw moments into central moments and depends upon the fluid velocity at the lattice grid point. A collision

5.16. IbpCLBE.cpp 195

DL_MESO Technical Manual, Release 2.7

matrix A that is mostly diagonal (aside from a block diagonal used for second-order moments) is then used to
collide the central moments:

- — —

M (#,t+) = M (7,1) - A (M (7,1) - M€ (p(7,1), @ (7, 1))

where M€ - the local equilibrium central moments - are obtained by transforming the Maxwell-Boltzmann (gen-
eral) local equilibrium distribution function. The post-collisional central moments are then transformed back by
using inverses of the transformation matrices to produce post-collisional distribution functions.

To apply forces to each fluid, one of four options can be applied. The standard (Martys-Chen) [91] force scheme
applies a modified velocity for calculating local equilibrium central moments:

I TfﬁAt
Uv=U+)
P

while the Equal Difference Method (EDM) [69] applies an additional forcing term that can be calculated as a
difference in local equilibrium distribution functions:

FAt
Fi=f" <ﬂ’77+ p)

although extended functions with third-order terms in velocity [84] are used for CLBE collisions. The Guo [49]
and He schemes [54] both adjust the velocity for local equilibrium distribution functions to ¥ = 4 + FQ—%t
include the following forcing terms for CLBE collisions as additional terms for central moment collisions:

- fieq (paﬁ) .
and

~ 1 ~
AMqu = (1 — 2wqu> SpqrAt.

Guo forcing source terms can be obtained by transforming the standard terms with the transformation matrices,
while those for He forcing are derived in a similar manner to local equilibrium central moments.

CLBE collision schemes exist for D2Q9 [35], D3Q19 and D3Q27 [33] lattices: no such schemes currently exist
for D3Q15 lattices, fully incompressible fluids or Swift free-energy interactions.

5.16.1 Functions

e int fGetCentralMomentEquilibriumF()
Calculates local equilibrium central moments for cascaded LBE (CLBE) collisions.
* int fGetCentralMomentTransformMatrix()

Calculates full transform matrices (forward and inverse) for cascaded LBE (CLBE) collisions to obtain
central moments from distribution functions and vice versa.

e int fGetCentralMomentForceGuo()

Calculates Guo forcing terms in terms of central moments for cascaded LBE (CLBE) collisions.
e int fGetCentralMomentForceHe()

Calculates Guo forcing terms in terms of central moments for cascaded LBE (CLBE) collisions.
e int fGetCLBECollide()

Calculates the main diagonal collision matrix for cascaded LBE (CLBE) based on provided relaxation fre-
quencies.

e int fSiteFluidCollisionCLBE()
Applies CLBE collisions to all compressible fluids at a given lattice site with standard forcing.
* int fSiteFluidCollisionCLBEEDM)()

Applies CLBE collisions to all compressible fluids at a given lattice site with EDM forcing.

196 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int fSiteFluidCollisionCLBEGuo()

Applies CLBE collisions to all compressible fluids at a given lattice site with Guo forcing.
int fSiteFluidCollisionCLBEHe()

Applies CLBE collisions to all compressible fluids at a given lattice site with He forcing.
int fSiteFluidCollisionCLBELishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionCLBEEDM Lishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionCLBEGuoLishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionCLBEHeLishchuk()

Applies CLBE collisions to all compressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with calculated interfacial forces.

int fSiteFluidCollisionCLBELishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with standard forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionCLBEEDMLishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with EDM forcing and phase
segregation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionCLBEGuoLishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with Guo forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fSiteFluidCollisionCLBEHeLishchukLocal()

Applies CLBE collisions to all compressible fluids at a given lattice site with He forcing and phase segre-
gation when using Lishchuk interactions with direct interfacial forcing.

int fCollisionCLBE()

Applies collision steps for all fluids using CLBE scheme with standard forcing, and solutes and temperature
fields using BGK scheme..

int fCollisionCLBEEDM)()

Applies collision steps for all fluids using CLBE scheme with EDM forcing, and solutes and temperature
fields using BGK scheme.

int fCollisionCLBEGuo()

Applies collision steps for all fluids using CLBE scheme with Guo forcing, and solutes and temperature
fields using BGK scheme.

int fCollisionCLBEHe()

Applies collision steps for all fluids using CLBE scheme with He forcing, and solutes and temperature fields
using BGK scheme.

int fCollisionCLBEShanChen()

Applies collision steps for all fluids using CLBE scheme with standard forcing for Shan-Chen interactions,
and solutes and temperature fields using BGK scheme.

5.16.

IbpCLBE.cpp 197

DL_MESO Technical Manual, Release 2.7

int fCollisionCLBEEDMShanChen()

Applies collision steps for all fluids using CLBE scheme with EDM forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

int fCollisionCLBEGuoShanChen()

Applies collision steps for all fluids using CLBE scheme with Guo forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

int fCollisionCLBEHeShanChen()

Applies collision steps for all fluids using CLBE scheme with He forcing for Shan-Chen interactions, and
solutes and temperature fields using BGK scheme.

int fCollisionCLBELishchuk()

Applies collision steps for all fluids using CLBE scheme with standard forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionCLBEEDMLishchuk()

Applies collision steps for all fluids using CLBE scheme with EDM forcing and Lishchuk interactions
provided as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionCLBEGuoLishchuk()

Applies collision steps for all fluids using CLBE scheme with Guo forcing and Lishchuk interactions pro-
vided as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionCLBEHeLishchuk()

Applies collision steps for all fluids using CLBE scheme with He forcing and Lishchuk interactions provided
as interfacial forces, and solutes and temperature fields using BGK scheme.

int fCollisionCLBELishchukLocal()

Applies collision steps for all fluids using CLBE scheme with standard forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

int fCollisionCLBEEDMLishchukLocal()

Applies collision steps for all fluids using CLBE scheme with EDM forcing and Lishchuk interactions
provided as an additional forcing term, and solutes and temperature fields using BGK scheme.

int fCollisionCLBEGuoLishchukLocal()

Applies collision steps for all fluids using CLBE scheme with Guo forcing and Lishchuk interactions pro-
vided as an additional forcing term, and solutes and temperature fields using BGK scheme.

int fCollisionCLBEHeLishchukLocal()

Applies collision steps for all fluids using CLBE scheme with He forcing and Lishchuk interactions provided
as an additional forcing term, and solutes and temperature fields using BGK scheme.

5.16.2 Function Documentation

fCollisionCLBE()

int fCollisionCLBE ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation time
BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity at each site,

ie.
o Sl Sl
Zi7a fla '
198 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEEDM()

int fCollisionCLBEEDM ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using single relax-
ation time BGK collisions. This version of the collisions uses the standard values for macroscopic fluid velocity
at each site, i.e.

Zi,a fiaéi
Zi,a fza

U=

fCollisionCLBEEDMLishchuk()

int fCollisionCLBEEDMLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all solutes
and any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using
the main forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction
models.

fCollisionCLBEEDMLishchukLocal()

int fCollisionCLBEEDMLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Equal Difference Method (EDM) [69] forcing, achromatic fluid collisions and segregation, and all solutes and
any temperature field using single relaxation time BGK collisions. The interfacial forces are applied using separate
forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

fCollisionCLBEEDMShanChen()

int fCollisionCLBEEDMShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with with Equal Difference Method (EDM) [69] forcing, and all solutes and any temperature field using single
relaxation time BGK collisions. This version of the collisions uses the following values for macroscopic fluid
velocity at each site, i.e.

as
z : fri €4

y a

i ha T¢
- a
Zz,a TS

5.16. IbpCLBE.cpp 199

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEGuo()

int fCollisionCLBEGuo ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK collisions. This
version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

Zi,a flaél
Zi,a fl(l. '

ﬁ:

fCollisionCLBEGuoLishchuk()

int fCollisionCLBEGuoLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field using
single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme: this
approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionCLBEGuoLishchukLocal()

int fCollisionCLBEGuoLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with Guo [49] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field
using single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionCLBEGuoShanChen()

int fCollisionCLBEGuoShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with with Guo [49] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

E firéi
i,a T
= f
= ——--—:
) I
i,a T¢

f

fCollisionCLBEHe()

int fCollisionCLBEHe ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK collisions. This
version of the collisions uses the standard values for macroscopic fluid velocity at each site, i.e.

