
DL MESO USER MANUAL

M. A. Seaton and W. Smith

UKRI STFC Daresbury Laboratory

Daresbury, Warrington, Cheshire, WA4 4AD

United Kingdom

Version 2.7 rev 10, March 2022

Contents

Contents i

1 DL MESO General Information 1

1.1 Description . 1

1.2 Functionality . 1

1.3 Requirements . 2

1.4 The DL MESO Directory Structure . 3

1.5 Disclaimer . 3

1.6 Copyright . 3

1.7 Authors . 3

1.8 Suggestions and Bug Reports . 4

2 Quickstart guide to compile and run DL MESO 5

2.1 Obtaining DL MESO . 5

2.2 DL MESO LBE . 5

2.3 DL MESO DPD . 6

2.4 Utilities . 6

2.5 Further information . 6

3 The DL MESO GUI 7

3.1 Getting Started with the DL MESO GUI . 7

3.2 Lattice Boltzmann and the DL MESO GUI . 8

3.3 Dissipative Particle Dynamics and the DL MESO GUI . 18

3.4 Compiling and running DL MESO . 24

3.5 Notes . 25

I Lattice Boltzmann Equation (LBE) 27

4 The Lattice Boltzmann Equation: Basic Theory 29

4.1 Introduction . 29

4.2 Basic Definitions . 29

4.3 Derivation of Equilibrium . 30

4.4 Structural Relaxation and Macroscopic Equations . 31

4.5 Mesoscale Interaction . 32

4.6 Summary of Lattice Boltzmann Equation . 33

5 DL MESO LBE Features 35

5.1 Collision and Propagation Algorithms . 35

5.2 Boundary conditions . 45

5.3 Mesoscale interactions . 50

5.4 Diffusion and heat transfer . 61

5.5 Compressible and incompressible fluids . 62

i

ii CONTENTS

6 DL MESO LBE Input and Output Files 63

6.1 Input files . 63

6.2 Output files . 72

7 DL MESO LBE Examples 77

7.1 2D Pressure . 77

7.2 2D Shear . 77

7.3 2D CylinderFlow . 77

7.4 2D KarmanVortex . 78

7.5 2D KarmanVortexOutflow . 78

7.6 2D LidCavity . 79

7.7 2D RayleighBenard . 79

7.8 2D DropShear . 79

7.9 2D PhaseSeparation . 80

7.10 2D PowerLaw . 81

7.11 3D PhaseSeparation . 81

7.12 3D Shear . 81

7.13 3D RayleighBenard . 82

7.14 3D DropShear . 83

II Dissipative Particle Dynamics (DPD) 85

8 Dissipative Particle Dynamics: Basic Theory 87

8.1 Introduction . 87

8.2 Outline of Method . 87

8.3 Equation of state and dynamic properties . 89

8.4 Derivation of Equilibrium . 89

8.5 Summary of Dissipative Particle Dynamics . 90

9 DL MESO DPD Features 91

9.1 Domain decomposition and linked-list cell calculations . 91

9.2 Thermostats and integration algorithms . 92

9.3 Barostats . 96

9.4 Particle-particle interactions . 98

9.5 Long-ranged Electrostatic (Coulombic) Potentials . 101

9.6 Bond interactions between particles . 111

9.7 Frozen bead walls . 114

9.8 Surface interactions . 114

10 DL MESO DPD Input and Output Files 117

10.1 Input files . 117

10.2 Output files . 126

11 DL MESO DPD Examples 131

11.1 Mixture Small . 131

11.2 Mixture Large . 131

11.3 PhaseSeparation . 132

11.4 Aggregate . 132

11.5 Polyelectrolyte . 133

11.6 AmphiphileMesophases . 133

11.7 VesicleFormation . 134

11.8 LipidBilayer . 135

CONTENTS iii

11.9 AlkylSulphate . 135

11.10FloryHuggins . 136

11.11PoiseuilleFlow . 136

11.12ShearFlow . 136

11.13VapourLiquid . 137

11.14SurfaceDrop . 137

A Changes to input files from previous versions of DL MESO 141

A.1 DL MESO LBE . 141

A.2 DL MESO DPD . 142

B Manual compiliation and running of DL MESO 145

B.1 DL MESO LBE . 145

B.2 DL MESO DPD . 146

C DL MESO Utilities 149

C.1 DL MESO LBE . 149

C.2 DL MESO DPD . 152

D Lattice schemes 167

D.1 D2Q9 . 167

D.2 D3Q15 . 171

D.3 D3Q19 . 174

D.4 D3Q27 . 181

E DL MESO DPD Error Messages 193

F DL MESO Licence Agreement (Academic Purposes) 203

Bibliography 211

Acknowledgements

DL MESO was developed under the auspices of the Engineering and Physical Sciences Research Council (EP-

SRC) for the EPSRC’s Collaborative Computational Project for the Computer Simulation of Condensed Phases

(CCP5).

The members of the CCP5 DL MESO consortium were:

David M. Heyes, University of Surrey

Chris M. Care, Sheffield Hallam University

Peter V. Coveney, University College London

David Emerson, UKRI STFC Daresbury Laboratory

Rob English, North East Wales Institute

Andrea Ferrante, Novidec

Ian Halliday, Sheffield Hallam University

John Harding, University of Sheffield

Sebastian Reich, Imperial College

Bill Smith, UKRI STFC Daresbury Laboratory

Patrick B. Warren, Unilever Port Sunlight

Julia Yeomans, Oxford University

Many other people have given advice and encouragement in the development of DL MESO. We gratefully ac-

knowledge the support of the following people: Maurice Leslie, Richard Wain, Alexandre Dupuis, Jonathan

Chin, Michael Dupin, Weiming Liu, John Purton, Ilian Todorov, David Bray, Annalaura Del Regno, Olga

Lobanova, Antoine Schlijper, Andrea Ferrante, Massimo Noro, Ian Stott, Neil George, John Hone, Peter Dowd-

ing, Kai Luo and the UK Consortium for Mesoscale Engineering Sciences (UKCOMES), Luke Mason, Sergi Siso

and Terry Hewitt.

Particular thanks go to Rongshan Qin at The Open University as the original author of the Lattice Boltzmann

Equation source code (DL MESO LBE) and the DL MESO graphical user interface, Jianping Meng at UKRI

STFC Daresbury Laboratory for his contributions to DL MESO LBE, Richard Anderson at UKRI STFC Dares-

bury Laboratory, Ard van Bergen at Novidec and Bill Swope at IBM for their contributions to the Dissipative

Particle Dynamics source code (DL MESO DPD), and Michael Johnston and Leopold Grinberg at IBM for

their extensive optimisation work on both codes.

v

Chapter 1

DL MESO General Information

1.1 Description

DL MESO is a general purpose mesoscopic simulation package developed at Daresbury Laboratory by Dr

Michael Seaton under the auspices of the Engineering and Physical Sciences Research Council (EPSRC) for

the EPSRC’s Collaborative Computational Project for the Computer Simulation of Condensed Phases (CCP5).

The package is the property of the UKRI Science and Technology Facilities Council (STFC).

DL MESO is issued free under licence to academic institutions pursuing scientific research of a non-commercial

nature. All recipients of the code must first agree to the terms and conditions of the licence and register with us

to be kept aware of new developments and discovered bugs. Commercial organisations interested in acquiring

the package should approach the Scientific Computing Department, UKRI STFC Daresbury Laboratory in the

first instance. Daresbury Laboratory is the sole centre for distribution of the package. Under no account is it

to be redistributed to third parties without consent of the owners.

DL MESO contains two mesoscale simulation methods:

• Lattice Boltzmann Equation (included with version 1.0 and later)

• Dissipative Particle Dynamics (included with version 2.0 and later)

1.2 Functionality

The following is a list of the features that DL MESO currently supports. Users are reminded that we are

interested in hearing what other features could be usefully incorporated. We obviously have ideas of our own

and CCP5 strongly influences developments, but other input would be welcome nevertheless.

1.2.1 Lattice Boltzmann Equation

DL MESO LBE can simulate lattice-gas systems using the Lattice Boltzmann Equation (LBE). The following

properties and features are currently available:

• Multiple fluid components, solutes and coupled heat transfers[144]

• Collisions: Bhatnagar-Gross-Krook (BGK) single-relaxation-time[7], Two-Relaxation-Time (TRT)[39],

Multiple-Relaxation-Time (MRT)[68, 23, 124] or cascaded LBE (CLBE)[32, 30]

• Forcing methods: Martys/Chen[84], Equal Difference Method (EDM)[65], Guo[46], He[50]

• Rheological models: Newtonian, power law, Bingham plastic[8], Herschel-Bulkley plastic[51], Casson[16],

Carreau-Yasuda[14, 142]

1

2 CHAPTER 1. DL MESO GENERAL INFORMATION

• Boundary conditions: Periodic, bounce-back (including stationary objects), constant pressure/velocity at

planar surfaces[148, 59, 69, 3]

• Mesoscale interactions: Shan-Chen pseudopotential method[108, 109], Lishchuk continuum-based

method[77], Swift free-energy method[126, 125]

• Initial conditions can either be determined by DL MESO LBE or specified by the user

1.2.2 Dissipative Particle Dynamics

DL MESO DPD can model DPD particles (‘beads’) with soft or hard potential fields, along with thermostatting

dissipative and random forces. The following properties and features are currently available:

• Choice of integrators/thermostats: standard Velocity Verlet, DPD Velocity Verlet[37], Lowe-Andersen[79],

Peters[92] and Stoyanov-Groot[121]

• Constant volume (NVT) or constant pressure (NPT) simulations with Berendsen[6] or Langevin[60]

barostats

• User selection of interaction lengths, conservative and dissipative force parameters for each species and

between unlike species

• Bond stretching, angles and dihedrals between beads in user-defined ‘molecules’

• Potentials: standard Groot-Warren DPD[43], density-dependent (many-body) DPD[89, 130], Lennard-

Jones[62], Weeks-Chandler-Andersen[137]

• Electrostatic potentials between charged beads using modified Ewald summations[41, 136], optionally

using Smooth Particle Mesh Ewald[28]

• Boundaries: Periodic, hard reflecting walls with optional short-range repulsions (DPD[97] or Weeks-

Chandler-Andersen), frozen particle walls, Lees-Edwards periodic shearing boundaries[71]

• Initial conditions can either be determined by DL MESO DPD or specified by the user

1.2.3 Backwards compatibility with previous versions of DL MESO

Some of the features in the LBE and DPD codes are additions to those from previous versions of DL MESO, and

minor changes have thus been made to input file formats to accommodate them. If any pre-existing input files

are intended to be used with this version, some small modifications may be required: please consult Appendix

A for more details.

The main output file formats for DL MESO LBE have not substantially changed, although changes have been

made in how these files are written in parallel running to reduce the number produced per time frame. If a

single file per frame is requested, MPI-IO is used to share the writing of these files among processor cores.

The binary file formats for DL MESO DPD have significantly changed to allow the use of stream I/O instead

of Fortran record-based I/O, as well as the application of MPI-IO to write single output files regardless of the

number of processor cores used for calculations. As such, previously generated binary output files cannot be used

with this version of DL MESO DPD and all post-processing utilities that directly read and manipulate these

files have had to be changed, but the new formats allow simulation restarts on different numbers of processor

cores and typically require less time to read for analysis and visualisation.

