
The Euler Revolutions: Rotational Motion in the
Laboratory Frame II.

W. Smith, Computational Science and Engineering Department,
Daresbury Laboratory, Warrington WA4 4AD, United Kingdom (E-mail:

w.smith@dl.ac.uk)

Abstract

In this article we describe a new algorithm for rotational motion in
molecular dynamics simulations based on an earlier proposed scheme for
rigid bodies. The new algorithm requires neither quaternions nor Euler
angles and works by updating the local Cartesian axes of the rotating
body, the components of which also provide the rotation matrix.

Introduction

The first article in this series [1] examined the physics of torque driven
rotational motion in both the laboratory frame and the principal frame in
which the moment of inertia tensor is diagonal. The relationship between
the two descriptions was discussed and it was suggested that, for
molecular dynamics, in which integration of the equations of motion is
entirely numerical, working in the principal frame was not necessarily the
best option. This theme was expanded in the second article [2] and a new
algorithm for rigid molecules was presented that was couched entirely in
the laboratory frame. Molecular orientation was implicitly defined by the
position vectors of the atoms in a molecule with respect to the molecular
centre of mass. In consequence neither Euler angles nor quaternions were
needed. This third article examines a variant of the algorithm presented in
[2] which is appropriate for other kinds of rigid body besides those defined
as assemblies of point particles, such as Gay-Berne ellipsoids [3] or
Gaussian molecules [4]. The application of the algorithm to linear
molecules is also discussed.

In the following section we outline the basics of rotational motion and
present key equations. These will not be fully derived here, so the reader
is directed to our previous articles [1,2] and to a more advanced text [5]
if a more detailed background is required.

The Rotational Equations of Motion for Rigid Molecules

The algorithm we describe here is relevant to a rigid body with a three-
dimensional shape. It is characterised by a total mass, M , and a
moment of inertia tensor, I , which is a 3×3 matrix with components
that vary with time. The molecule's centre of mass has a position R⃗ in
space, a momentum P⃗ and a translational velocity V⃗ . The molecule
also rotates about its centre of mass with an angular momentum J⃗ and
angular velocity ω⃗ . In this algorithm all the vectors and tensors are
defined in the laboratory frame of reference.

mailto:w.smith@dl.ac.uk

The laboratory frame is defined by mutually orthogonal unit vectors
e⃗1 , e⃗2 , e⃗3 , fixed in space. A general vector, v⃗ , with components
(v1 , v2 , v3) is therefore written as

v⃗=v1 e⃗1+v2 e⃗ 2+v3 e⃗ 3 . (1)

The local frame of a rotating body is also based on a set mutually
orthogonal unit vectors, e⃗1 ' , e⃗2 ' , e⃗3 ' , which is chosen so that the
moment of inertia tensor in this frame is a diagonal matrix.

In the local frame the vector, v⃗ , has components (v1 ' , v 2 ' , v3 ') and
can be written as

v⃗=v1 ' e⃗1 '+v2 ' e⃗ 2 '+v3 ' e⃗3 ' . (2)

This is the same vector as that given in (1), but expressed in a different
reference frame. The relationship between the two representations is
defined by the 3×3 rotation matrix, R , such that

e⃗ i=∑
j=1

3

Rij e⃗ j ' and e⃗ i '=∑
j=1

3

R ji e⃗ j (3)

and

v i=∑
j=1

3

Rij v j ' and v i '=∑
j=1

3

R jiv j . (4)

It is useful to note that, since

e⃗1=[
1
0
0] , e⃗2=[

0
1
0] , and e⃗3=[

0
0
1] , (5)

we can write directly from the second equation in (3)

e⃗1 '=[
R11

R21

R31
] , e⃗2 '=[

R12

R22

R32
] , and e⃗3 '=[

R13

R23

R33
]. (6)

So the rotation matrix may be written in the abbreviated form

R=[e⃗1 ' , e⃗ 2 ' , e⃗ 3 '] , (7)

in which the vectors form columns in the matrix. The relationship (7) is
central to the new algorithm. In essence the algorithm integrates the
motion of the vectors e⃗1 ' , e⃗2 ' , e⃗3 ' , which from (7) also provides the
updated rotation matrix.