Zi,a fiaéi
Ei@ fza

/L_[:

200 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEHeLishchuk()

int fCollisionCLBEHeLishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field using
single relaxation time BGK collisions. The interfacial forces are applied using the main forcing scheme: this
approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionCLBEHeLishchukLocal()

int fCollisionCLBEHeLishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with He [54] forcing, achromatic fluid collisions and segregation, and all solutes and any temperature field us-
ing single relaxation time BGK collisions. The interfacial forces are applied using separate forcing terms: this
approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction models.

fCollisionCLBEHeShanChen()

int fCollisionCLBEHeShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with with He [54] forcing, and all solutes and any temperature field using single relaxation time BGK collisions.
This version of the collisions uses the following values for macroscopic fluid velocity at each site, i.e.

ra s
ia T

f

Siatr
i,a T¢

f

’l_l::

fCollisionCLBELishchuk()

int fCollisionCLBELishchuk ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and any
temperature field using single relaxation time BGK collisions. The interfacial forces are applied using the main
forcing scheme: this approach can be used with the original Lishchuk and Lishchuk-Spencer interaction models.

fCollisionCLBELishchukLocal()

int fCollisionCLBELishchukLocal ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, achromatic fluid collisions and segregation, and all solutes and any
temperature field using single relaxation time BGK collisions. The interfacial forces are applied using separate
forcing terms: this approach can be used with the Lishchuk ‘Spencer tensor’ and local Lishchuk interaction
models.

5.16. IbpCLBE.cpp 201

DL_MESO Technical Manual, Release 2.7

fCollisionCLBEShanChen()

int fCollisionCLBEShanChen ()

Loops through all available lattice sites and applies collisions to all fluids using cascaded LBE (CLBE) collisions
with standard (Martys-Chen) [91] forcing, and all solutes and any temperature field using single relaxation time
BGK collisions. This version of the collisions uses the following values for macroscopic fluid velocity at each
site, i.e.

fGetCentralMomentEquilibriumF()

int fGetCentralMomentEquilibriumF (double % meq, double rho)

Calculates local equilibrium values for central moments required for cascaded LBE (CLBE) collisions, based on
transforming the Maxwell-Boltzmann local equilibrium distribution function. The exact values for each moment
depends on the lattice scheme in use - for D2Q9 [35], D3Q19 and D3Q27 [33] - but non-zero values are products
of fluid density and even powers of the speed of sound.

Parameters

out | meq | Local equilibrium central moments
in rho | Fluid density at lattice site

fGetCentralMomentForceGuo()

int fGetCentralMomentForceGuo (double * source,
double * v,
double * force)

Calculates central moment-based Guo forcing terms for use in cascaded LBE (CLBE) collisions, as obtained by
applying the transformation and shift matrices to Guo source terms:

Si:wz[

6 — 7 éi-a} .

+ | - F
2 4 3
CS CS

ie. § = NTS. The exact form of central moment forcing terms will depend on the lattice scheme in use (D2Q9,
D3Q19 or D3Q27) but require both forces and the velocity for each lattice point to calculate.

Parameters

out | source | Central moment-based Guo forcing terms S
in Y Force-corrected fluid velocity at lattice point
in force Forces acting at lattice point

202 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetCentralMomentForceHe()

int fGetCentralMomentForceHe (double % source, double % force)

Calculates central moment-based He forcing terms for use in cascaded LBE (CLBE) collisions, as obtained by
applying the transformation and shift matrices to He source terms:

eq
_fi . F

i.e. :math:” vec{tilde{S}} = mathbf{N} mathbf{T} vec{S}", which use the generalised Maxwell-Boltzmann
local equilibrium distribution. The exact form of central moment forcing terms will depend on the lattice scheme
in use (D2Q9 [35], D3Q19 or D3Q27 [33]) but only require forces for each lattice point to calculate.

Parameters

out | source | Central moment-based He forcing terms S
in | force | Forces acting at lattice point

fGetCentralMomentTransformMatrix()

int fGetCentralMomentTransformMatrix (double * rcsh,
double * rcshinv,
double * u)

Calculates the products of the transform and shift matrices N'T and the product of their inverses T"'IN~! for
the required lattice scheme to transform distribution functions into central moments and vice versa for cascaded
LBE (CLBE) collisions. These matrices are dependent on the fluid velocity and must be calculated for each lattice
point and at each timestep.

Parameters
out | rcsh Product of transform and shift matrices N'T
out | reshinv | Product of inverses of shift and transform matrices T~ 1IN —1
in |u Fluid velocity at lattice point

fGetCLBECollide()

int fGetCLBECollide (double * collide,
double omegashear,
double omegabulk,
double omegathree,
double omegafour)

Calculates the main diagonal for the collision matrix A used in cascaded LBE (CLBE) collisions. This subroutine
requires inputs for four relaxation frequencies at each lattice point and fluid: the main relaxation frequency w =
Ty !, the bulk relaxation frequency wy, = s &1 the third and fourth order relaxation frequencies ws and w,. For
some second-order central moment terms, only the symmetric relaxation frequencies are included in the results
for this routine: the anti-symmetric terms for these moments are calculated and applied in the main site collision
routines. Moments for fluid density and momentum have their relaxation frequencies set to 1 to ensure these
properties are conserved.

Parameters

5.16. IbpCLBE.cpp 203

DL_MESO Technical Manual, Release 2.7

out | collide Diagonal of relaxation frequencies for cascaded LBE collision matrix
in | omegashear | Relaxation frequency for fluid (giving kinetic viscosity)

in omegabulk | Bulk relaxation frequency for fluid (giving bulk viscosity)

in | omegathree | Third-order relaxation frequency for fluid

in omegafour | Fourth-order relaxation frequency for fluid

fSiteFluidCollisionCLBE()

int fSiteFluidCollisionCLBE

(double =«
double =*
double =
double =«
double =*
double =*
double =«
double =*

startpos,
sitespeed,
omega,
omegabulk,
omega3,
omegai,
rho,
bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying standard (Martys-Chen) [91] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionCLBEEDM()

int fSiteFluidCollisionCLBEEDM

(double =
double =«
double =«
double =*
double =«
double =«
double =
double =«

startpos,
sitespeed,
omega,
omegabulk,
omega3,
omega4,
rho,
bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying Equal Difference Method (EDM) [69] forcing.

Parameters

204

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site

in omega Relaxation frequencies for fluids at lattice site

in omegabulk | Bulk relaxation frequencies for fluids at lattice site

in omega3 Third-order relaxation frequencies for fluids at lattice site

in omega4 Four-order relaxation frequencies for fluids at lattice site

in rho Macroscopic fluid densities at lattice site

in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionCLBEEDMLishchuk()

int fSiteFluidCollisionCLBEEDMLishchuk (double * startpos,

double * sitespeed,
double * omega,
double * omegabulk,
double * omega3l,
double * omegai4,
double * rho,

double * bodyforce,
double * phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium distribu-
tion functions for mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p b PP
fzq (f7t+) = ? i(f7t+) +ZBG W; ,02 éz 'ﬁab

b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omegad Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBEEDMLishchukLocal()

int fSiteFluidCollisionCLBEEDMLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double *» omega3,
double * omegaid,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for

5.16. IbpCLBE.cpp 205

DL_MESO Technical Manual, Release 2.7

mildly compressible fluids, applying Equal Difference Method (EDM) [69] forcing for all forces except Lishchuk
interfacial forces, which are applied using a direct forcing term [129]:

pab _ WiB*g"p%p"