1.3 Requirements

1.3.1 Software requirements

• Standard C++ Compiler for LBE source code, DL MESO LBE

1.4. THE DL MESO DIRECTORY STRUCTURE 3

• Standard Fortran (2003 or later) Compiler for DPD source code, DL MESO DPD

• GNU Make (included in standard Unix/Linux distributions; can be installed for Windows)

• Message Passing Interface version 2 (MPI-2) or higher (if parallel execution required)

• JAVA 2 Version 1.4 or higher (if GUI is to be used)

Versions of the codes exist that use Open Multi-Processing (OpenMP) to divide up calculations on each processor

core among threads, which require compilers that can link in OpenMP libraries: the majority of recent standard

C++ and Fortran compilers are able to do this. For Smooth Particle Mesh Ewald calculations in the DPD

code, either the FFTW 3.x or IBM ESSL Fast Fourier Transform (FFT) libraries may be used in place of the

internal FFT solver.

1.3.2 System requirements

DL MESO is designed to work in both serial and parallel running; it can be run on standalone machines, clusters

and supercomputers. The code has been tested on Solaris, Windows XP/7, IBM p690+ HPCx, PowerPC 450

Blue Gene/P, PowerPC A2 Blue Gene/Q, Cray XT4/XT6 HECToR, Cray XC30 ARCHER and Intel Xeon

E5-2670 (Sandy Bridge) machines.

1.4 The DL MESO Directory Structure

The supplied version of DL MESO is a zip file dl meso 2.x, where x is a generation number: this unpacks as

a directory dl meso. Beneath the top level of this directory are a number of subdirectories:

• LBE - containing the LBE source code

• DPD - containing the DPD source code

• JAVA - containing the GUI source code

• MAN - containing the DL MESO user manual

• DEMO - containing test cases for DL MESO

• WORK - an example ‘working directory’

1.5 Disclaimer

Neither UKRI STFC, CCP5 nor any of the authors of the DL MESO package guarantee that the package is

free from error. Neither do they accept responsibility for any loss or damage that results from its use.

1.6 Copyright

© UKRI STFC Daresbury Laboratory 2022

1.7 Authors

Dr Michael Seaton and Prof. William Smith

Scientific Computing Department

UKRI STFC Daresbury Laboratory

Sci-Tech Daresbury

Warrington

WA4 4AD

United Kingdom

4 CHAPTER 1. DL MESO GENERAL INFORMATION

1.8 Suggestions and Bug Reports

We encourage users to send suggestions for improvements and new features for DL MESO, including bug reports

and subroutines, as well as any additional test cases that demonstrate its features. All of these should be sent

to michael.seaton@stfc.ac.uk

Chapter 2

Quickstart guide to compile and run DL MESO

This chapter is a brief guide on how to get started with DL MESO: how to download, compile and run the

codes supplied in this package. More experienced users can jump to Appendix B for further details on how to

compile DL MESO LBE, DL MESO DPD and their associated utilities, but the following will allow first-time

users to get started.

2.1 Obtaining DL MESO

DL MESO is exclusively distributed by UKRI STFC Daresbury Laboratory and users of DL MESO must

obtain a licence. Academic users can obtain one for free by registering: to do so, visit the DL MESO website

at www.ccp5.ac.uk/DL_MESO and follow the link ‘Registering for the DL MESO Package’, which has a link to

a Registration Form that needs to be filled out and submitted – a correct email address needs to be supplied,

as the user will receive instructions on how to download the package by automated email. If the user intends

to use DL MESO for non-academic commercial purposes, a commercial licence will be required: please contact

Dr M A Seaton at michael.seaton@stfc.ac.uk in the first instance.

2.2 DL MESO LBE

To compile DL MESO LBE with OpenMP and a reasonable level of optimization, enter the directory

dl meso/WORK in a terminal window and type one of the following two commands:

• c++ -O3 -openmp ../LBE/slbe.cpp -o lbe.exe

• mpicxx -O3 -openmp ../LBE/plbe.cpp -o lbe.exe

where c++ should be replaced with the installed C++ compiler, mpicxx with the C++ compiler wrapped by

the installed MPI implementation, -openmp with the compiler flag required to invoke OpenMP and lbe.exe

with the user’s choice of executable name. The first command will compile the serial (single core) version of

DL MESO LBE, while the second will produce the parallel (multiple core) version.

Running DL MESO LBE requires at least two input files: lbin.sys for system/simulation properties and

lbin.spa for boundary conditions. (See Chapter 6 for more details of the contents of these files, and the various

test cases in dl meso/DEMO/LBE for examples of these.) These files should be in the same directory as

the DL MESO LBE executable. To run the serial version of the code, either type lbe.exe (if using Windows)

or ./lbe.exe (if using Unix, Linux or macOS). The parallel version of the code will need a command (e.g.

mpirun, mpiexec) to specify the number of processor cores required to run the calculation, which will depend

on the available MPI installation. For example, to use 8 cores the command might be:

• mpirun -np 8 ./lbe.exe

5

www.ccp5.ac.uk/DL_MESO

6 CHAPTER 2. QUICKSTART GUIDE TO COMPILE AND RUN DL MESO

For supercomputers, this command will need to be included in a job batch script: consult the system adminis-

trator or the machine’s documentation for more details.

2.3 DL MESO DPD

DL MESO DPD consists of various modules that need to be compiled and linked together to create an ex-

ecutable. To do this, makefiles are available in the dl meso/DPD/makefiles directory for versions of

DL MESO DPD with and without MPI, with and without OpenMP: these require GNU Make to be installed,

which is automatically available in Linux, Unix and macOS. Enter the directory dl meso/WORK in a ter-

minal window and copy one of the makefiles, renaming it as Makefile, using one of the following commands

(substituting Makefile-*, the first command for Windows, the second for Unix, Linux or macOS):

• copy ..\DPD\makefiles\Makefile-* Makefile

• cp ../DPD/makefiles/Makefile-* ./Makefile

This makefile can be edited to ensure the correct command is used for the installed Fortran compiler (with or

without MPI wrapping) in the line beginning FC=, the right compiler flags (FFLAGS=) and the required executable

name (EXE=). It can then be invoked with the command make. If you do not intend to recompile the code, you

can delete the various module and object files afterwards using either del *.o *.mod (Windows) or rm *.o

*.mod (Unix, Linux, macOS).

Running DL MESO DPD requires at least two input files: CONTROL for the simulation properties and FIELD for

types of particles and interactions between them. (See Chapter 10 for more details of the contents of these files,

and the various test cases in dl meso/DEMO/DPD for examples of these.) These files should be in the same

directory as the DL MESO DPD executable. Running the DPD code can be carried out in a similar fashion to

the LBE code above, substituting lbe.exe with DL MESO DPD’s executable dpd.exe.

2.4 Utilities

DL MESO is supplied with a number of utilities to help create some input files (especially non-standard system

configurations) and to analyse or visualise outputs. Some are written in C++ and others are written in

Fortran: a makefile is available in the working directory dl meso/WORK to compile them all. Enter the

directory dl meso/WORK in a terminal window and type the command makefile -f Makefile-utils. (If

the Fortran or C++ compilers given in this makefile are not available, these can be modified at the FC= and

CC= lines respectively.)

Running the resulting executable files with the command-line option -h will reveal what each of them can do

and the various other command-line options available. More details can also be found in Appendix C.

2.5 Further information

• Consult this manual;

• Visit the DL MESO website at www.ccp5.ac.uk/DL_MESO, especially ‘DL MESO Useful Links’;

• Attend a DL Software training workshop (look out for INFOMAIL mailshots);

• Email Dr Michael Seaton at michael.seaton@stfc.ac.uk for one-on-one training, scientific collaboration

and to contribute code/scripts for future releases.

Best of luck!

www.ccp5.ac.uk/DL_MESO

Chapter 3

The DL MESO GUI

3.1 Getting Started with the DL MESO GUI

The DL MESO GUI offers a convenient way of using the DL MESO package, although it is not an essential

tool for those who prefer command line operation: Appendix B provides details on compiling the DL MESO

program codes manually. Working with the GUI requires the availability of Java tools, particularly the javac

compiler and the java runner for Java 2 version 1.4 or later. These may be obtained from the java.sun.com

website.

To build the GUI, proceed as follows:

• Enter the DL MESO/JAVA directory.

• Type javac *.java to compile the source code.

• Type jar -cfm GUI.jar manifest.mf *.class to create the GUI.jar executable JAR file.

• Move to your working directory.

• Launch the GUI.

A Unix/Linux script called makegui that performs the build of the GUI can be found in the JAVA subdirectory.

Your working directory is the directory from which you wish to work when running DL MESO. Working there

will keep any files you generate separate from the DL MESO source files. Note in the current version of

DL MESO the working directory should be at the same directory level as the JAVA direction, i.e. within the

DL MESO top directory, and contain the executables of any external utilities required to set up input files and

gather or process output files from simulations. An example of such a working directory (called WORK) is present

under the DL MESO top directory; this includes a makefile to compile all of the external utilties which can be

invoked by the command make -f Makefile-utils.

In your working directory you can start the GUI with the command

• java -jar ../JAVA/GUI.jar

You may consider saving this command in a script for simple execution. An example script for Unix/Linux/-

macOS called rungui is present in the WORK subdirectory.

Figure 3.1 shows the DL MESO GUI when it is started. The main window displays the names of the authors,

the copyright message and the detected operating system (Windows, macOS, Unix/Linux). Clicking the LBE

and DPD buttons will produce the Lattice Boltzmann and Dissipative Particle Dynamics panels respectively,

which will guide you through setting up input files, modifying and compiling the program code, running the

simulation and gathering the results files for plotting and visualization. The SPH button is for Smoothed

7

8 CHAPTER 3. THE DL MESO GUI

Figure 3.1: DL MESO GUI on startup

Particle Hydrodynamic simulations, which will be included in future versions of DL MESO: clicking on this

button will currently produce a warning message. This user manual can be read in Adobe Acrobat Reader

(if installed) by clicking the Manual button, while Help will advise you to visit the DL MESO website at

www.ccp5.ac.uk/DL MESO.

3.2 Lattice Boltzmann and the DL MESO GUI

To access the LBE facilities in the DL MESO GUI, proceed as follows:

• Click the LBE button to get the LBE panel.

• Click the Define LBE System button and supply the required information. The file lbin.sys will be

created by the step.

• Click the Set LBE Space button to define the simulation space. The file lbin.spa will be created by

this step.

3.2.1 Defining the System

Figure 3.2 shows the Define LBE System panel. The required data are as follows:

1. The required LBE model can be selected from the pull-down list: the D2Q9, D3Q15, D3Q19 and D3Q27

square lattice schemes are available. The tickbox can be selected to specify that the fluids in the system

should be treated as incompressible.

3.2. LATTICE BOLTZMANN AND THE DL MESO GUI 9

Figure 3.2: Define LBE System

2. The collision/forcing type for the system can be selected out of BGK, TRT, MRT and CLBE, each

with standard, EDM, Guo or He forcing.

3. The required mesophase interactions can be selected from the pull-down list: currently available op-

tions include no interactions, Shan/Chen pseudopotential interactions (standard or with quadratic terms),

Lishchuk continuum-based interactions (original, Lishchuk-Spencer forces, Lishchuk-Spencer tensors and

calculated locally) and Swift free-energy interactions.

4. The number of grid points sets the size of the system. For 2D systems, the number of grid points in

the z direction must equal 1; selecting a two-dimensional lattice model greys out this box.