The equations of motion for a rigid body are written as [1,2,5]:

˙⃗P=F⃗ , ˙⃗J=T⃗ , (8)

where F⃗ is the net force acting on the body and T⃗ is the net torque.
Formally these are derived from the potential energy of the body by
differentiation:

F⃗=− ∂

∂ R⃗
ϕ(R⃗ ,R) T⃗=−∑

j=1

3

e⃗ j '×
∂ϕ(R⃗ ,R)

∂ e⃗ j '
. (9)

The potential depends on the position and the orientation of the body,
which are represented by the arguments R⃗ and R . The second of these
equations is a general expression for the torque, based on the method
described by Allen and Germano [6]. The standard relations between
momentum and velocity are:

P⃗=M V⃗ , J⃗=I ω⃗ , (10)

with the help of which we can write the equations of motion as

˙⃗V= F⃗ /M , ˙⃗ω= I−1(T⃗− İ ω⃗) . (11)

The second of these equations recognises that, unlike the mass, M , the
moment of inertia tensor, I , is time dependent. Writing the components
of I as

I αβ
=∫

V

(δαβ d
2
−d αd β)dm , (12)

which is a mass integral over the volume V , where d⃗ is the vector
locating the mass element dm with respect to the molecular centre of
mass. We can obtain the derivative, İ , by differentiating with respect to
time t inside the integral. This leads to

İ xy= İ yx=ω
z (I xx−I yy)−ω

x I xz+ω
y I yz ,

İ yz= İ zy=ω
x (I yy−I zz)−ω

y I yx+ω
z I zx ,

İ zx= İ xz=ω
y (I zz−I xx)−ω

z I zy+ω
x I xy ,

İ xx=2 (ωy I xz−ω

z I xy) ,
İ yy=2 (ωz I yx−ω

x I yz) ,
İ zz=2 (ωx I zy−ω

y I zx) .

 (13)

We require one other equation. In a body rotating with angular velocity
ω⃗ , a point in the body, located by the vector, d⃗ , (originating at the

centre of mass of the body,) has a velocity around the centre of mass
given by

v⃗=ω⃗×d⃗ . (14)

This equation can, in principle, be integrated to update the vector d⃗ as
the body rotates. However, as our previous article [2] explained, this
must be done with extreme care. We propose to use the techniques
described there to integrate motion of the vectors e⃗1 ' , e⃗2 ' , e⃗3 ' . We will

also use the scheme described in [2] to integrate the angular velocity
equation (11). We describe the new algorithm in the next section.

The Integration Algorithm

Our algorithm is couched in the velocity Verlet form [7] for both
translational and rotational motion.

The mass M and the diagonal moment of inertia tensor I p (the
principal tensor) are known constants. At the start of each time step it is
assumed that R⃗ , V⃗ , F⃗ , R , J⃗ and T⃗ are known. The matrix
R (as defined by its use in equations (3) and (4)) can be used to

construct the instantaneous moment of inertia tensor, I , in the
laboratory frame:

I=R I p R̃ . (15)

The angular velocity at any time time is given by

 ω⃗= I−1 J⃗ . (16)

The 3×3 matrix I−1 being easily obtained from

I−1
=R(I p)−1 R̃ . (17)

The new algorithm is presented in Scheme 1:

Scheme 1:

1. Start step n with R⃗n , V⃗ n , F⃗n , J⃗ n , T⃗ n , Rn≡{⃗e i
n ' }.

2. Calculate: I n=Rn I p R̃n and (I n)
−1

=Rn (I p)
−1
R̃n.

3. Calculate: ω⃗
n
=(I n)−1 J⃗ n .

4. Calculate: İ n , using I n , ω⃗n and equation (13).

5. Update: V⃗ n+1 /2
←V⃗ n

+
Δ t
2M

F⃗n .

6. Update: J⃗ n+1/2
← J⃗ n+

Δ t
2
T⃗ n .

7. Update: ω⃗
n+1 /2

←ω⃗
n
+

Δ t
2

(I n)
−1

(T⃗ n− İ n ω⃗n).

8. Update: R⃗n+1
← R⃗n+Δ t V⃗ n+1 /2 .

9. Update: e⃗ i
n+1 ' ← e⃗ i

n '+Δ t ω⃗n+1/2
× e⃗ i

n ' , ∀{e⃗i
n ' .} (See below!)

10. Calculate: Rn+1
=[e⃗1

n+1 ' , e⃗1
n+1 ' , e⃗1

n+1 '].

11. Calculate F⃗ n+1 and T⃗ n+1 using equation (9).

12. Update: V⃗ n+1
←V⃗ n+1/2

+
Δ t

2M
F⃗ n+1 .

13. Update: J⃗ n+1
← J⃗ n+1/2

+
Δ t
2
T⃗ n+1.

As was described in reference [2], step 9 in this algorithm requires a more
sophisticated approach than the direct equation shown. We shall reiterate
the explanation here.