AR (e.8 2
(N Czslpg,rfAt (nabnab - I) : (eiei — CSI)

and re-separating the fluids using D’Ortona segregation [25]:

a a b
fo (7 67) = %fi @5+ gotw, 2L

éi ' ﬁab
b#a P
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

fSiteFluidCollisionCLBEGuo()

int fSiteFluidCollisionCLBEGuo (double x startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omegai,
double * rho,
double * bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying Guo [49] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

206 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionCLBEGuoLishchuk()

int fSiteFluidCollisionCLBEGuoLishchuk (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omega4,
double * rho,
double * bodyforce,
double * phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium distri-
bution functions for mildly compressible fluids, applying Guo [49] forcing for all forces (including Lishchuk
interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fi(@) = ?fi (Z,t%) + Zﬁabwi 5—€i * Tab

b#a P
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBEGuoLishchukLocal()

int fSiteFluidCollisionCLBEGuoLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3l,
double * omegai4,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying Guo [49] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

F_ab _ wiﬂabgabpapb

IR Caa 2
Z EYEEY (RapTiap — I) : (eiei — cSI)

and re-separating the fluids using D’Ortona segregation [25]:

p* p*p°
fia (fa t+) = 7fi (fa t+) + ZﬁabwiTéi “Tap
p = P

Parameters

5.16. IbpCLBE.cpp 207

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed | Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site
ulk
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

fSiteFluidCollisionCLBEHe()

int fSiteFluidCollisionCLBEHe

(double =«
double =*
double =«
double =*
double =*
double =«
double =*
double =*

startpos,
sitespeed,
omega,
omegabulk,
omega3l,
omega4,
rho,
bodyforce)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on the distribution functions
provided, using the generalised Maxwell-Boltzmann equilibrium distribution functions for mildly compressible
fluids and applying He [54] forcing.

Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site

fSiteFluidCollisionCLBEHeLishchuk()

int fSiteFluidCollisionCLBEHeLishchuk

(double =«
double =«
double =«
double =*
double =~
double =~
double =«
double =«
double =~

startpos,
sitespeed,
omega,
omegabulk,
omega3,
omegaé,
rho,
bodyforce,
phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribu-
tion functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium
distribution functions for mildly compressible fluids, applying He [54] forcing for all forces (including Lishchuk

208

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

fE(E 1) = 7](.1)+ ﬁ“bwz b
b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBEHeLishchukLocal()

int fSiteFluidCollisionCLBEHeLishchukLocal (double * startpos,
double * sitespeed,
double * omega,
double * omegabulk,
double * omega3,
double * omegai,
double * rho,
double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying He [54] forcing for all forces except Lishchuk interfacial forces, which are
applied using a direct forcing term [129]:

wiB*g*p® p"

Fob —
cipdTrAt

7 (nabnab I) : (ézéz — 031)

and re-separating the fluids using D’Ortona segregation [25]:

U.

.fz’a (f) 7fz z,t +Zﬁab “Tap
b#a
Parameters

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site

ulk
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site

dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing

term)

5.16. IbpCLBE.cpp 209

DL_MESO Technical Manual, Release 2.7

fSiteFluidCollisionCLBELishchuk()

int fSiteFluidCollisionCLBELishchuk (double startpos,

double sitespeed,
double omega,
double omegabulk,
double omega3,
double omegaé,
double rho,

double bodyforce,
double phaseindex)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribu-
tion functions (summed over all fluids for each lattice link) and generalised Maxwell-Boltzmann equilibrium
distribution functions for mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces
(including Lishchuk interfacial forces) and re-separating the fluids using D’Ortona segregation [25]:

(@) = —fz 7Y + Y Bt oy
b#a
Parameters
in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegabulk | Bulk relaxation frequencies for fluids at lattice site
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phaseindex | Phase indices for all fluid pairs at lattice site

fSiteFluidCollisionCLBELishchukLocal()

int fSiteFluidCollisionCLBELishchukLocal (double startpos,
double sitespeed,
double omega,
double omegabulk,
double * omega3l,
double * omegai,
double * rho,

double * bodyforce,
double * phaseindex,
int threed)

Applies cascaded LBE (CLBE) collisions to all fluids at a given lattice site, operating on achromatic distribution
functions (summed over all fluids for each lattice link) and using the local equilibrium distribution functions for
mildly compressible fluids, applying standard (Martys-Chen) [91] forcing for all forces except Lishchuk interfacial
forces, which are applied using a direct forcing term [129]:

ab _ WiB9"p%p"
cipdTrAt

Papfar — I) : (;6; — 21
7 () (s

and re-separating the fluids using D’Ortona segregation [25]:

fia (f) 7f1 a +Zﬁabwl i 'ﬁab
b#a
Parameters
210 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in,out | startpos Pointer to distribution functions at current lattice site for applying collision
in sitespeed Fluid velocity at lattice site
in omega Relaxation frequencies for fluids at lattice site
in omegab- Bulk relaxation frequencies for fluids at lattice site
ulk
in omega3 Third-order relaxation frequencies for fluids at lattice site
in omega4 Four-order relaxation frequencies for fluids at lattice site
in rho Macroscopic fluid densities at lattice site
in bodyforce | Forces to apply to each fluid at lattice site
in phasein- Phase indices for all fluid pairs at lattice site
dex
in threed Flag to indicate whether or not the lattice is three-dimensional (affects the direct forcing
term)

5.17 IbpFORCE.cpp

Module with routines to calculate non-constant interaction and heat buoyancy forces. (Header file available as
IbpFORCE.hpp.)

Calculates forces and other contributions to determine fluid interactions and Boussinesq buoyancy for heat con-
vection, i.e. any emergent force that does not remain constant during the simulation.

In the cases of Shan-Chen pseudopotential and Swift free-energy interactions, these can make fluids behave ac-
cording to specific equations of state:

¢ Ideal lattice gas:

P = pC;
e Shan-Chen 1993 model [118]:
2 Lo, 5 —-£
b = pcCs + §ngp0 (1 —€ po)

e Shan-Chen 1994 model [119]:

2p0

1
p=pc+ 56?9%6

¢ Qian model [106]:

c29050°
p=pc2+ 2IP0P
(po +p)
* Density model:
2, 1o o
P = pcs + icsgp
¢ Ideal gas:
p=pRT
* van der Waals:
pRT 2
= —a,
1—-0bp

5.17. IbpFORCE.cpp 211

DL_MESO Technical Manual, Release 2.7

Carnahan-Starling-van der Waals [16]:

L+¢+¢°— ¢3>)
p = pRT —ap
((1-0¢)°
Redlich-Kwong [110]:

b= pRT _ ap?
L=bp VT (1+bp)

Soave-Redlich-Kwong [128]:

_ pPRT ao (T, w) 02
Y 1+bp

p

Peng-Robinson [37] :

_ pRT ac (Ty, w) p?
1—bp 1-+2bp—b2p2

p

Carnahan-Starling-Redlich-Kwong [16]:
2

1+¢+¢?— ¢ ap
= pRT _ —
Per ((1—)) VT (1+ bp)

where R is the universal gas constant, a and b are species-dependent coefficients, « is a function dependent on the
ratio of temperature to critical temperature 7,, = T'/T, and acentric factor w, and ¢ = %p for Carnahan-Starling
equations of state. The temperatures used in some equatios of state can either be specified system-wide or at each
lattice point if heat effects are coupled to fluid flows with an additional lattice.

5.17.1 Functions

int finteractionForceZero()

Resets all interaction and heat forces to zero before calculations.

int fCalcPotential_ShanChen()

Calculates Shan-Chen pseudopotentials for each fluid at each lattice point.
int fCalclnteraction_ShanChen()

Calculates interaction forces for Shan-Chen pseudopotential model (including solid-fluid wetting forces) at
fluid points away from subdomain boundaries.

int fCalclnteraction_ShanChen_Boundary()

Calculates interaction forces for Shan-Chen pseudopotential model (including solid-fluid wetting forces) at
fluid points close to subdomain boundaries.

int fCalclnteraction_ShanChenQuadratic()

Calculates interaction forces for a quadratic Shan-Chen pseudopotential model (including solid-fluid wet-
ting forces) at fluid points away from subdomain boundaries.

int fCalclnteraction_ShanChenQuadratic_Boundary()

Calculates interaction forces for a quadratic Shan-Chen pseudopotential model (including solid-fluid wet-
ting forces) at fluid points close to subdomain boundaries.

int fInteractionForceShanChen()

Calculates interaction forces for all fluids based on the Shan-Chen pseudopodential model for parallel run-
ning.