5. The total steps and the equilibration steps for the simulation.

6. The save span (number of timesteps between system outputs) and the boundary width for running

the parallel version of DL MESO LBE are given in this row. (The serial version by default automatically

resets the boundary width to zero.)

7. The dump span (number of timesteps between writing simulation restart files) and the switch for using

a restart file (lbout.dump) to resume a simulation are given in this row. (If the dump span is set to zero,

the restart file will only be written at the end of the simulaiton.)

8. The output format for system snapshots is set using this pull-down list: VTK, Legacy VTK and Plot3D.

By default the output files are written in big endian binary, but ticking the text box will make DL MESO

write the output files in text (ANSI) format.

9. The sound speed (c) and kinetic viscosity (ν) are real-life quantities for the first (main) fluid. These

do not influence calculations at all but allow conversions between lattice and real units: the time step and

lattice spacing are given by ∆t = ν

c2(τf− 1
2)

and ∆x =
√

3ν

c(τf− 1
2)

respectively.

10 CHAPTER 3. THE DL MESO GUI

10. The noise magnitude only has an effect for initializing multiple phase simulations. DL MESO LBE may

include either a phase field parameter or no phase field parameter for systems with multiple phases;

no mesophase algorithm requires it and thus this option is currently disabled.

11. The number of fluids (phases) can be increased if a multiple fluid system is to be studied: up to 6

fluids may be modelled in DL MESO LBE. The parameters and boundary conditions for the fluid(s) must

then be set by clicking the set fluid parameters button – see below for more details. ’item The set

fluid forces button can be clicked to specify constant, oscillating and Boussinesq forces acting on the

fluids – see below for more details.

12. If mesophase interactions are selected, the set fluid interactions button can be clicked to specify inter-

action strengths, equations of state etc. – see below for more details.

13. The number of solutes needs changing if solute parameters are required: if the number of solutes is

greater than zero (and up to 6), the number of fluids in the above row must be set to 0 or 1. If used, the

parameters and boundary conditions for the solutes must be set by clicking the set solute parameters

button – see below for more details.

14. The using temperature scalar box may be clicked yes if thermal systems are to be studied. If checked,

the thermal parameters must be set by clicking the set thermal parameters button – see below for

more details.

15. If running the simulation in parallel, the user can ask DL MESO to combine outputs along x, y and/or

z dimensions to reduce the number of files written per timestep.

16. The calculation time can be set to limit how long DL MESO will run before terminating: this is

particularly useful when running on a system with a job queuing system that limits the total runtime

available per calculation, although the user is advised to allow some time to allow a restart file to be

written if the simulation terminates before the last specified timestep is reached. (If this value is set to

zero, the simulation will continue until the last timestep is reached.)

If a valid lbin.sys file already exists in the (current) working directory, the OPEN button can be clicked to

load its information into the GUI, which can then be viewed and edited. Once all the data in this window and

any pop-up windows for fluid, solute and thermal parameters are filled in, the SAVE button should be clicked

to write the lbin.sys file: this button must be pressed if any previously specified values are changed.

3.2.1.1 Fluid, solute and thermal parameters

Examples of the pop-up windows for fluid, solute and thermal parameters can be seen in Figure 3.3: multiple

columns of dialogue boxes are made available for systems with multiple fluids and/or solutes.

(a) Fluid parameters (b) Solute parameters (c) Thermal parameters

Figure 3.3: Fluid, solute and thermal parameter pop-up windows

For fluids, the required data are as follows:

3.2. LATTICE BOLTZMANN AND THE DL MESO GUI 11

1. The initial fluid densities are applied throughout the system and used to initialize LBE calculations.

2. The constant fluid density (ρ0) for incompressible systems: this property can also be used to define the

reference densities for Shan/Chen pseudopotentials and for initialising systems with fluid drops.

3. The initial velocities for all fluids in the system: the z-component will be greyed out if a two-dimensional

system is being set up.

4. The rheological model for each fluid can be specified using the pull-down boxes. These are followed by

boxes for each rheological parameter (up to four per fluid) and, if required by the rheological model,

a rheological power index. Details of the available rheological models are given in Section 5.1.2, while

Chapter 6 indicates how the parameters for those models are identified in DL MESO LBE inputs.

5. The relaxation time (τf) for each fluid: these values should be greater than 0.5 to give non-zero kinetic

viscosities. For rheological models other than simple Newtonian fluids, these will be used as initial values

for all grid points before being corrected from measurements of shear rates.

6. For collisions other than BGK, other parameters are required:

• Two Relaxation Time (TRT) collisions require the trt magic number to be specified, which is used

to calculate antisymmetric relaxation times.

• Multiple Relaxation Time (MRT) collisions require the bulk relaxation time (τf,bulk) for each

fluid, as well as additional mrt frequencies to control higher order moments for all fluids in the

system: the number of these frequencies will vary according to the selected lattice scheme.

• Cascaded Lattice Boltzmann Equation (CLBE) collisions require the bulk relaxation time, a third

order relaxation time (τf,3) and a fourth order relaxation time (τf,4) for each fluid.

Solutes require the following data in the following rows:

1. The initial concentrations of the solutes throughout the system, as used for initialization.

2. The relaxation time (τs) for each solute, representing diffusivities.

If selected for inclusion, the required thermal properties are:

1. The initial T (temperature) for the system.

2. The initial dT/dt (rate of change of temperature: related to heat transfers in or out) for the entire

system.

3. The Boussinesq high reference temperature (Th) for heat convection in the system.

4. The Boussinesq low reference temperature (Tl) for heat convection in the system.

5. The heat relaxation time (τt) for the system, which represents the thermal diffusivity.

After filling in all the required values, clicking the relevant save button (SAVE F, SAVE C or SAVE T)

will store the data in preparation for writing to the lbin.sys input file. The cancel buttons (CANCEL F,

CANCEL C and CANCEL T) will close the pop-ups without saving any values.

3.2.1.2 Fluid forces

An example of the pop-up window for fluid forces can be seen in Figure 3.4: multiple columns of dialogue boxes

are made available for systems with multiple fluids.

The required data are as follows:

12 CHAPTER 3. THE DL MESO GUI

Figure 3.4: Fluid forces pop-up window

1. The body force x-axis gives the x-components of constant body forces on each fluid.

2. The body force y-axis gives the y-components of constant body forces on each fluid.

3. The body force z-axis gives the z-components of constant body forces on each fluid. (Greyed out for

two-dimensional systems.)

4. The oscillating force x-axis gives the x-components of sinusoidally oscillating forces on each fluid.

5. The oscillating force y-axis gives the y-components of sinusoidally oscillating forces on each fluid.

6. The oscillating force z-axis gives the z-components of sinusoidally oscillating forces on each fluid.

(Greyed out for two-dimensional systems.)

7. Either the oscillation frequency or oscillation period for sinusoidally oscillating forces can be specified

for all fluids: the pull-down box can be used to specify which property the text box includes.

8. The boussinesq force x-axis gives the x-component of the Boussinesq force parameter (~gβ) on each

fluid.

9. The boussinesq force y-axis gives the y-component of the Boussinesq force parameter (~gβ) on each

fluid.

3.2. LATTICE BOLTZMANN AND THE DL MESO GUI 13

10. The boussinesq force z-axis gives the z-component of the Boussinesq force parameter (~gβ) on each

fluid. (Greyed out for two-dimensional systems.)

After filling in all the required values, clicking the save button (SAVE FR) will store the data in preparation

for writing to the lbin.sys input file. The cancel button CANCEL FR will close the pop-up without saving

any values.

3.2.1.3 Fluid interactions

Examples of the pop-up windows for fluid interactions can be seen in Figure 3.5: the form that appears will

depend on the type of mesoscale interactions chosen in the main LBE system window. Multiple columns of

dialogue boxes are made available for systems with multiple fluids.

(a) Shan/Chen pseudopotential inter-
actions

(b) Lishchuk continuum-based inter-
actions

(c) Swift free-energy interactions

Figure 3.5: Fluid interaction pop-up windows

For Shan/Chen pseudopotential interactions, the required data are as follows:

1. The pseudopotential type for each fluid, which provides its equation of state, must be chosen using

the pull-down boxes at the top of the window. The available forms include the standard lattice gas,

the original Shan/Chen pseudopotential[108] (SC 1993), the thermodynamically consistent Shan/Chen

pseudopotential[109] (SC 1994), the Qian pseudopotential[98] (Qian 1995), density as the pseudopo-

tential, an ideal gas, van der Waals (vdW), Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), Peng-

Robinson (PR), Carnahan-Starling-van der Waals (CS-vdW) and Carnahan-Starling-Redlich-Kwong (CS-

RK). Each equation of state requires different parameters, and the dialogue boxes below are enabled or

disabled accordingly.

2. Either eos parameters or critical properties can be chosen using the pull-down box to parameterise

the pseudopotential (equation of state) for each fluid. If the former, interaction parameters a and b need

to be specified for each fluid; if the latter, the critical temperature (Tc) and critical pressure (Pc) are

needed.

3. Certain equations of state require a value for the acentric factor (ω).

4. The thermodynamically consistent Shan/Chen pseudopotential requires a maximum value for the pseu-

dopotential (psi0).

5. Most equations of state require values for the gas constant R.

14 CHAPTER 3. THE DL MESO GUI

6. If no temperature scalar is to be used for simulations, the isothermal system temperature needs to

be specified for certain equations of state.

7. The interaction parameters between fluids (gab) need to be specified for both a = b and a 6= b. If using

pseudopotentials for ideal gas, cubic equations of state or Carnahan-Starling equations of state, the values

of gaa should be equal to 1.

8. If using Shan/Chen interactions with quadratic terms, the quadratic weights can be specified for indi-

vidual fluids (but not between different fluid species).

9. The wetting type for each fluid (density, pseudopotential or screened pseudopotential) can be specified

using pull-down boxes and the wall interaction parameters for each fluid (ga,wall) can be given in the

dialogue boxes below. (Note that if no wall interaction is needed, the latter can be set to zero.)

If Lishchuk continuum-based interactions are used, the following data are required:

1. The interaction parameters between fluids (gab) need to be specified for a 6= b (i.e. unlike fluid species).

2. The wall interaction parameters with fluids (gwall,a) need to be specified for all fluids other than the

continuous species (assumed to be fluid 0).

3. The segregation parameter (β) is required to ensure immiscible fluids can separate from each other.

Note that at least two fluids are required for Lishchuk interactions to be used: this pop-up window will not

open if only one fluid is specified in the main LBE system window.

For Swift free-energy based interactions, the required data are as follows:

1. The equation of state for all fluids must be chosen using the pull-down box at the top of the window.

The available equations of state include the standard lattice gas, the equation of state based on the original

Shan/Chen pseudopotential (SC 1993), the equationf of state based on the thermodynamically consistent

Shan/Chen pseudopotential (SC 1994), the equation of state based on Qian’s pseudopotential (Qian

1995), a quadratic equation of state, an ideal gas, van der Waals (vdW), Redlich-Kwong (RK), Soave-

Redlich-Kwong (SRK), Peng-Robinson (PR), Carnahan-Starling-van der Waals (CS-vdW) and Carnahan-

Starling-Redlich-Kwong (CS-RK). Each equation of state requires different parameters, and the dialogue

boxes below are enabled or disabled accordingly.

2. If a Shan/Chen or quadratic equation of state is specified, the interaction parameter g must be given

in the top dialogue box, while the maximum pseudopotential value (psi0) should also be given if the

thermodynamically consistent Shan/Chen equation of state is used. If a cubic or Carnahan-Starling

equation of state is specified, it is possible to either specify the eos parameters (a and b) or the critical

properties (critical temperature Tc and critical pressure Pc) based on the pull-down box.