Figure 1. Rotating the Vector e⃗ i
n '

Figure 1 shows the rotation of unit vector e⃗ i
n ' about the vector ω⃗

n+1 /2

through an angle ϕ=Δ t∣ω⃗n+1/2
∣. This is the operation required by step 9 of

Scheme 1. The simple linear step implied by step 9 will not allow the
vector to follow the circle shown. To accomplish this numerically we first
construct three vectors, w⃗ , u⃗ and v⃗ , (shown in Figure 1) which are
defined as follows

w⃗=
(e⃗ i

n '⋅ω⃗n+1/2
)

∣ω⃗
n+1 /2

∣
2 ω⃗

n+1/ 2 , (18)

u⃗= e⃗ i
n '−w⃗ , (19)

v⃗=ω⃗
n+1/2

× e⃗ i
n ' . (20)

Vector w⃗ is the projection of e⃗ i
n ' along the vector ω⃗

n+1 /2. Vector u⃗
defines the circle of rotation in Figure 1 and has a length equal to the
circle radius. In the time step Δ t , u⃗ rotates through the angle ϕ to
u⃗ ' . The angle ϕ is given by

ϕ=Δ t∣ω⃗n+1/2∣=Δ t∣v⃗∣/∣⃗u∣. (21)

Vector v⃗ is the instantaneous velocity of the point located by e⃗ i
n ' . The

vectors w⃗ , u⃗ and v⃗ are all orthogonal by construction. It can be easily
shown that

u⃗ '=cos(ϕ) u⃗+Δ t
sin (ϕ)

ϕ v⃗ . (22)

So e⃗ i
n+1 ' can be obtained from

e⃗ i
n+1 '=u⃗ '+w⃗ . (23)

The algorithm that performs these steps is presented in Scheme 2.

Scheme 2:
1. For each vector: {⃗e i

n ' ,i=1,3} :

2. Calculate: w⃗=({e⃗ in '⋅ω⃗n+1 /2}/∣ω⃗n+1/2
∣
2)ω⃗n+1/2

3. Calculate: u⃗= e⃗ i
n '−w⃗

4. Calculate: v⃗=ω⃗
n+1/2

× e⃗ i
n '

5. Calculate: ϕ=Δ t∣ω⃗n+1/2∣
6. Update: e⃗ i

n+1 ' ← w⃗+u⃗cos (ϕ)+Δ t v⃗ (sin(ϕ)/ϕ)

7. End For

This should be used in place of step 9 of Scheme 1. We note that when
angle ϕ is particularly small we may use Maclaurin's expansion of the
trigonometric functions sin(ϕ) and cos (ϕ) to simplify step 6 of Scheme
2, which becomes the computationally efficient form:

e⃗ i
n+1 ' ← w⃗+u⃗(1−

ϕ
2

2 (1−
ϕ

2

12(1−
ϕ

2

30)))+Δ t v⃗(1−
ϕ

2

6 (1−
ϕ

2

20(1−
ϕ

2

42))) . (24)

The expansions in expression (24) neglect terms of order O(ϕ
8
) and are

therefore highly accurate for ϕ less than ∼1o . It is preferable to use
them when ϕ is small, since it avoids any numerical problems associated
with the ratio sin(ϕ)/ϕ in step 6 and is accurate enough to preserve the
unit length of e⃗ i ' for a long period. (A re-normalisation of e⃗ i ' could be
performed if this ever became problematic.)

Adaptation to Linear Molecules

Linear molecules appear to present a problem for the new algorithm.
Steps 3 and 7 of Scheme 1 involve the inverse of matrix I . If one of the
principal moments of inertia of the molecule is zero then formally the
inverse I−1 does not exist. This implies that the algorithm cannot be
used directly with linear molecules. However it is possible to patch the

algorithm with a simple change to accommodate linear molecules, as we
explain below.

Firstly, consider the case of a uni-axial ellipsoid of the Gay-Berne or
Gaussian kind. These are characterised by having two equal moments of
inertia, I xx

p
= I yy

p , (which follows from molecular symmetry) and one

unique moment I zz
p . All three moments are finite in this case. Next we

write the angular equation of motion (11) in the form

T⃗= I ˙⃗ω+ İ ω⃗ , (25)

where, in the laboratory frame, I is not generally diagonal. We now
multiply (25) by a rotation matrix R , which is able to diagonalise I at
a nominated fixed point in time, and obtain

R̃ T⃗=R̃ I R R̃ ˙⃗ω+R̃ İ R R̃ ω⃗ , (26)

where we have exploited the relation R R̃=1 , where 1 is the identity
matrix. This equation can now be written as