212

Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

int fslnteractionForceShanChen()
Calculates interaction forces for all fluids based on the Shan-Chen pseudopodential model for serial running.
int fInteractionForceShanChenQuadratic()

Calculates interaction forces for all fluids based on the quadratic Shan-Chen pseudopodential model for
parallel running.

int fsInteractionForceShanChenQuadratic()

Calculates interaction forces for all fluids based on the quadratic Shan-Chen pseudopodential model for
serial running.

int fCalcPhaselndex_Lishchuk()

Calculate interfacial normal vectors for Lishchuk interaction model using non-local derivative calculations
at all fluid points away from subdomain boundaries.

int fsCalcPhaselndex_Lishchuk()

Calculate interfacial normal vectors for Lishchuk interaction model using non-local derivative calculations
at all fluid points including those in subdomain boundaries.

int fCalcPhaselndex_LishchukLocal()

Calculate interfacial normal vectors for Lishchuk interaction model using local derivative calculations at all
fluid points.

int fCalclnteraction_Lishchuk()

Calculates interaction forces between fluids for original Lishchuk interaction model for fluid points away
from subdomain boundaries.

int fCalclnteraction_Lishchuk_Boundary()

Calculates interaction forces between fluids for original Lishchuk interaction model for fluid points close to
subdomain boundaries.

int fCalclnteraction_LishchukSpencer()

Calculates interaction forces between fluids for Lishchuk-Spencer interaction model for fluid points away
from subdomain boundaries.

int fCalclnteraction_LishchukSpencer_Boundary()

Calculates interaction forces between fluids for Lishchuk-Spencer interaction model for fluid points close
to subdomain boundaries.

int fWalllnteractionForceLishchukLocal()
Calculates interaction forces between walls and fluids for Lishchuk interactions without force calculations.
int fInteractionForceLishchuk()

Calculates interaction forces for all fluids based on the original Lishchuk continuum-based interaction model
for parallel running.

int fsInteractionForceLishchuk()

Calculates interaction forces for all fluids based on the original Lishchuk continuum-based interaction model
for serial running.

int fInteractionForceLishchukSpencer()

Calculates interaction forces for all fluids based on the Lishchuk-Spencer continuum-based interaction
model for parallel running.

int fsInteractionForceLishchukSpencer()

Calculates interaction forces for all fluids based on the Lishchuk-Spencer continuum-based interaction
model for serial running.

5.17.

IbpFORCE.cpp 213

DL_MESO Technical Manual, Release 2.7

e int fCalcDensityGradient_Swift()

Calculates first- and second-order derivatives of fluid density for the one-fluid Swift free-energy model at
fluid points away from subdomain boundaries.

e int fsCalcDensityGradient_Swift()

Calculates first- and second-order derivatives of fluid density for the one-fluid Swift free-energy model at
all fluid points.

e int fCalcDensityConcentrationGradient_Swift()

Calculates first- and second-order derivatives of fluid density and concentration for the two-fluid Swift free-
energy model at fluid points away from subdomain boundaries.

e int fsCalcDensityConcentrationGradient_Swift()

Calculates first- and second-order derivatives of fluid density and concentration for the two-fluid Swift free-
energy model at all fluid points.

e int fCalcGradient_Swift()
Calculate density (and concentration) gradients for Swift free-energy interactions when running in parallel.
e int fsCalcGradient_Swift()
Calculate density (and concentration) gradients for Swift free-energy interactions when running in serial.
e int fCalcForce_Boussinesq()
Calculates buoyancy-driven thermal convection force according to the Boussinesq approximation.
* int fConvectionForceBoussinesq()

Calculates buoyancy-driven thermal convection forces at all fluid lattice points according to the Boussinesq
approximation.

5.17.2 Function Documentation

fCalcDensityConcentrationGradient_Swift()

int fCalcDensityConcentrationGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density and concentration for the two-fluid Swift
free-energy interaction model at all fluid lattice points away from the edges of the processor’s subdomain using
either a stencil to reduce spurious microcurrents [102] or central difference and one-sided difference approxima-
tions for wet boundary nodes and grid points next to bounce-back boundary points. A quadratic surface wetting
potential in density and concentration can also be applied, which modifies density and concentration derivatives
at or near boundary points [13][103]. Since boundary halo points are omitted by this subroutine (intended for use
in parallel running), density and concentration derivatives for these lattice points have to be communicated from
neighbouring processors.

fCalcDensityGradient_Swift()

int fCalcDensityGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density for the one-fluid Swift free-energy interac-
tion model at all fluid lattice points away from the edges of the processor’s subdomain using either a stencil to
reduce spurious microcurrents [102] or central difference and one-sided difference approximations for wet bound-
ary nodes and grid points next to bounce-back boundary points. A quadratic surface wetting potential in density
can also be applied, which modifies density derivatives at or near boundary points [13][103]. Since boundary halo
points are omitted by this subroutine (intended for use in parallel running), density derivatives for these lattice
points have to be communicated from neighbouring processors.

214 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCalcForce_Boussinesq()

int fCalcForce_Boussinesq (long tpos,
double temph,
double templ)

Calculates temperature-dependent forces at a given lattice point based on the Boussinesq approximation [48]:

L (T-T
Fo— g5 (.=)

where Ty = % (T + T;) is the reference temperature, T}, and T; are respectively the high and low system temper-
atures and ¢ is the volumetric expansion coefficient for fluid a. (The product of gravitational acceleration and
volumetric expansion g3 is supplied by the user.)

Parameters

in | tpos Position of current boundary lattice site (in one-dimensional form)
in | temph | High temperature value for system 77},
in | templ | Low temperature value for system 7;

fCalcGradient_Swift()

int fCalcGradient_Swift ()

Calculates first-order and second-order density (and concentration) derivatives at all lattice points apart from
boundary halo grid points for Swift free-energy interactions [136][135]. This subroutine avoids any lattice points
that make up the boundary halo when running in parallel: the gradients for these points are to be communicated
from neighbouring processors prior to collisions.

fCalcInteraction_Lishchuk()

int fCalcInteraction_Lishchuk (int xpos,
int ypos,
int zpos)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk interaction scheme [81]:
ab 1 N
F* = §gabKaprab

where K., = —Vg - gy is the local curvative between fluids a and b and the first-order differential of phase
index can be obtained using the interfacial normal, densities of the two fluids and of all fluids and the segregation
parameter between the two fluids :math:beta”{ab}" [50]:

4 ab a bA
vp(]z\;): Bpé) P Nab-

Forces are also calculated and applied for surface wetting effects by assuming fluid O is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

= 1 20wait,a 82400 . .)
Fue = _igwa”vav&wa“pé\; = % (R (Roa * Tow) — Moa)

where 1, is the normal vector to the solid surface.
This subroutine omits calculations of interfacial curvatures and forces at grid points close to the subdomain bound-
aries, as the former requires non-local gradient calculations that would use modulo functions to find neighbouring

grid points: as such, this subroutine can be used for parallel calculations, although communication of interfacial
forces for boundary halo points from neighbourint processors is required prior to collisions.

5.17. IbpFORCE.cpp 215

DL_MESO Technical Manual, Release 2.7

Parameters

in | xpos | Position of lattice point (Xx-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)

fCalcInteraction_Lishchuk_Boundary()

int fCalcInteraction_Lishchuk_Boundary (int xpos,
int ypos,
int zpos)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk interaction scheme [81]:

- 1

F = 2 ganKanV gy
where K., = —Vg - figp is the local curvative between fluids a and b and the first-order differential of phase
index can be obtained using the interfacial normal, densities of the two fluids and of all fluids and the segregation
parameter between the two fluids :math:beta*{ab}" [50]:

4ﬂabpapb .
vpé\; = Tnab.