3. Certain equations of state require a value for the acentric factor (ω).

4. Most equations of state require values for the gas constant R.

5. If no temperature scalar is to be used for simulations, the isothermal system temperature needs to

be specified for certain equations of state.

6. If two fluids are to be used, the potential form (none or quartic) should also be specified using the

pull-down box, along with the parameters a and b as appropriate.

7. The surface tension parameter (κ) needs to be defined for both one and two fluid systems.

8. The wetting type (none or quadratic) can be selected using the drop-down box, and the parameters for

density (a 0 and a 1) can be specified, along with parameters for concentration (b 0 and b 1) if two

fluids are in use.

3.2. LATTICE BOLTZMANN AND THE DL MESO GUI 15

Figure 3.6: Set LBE Space

9. If the system includes two fluids, both the mobility relaxation time (τφ) and the mobility parameter

(Γ) need to be specified.

Note that the Swift free-energy schemes are only available for one or two fluids: this pop-up window will not

open if more than two fluids are specified in the main LBE system window.

After filling in all the required values, clicking the save button (SAVE FI) will store the data in preparation for

writing to the lbin.sys input file. The cancel button (CANCEL FI) will close the pop-ups without saving

any values.

3.2.2 Defining the Space Properties

If this option is selected before saving the LBE system data, a warning message advising that the system should

be re-defined will appear.

Figure 3.6 shows the Set LBE Space panel. The following data are required:

1. The top boundary condition can be selected using the pull-down list from:

• periodic

• on-grid bounce back

• mid-grid bounce back

• outflow

• fixed V (velocity), C (concentration) and T (temperature)

16 CHAPTER 3. THE DL MESO GUI

• fixed V and C, Neumann1 T

• fixed V and T, Neumann C

• fixed V, Neumann C and T

• fixed P (pressure or density), C and T

• fixed P and T, Neumann C

• fixed P and C, Neumann T

• fixed P, Neumann C and T

and values of required properties for this boundary can be specified by clicking top BC values to open

the pop-up box – see below for more details.

2. The bottom boundary condition can be selected using the pull-down list and any relevant values can

be specified in the pop-up box obtained by clicking bottom BC values.

3. The left boundary condition can be selected using the pull-down list and any relevant values can be

specified in the pop-up box obtained by clicking left BC values.

4. The right boundary condition can be selected using the pull-down list and any relevant values can be

specified in the pop-up box obtained by clicking right BC values.

5. The front boundary condition can be selected using the pull-down list and any relevant values can

be specified in the pop-up box obtained by clicking front BC values. Both the pull-down list and the

button will be greyed out for two-dimensional systems.

6. The back boundary condition can be selected using the pull-down list and any relevant values can

be specified in the pop-up box obtained by clicking back BC values. Both the pull-down list and the

buttone will be greyed out for two-dimensional systems.

7. The gradient order for determining spatial gradients at boundary points can be selected (1 or 2) using

the pull-down list.

8. The boundary condition type for constant velocity/density boundaries can be specified from Zou/He,

Simple Zou/He, Inamuro or regularized using the pull-down list.

9. The solute boundary condition type for constant solute concentrations can be specified from Zou/He

or Inamuro using the pull-down list.

10. The thermal boundary condition type for constant temperatures can be specified from Zou/He or

Inamuro using the pull-down list.

11. Solid obstacles can be added to the calculation space by selecting the bounce back (on-grid or mid-grid)

and obstacle types in the pull-down lists, entering its location on the grid and, if necessary, entering its

size, and clicking add obstacle.

• A single point will be located at (x0, y0, z0); z0 can be omitted for two-dimensional systems.

• A sphere is centred at (x0, y0, z0) and has radius r.

• A two-dimensional circle is centred at (x0, y0) and has radius r.

• A block has a vertex at (x0, y0, z0) and has size (dx, dy, dz): both z0 and dz can be omitted for

two-dimensional blocks.

Note that lattice points well within an obstacle are set as blank sites, i.e. they will be ignored in LBE

calculations.

1For a property φ, DL MESO currently only calculates ∇φ = 0 by using on-grid bounce back on the related distribution
function.

3.2. LATTICE BOLTZMANN AND THE DL MESO GUI 17

Figure 3.7: Set LBE Boundary Conditions

12. The entire system can be set up as a porous solid by selecting the bounce back type, specifying a pore

fraction and clicking set pore to randomly select an appropriate number of solid lattice sites.

Clicking the Create button will write all the lattice space data to a lbin.spa file; any lattice point defined

more than once will hold its latest definition. Values of properties for constant velocity/density/solute concen-

tration/temperature boundaries, the gradient order and the boundary condition types will be appended to the

pre-existing lbin.sys file at the same time.

3.2.2.1 Boundary condition values

If any of the BC values buttons are clicked, the pop-up window shown in Figure 3.7 will appear. Multiple

columns will appear based on the number of fluids and/or solutes in the system.

1. The user can switch between TOP, BOTTOM, LEFT. RIGHT, FRONT and BACK boundary

conditions using this pull-down box: note that these options will only be available if the user has specified

fixed velocity/density boundaries for those system planes in the Set LBE Space panel (see above).

2. If the user has specified a velocity boundary for the given plane, the constant velocity at that boundary

can be set by specifying x-, y- and z-components. (The z-component will be greyed out if the system is

two-dimensional.)

3. If the user has specified a velocity boundary, the amplitude of a sinusoidal oscillating velocity at that

boundary can be set by specifying x-, y- and z-components. (The z-component will be greyed out if the

system is two-dimensional.)

4. Either the oscillating frequency or oscillating period can be specified for the given boundary: the

pull-down box can be used to specify which of these is used.

5. If the user has specified a density boundary, the constant density at that boundary can be set for each

fluid.

6. If the user has specified a fixed solute boundary and there are solutes in the system, the constant solute

concentration at that boundary can be set for each solute.

18 CHAPTER 3. THE DL MESO GUI

7. If the user has specified a fixed temperature boundary and heat transfers are activated for the system,

the constant temperature and rate of temperature change can be set for that boundary.

Clicking the SET BC button will fix the velocities, densities, solute concentrations, temperature and heat

transfer rate for the boundary selected in the top pull-down box in memory ready for writing to the lbin.sys

file. The CLOSE BC button will close the pop-up box: this can be used before or after the property values

at boundary conditions are set.

3.3 Dissipative Particle Dynamics and the DL MESO GUI

To access the DPD facilities in the DL MESO GUI, proceed as follows:

• Click the DPD button to get the DPD panel.

• Click the Define DPD System button and supply the required information. The CONTROL file will be

created by this step.

• Note that currently no simulation space settings or molecular structure data can be entered using the

GUI.

• Click EXIT to finish the settings.

3.3.1 Defining the System

Figure 3.8 shows the Define DPD System panel.

The required data are as follows:

1. The job header: a line of text up to 80 characters long describing the simulation.

2. The system volume: the pull-down list can be used to specify whether this is cubic or orthogonal, or

whether replication of a CONFIG file is required (nfold). If specifying a cubic volume, the total volume

should be specified, while orthogonal volumes require the sizes for all three dimensions and the nfold

setting requires integer values specifying the number of replications in each dimension.

3. The target temperature (kBT) and pressure (P0) for the system. (The latter is greyed out if no barostat

is to be used.)

4. The maximum interaction cutoff (rc) for pairwise particle interactions and the many-body cutoff

(rd) for determining localized particle densities as used for many-body DPD. If the interaction cutoff is

not specified (i.e. if it is set to zero), DL MESO will use the largest interaction length available from the

interaction data specified in the Set DPD Interactions panel.

5. If required, the electrostatic cutoff (re) for short-range electrostatic interactions and the surface cutoff

(zc) for interactions between particles and solid walls. (These are greyed out if not required.)

6. The size of the boundary halo for copying particle data from neighbouring subdomains or across periodic

boundaries and the size of each time step (∆t) for integrating the equations of motion.

7. The total steps required for the DPD simulation and the number of time steps required to equilibrate

the system (equilibration steps).

8. The numbers of time steps to store system variables for rolling averages (stack interval) and between

rescaling of particle velocities to the desired system temperature during equilibration (temp scale inter-

val). The latter can be set to zero if no temperature rescaling is required.

3.3. DISSIPATIVE PARTICLE DYNAMICS AND THE DL MESO GUI 19

9. The starting time step (save start) and the number of time steps between saves (save interval) of

trajectory data to HISTORY files for later visualization. The latter can be set to zero if no trajectory data

are required.

10. The save level for trajectory data can be specified using the pull-down list: either positions only, positions

and velocities, or positions, velocities and forces can be selected. The random seed for initializing random

number generators can be set with this dialogue box.

11. The numbers of time steps between printing summaries in the OUTPUT file (print interval) and outputs

of statistical data (system energy, potential energies, pressure, temperature etc.) to a plottable CORREL

file (plot interval). The latter value can be set to zero if no plot file is required.

12. The number of time steps between dumps of system configurations to export files for simulation restarts

(dump interval) and the percentage variation in particle density (density var) to allow for unevenly

distributed systems.

13. The job time is the maximum (real) time that can be spent carrying out the DPD simulation: the close

time gives the time needed to write restart files and shut down the calculation in a controlled manner.

14. The restart key for the simulation: this can either be set to none for a new simulation, a full restart to

continue a previous run using an export file, a new run which takes a starting state (particle positions

and velocities) for a new simulation from an export file, and rescaled does the same as a new run but

additionally rescales the particle velocities to give the specified system temperature.

15. The system thermostat: the dissipative and random forces as defined for DPD with the standard (molec-

ular dynamics) form of the Velocity Verlet integrator (DPD/MD-VV) is the default, but recalculation of

dissipative forces at the end of each step (DPD/DPD-VV)[37], the Lowe-Andersen[79], Peters[92] and

Stoyanov-Groot[121] thermostats can also be selected. Values of γ for the DPD and Peters thermostats

and Γ for the Lowe-Andersen and Stoyanov-Groot thermostats can be specified elsewhere for each pair of

species, but an additional parameter for the Stoyanov-Groot thermostat should be set by clicking on set

thermostat – see below for more details.

16. The system barostat: no barostat is used by default, but Langevin[60] and Berendsen[6] barostats with

constant pressure (NPT), constant surface area (NPAT) and constant surface tension (NsT) ensembles

are available in combination with all five thermostats. If either barostat is selected, its parameters can be

set by clicking on set barostat and the target system pressure can be specified.

17. The electrostatics scheme for the simulation: the Ewald sum method with Slater-type (exponential)[41]

or Gaussian[21] charge smearing schemes are available in DL MESO DPD. If selected, the short-range

electrostatic cutoff can be edited and the parameters for the Ewald sum and charge smearing can be

specified by clicking on set electrostatics.

18. The surfaces to be applied to the system: by default periodic boundary conditions are used, but alter-

native boundary conditions include Lees-Edwards shearing periodic boundaries, hard walls with specular

reflections[133] or bounce back reflections. The boundaries with the specified condition, the position of

hard walls relative to the simulation boundary and vacuum gaps for electrostatics can be selected by

clicking on set surfaces.

19. The inclusion of at least one frozen bead wall can be specified using the tick boxes in this row: this will

also active the set surfaces button to allow vacuum gaps for electrostatics to be specified.