T⃗ p=I p ˙⃗ω
p
+R̃ İ R ω⃗

p , (27)

where the superscript p indicates the principal frame of reference. It
was shown in reference [1] that (27) is another form of Euler's classical
equations of motion, which we write explicitly as

T x
p
=I xx

p ˙⃗ωx
p
−ωy

p
ωz
p(I yyp −I zzp) ,

T y
p
=I yy

p ˙⃗ω y
p
−ωz

p
ωx
p(I zz

p
−I xx

p) ,
T z
p
=I zz

p ˙⃗ωz
p
−ωx

p
ωy
p (I xx

p
−I yy

p) .
 (28)

From this we see that equation (25) and Euler's equations are physically
equivalent. They differ only in the choice of reference frame. Equation
(25) is couched in the laboratory frame, while (28) is in the principal
frame, which is a stationary frame1 in which the moment of inertia tensor
is instantaneously diagonal. Euler's equations thus only hold at one
particular instant, though we can always find a different principal frame
for any other instant.

Because I xx
p
= I yy

p , the third of the equations in (28) can be written as

T z
p
=I zz

p ˙⃗ωz
p. (29)

This equation is solely responsible for rotation around the (principal) z-
axis and is independent of the mechanics of rotation about the x- and y-
axes. Furthermore, since an ellipsoidal molecule is rotationally symmetric
about the z-axis, the torque component T z

p derived from interaction with

1 The principal frame differs from the local frame in that the latter is rotating with the molecule while
the former is stationary. They happen to coincide at the instant equation (28) holds.

other molecules must be zero. It follows from (29) that ω̇z
p must also

be zero.

Thus we cannot expect ωz
p ever to change, since there is nothing to drive

such change in any principal frame of reference. For this reason we may
set ωz

p
=0 once and for all time, since it is dynamically redundant. Setting

ωz
p
=0 (and ignoring for a moment that T z

p
=ω̇ z

p
=0) means Euler's

equations (28) are now reduced to

T x
p
=I xx

p ˙⃗ωx
p ,

T y
p
=I yy

p ˙⃗ω y
p ,

T z
p
=I zz

p ˙⃗ω z
p.

 (30)

The third equation of (30) is of course redundant since the dynamics of
the molecule are governed entirely by the first two equations, which are
not in any way coupled to the third. Nevertheless the algorithm presented
in Scheme 1 is entirely suitable for simulating this system, provided the
simulation starts (and thus continues) with the condition ωz

p
=0. Scheme

1 works in this case because, despite the redundancy in the set of
equations (30), the inverse I−1 of the moment of inertia tensor I can
always be obtained.

At this point we note that the first two equations of (30) are the same as
those for a linear molecule consisting of point particles. In this case the
third equation does not exist, but as we have noted, it is also redundant
for ellipsoidal molecules. It follows that all that is required to adapt
Scheme 1 to linear molecules, is to set I zz

p to a convenient finite value

and ensure that the simulation starts with ω
p
=0. The two systems, linear

and ellipsoidal molecules, are dynamically isomorphic under these
circumstances.

In practice it is best to initialise a simulation with every molecule defined
in its principal frame so that the occurrence of a zero moment of inertia
can be identified and reset to a finite value, while the corresponding
component of the angular momentum is set to zero. The entire system
can then be recast back to the laboratory frame. Note that subsequent
values of the moment of inertia tensor I and its inverse are calculated
from I p using equations (15) and (17), which appear in step 2 of
Scheme 1. It is not necessary to `carry' current values of I or İ
throughout the simulation.

Some precautions are advised. It should be noted that linearity implies
the molecule has lost one rotational degree of freedom and this must be
remembered when converting the kinetic energy into temperature. This
also applies to uni-axial ellipsoids of the Gay-Berne or Gaussian kind.
Also, some caution is necessary when deciding the number of degrees of
freedom of a molecule based on inspecting the principal moments of
inertia alone. It may be accidentally true that two or more moments are
equal, without rendering a degree of freedom redundant.

Simulation Tests

We have written a program, revo2.f, that incorporates the new rotation
algorithm and have conducted a series of tests. Four test systems were
created, all of them consisting of 27 molecules constructed from 4
Lennard-Jones (L-J) sites with identical L-J potential parameters. All
simulations were of length 106 time steps with a 104 time step
equilibration period. Two time steps Δ t were tried: Δ t=0.001 and
Δ t=0.0005. The NVE ensemble was used for all simulations. The

systems modelled were:

1. Pseudo-methane: a tetrahedral molecule with atom-atom distances
of 1.011 and all atomic masses set at 1.0 . The system reduced
molecular density was ρ=0.175, (corresponding to a reduced
atom density of ρ=0.7) and the reduced temperature was
T=1.5 .