Forces are also calculated and applied for surface wetting effects by assuming fluid O is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

= 1 N 2Qwa,aB%0%0% . .

Fq?;it = _§gwall,av5’,wallp()a = = (;3 (nw (nOa : nw) - nOa)
where 7., is the normal vector to the solid surface.
This subroutine calculates interfacial curvatures and forces at grid points close to the subdomain boundaries: the
former requires non-local gradient calculations with modulo functions to find neighbouring grid points: as such,
this subroutine can be used for serial calculations.

Parameters

in | xpos | Position of lattice point (x-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)

fCalcInteraction_LishchukSpencer()

int fCalcInteraction_LishchukSpencer (int xpos,
int ypos,
int zpos,
double * rho)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk-Spencer interaction scheme
[129]:

a b
Fab = _29abﬁabv . (ppﬁpﬁabﬁab>

where 37 is the segregation parameter between the two fluids. Compared to the standard (original) Lishchuk
interaction force, no interfacial curvature is required and correct behaviour can thus be achieved for lattice points

ab
with more than two fluids, although a reduction of density of up to % can be observed in the interfacial regions

between fluids.

216 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

Forces are also calculated and applied for surface wetting effects by assuming fluid O is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

= 1 29waia 3200
ngt = *§gwall,avs,wallpé\; = %ﬁp (le (Tl()a . ’Ilw) - TlOa)

where 1, is the normal vector to the solid surface.

This subroutine omits calculations of interfacial curvatures and forces at grid points close to the subdomain bound-
aries, as the former requires non-local gradient calculations that would use modulo functions to find neighbouring
grid points: as such, this subroutine can be used for parallel calculations, although communication of interfacial
forces for boundary halo points from neighbourint processors is required prior to collisions.

Parameters

in | xpos | Position of lattice point (x-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)
in | rho Densities of fluids at lattice point

fCalcinteraction_LishchukSpencer_Boundary()

int fCalcInteraction_LishchukSpencer_Boundary (int xpos,
int ypos,
int zpos,
double * rho)

Calculates the interaction forces between pairs of immiscible fluids for the Lishchuk-Spencer interaction scheme
[129]:

b
= PP
Fab = _29abﬁabv : (p3 nabnab)

where 37 is the segregation parameter between the two fluids. Compared to the standard (original) Lishchuk
interaction force, no interfacial curvature is required and correct behaviour can thus be achieved for lattice points

ab
with more than two fluids, although a reduction of density of up to % can be observed in the interfacial regions
between fluids.

Forces are also calculated and applied for surface wetting effects by assuming fluid O is the background fluid and
wets the walls, which applies an uncompensated Young stress on each fluid [28]:

o 1 2 g BOa 0 a
0 N wall,a pp . R N R
Fw[ét = _igwall,avs,wallpoa = p?’i (nw (n0a . le) — ’I’Loa)
where 7, is the normal vector to the solid surface.
This subroutine calculates interfacial curvatures and forces at grid points close to the subdomain boundaries: the
former requires non-local gradient calculations with modulo functions to find neighbouring grid points: as such,
this subroutine can be used for serial calculations.

Parameters

in | xpos | Position of lattice point (x-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)
in | tho Densities of fluids at lattice point

5.17. IbpFORCE.cpp 217

DL_MESO Technical Manual, Release 2.7

fCalcInteraction_ShanChen()

int fCalcInteraction_ShanChen (int xpos,
int ypos,
int zpos)

Determines interaction forces for the Shan-Chen pseudopotential model [118][119] based on gradients of pseu-
dopotentials:

ﬁ (f f Zgabzwzw x‘i‘ez

at all lattice points away from the edges of the subdomain held by each processor to avoid both links crossing
periodic boundaries and the use of modulo functions to find neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function s (&)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

* Density-based interactions [91]:

ﬁg)et (f) = 7ga,wallp Z w; S + 62

¢ Potential-based interactions [108][109]:

F_i(zl)et = *ga,wallﬁba (f) Z w;s (f+ él) e

* Screened potential interactions [80]:

Fl?)et = _ga,wall¢ Z w; @ 37 + 81) é;

Parameters

in | xpos | Position of lattice point (x-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)

fCalclInteraction_ShanChen_Boundary()

int fCalcInteraction_ShanChen_Boundary (int xpos,
int ypos,
int zpos)

Determines interaction forces for the Shan-Chen pseudopotential model [118][119] based on gradients of pseu-
dopotentials:

Fo (&) = =4 (1) gap D with (& + &) &
b 7

at all lattice points close to the edges of the subdomain held by each processor, which require the use of modulo
functions to find neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function s (&)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

* Density-based interactions [91]:

Fier (&) = =gawanp™ (sz T4e)e

218 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

¢ Potential-based interactions [108][109]:

Fo o = —Gawand® (F) Y wis (& +é;) ¢

* Screened potential interactions [80]:

Faet = —Jawatr” Zﬂh(b“ (Z) s (Z+&;)é;

Parameters

in | xpos | Position of lattice point (x-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)

fCalclnteraction_ShanChenQuadratic()

int fCalcInteraction_ShanChenQuadratic (int xpos,
int ypos,
int zpos)

Determines interaction forces for a form of the Shan-Chen pseudopotential model with quadratic pseudopotential
terms [70][43][61]:

F(7) = —y* (& Zﬂabgawalw é; — %Zgab (1 — Bab) Z“’Z (¥? (% + éi))Q éi
b i

where (3, is a weighting factor between linear and quadratic pseudopotential terms that can be adjusted for
different equations of state. These forces are calculated at all lattice points away from the edges of the subdomain
held by each processor to avoid both links crossing periodic boundaries and the use of modulo functions to find
neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function s (&)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

* Density-based interactions [91]:

ﬁf}et (f) = _ga,wallp Zwl f é é

¢ Potential-based interactions [108][109]:

F oy = —Gawand® (B) > wis (T +¢;) ¢

* Screened potential interactions [80]:
For = —Gawand® (F) > wig® (%) s (& + &) é;
i

Parameters

in | xpos | Position of lattice point (x-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)

5.17. IbpFORCE.cpp 219

DL_MESO Technical Manual, Release 2.7

fCalcInteraction_ShanChenQuadratic_Boundary()

int fCalcInteraction_ShanChenQuadratic_Boundary (int xpos,
int ypos,
int zpos)

Determines interaction forces for a form of the Shan-Chen pseudopotential model with quadratic pseudopotential
terms [70][43][61]:

ﬁ (_Qpa Z Babgab Zwﬂ/} i 7; - % Zgab (]. — Bab) ZU}Z (’Q[Jb (f—f— éz))2 éi
b i

where (3, is a weighting factor between linear and quadratic pseudopotential terms that can be adjusted for
different equations of state. These forces are calculated at all lattice points close to the edges of the subdomain
held by each processor, which require the use of modulo functions to find neighbouring grid points.

Surface wetting forces can also be calculated at grid points next to boundaries by using a switching function s (&)
to represent surfaces (1) or fluid (0) with one of the following wetting forces:

* Density-based interactions [91]:

Fier (&) = ~gawanp™ (sz T4e)e

¢ Potential-based interactions [108][109]:
Ft(jet - ga,wall(bu (f) Z w;Ss (f‘f' éz) é

* Screened potential interactions [80]:
ﬁg)et = 7ga,wall¢a (f) Zwl'(,ba (f) S (Ii"+ éz) é1

Parameters

in | xpos | Position of lattice point (x-component)
in | ypos | Position of lattice point (y-component)
in | zpos | Position of lattice point (z-component)

fCalcPhaselndex_Lishchuk()

int fCalcPhaseIndex_Lishchuk ()

Calculates the interfacial normal vectors between pairs of fluid species required for Lishchuk interactions [81] by
determing phase indices at every available grid point:

Pab =

using stencils to approximate first-order gradients at each grid point [75], ordinarily one that uses values at nearest
neighbouring grid points:

1
N (=\ N /=2, 27\~
vpab (17) ~ 2A Zwipab (.13 + 61') €i,
(A -
and normalising these gradients to obtain the interfacial normals:
N
A b= vpab
ao — N |°
|vpab|
This subroutine omits calculations of phase index gradients and interfacial normals at grid points close to the
subdomain boundaries to avoid using modulo functions to find neighbouring grid points: as such, this subroutine

can be used for parallel calculations, although communication of phase indices for boundary halo points from
neighbouring processors is required.