20. Switches to use global storage of bonds (global bonds), to ignore CONFIG files, to override index

numbers in a CONFIG file and to OpenMP critical code sections to assign particle forces can be set using

these tickboxes.

20 CHAPTER 3. THE DL MESO GUI

Figure 3.8: Define DPD System

Note that the DPD code uses reduced units in which the unit of length is the particle size, the unit of mass

is the particle mass and the unit of energy is the primary energy parameter of the potential energy function.

From these the time unit may be derived. The temperature is defined to be 2
3 of the system kinetic energy.

If a valid CONTROL file already exists in the (current) working directory, the OPEN button can be clicked

to load its information into the GUI, which can then be viewed and edited. The CONTROL file for input into

DL MESO DPD is created by clicking the SAVE button.

3.3.1.1 Thermostat, barostat, electrostatic and surface parameters

Examples of the pop-up windows for thermostat, barostat, electrostatic and surface parameters can be seen in

Figure 3.9: multiple columns of dialogue boxes are made available for systems with multiple species.

The thermostat pop-up window is formatted as in Figure 3.9(a):

1. The type of thermostat to be used in the simulation.

2. Thermostat parameters: for the Stoyanov-Groot thermostat (currently the only type that requires an

additional parameter), a global coupling parameter for the Nosé-Hoover part (α) is required.

Figure 3.9(b) gives the layout for the barostat pop-up window:

1. The type of barostat and ensemble to be used in the simulation.

2. Barostat parameters: for the Langevin barostat, a barostat relaxation time (τp) and piston drag

coefficient (γp) are required, while the Berendsen barostat requires the compressibility/relaxation

ratio (βτp).

3.3. DISSIPATIVE PARTICLE DYNAMICS AND THE DL MESO GUI 21

(a) Thermostat parameters (b) Barostat parameters

(c) Electrostatic parameters (d) Surface parameters

Figure 3.9: Thermostat, barostat, electrostatic and surface pop-up windows

3. If a constant surface tension ensemble is used, the surface tension parameter is needed: note that it

acts only in the z-dimension of the system.

4. This check box determines whether or not an isotropic system, i.e. one where pressure acts uniformly

in all dimensions, should be modelled. If unchecked, the barostat will act differently in each dimension

and the shape of the system will change over time. The check box will only appear for constant surface

tension (NsT) ensembles.

The parameters for electrostatics can be given in the pop-up window shown in Figure 3.9(c):

1. The type of electrostatics to be used in the simulation.

2. Electrostatic parameters: either the permittivity coefficient (Γ) or bjerrum length (lB) needs to be

specified.

3. Either the Ewald real-space convergence (α) coefficient and maximum k-vector should be specified,

or alternatively the relative error in Ewald sum can be used to obtain the former two properties for

the system.

4. Charge smearing schemes either require the charge smearing length or charge smearing beta to

be specified: the smearing length/beta relationship can also be supplied to indicate the connection

between the two properties.

If non-periodic boundaries are to be used, the parameters for surfaces can be entered in the appropriate pop-up

window (Figure 3.9(d)):

1. The type of surface interactions or boundary conditions to be applied.

2. Wall directions: if the checkbox for a particular dimension is ticked, the boundary condition will be

applied to the surfaces orthogonal to the specified axis.

3. Wall offset: this indicates the position of the boundaries relative to the system boundaries – this value

can be set particularly to apply a reflective boundary ahead of frozen bead walls to prevent any particles

from moving through them.

22 CHAPTER 3. THE DL MESO GUI

Figure 3.10: Set DPD Interactions

4. For systems with electrostatics, the vacuum gap in the reciprocal space part of an Ewald sum can be

specified to help reduce its periodicity orthogonally to any non-periodic boundaries.

After filling in all the required values, clicking the relevant save button (SAVE T, SAVE B, SAVE E or

SAVE SF) will store the data in preparation for writing to the CONTROL file. The cancel buttons (CANCEL T,

CANCEL B, CANCEL E and CANCEL SF) will close the pop-ups without saving any values.

3.3.2 Defining DPD Interactions

Figure 3.10 shows the Set DPD Interactions panel. The following data are required:

1. The number of species is required to specify all interactions between particles in a DPD simulation.

The spinner box allows the user to define up to 10 particle species, while the button set species opens a

pop-up window for the user to enter the properties for each species – see below for more details.

2. Once the particles species have been defined, the button set interactions opens a pop-up window to

allow the user to define non-bonded interactions between particle species (including surface interactions)

and, if applicable, which particle species is to be used for frozen bead walls.

3. The molecule generation utility molecule-generate.cpp can be run to create molecules for the DPD

simulation, which can be included in the FIELD file. The utility should be compiled beforehand to give

the executable molecule.exe (refer to Appendix C for more details).

4. It is possible to define an external force field on all particles in the system, using the pull-down box to

define the type. Constant gravitational fields, linear shear boundaries and constant electric fields can be

3.3. DISSIPATIVE PARTICLE DYNAMICS AND THE DL MESO GUI 23

defined. Clicking on the button set parameters opens a pop-up window to define the parameters for the

external force field.

5. Once the FIELD file has been created, a text editor, including the built-in dlmesoEditor, may be

selected using the pull-down box to view and edit the FIELD file. An alternative editor can be used by

selecting ‘other’ and typing its name in the text box before clicking on the edit FIELD file button.

A pre-existing FIELD file can be read into the GUI by clicking OPEN: any species beyond the 10th contained

therein will be ignored, but the user will be able to subsequently edit the species and interaction properties. Note

that this does not preserve any included molecular data, which may be lost if the the FIELD file is subsequently

saved unless it is included in a separate molecule file (as generated by the molecule-generate.cpp utility).

Clicking SAVE write all interaction data, including any created molecule data in the molecule file, to a FIELD

file, which can still be viewed and edited afterwards using the text editor option described above.

3.3.2.1 Species, interactions and external field parameters

Examples of the pop-up windows for species, non-bonded interactions and external field parameters can be seen

in Figure 3.11.

(a) Species parameters (b) Non-bonded interaction parame-
ters

(c) External field parameters

Figure 3.11: Species, interactions and external field pop-up windows

The species pop-up window is formatted as in Figure 3.11(a), with individual columns for each species:

1. The name of each species, which can be up to 8 characters long.

2. The mass of a particle for the species (mi).

3. The charge of a particle for the species (qi).

4. The number of unbonded particles of the species (population (unbonded)) in the system.

5. The tickbox indicates whether or not the particles for the species should be frozen.

Figure 3.11(b) gives the layout for the interaction pop-up window:

24 CHAPTER 3. THE DL MESO GUI

1. The pair of species can be selected using the first two pull-down boxes: the interaction parameters and

type currently set for the selected species pair will be displayed.

2. The interaction type for the species pair: the standard DPD model by Groot and Warren[43] is

the default, but many-body (density dependent) DPD[89, 130], Lennard-Jones[62] and Weeks-Chandler-

Andersen ‘hard sphere’ models can also be selected. Note that while the Lennard-Jones and Weeks-

Chandler-Andersen (WCA)[137] models are not DPD models, the DPD thermostat can be used with

them to maintain system temperature.

3. The energy parameters for the species pair can be typed into the boxes labelled Aij (Bij, Cij, Dij,

Eij) and set using the button SET I. Only one energy parameter is required for standard DPD (Aij),

Lennard-Jones and WCA (εij), while many-body DPD can use up to five: the exact number required will

depend upon the model selected by the user. Note that values for these and other interaction parameters

for all species pairs will be written to the FIELD file: if many-body DPD interactions are not included

and mixing rules are to be used between unlike species, the file can subsequently be edited to remove

extraneous definitions.

4. The maximum interaction length between the two species (rc,ij or σij) can be typed into this box and

set using the button SET I.

5. The dissipative factor (γij) or collision frequency (Γij) for the species pair (i.e. the parameter for the

selected thermostat) can be typed into this box and set using the SET I button.

6. If non-periodic hard walls are in use, surface interaction parameters can be set for each species: the

available surface interaction types include DPD and WCA.

7. The wall repulsion parameter (Ai,wall or εi,wall and wall interaction length (zc,i or σi) can be typed

in and set using the button SET I.

8. If a non-periodic frozen bead surface is defined, the species of beads making up the walls can be selected

using a pull-down box.

9. The wall density of frozen beads can be typed in a box, as can the wall thickness.

Note that if hard walls or frozen bead walls are not in use, the relevant pull-down boxes and text fields will not

be displayed in this window.

The parameters for external force fields can be given in the pop-up window shown in Figure 3.11(c):

1. The type of external field to be used in the simulation.

2. External field parameters: for constant gravitational fields (or similar constant external force fields),

the x-, y- and z-components of gravitational acceleration (~G) need to be specified. For linear shear

boundaries, the x-, y- and z-components of the boundary velocity (~Vw) need to be defined, although

the component orthogonal to the wall will be ignored in simulations. For constant electric fields, the x-,

y- and z-components of the electric field (~E) need to be specified.

After filling in all the required values, clicking the relevant set or save button (SAVE SP, SET I or SAVE E)

will ensure the data will be writen to the FIELD file. The close/cancel buttons (CLOSE SP, CLOSE I and

CANCEL E) will close the pop-ups without changing any previously-saved values.

3.4 Compiling and running DL MESO

• Compiling the LBE/DPD code may be accomplished through the compiler panel which is activated from

either of the Compile LBE Code or Compile DPD Code buttons.

3.5. NOTES 25

• The Compile LBE Code panel allows you to select the operating system, a C++ compiler, compiler

flags (both standard and for OpenMP) and the version (serial or parallel, with or without OpenMP) of

the code you wish to build. If you require a C++ compiler that is not included in the pull-down list, select

other and type the command for the required compiler in the neighbouring box. Clicking the COMPILE

button will start the compilation and a message box will signal its completion.

• The Compile DPD Code panel allows you to select the operating system, a Fortran compiler, compiler

flags and the version (serial or parallel, with or without OpenMP) of the code you wish to build. If you

require a Fortran compiler that is not included in the pull-down list, select other and type the command

for the required compiler in the neighbouring box. The Create Makefile button needs to be clicked

first to create a makefile in the working directory, which automates compilation and may be edited by the

user2. Clicking the COMPILE button will invoke the makefile to compile the code and a message box

will signal its completion.

• If the compilation fails, you may need to edit the code. An editing panel is available for this purpose

using either the Change LBE Code or Change DPD code buttons. Its function is similar to the

compilation panel in operation with a choice of text editors, including one packaged with the DL MESO

GUI.

– The files in the LBE code that can be edited include the parallel and serial main files (standard

and custom), the core loops (parallel and serial), the lattice model file, the boundary condition

file, the core routines for LBE calculations, the collision routines (BGK, TRT and MRT), the force

calculation routines, the file for user-defined routines, the main head file and the head file for user-

defined routines. Others can be edited by selecting other and typing the name of the file in the

neighbouring box.

– The files in the DPD code that may be edited include the main program, constants, global variables

and the modules configuration, start (for system initialization), field (for force calculations, both with

and without OpenMP), bond interactions (with and without OpenMP), many-body DPD (with and

without OpenMP), Ewald sums (with and without OpenMP), surfaces and statistics. Other code

files can be edited by selecting other and typing the name in the neighbouring box.

• Running the LBE/DPD code is made possible through the Run LBE Program or Run DPD Program

button, which activates a panel that allows you to select the required submission command and then submit

the job. You may need to create a suitable run script in your working directory beforehand if running the

job in parallel.