2. Pseudo-ammonia: a trigonal pyramidal molecule with atomic
masses of 1.0, 0.5, 0.5, 0.5 and bond length 1.175. The system
reduced molecular density was ρ=0.2 and reduced temperature
T=1.0 .

3. Pseudo-water: three L-J atoms with masses 1.0, 0.1, 0.1 arranged
in a triangle with one massless L-J site close to the molecular
centre of mass. The reduced molecular density was ρ=0.225 and
the reduced temperature was T=1.25 .

4. Pseudo-butane: four identical L-J atoms in a straight line with
masses 1.0 and bond length 0.3137 . The reduced molecular
density was ρ=0.15 and the reduced temperature was T=1.5 .

The results of these simulations are presented in Table 1. (L-J units are
used throughout).

System Δ t <Energy> <Fluctuation> Drift

ψ−methane 0.001 −160.8 6.48e-4 4.44e-6

ψ−methane 0.0005 −151.93 1.73e-4 −9.01e-6

ψ−ammonia 0.001 −286.32 3.69e-3 1.02e-2

ψ−ammonia 0.0005 −279.61 3.47e-4 2.91e-4

ψ−water 0.001 −446.54 5.93e-1 2.05

ψ−water 0.0005 −441.88 6.23e-2 2.13e-1

ψ−butane 0.001 −356.04 1.10e-3 −8.89e-5

ψ−butane 0.0005 −357.66 2.76e-4 7.27e-6

Table 1

In column 3 of Table 1 the average system energies for each simulation,
obtained as an average over the last 990000 time steps, are presented.
We note that differences in energy for the same system with a different
time step, Δ t , are most likely due to them settling down to a different

temperature at the end of the equilibration period. (This being a common
occurrence with small systems). Apart from this, all the simulations show
a high degree of stability. The RMS fluctuation in total energy (column 4)
is acceptably small in all cases and it is probably significant that the
fluctuation is largest in systems which have the smallest moments of
inertia. Pseudo-water is the most obvious example of this. The reported
energy drift in column 5 was obtained over the time scale of 990000Δ t
from the equilibrated simulation using a least-squares fit of the data. The
drift in all cases is acceptable and in most of them negligible, but again it
is pseudo-water that shows the largest drift. In the majority of cases,
taking a smaller Δ t value results in a reduction in both the fluctuation
and the drift. The one exception to this is the drift reported for the
pseudo-methane, which is larger for the shorter time step. However, in
this case both values are negligible.

Figure 2

In Figure 2, we show a typical plot of the system energy versus time (in
this case for the pseudo-methane system with Δ t=0.001. The time
interval shown is 990000 time steps.) The conservation of energy and
small scale of the fluctuations are apparent.

For the linear molecule pseudo-butane, we have also monitored the
supposed zero component of the angular velocity in the principal frame.
We report that this was found to hold to better than 1 part in 1010 ,
which surely confirms the theory presented above. (We have also
subsequently found it to hold in simulations of uni-axial Gaussian
ellipsoids, again to high accuracy, using the same rotation algorithm as
presented here. In that case we were able to change the moment of
inertia of the rotationally redundant axis by 4 orders of magnitude,
without affecting the system dynamics noticeably for the 10,000 time
steps of the test. This further confirms the theory.)

Conclusion

The new algorithm presented appears to provide a reliable and accurate
numerical integration of the rotation of rigid molecules and is easily
extendable to linear molecules.

References

[1] W. Smith, Euler among the Pedestrians, (2002), Daresbury
Laboratory, CCP5 Infoweb Knowledge Centre on www.ccp5.ac.uk

[2] W. Smith, Hail Euler and Farewell: Rotational motion in the laboratory
frame, (2005), Daresbury Laboratory, CCP5 Infoweb Knowledge Centre on
www.ccp5.ac.uk

[3] J.G. Gay and B.J. Berne, Modification of the overlap potential to mimic
a linear site-site potential, J. Chem. Physics 74 (1981) 3316.

[4] J.A. Purton and W. Smith, Dissipative particle dynamics of non-
spherical particles using a Gaussian density model, Molecular Simulation
36 (2010) 796.

[5] H. Goldstein, Classical Mechanics, Addison Wesley (1980).

[6] M.P. Allen and G. Germano, Expressions for forces and torques in
molecular simulations using rigid bodies, Molec. Physics 104 (2006) 3225.

[7] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford
University Press (1980).

http://www.ccp5.ac.uk/
http://www.ccp5.ac.uk/