220 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fCalcPhaselndex_LishchukLocal()

int fCalcPhaselIndex_LishchukLocal ()

Calculates the interfacial normal vectors between pairs of fluid species required for Lishchuk interactions [81] by
approximating phase indices for each lattice link by using distribution functions [130]:

O
ab,i fza+flb7

using stencils to approximate first-order gradients at each grid point:

- 1 o A
Voo, (F) ~ 2AL Z wipfz\g,i (2) &,

i
and normalising these gradients to obtain the interfacial normals:

fy = Vol
oy = —Pab_
Vol

While the approximated phase index differentials may not be very accurate, the resulting interfacial normals are
generally sufficiently accurate for Lishchuk interaction calculations. There is a risk of the approximated phase
indices being out of range, so the gradients are only calculated when |P¢%| < 1 — €, where € is a small value. As
this subroutine only requires distribution functions at each lattice point, these calculations can be carried out safely
in boundary halos and thus no communication of interfacial normals from neighbouring processors into halos is
required.

fCalcPotential_ShanChen()

int fCalcPotential_ShanChen ()

Calculates the required pseudopotentials ¢* for each fluid for all available lattice points to enable Shan-Chen
interaction forces [118][119] to be calculated. Specific equations of state can be obtained by specifying the form
of pseudopotential ¢* to provide it [155].

fConvectionForceBoussines(()

int fConvectionForceBoussinesqg (double temph, double templ)

Calculates temperature-dependent forces at all fluid lattice points (excluding wet boundary nodes covered by
boundary conditions) based on the Boussinesq approximation [48], specifying T}, and 7 as the high and low
system temperatures respectively. No communication of thermal forces is required and this subroutine can thus be
used for both serial and parallel running.

Parameters

in | temph | High temperature value for system 77,
in | templ | Low temperature value for system 7;

5.17. IbpFORCE.cpp 221

DL_MESO Technical Manual, Release 2.7

finteractionForceLishchuk()

int fInteractionForceLishchuk ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the original Lishchuk continuum-based interaction model. This subroutine avoids any lattice points that
make up the boundary halo when running in parallel: the forces for these points are to be communicated from
neighbouring processors prior to collisions.

finteractionForceLishchukSpencer()

int fInteractionForceLishchukSpencer ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the Lishchuk-Spencer continuum-based interaction model. This subroutine avoids any lattice points that
make up the boundary halo when running in parallel: the forces for these points are to be communicated from
neighbouring processors prior to collisions.

finteractionForceShanChen()

int fInteractionForceShanChen ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the Shan-Chen pseudopotential model. This subroutine avoids any lattice points that make up the boundary
halo when running in parallel: the forces for these points are to be communicated from neighbouring processors
prior to collisions.

finteractionForceShanChenQuadratic()

int fInteractionForceShanChenQuadratic ()

Calculates the interaction forces acting on all fluids at all grid points away from processor subdomain boundaries
using the Shan-Chen pseudopotential model with quadratic psuedopotential terms. This subroutine avoids any
lattice points that make up the boundary halo when running in parallel: the forces for these points are to be
communicated from neighbouring processors prior to collisions.

finteractionForceZero()

int fInteractionForceZero ()

Sets arrays for interaction and heat forces to zero before any of these are calculated during the current timestep.
This routine is only required if mesophase interactions and/or Boussinesq buoyancy forces are calculated.

fsCalcDensityConcentrationGradient_Swift()

int fsCalcDensityConcentrationGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density and concentration for the two-fluid Swift
free-energy interaction model at all fluid lattice points - both away from and at the edges of the processor’s subdo-
main - using either a stencil to reduce spurious microcurrents [102] or central difference and one-sided difference
approximations for wet boundary nodes and grid points next to bounce-back boundary points. A quadratic sur-
face wetting potential in density and concentration can also be applied, which modifies density and concentration
derivatives at or near boundary points [13][103]. Modulo functions are used to find neighbouring grid points
across periodic boundaries: this subroutine is therefore suitable for serial calculations.

222 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fsCalcDensityGradient_Swift()

int fsCalcDensityGradient_Swift ()

Calculates the first-order and second-order derivatives of fluid density for the one-fluid Swift free-energy interac-
tion model at all fluid lattice points - both away from and at the edges of the processor’s subdomain - using either
a stencil to reduce spurious microcurrents [102] or central difference and one-sided difference approximations for
wet boundary nodes and grid points next to bounce-back boundary points. A quadratic surface wetting potential
in density can also be applied, which modifies density derivatives at or near boundary points [13][103]. Modulo
functions are used to find neighbouring grid points across periodic boundaries: this subroutine is therefore suitable
for serial calculations.

fsCalcGradient_Swift()

int fsCalcGradient_Swift ()

Calculates first-order and second-order density (and concentration) derivatives at all lattice points - including
boundary halo grid points - for Swift free-energy interactions [136][135]. The gradient calculations at subdomain
boundaries use modulo functions to find neighbouring points at opposite sides of the lattice, which are required
for serial running when no boundary halo is in use.

fsCalcPhaselndex_Lishchuk()

int fsCalcPhaseIndex_Lishchuk ()

Calculates the interfacial normal vectors between pairs of fluid species required for Lishchuk interactions [81] by
determing phase indices at every available grid point:

N_ P =p
Pab = pa ¥ pb7
using stencils to approximate first-order gradients at each grid point [75] , ordinarily one that uses values at nearest

neighbouring grid points:

Vg, (F) ~

1 S oA A
AL Zwmi\@ (T+é)é,

i
and normalising these gradients to obtain the interfacial normals:

o — VPay
b = .
Vo

This subroutine includes calculations of phase index gradients and interfacial normals at grid points close to the
subdomain boundaries, which requires modulo functions to find neighbouring grid points: as such, this subroutine
can be used for serial calculations where no boundary halos are in use.

fsinteractionForceLishchuk()

int fsInteractionForceLishchuk ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the original Lishchuk continuum-based interaction model. The force calculations at subdomain
boundaries use modulo functions to find neighbouring points at opposite sides of the lattice, which are required
for serial running when no boundary halo is in use.

5.17. IbpFORCE.cpp 223

DL_MESO Technical Manual, Release 2.7

fsinteractionForceLishchukSpencer()

int fsInteractionForcelLishchukSpencer ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the Lishchuk-Spencer continuum-based interaction model. The force calculations at subdomain
boundaries use modulo functions to find neighbouring points at opposite sides of the lattice, which are required
for serial running when no boundary halo is in use.

fsinteractionForceShanChen()

int fsInteractionForceShanChen ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the Shan-Chen pseudopotential model. The force calculations at subdomain boundaries use
modulo functions to find neighbouring points at opposite sides of the lattice, which are required for serial running
when no boundary halo is in use.

fsinteractionForceShanChenQuadratic()

int fsInteractionForceShanChenQuadratic ()

Calculates the interaction forces acting on all fluids at all grid points - both at and away from processor subdomain
boundaries using the Shan-Chen pseudopotential model with quadratic psuedopotential terms. The force calcula-
tions at subdomain boundaries use modulo functions to find neighbouring points at opposite sides of the lattice,
which are required for serial running when no boundary halo is in use.

fWalllnteractionForceLishchukLocal()

int fWallInteractionForceLishchukLocal ()

Calculates and applies forces for surface wetting effects by assuming fluid O is the background fluid and wets the
walls, which applies an uncompensated Young stress on each fluid [28]:

= 1 2gwalt,a 3" p°p*
Fq?;it = _§gwall,avs,wallpé\¢lz = %

(ﬁw (’ﬁan . ﬁw) - ﬁOa)

where 7, is the normal vector to the solid surface. This subroutine is required for variants of the Lishchuk algo-
rithm that do not calculate interaction forces but apply direct forcing terms in collisions, i.e. Lishchuk ‘Spencer
tensor’ [129] and the fully local Lishchuk [130] algorithms. Since these forces do not require gradients of the in-
terfacial normals, they can be calculated for all lattice points including boundary halos and thus no communication
between neighbouring processors is required.