• Collecting data from multiple processors and processing it for visualization is possible using the Gather

LBE Data and Process DPD Data buttons. For DPD simulations, several dialogue and pull-down

boxes are available for various post-processing utilities: one of these can specify a particular species and the

FIELD file is needed to read species names for the simulation. Note that the utilities need to be compiled

in the working directory prior to use: details on this and their functions can be found in Appendix C.

• The results of LBE and DPD calculations may be plotted using the Plot LBE Results and Plot DPD

Results buttons, which allows the user to select plotting and visualization applications, including those

not available in the pull-down lists. Note that these need to be already installed on the workstation in use

before being invoked by the GUI: if they require running from a command-line, tick the run in terminal

box before launching the application.

3.5 Notes

• There are some inactive buttons reserved for later use.

2If using Cygwin in Windows, editing the makefile will be necessary as the Windows formatting for directories cannot ordinarily
be used.

26 CHAPTER 3. THE DL MESO GUI

• The GUI does not produce initial state files (lbin.init for LBE, CONFIG for DPD) prior to simulations,

although there are utilities available to do this: see Appendix C for further details.

• Click EXIT to close down the GUI.

Part I

Lattice Boltzmann Equation (LBE)

27

Chapter 4

The Lattice Boltzmann Equation: Basic

Theory

4.1 Introduction

The Lattice Boltzmann Equation (LBE) method is based on modelling a fluid consisting of fictional particles,

which collide and move over a discrete lattice grid. This method is similar to its ancestor, Lattice Gas Cellular

Automata (LGCA), but the main difference is that while LGCA represents the existence or otherwise for each

particle at a grid point, LBE describes the physical state of an ensemble of particles by a single distribution

function. This difference allows LBE to simulate both dilute fluids (i.e. those in which the mean free path of

component particles is much larger than the lattice spacing) and condensed matter such as liquids.

The Lattice Boltzmann method uses fully discretized space, time and velocity to describe the evolution of fluid.

Space is represented by a regularly distributed grid, time flow is obtained by integrating over discrete time steps

and discrete velocity vectors (lattice links) are defined to ensure that a particle moves from one grid point to

another without falling between them.

The Lattice Boltzmann algorithm can be summarized by the following:

• Fluid properties are mapped onto a discrete lattice.

• The physical state of the fluid at each lattice point is described by a set of particle distribution functions.

• The system evolves towards an equilibrium (or steady state) by means of a two-step process:

1. Collision (relaxation) of the distribution function towards its local equilibrium form;

2. Propagation of collided distribution functions along lattice links to neighbouring points.

• Macroscopic fluid variables (e.g. density, momenta) can be calculated from moments of the distribution

functions.

Major benefits of the Lattice Boltzmann Equation method include the local nature of its most computationally

intensive process (collision), making the method inherently and massively parallelizable, and its ability to model

complex system geometries and/or fluid interactions with comparatively little additional computational cost.

4.2 Basic Definitions

Triangular and rectangular lattices are two of the most popular grid forms used in Lattice Boltzmann simulations.

Triangular lattices have sixth-order rotation isotropy and have been widely applied in two-dimensional systems,

e.g. the D2Q7 and D2Q13 models. Rectangular lattices have only fourth-order rotation isotropy but can

more easily handle the simulation of three-dimensional systems with complex boundary conditions. The local

29

30 CHAPTER 4. THE LATTICE BOLTZMANN EQUATION: BASIC THEORY

equilibria for D2Q9 and D3Q27 lattice models can be derived a priori from the Maxwell equilibrium distribution.

D3Q15 and D3Q19 models appear to be more popular than D3Q27 because the latter is much more expensive

in terms of computing cost.

It is required that the equilibrium state should be able to reproduce elementary macroscopic fluid variables:

ρ =

q∑
i=0

fi (4.1)

ρuα =

q∑
i=0

fieiα (4.2)

where ρ is the density, fi the ith particle distribution function, êi the ith lattice link vector and uα the

macroscopic velocity along the α-axis.

In the Lattice Boltzmann method, the lattice link vectors êi do not represent the thermal velocities of a particle

and therefore

E 6= 1

2

∑
fi (êi − ~u)

2
(4.3)

Equation (4.3) implies that the temperature cannot ordinarily be derived from the lattice particle distribution

function and that the fluid modelled using LBE is generally athermal. It is possible, however, to alleviate this

problem by defining a temperature at each grid point and either using a thermal lattice scheme with additional

link vectors or modelling either the temperature or internal energy on an additional lattice grid.

4.3 Derivation of Equilibrium

There are two methods by which the local equilibria for the Lattice Boltzmann Equation can be constructed.

The bottom-up method obtains the equilibrium from the Maxwell-Boltzmann equilibrium distribution. The

top-down method constructs the equilibrium so that the required macroscopic properties can be reproduced.

Only the bottom-up method is shown here; the top-down method can be found in [20].

The Maxwell-Boltzmann single particle equilibrium distribution function is

feq =
ρ

(2πθ)
D
2

exp

−
(
~ξ − ~u

)2

2θ

 (4.4)

where θ = kBT/m, kB is the Boltzmann constant, T is temperature, m is molar mass, D is the space dimension,
~ξ is the thermal velocity and ~u the macroscopic velocity.

When |~ξ − ~u| �
√
θ, Equation (4.4) can be expanded into

feq =
ρ

(2πθ)
D
2

exp

(
− ξ

2

2θ

)1 +
~ξ · ~u
θ

+

(
~ξ · ~u

)2

2θ2
− u2

2θ

 (4.5)

For a microscopic quantity ψ (ξ), the associated macroscopic quantity Ψ is calculated by

Ψ =

∫
ψ (ξ) feqdξ (4.6)

Let ~ξ =
√

2θ~c, where ~c is a rescaled thermal velocity; the macroscopic velocity ~u can be similarly rescaled to√
2θ~u. Equations (4.5) and (4.6) can thus be combined to give

Ψ =

∫
e−c

2

ψ (c)

√
2θρ

(2πθ)
D
2

[
1 + 2 (~c · ~u) + 2 (~c · ~u)

2 − u2
]
dc (4.7)

4.4. STRUCTURAL RELAXATION AND MACROSCOPIC EQUATIONS 31

Using Gaussian quadrature, Equation (4.7) changes into

Ψ =
∑
i

ψ (ci)

√
2θρ

(2πθ)
D
2

w (ci)
[
1 + 2 (~c · ~u) + 2 (~c · ~u)

2 − u2
]

(4.8)

Let

wi =

√
2θρ

(2πθ)
D
2

w (ci) (4.9)

and

feqi (ρ, ~u) = wiρ
[
1 + 2 (~c · ~u) + 2 (~c · ~u)

2 − u2
]

(4.10)

The value of w (ci) can be obtained from Gauss-Hermite integration. Equation (4.10) is the equilibrium particle

distribution function in the discrete regime. wi is called the weight factor for speed vector ci. Equation (4.10)

can also be written as

feqi (ρ, ~u) = wiρ

[
1 +

3 (êi · ~u)

c2
+

9 (êi · ~u)
2

2c4
− 3u2

2c2

]
(4.11)

where c =
√

3θ =
√

3kBT
m is the modulus of the basic lattice vector and equivalent to the fluid speed of sound

(e.g. for water at 20℃, c = 367.8 m/s).

4.4 Structural Relaxation and Macroscopic Equations

The Lattice Boltzmann method often uses the BGK (Bhatnagar, Gross and Krook) approximation[7] to describe

the structural relaxation. The single particle distribution function evolves to the equilibrium state via

fi (~x+ êi∆t, t+ ∆t)− fi (~x, t) = −∆t

τf
[fi (~x, t)− feqi (ρ(~x, t), ~u(~x, t)] (4.12)

where τf is called the relaxation time and is related to the kinetic viscosity of fluid. This evolution equation

can be divided into two separate processes of collision (where t+ denotes a time after collision has taken place)

fi
(
~x, t+

)
= fi (~x, t)− ∆t

τf
[fi (~x, t)− feqi (ρ(~x, t), ~u(~x, t)] (4.13)

and propagation (or free-streaming)

fi (~x+ êi∆t, t+ ∆t) = fi
(
~x, t+

)
. (4.14)

To derive the macroscopic equations, the left hand side of Equation (4.12) can be expanded as

fi (~x+ êi∆t, t+ ∆t)− fi (~x, t) =

∞∑
m=1

∆tm

m!
(∂t + eiα∂α)

m
fi (~x, t) (4.15)

Expanding the instantaneous particle distribution function around its equilibrium and retaining only the first

order gives

fi (~x, t) = feqi (~x, t)− τf (∂t + eiα∂α) feqi (~x, t) +O
(
∂2
)

(4.16)

Substituting Equations (4.15) and (4.16) into the left hand side of Equation (4.12) gives the second order

differential equation for the equilibrium distribution

feqi − fi
τf

= (∂t + eiα∂α) feqi − wf (∂t + eiα∂α)
2
feqi +O

(
∂3
)

(4.17)

where wf = τf − ∆t
2 .

32 CHAPTER 4. THE LATTICE BOLTZMANN EQUATION: BASIC THEORY

Summing Equation (4.17) over i and ignoring the second order deriviative we obtain

0 = ∂tρ+ ∂αρuα − wf∂β

(
∂ρuβ + ∂α

∑
i

feqi eiαeiβ

)
+O

(
∂3
)

(4.18)

Summing Equation (4.18) times ei over i we obtain

0 = ∂tρuα + ∂β
∑
i

feqi eiαeiβ − wf∂γ

(
∂t
∑
i

feqi eiαeiγ + ∂β
∑
i

feqi eiαeiβeiγ

)
+O

(
δ3
)

(4.19)

Equation (4.19) shows that the second term in Equation (4.18) is of the third order in the derivative. Therefore

we have the continuity equation to the second order of the derivative

∂tρ+∇ · ρ~u = 0 (4.20)

Defining the third and fourth order moments∑
i

feqi eiαeiβ = Pαβ + ρuαuβ (4.21)

∑
i

feqi eiαeiβeiγ = Pαβuγ + Pαγuβ + Pβγuα + ρuαuβuγ (4.22)

With these definitions, Equation (4.19) leads to the weakly compressible Navier-Stokes equation

∂t(ρuα) + ∂β(ρuαuβ) = −∂βPαβ +
wfD

3
∂β

(
δαβ − 3∂αPαβ

D
∂γ(ρuγ) + ∂α(ρuβ) + ∂β(ρuα)

)
+O

(
∂3
)

(4.23)

where the kinetic viscosity is given by ν =
wf
3 = 1

3

(
τf − 1

2

)
.

Similarly, the convection diffusion equation governing the evolution of solute transfer and the convection/con-

duction equation governing the evolution of thermal transfer can be obtained.

4.5 Mesoscale Interaction

The rate of change of momentum is proportional to the force

ρuα (t+ ∆t) = ρuα (t) + Fα∆t (4.24)

The Lattice Boltzmann Equation takes into account the effect of relaxation and it is possible to express Equation

(4.24) in a new format[84]:

ρuα (t+ ∆t) = ρuα (t) + Fατf (4.25)

~F , with Fα as the component in the α direction, can be a long-ranged body force or any local interactions.

In the Shan-Chen pseudopotential model for multiple phases and components[108], the force on component a

is defined as
~F a = −ψa (~x)

∑
b

gab
∑
i

wiψ
b (~x+ êi) êi (4.26)

where gab is the interaction coefficient between elements a and b. ψa is related to the density of element a and

can take many different forms, e.g.