5.18 IbpRHEOLOGY.cpp

Module with routines to apply various rheological models for LBE calculations. (Header file available as IbpRHE-
OLOGY.hpp.)

Functions and subroutines to calculate shear rates at each lattice site and calculate relaxation frequencies based
on the shear rates to apply specific rheological models to the fluids in a LBE calculation. Rate-of-strain tensors
can be determined using momentum flux tensors [12], which can be calculated locally at each lattice site using its
distribution functions but depend upon the relaxation frequencies used for the previous timestep:

s - (g peay _ L (OQug | Ouq
Saﬂ* 2pAt ;e%aelvB;A” (fj f])7 2 <8.Ta +6:L‘ﬂ)

224 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

The shear rate is obtained from the rate-of-strain tensor:

v = QZSagsaﬂ
V a,p

and the shear rate can then be used in various rheological models to find the gradient of shear stress with respect
to shear rate (i.e. viscosity) for each lattice site.

5.18.1 Functions

double fGetRelaxationFrequency()

Calculates relaxation frequency for a fluid using specified rheological models.

int fGetShearRateBGK()

Calculates shear rates at specified lattice site when using BGK collisions for compressible fluids.
int fGetShearRateBGKIncom()

Calculates shear rates at specified lattice site when using BGK collisions for incompressible fluids.
int fGetShearRateTRT()

Calculates shear rates at specified lattice site when using TRT collisions for compressible fluids.
int fGetShearRateTRTIncom()

Calculates shear rates at specified lattice site when using TRT collisions for incompressible fluids.
int fGetShearRateMRT()

Calculates shear rates at specified lattice site when using MRT collisions for compressible fluids.
int fGetShearRateMRTIncom()

Calculates shear rates at specified lattice site when using MRT collisions for incompressible fluids.
int fGetShearRateCLBED2Q9()

Calculates shear rates at specified lattice site when using CLBE collisions for compressible fluids with
D2Q9 Iattice.

int fGetShearRateCLBED3Q19()

Calculates shear rates at specified lattice site when using CLBE collisions for compressible fluids with
D3Q19 lattice.

int fGetShearRateCLBED3Q27()

Calculates shear rates at specified lattice site when using CLBE collisions for compressible fluids with
D3Q27 lattice.

int fGetShearRateBGKSwift()

Calculates shear rates at specified lattice site when using BGK collisions for compressible fluids with Swift
free-energy interactions.

int fGetShearRateTRTSwift()

Calculates shear rates at specified lattice site when using TRT collisions for compressible fluids with Swift
free-energy interactions.

int fGetShearRateMRTSwift()

Calculates shear rates at specified lattice site when using MRT collisions for compressible fluids with Swift
free-energy interactions.

int fGetSystemOmega()

Calculates relaxation frequencies for all lattice sites based on shear rates and rheological models.

5.18.

IbpRHEOLOGY.cpp 225

DL_MESO Technical Manual, Release 2.7

e int fGetSystemOmegaSimple()

Calculates relaxation frequencies for all lattice sites based on rheological models without calculating shear
rates.

5.18.2 Function Documentation

fGetRelaxationFrequency()

double fGetRelaxationFrequency (int typ,

double gamma,
double rho,
double a,
double b,
double c,
double d,
double n)

Calculates and returns the relaxation frequency of a fluid at a given lattice point from its local shear rate, using a
rheological model that relates the shear stress on the fluid to the shear rate. The following rheological models are
available:

» Simple Newtonian fluid (constant kinematic viscosity):
B = pto

* (Density-dependent) Newtonian fluid (constant dynamic viscosity):

H= Mo
* Power-law fluid:
p=Kqy"
* Bingham plastic [11]:
o
p=po + ==
» Herschel-Bulkley plastic [55]:
pw= K,yn—l + &
5

e Casson fluid [19]:

e Carreau-Yasuda fluid [152]:

n—1

= oo + (f0 — Hoo) (1 + (/W)d) ’

with an additional exponential decay function added to models with reciprocals of shear rates (Bingham plastic,
Herschel-Bulkley plastic and Casson fluid) to avoid discontinuities when shear stresses are close to yield values
[98].

Parameters

226 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

in | typ Type of rheological model for specified fluid
in | gamma | Shear stress for fluid at lattice site ¥
in | tho Density of fluid at lattice site
in | a Parameter a for rheological model (v, (o OF fico)
in | b Parameter b for rheological model (o, o or (po — foo))
in | c Parameter c for rheological model (A or exponential decay parameter for models with yield
stresses)
in | d Parameter d for rheological model (2\/m or d)
in | n Parameter n (power-law index) for rheological model (n)
fGetShearRateBGK()

int fGetShearRateBGK (double x shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using BGK single relaxation time collisions for mildly compressible
fluids:
S .= SLZ(JC — fE) e e
af 2P At 7 i i,aC4,8

)

where the relaxation frequency for the previous timestep w is used to convert the momentum flux tensor to a rate-
of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation
frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in | tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateBGKIncom()

int fGetShearRateBGKIncom (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using BGK single relaxation time collisions for fully incompressible
fluids:

3w eq
- M Z (fl - fl)ez,aez,ﬁ

)

Sas

where the relaxation frequency for the previous timestep w is used to convert the momentum flux tensor to a rate-
of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation
frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in | tpos Position of current boundary lattice site (in one-dimensional form)

5.18. IbpRHEOLOGY.cpp 227

DL_MESO Technical Manual, Release 2.7

fGetShearRateBGKSwift()

int fGetShearRateBGKSwift (double % shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using BGK single relaxation time collisions for mildly compressible
fluids with Swift free-energy interactions:

3w
Sog=—— C_fely e o
ap QpAtZ(fl fz) i,aC4,8
?
where the relaxation frequency for the previous timestep w is used to convert the momentum flux tensor to a rate-
of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation

frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in | tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateCLBED2Q9()

int fGetShearRateCLBED2Q9 (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using cascaded LBE (CLBE) collisions for mildly compressible fluids
with the two-dimensional D2Q9 lattice:

3 _ _ e
af = _Mzi:ei,aeiﬁzj: (T'NTIANT),; (£ — £57)

|95)

where the relaxation frequency for the previous timestep w (along with other relaxation frequencies, including
the values for bulk viscosity, third-order and fourth-order central moments) is used to convert the momentum flux
tensor to a rate-of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate
new relaxation frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateCLBED3Q19()

int fGetShearRateCLBED3Q19 (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using cascaded LBE (CLBE) collisions for mildly compressible fluids
with the three-dimensional D3Q19 lattice:

3 _ _ €
af = _M;%aeiﬁz} (TT'NTIANT),; (f; — £7)

n

where the relaxation frequency for the previous timestep w (along with other relaxation frequencies, including
the values for bulk viscosity, third-order and fourth-order central moments) is used to convert the momentum flux
tensor to a rate-of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate
new relaxation frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

228 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

out | shearrate | Shear rates for all fluids at specified grid point
in | tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateCLBED3Q27()

int fGetShearRateCLBED3Q27 (double x shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using cascaded LBE (CLBE) collisions for mildly compressible fluids
with the three-dimensional D3Q27 lattice:

3 _ —
“f = 7oA zl.:ei,aeiﬁ z]: (T'NTIANT),, (f5 - /37)

W

where the relaxation frequency for the previous timestep w (along with other relaxation frequencies, including
the values for bulk viscosity, third-order and fourth-order central moments) is used to convert the momentum flux
tensor to a rate-of-strain tensor. (This is an iterative calculation since the resulting shear rates are used to calculate
new relaxation frequencies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateMRT()

int fGetShearRateMRT (double x shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using multiple relaxation time (MRT) collisions [20] for mildly com-
pressible fluids:

CQ

= themmZ TAT),, (4 = £7°)

where the relaxation frequency for the previous timestep w (along with other relaxation frequencies, including the
value for bulk viscosity) is used to convert the momentum flux tensor to a rate-of-strain tensor. (This is an iterative
calculation since the resulting shear rates are used to calculate new relaxation frequencies, although convergence
is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateMRTIncom()

int fGetShearRateMRTIncom (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using multiple relaxation time (MRT) collisions [20] for fully incom-
pressible fluids:

S0 =y s X (04T, (4 1

5.18. IbpRHEOLOGY.cpp 229

DL_MESO Technical Manual, Release 2.7

where the relaxation frequency for the previous timestep w (along with other relaxation frequencies, including the
value for bulk viscosity) is used to convert the momentum flux tensor to a rate-of-strain tensor. (This is an iterative
calculation since the resulting shear rates are used to calculate new relaxation frequencies, although convergence
is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in | tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateMRTSwift()

int fGetShearRateMRTSwift (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using multiple relaxation time (MRT) collisions [20] for mildly com-
pressible fluids with Swift free-energy interactions:

3 e
S0 = ~gpn D i 20 (TIAT) (5 = ')

where the relaxation frequency for the previous timestep w (along with other relaxation frequencies, including the
value for bulk viscosity) is used to convert the momentum flux tensor to a rate-of-strain tensor. (This is an iterative
calculation since the resulting shear rates are used to calculate new relaxation frequencies, although convergence
is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point

in | tpos Position of current boundary lattice site (in one-dimensional form)
fGetShearRateTRT()

int fGetShearRateTRT (double x shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using two relaxation time (TRT) collisions for mildly compressible fluids:

3 eq eq
S =~y s [0 (= -+ (5=)]

where the symmetric relaxation frequency for the previous timestep w™ (along with the antisymmetric relaxation
frequency calculated using the ‘magic number’) is used to convert the momentum flux tensor to a rate-of-strain
tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation frequen-
cies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

230 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

fGetShearRateTRTIncom()

int fGetShearRateTRTIncom (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using two relaxation time (TRT) collisions for fully incompressible fluids:

3 eq eq
o =~ Zﬁ [wp (Fi = F7) + wm (£ = £;7)]

where the symmetric relaxation frequency for the previous timestep w™ (along with the antisymmetric relaxation
frequency calculated using the ‘magic number’) is used to convert the momentum flux tensor to a rate-of-strain
tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation frequen-
cies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in | tpos Position of current boundary lattice site (in one-dimensional form)

fGetShearRateTRTSwift()

int fGetShearRateTRTSwift (double * shearrate, long tpos)

Calculates the shear rates of all fluids at a given lattice site by determining rate-of-strain tensors from locally-
calculated momentum flux tensors when using two relaxation time (TRT) collisions for mildly compressible fluids
with Swift free-energy interactions:

3

Sap = T 2pAt

> eiacip [wp (fi = F79) +wm (f5 — £9)]

%

where the symmetric relaxation frequency for the previous timestep w™ (along with the antisymmetric relaxation
frequency calculated using the ‘magic number’) is used to convert the momentum flux tensor to a rate-of-strain
tensor. (This is an iterative calculation since the resulting shear rates are used to calculate new relaxation frequen-
cies, although convergence is normally obtained within a few timesteps.)

Parameters

out | shearrate | Shear rates for all fluids at specified grid point
in tpos Position of current boundary lattice site (in one-dimensional form)

fGetSystemOmega()

int fGetSystemOmega ()

Calculates the shear rates of all fluids at all lattice sites and the relaxation frequencies for the fluids using the
shear rates with rheological models. This subroutine selects which shear rate calculation routine to use and how
to calculate the relaxation frequencies based on collision type, whether or not the fluids are compressible and
whether or not Swift free-energy interactions are in use. Since shear rates are calculated locally at each lattice site,
this routine can be applied to all lattice sites (including boundary halo points).

5.18. IbpRHEOLOGY.cpp 231

DL_MESO Technical Manual, Release 2.7

fGetSystemOmegaSimple()

int fGetSystemOmegaSimple ()

Calculates the relaxation frequencies of all fluids at all lattice sites using rheological models that do not depend
on shear rate (i.e. Newtonian fluid models for constant kinematic or dynamic viscosity). This subroutine selects
how to calculate the relaxation frequencies based on whether or not the fluids are compressible and whether or not
Swift free-energy interactions are in use. This routine can be applied to all lattice sites (including boundary halo
points).

5.19 IbplO.cpp

Module with routines to read input files, print simulation information to standard output and write simulation
snapshots. (Header file available as 1bpIO.hpp.)

Subroutines to read input files and set up LBE simulations based on user specifications, print summary of simula-
tion input, fluid masses and system momentum periodically, and write snapshots of simulation to output files.

5.19.1 Functions

e int fDefineSystem()
Reads in essential LBE calculation parameters from a system data file.
* int flnputParameters()
Reads system parameters from system data file.
e int fReadSpace2D()
Reads space parameters (boundary conditions) from a data file for a two-dimensional system.
* int fReadSpace3D()
Reads space parameters (boundary conditions) from a data file for a three-dimensional system.
e int fReadSpaceParameter()
Reads space parameters (boundary conditions) from a data file.
e int fReadlnitialState2D()
Reads initial simulation state from a data file for a two-dimensional system.
e int fReadlnitialState3D()
Reads initial simulation state from a data file for a three-dimensional system.
e int fReadlnitialState()
Reads initial simulation state from a data file.
e int fSetoffSteer()
Creates file to prevent reading in input files when using computational steering (in serial).
e int fCheckSteer()
Checks for file indicating steering is occurring and reads in input files if it does not exist (in serial).
* int fPrintSystemInfo()
Prints system information to standard output prior to commencing LBE simulation.
e int fPrintParameters()

Prints parameters for LBE simulation to standard output.

232 Chapter 5. DL_MESO_LBE Code Description

DL_MESO Technical Manual, Release 2.7

e int fPrintEndEquilibration()

Prints message indicating end of system equilibration.
e int fPrintEarlylermination()

Prints message indicating simulation has been terminated early.
e int fPrintDomainMass()

Calculates and prints total and individual fluid masses in subdomain.
e int fPrintDomainMomentum()

Calculates and prints total fluid momentum in subdomain.
e int fsCreatelOGroups()

Creates I/O group to gather together output data for writing to files during serial calculations.
e int fOutput()

Outputs all system data in the required format at user-specified intervals.

5.19.2 Function Documentation

fCheckSteer()

int fCheckSteer ()

Checks for the existence of a file called notsteer, which was created to prevent DL_MESO_LBE from starting a
new simulation when computaional steering is applied. If the files does not exist, read in system and space property
files. This routine is for serial calculations: an atlnerative routine exists for parallel running - fMPICheckSteer() -
but neither routine is currently in use in the main DL_MESO_LBE code.

fDefineSystem()

int fDefineSystem (const char ~ filename = "lbin.sys")

Reads calculation parameters (lattice scheme, types of collision and forcing, mesophase interaction algorithms,
numbers of fluids, solutes, temperature scalars and phase field order parameters, the size of the grid, if fluids are
fully incompressible, boundary halo size, whether a simulation is being restarted, output file type) from an input
system file. Checks are carried out to ensure the selected combinations of lattice scheme, collisions, mesophase
interactio algorithms etc. are viable for calculations. The lattice scheme, numbers of fluids, solutes, temperature
fields and phase fields, grid size and boundary halo size must be specified and read by this subroutine.

Parameters

] in \ filename \ Name of input system file (default: 1bin.sys) ‘

flnputParameters()

int fInputParameters (const char » filename = "lbin.sys")

Reads additional parameters for LBE simulation (e.g. numbers of timesteps, relaxation times for fluids, initial
and boundary conditions for system, options to combine out