ψa (~x) = ρa0

[
1− exp

(
−ρ

a

ρa0

)]
(4.27)

In the Lishchuk continuum-based model for single phases and multiple components[77], the force acting between

components a and b is expressed as

~Fab =
1

2
gabKab∇ρNab (4.28)

4.6. SUMMARY OF LATTICE BOLTZMANN EQUATION 33

where ρNab = ρa−ρb
ρa+ρb

is a phase index between the two components and Kab is the local curvature from the

interface model, which can be determined from spatial gradients of the phase index. This algorithm requires

a modification to the collision step: at each lattice point all fluids are collided as a single fluid, which is then

segregated back out into the individual fluids.

In the Swift free-energy-based model for two phases or two fluids[125, 126], modifications are made to the local

equilibrium distribution function to incorporate the fluid equation of state (in the form of bulk pressure) and

the interface surface tension between the phases or fluids, e.g. for a single fluid with two phases

feqi = w00
i ρ+ wi

[
ρ

{
(êi · ~u) +

3

2
(êi · ~u)

2 − 1

2
u2

}
+ λ {3 (êi · ~u) (êi · ∇ρ) + [γi (êi · êi) + δi] (~u · ∇ρ)}

]
+wpi P0 − wtiκρ∇2ρ+ wxxi κ (∂xρ)

2
+ wyyi κ (∂yρ)

2
+ wzzi κ (∂zρ)

2

+wxyi κ∂xρ∂yρ+ wxzi κ∂xρ∂zρ+ wyzi κ∂yρ∂zρ

(4.29)

where P0 is the bulk pressure of the fluid, κ the interfacial surface tension and λ is a correction term to ensure

Galilean invariance. The above form of local equilibrium requires first and second order gradients of density,

which can be calculated for each grid point based on density values for neighbouring points, and can correctly

obtain the free energy density for the fluid by means of thermodynamic consistency at the continuum. This

method can be extended to two-fluid systems by modelling the total fluid density and additionally modelling a

fluid concentration (φ = ρa−ρb
ρ), whose local equilibrium distribution function includes the chemical potential

between the two fluids (given as the derivative of bulk free energy density with concentration).

4.6 Summary of Lattice Boltzmann Equation

Lattice Boltzmann is an established numerical methodology for handling hydrodynamics in fluid. It is particu-

larly suited to simulating systems with complex boundary conditions and is also suitable for systems with phase

transitions since mesoscale interactions can be merged into the method easily.

Chapter 5

DL MESO LBE Features

5.1 Collision and Propagation Algorithms

The collision and propagation routines are a fundamental part of Lattice Boltzmann Equation calculations.

Implementation involves the calculation of post-collisional values for the distribution functions at each lattice

point (at time t+). A generalised form of the collision operator can be given as a product of a square matrix

of size equal to the number of lattice links, Λ and the deviation of the distribution function from the local

equilibrium value, which can be reduced to a collision operator for link i by summation over all links, i.e.

Ci =
∑
j

Λij
(
fj − feqj

)
.

The generalised form of the Lattice Boltzmann Equation can thus be given with the collision operator Ci and

forcing term Fi:

fi
(
~x, t+

)
= fi (~x, t) + Ci + Fi∆t

and movement of these distribution functions to neighbouring lattice nodes:

fi (~x+ êi∆t, t+ ∆t) = fi
(
~x, t+

)
which combine to give the governing equation for calculations.

5.1.1 Collision algorithms

The forms of collision currently available in DL MESO LBE are:

• the Bhatnagar-Gross-Krook (BGK) single relaxation time[7] scheme;

• the Two Relaxation Time (TRT)[39] scheme;

• Multiple Relaxation Time (MRT) schemes[68, 23, 124];

• Cascaded Lattice Boltzmann Equation (CLBE) schemes[35, 32, 30];

and each collision method can be coupled to four different methods to apply interfacial and external forces to

the fluids: the default Martys-Chen method, the Exact Difference Method and the second-order accurate Guo

and He methods.

The Martys-Chen method[84] (used as the default in DL MESO LBE) simply modifies the velocity of the fluid

used to calculate the equilibrium distribution function for collisions. If the measured macroscopic velocity is

defined as ~u = 1
ρ

∑
i fiêi, the equilibrium fluid velocity is given as ~v = ~u +

τf∆t ~F
ρ . This gives an equivalent

forcing term[74] of

Fi = τfwi

[
êi − ~u
c2s

+
(êi · ~u)

c4s
êi

]
· ~F +

wiτ
2
f∆t

ρ


(
êi · ~F

)2

2c4s
− F 2

2c2s

 (5.1)

35

36 CHAPTER 5. DL MESO LBE FEATURES

if the measured macroscopic velocity (~u) were used as the equilibrium fluid velocity.

The Exact Difference Method (EDM)[65] uses the equilibrium fluid velocity ~v = ~u and applies an additional

forcing term defined as:

Fi∆t = feqi

(
ρ, ~u+

~F∆t

ρ

)
− feqi (ρ, ~u). (5.2)

This expression can be written explicitly if the form of the equilibrium distribution function is known. If the

second-order accurate equilibrium distribution function (Equation 4.11) is to be used, the forcing term can be

expressed as

Fi = wi

[
êi − ~u
c2s

+
(êi · ~u)

c4s
êi

]
· ~F +

wi∆t

ρ


(
êi · ~F

)2

2c4s
− F 2

2c2s

 . (5.3)

Guo’s method[46] uses an adjusted fluid velocity for both equilibrium distribution functions and additional

forcing terms. The equilibrium fluid velocity is defined as ~v = ~u +
~F∆t
2ρ and the forcing term is related to the

following source term:

Si = wi

[
êi − ~v
c2s

+
(êi · ~v)

c4s
êi

]
· ~F , (5.4)

derived to ensure correctness to the Navier-Stokes equations as determined by Chapman-Enskog analysis to

second order in Knudsen number.

The He method[50] is derived from second-order integration of the continuous Boltzmann equation with time

and a transformation of the distribution function to remove implicitness: like Guo’s method, this also uses

the adjusted fluid velocity ~v for equilibrium distribution functions and forcing terms. The forcing term for

this method is determined from the derivative of the Maxwell-Boltzmann equilibrium distribution function –

Equation 4.4 – with respect to the lattice link vector êi as an approximation for the same derivative of the main

distribution function. This results in the source term:

Si =
feqi
ρc2s

(êi − ~v) · ~F , (5.5)

which can use the (usual) expanded local equilibrium distribution function for efficient calculation and often be

truncated to second-order velocity terms in line with the general accuracy of LBE calculations, i.e.

Si = wi

[
êi − ~v
c2s

+
(êi · ~v) (êi − ~v)

c4s
+

(
(êi · ~v)

2

c2s
− v2

)
êi

2c4s

]
· ~F . (5.6)

The forcing term for both Guo and He methods is generically expressed as

Fi =
∑
j

(
δij −

Λij
2

)
Sj , (5.7)

where δij is the Dirac delta (equal to 1 when i = j and 0 when i 6= j) and Λij is a relevant matrix operator for

the collision scheme in use.

5.1.1.1 BGK single relaxation time

The BGK collision operator is defined by

Ci = −∆t

τf
(fi (~x, t)− feqi (ρ,~v)) (5.8)

using the macroscopic density (ρ) and equilibrium velocity1 (~v) at the grid point ~x and time t. τf is the

relaxation time, related to the kinetic (shear) viscosity of fluid by

ν =
1

3

(
τf −

1

2

)
(∆x)

2

∆t

1This quantity – particularly how it is related to the macroscopic velocity ~u – will depend upon the forcing algorithm in use.

5.1. COLLISION AND PROPAGATION ALGORITHMS 37

with the kinematic bulk viscosity of the fluid, ν′, set equal to 2
3ν[22]. This reduces the equation for post-

collisional distribution functions to

fi
(
~x, t+

)
= fi (~x, t)− ∆t

τf
(fi (~x, t)− feqi (ρ,~v)) ,

the same as Equation 4.12.

The BGK collision operator with the single relaxation time is equivalent to setting the generalised collision

matrix to

Λ = −∆t

τf
I

where I is the identity matrix (a square matrix with the diagonal values set to 1 and all other values set to 0).

All four forcing schemes (Martys-Chen, EDM, Guo and He) can be used in conjunction with the BGK collision

operator: the Martys-Chen scheme is applied by default. The Guo forcing term for BGK collisions is defined

as:

Fi =

(
1− 1

2τf

)
Si

=

(
1− 1

2τf

)
wi

[
êi − ~v
c2s

+
(êi · ~v)

c4s
êi

]
· ~F ,

while He forcing term for BGK collisions is defined similarly as:

Fi =

(
1− 1

2τf

)
Si

=

(
1− 1

2τf

)
wi

[
êi − ~v
c2s

+
(êi · ~v) (êi − ~v)

c4s
+

(
(êi · ~v)

2

c2s
− v2

)
êi

2c4s

]
· ~F .

5.1.1.2 Two Relaxation Time (TRT)

The TRT collision operator is based on defining symmetric (even) and antisymmetric (odd) distribution func-

tions, which can be determined for a particular link from its own distribution function and the value from

its conjugate opposite link. For link i, if êj = −êi, then the symmetric distribution function is defined as

f+
i = 1

2 (fi + fj) and the antisymmetric distribution function is f−i = 1
2 (fi − fj). The equilibrium distribu-

tion functions can be similarly divided into symmetric and antisymmetric parts, feq,+i = 1
2 (feqi + feqj) and

feq,−i = 1
2 (feqi − f

eq
j) respectively. The collision operator is thus defined as

Ci = −∆t

τ+
f

(
f+
i (~x, t)− feq,+i (ρ,~v)

)
− ∆t

τ−f

(
f−i (~x, t)− feq,−i (ρ,~v)

)
(5.9)

where τ+
f and τ−f are respectively the symmetric and antisymmetric relaxation times.

The symmetric relaxation time defines the kinematic (shear) and bulk viscosities as

ν =
1

3

(
τ+
f −

1

2

)
(∆x)

2

∆t

ν′ =

(
2

3
− c2s

)(
τ+
f −

1

2

)
(∆x)

2

∆t
,

and is functionally identical to the single relaxation time used for BGK collisions (i.e. τ+
f ≡ τf). The anti-

symmetric relaxation time is essentially a free ‘kinetic’ parameter that can be used to ensure the accuracy of

simulations for all fluid viscosities when using particular boundary conditions, usually by fixing the product of

even and odd eigenvalues to some ‘magic number’, Λeo = ΛeΛo = (τ+
f −

1
2)(τ−f −

1
2). For instance, for planar

walls using bounce-back conditions with the wall placed halfway between lattice points, Λeo should be equal to
3
8 to give zero wall slip[38]. The symmetric relaxation time can be specified for each fluid in the same manner

as the BGK single relaxation time, while a value of Λeo can be given by the user and used to determine τ−f .

38 CHAPTER 5. DL MESO LBE FEATURES

To reduce computational time, the above collision operator can be re-expressed in terms of the full distribution

functions:

Ci = − ∆t

τf,p
(fi (~x, t)− feqi (ρ,~v))− ∆t

τf,n

(
fj (~x, t)− feqj (ρ,~v)

)
, (5.10)

where τf,p =
2τ+
f τ

−
f

τ+
f +τ−

f

and τf,n =
2τ+
f τ

−
f

τ−
f −τ

+
f

.

All four forcing schemes can be used in conjunction with the TRT collision operator, with the Martys-Chen

scheme used as the default. The Guo and He forcing terms for TRT collisions can be applied using symmetric

and antisymmetric source terms[105], i.e. S±i = 1
2 (Si ± Sj) and is thus defined as:

Fi =

(
1− 1

2τ+
f

)
S+
i +

(
1− 1

2τ−f

)
S−i

=

(
1− 1

2τf,p

)
Si −

1

2τf,n
Sj .

5.1.1.3 Multiple Relaxation Time (MRT)

The MRT collision operator operates on a similar principle to the quasilinear Lattice Boltzmann Equation[52],

which expresses collisions in terms of a square matrix with dimensions equal to the number of lattice links per

grid point (m ≡ lbsy.nq). Unlike quasilinear LBE, however, MRT collision schemes are applied to the (raw)

moments for each lattice point rather than the distribution functions[68, 23, 124], which are related to each

other by
~M = T~f (5.11)

where ~f is a vector of all m distribution functions for the point, i.e. (f0, f1 . . . fm−1)
T

, ~M the vector of

moments (also of size m and dependent on the lattice system) and T the transformation matrix that renders

the moments in terms of the distribution functions. Equilibrium values for the moments, ~Meq, can be determined

by transforming the standard local equilibrium distribution function into moment space by

~Meq = T~feq (5.12)

where ~feq is the vector of local equilibrium distribution functions: the resulting equilibrium moments can

alternatively be expressed directly as functions of fluid density and velocity. Certain moments, such as density

(ρ) and momentum (~j), must be conserved and their equilibrium values are set so that no changes are made.

The post-collisional moments are determined by relaxation of the non-equilibrium part, i.e.

~M(~x, t+) = ~M(~x, t)−Λ(~M(~x, t)− ~Meq(~x, t)) (5.13)

where Λ is the collision matrix, which takes the form of a diagonal matrix of m collision parameters (represented

by ~s):

Λ = diag(~s) (5.14)

Some of the collision parameters can be specified by the user to set both kinematic and bulk viscosities, a few

others can be tuned to improve simulation stability and the remainder (i.e. those for density and momentum)

are fixed to conserve macroscopic hydrodynamics. If all values of si are set to 1
τf

, the scheme reduces to BGK

single relaxation time collisions. Since the collisional matrix is diagonal, equation 5.13 can be rewritten in terms

of each moment, i.e.

Mi(~x, t
+) = Mi(~x, t)− si (Mi(~x, t)−Meq

i (~x, t)) (5.15)

Multiplying ~M(~x, t+) by the inverse of the transformation matrix, T−1, gives the post-collisional distribution

functions.

Interfacial and external forces can be applied using each of the three forcing methods, noting that these require

all collision parameters for conserved moments to be set to unity. The Martys-Chen method can be applied

during the main collision step by the addition of τf ~F to the fluid momentum. The source term derived for

the Exact Difference Method can be applied after the collided moments are converted back to post-collisional

5.1. COLLISION AND PROPAGATION ALGORITHMS 39

distribution functions. To apply forces using Guo’s or the He method, a moment-transformed source term, ~Sm,

can be derived[96] (where ~S is a vector of Guo/He forcing terms, (S0, S1 . . . Sm−1)
T

):

~Sm = T~S (5.16)

and applied by the following to correct the post-collisional moments:

∆ ~M =
(
I− 1

2Λ
)
~Sm∆t (5.17)

where I is an identity matrix. The above equation can be re-expressed as

∆Mi =
(
1− 1

2si
)
Smi ∆t (5.18)

The above equations after inverse transformation reduce to equations 5.4 or 5.6 when the collision parameters

are set to 1
τf

.

An example can be given for the D2Q9 lattice system[68]; the moment vector is

~M = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T

with ρ as the density, e the energy, ε the square of energy, ~j momentum, ~q energy flux, pxx the diagonal stress

tensor component and pxy the off-diagonal stress tensor component. The transformation matrix is

T =



1 1 1 1 1 1 1 1 1

−4 2 −1 2 −1 2 −1 2 −1

4 1 −2 1 −2 1 −2 1 −2

0 −1 −1 −1 0 1 1 1 0

0 −1 2 −1 0 1 −2 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 0 −1 2 −1 0 1 −2

0 0 1 0 −1 0 1 0 −1

0 −1 0 1 0 −1 0 1 0


The equilibrium moment vector is

~Meq =

(
ρ,−2ρ+

3(j2
x + j2

y)

ρ
, wερ+ wεj

(j2
x + j2

y)

ρ
, jx,−jx, jy,−jy,

j2
x − j2

y

ρ
,
jxjy
ρ

)T
with wε and wεj as adjustable parameters: for convergence to the single relaxation time BGK scheme, these

are set equal to 1 and −3 respectively. Of the 9 collision parameters available, s0, s3 and s5 have no effect

(except when applying external forces, when they should be set equal to one) as the associated moments are

preserved and s2, s4 and s6 are tuneable parameters for calculation stability with the condition that s4 = s6.

The remaining parameters represent the viscosities of the fluid, i.e.

ν =
1

3

(
1

s7
− 1

2

)
(∆x)

2

∆t
=

1

3

(
1

s8
− 1

2

)
(∆x)

2

∆t
≡ 1

3

(
τf −

1

2

)
(∆x)

2

∆t

ν′ =
1

6

(
1

s1
− 1

2

)
(∆x)

2

∆t
≡ 1

6

(
τf,bulk −

1

2

)
(∆x)

2

∆t

i.e. τf = 1
s7

= 1
s8

and τf,bulk = 1
s1

. If the moment-transformed source terms are to be used for Guo-like forcing,

the vector ~Sm for this lattice scheme is defined as

~Sm =



0

6(uxFx + uyFy)

−6(uxFx + uyFy)

Fx

−Fx
Fy

−Fy
2(uxFx − uyFy)

uxFy + uyFx


,

40 CHAPTER 5. DL MESO LBE FEATURES

while He forcing uses the following moment-transformed source terms:

~Sm =



0

6(uxFx + uyFy)

−6(uxFx + uyFy)

Fx

−Fx(1− 3u2
y) + 6uxuyFy

Fy

−Fy(1− 3u2
x) + 6uxuyFx

2(uxFx − uyFy)

uxFy + uyFx


,

Similar schemes are available for the D3Q15 [23], D3Q19 [23] and D3Q27 [124] lattices.

5.1.1.4 Cascaded Lattice Boltzmann Equation (CLBE)

The cascaded LBE (CLBE) collision operator, in a similar form to the Multiple Relaxation Time (MRT) schemes,

operates by calculating and colliding moments of the distribution function. In this case, central moments of the

distribution function are used[35], i.e.

M̃pqr =
∑
i

fi (ei,x − ux)
p

(ei,y − uy)
q

(ei,z − uz)r (5.19)

where p, q and r can each take values of 0, 1 or 2, and Mpqr =
∑
i fie

p
i,xe

q
i,ye

r
i,z is the equivalent raw moment.

Some algebra can be used to find relationships between higher-order raw and central moments, e.g. for M110

M110 = M̃110 + ρuxuy.

It is possible to express distribution functions in terms of raw or central moments[80, 81], but a simpler im-

plementation is to use transformation matrices in a similar fashion to moment-based MRT schemes [31, 30],

i.e.
~̃M = NT~f (5.20)

where N is an additional (lower triangular) matrix used to transform raw moments into central moments. The

central moments can be collided in a similar fashion to MRT:

~̃M(~x, t+) = ~̃M(~x, t)−Λ(~̃M(~x, t)− ~̃Meq(~x, t)), (5.21)

and inverses of the two transformation matrices can be used to convert post-collisional central moments back to

distribution functions. While combinations of second-order raw moments can be used, it is possible to use these

moments without combining them if the collision matrix Λ is modified from a purely diagonal matrix to a block

diagonal one with additional contributions from other second-order central moments[5]. This simplifies the lower

diagonal second transformation matrix N, making it easier to determine its inverse N−1. The transformations

from distribution functions to central moments (and back) can be implemented by either applying the two

matrices in turn (with the raw moments as an intermediary vector) or applying the product of the two matrices

directly to the distribution functions. The matrix products (NT and T−1N−1) can be found analytically for

each lattice scheme: either these or the second transform matrix (N) and its inverse have to be determined for

each lattice point to correspond with its local velocity.

The collision parameters for zeroth and first order central moments (density and momentum) are fixed to

conserve macroscopic hydrodynamics, while those for second order central moments (relaxation frequencies)

can be specified by the user to set both kinematic and bulk viscosities. Collision parameters for most third

and fourth order central moments will affect simulation stability and thus can be specified by the user, while

others are generally fixed to relax higher order moments (including fifth and sixth orders) directly to equilibrium

values[81].

5.1. COLLISION AND PROPAGATION ALGORITHMS 41

In a similar fashion to MRT collisions, local equilibrium central moments can be obtained using the relationship

~̃Meq = NT~feq. (5.22)

The Maxwell-Boltzmann (general) local equilibrium distribution function (Equation 4.4) can be used in the

above expression[5], which gives the following values for even orders of central moments:

M̃eq
000 = ρ (5.23)

M̃eq
200 = M̃eq

020 = M̃eq
002 = c2sρ (5.24)

M̃eq
220 = M̃eq

202 = M̃eq
022 = c4sρ (5.25)

M̃eq
222 = c6sρ (5.26)

and zero for all other (odd) orders. Inverting these equilibrium moments results in higher order approximations

than those typically used for BGK, TRT and MRT simulations (fourth order in velocity for two dimensions, up

to sixth order in three dimensions).

For instance, a D2Q9 lattice will use the following transformation matrix to convert distribution functions to

raw moments [32]:

T =



1 1 1 1 1 1 1 1 1

0 −1 −1 −1 0 1 1 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 1 1 0 1 1 1 0

0 1 0 1 1 1 0 1 1

0 −1 0 1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1 0

0 1 0 −1 0 1 0 1 0

0 −1 0 1 0 1 0 1 0


and the following transformation matrix to convert raw moments to central moments:

N =



1 0 0 0 0 0 0 0 0

−ux 1 0 0 0 0 0 0 0

−uy 0 1 0 0 0 0 0 0

u2
x −2ux 0 1 0 0 0 0 0

u2
y 0 −2uy 0 1 0 0 0 0

uxuy −uy −ux 0 0 1 0 0 0

−u2
xuy .2uxuy u2

x −uy 0 −2ux 1 0 0

−uxu2
y u2

y 2uxuy 0 −ux −2uy 0 1 0

u2
xu

2
y −2uxu

2
y −2u2

xuy u2
y u2

x 4uxuy −2uy −2ux 1


.

These produce nine raw and central moments

~M = (M00,M10,M01,M20,M02,M11,M21,M12,M22)
T

~̃M =
(
M̃00, M̃10, M̃01, M̃20, M̃02, M̃11, M̃21, M̃12, M̃22

)T
where M00 = M̃00 = ρ, M10 = jx = ρux, M̃10 = M10 − ρux, M01 = jy = ρuy, M̃01 = M01 − ρuy etc. The

collision matrix takes the following block diagonal form:

Λ = diag

(
1, 1, 1,

[
s+ s−

s− s+

]
ω, ω3, ω3, ω4

)

where ω = τ−1
f , ωb = τ−1

f,bulk, ω3 and ω4 are third and fourth order relaxation frequencies, s+ = 1
2 (ωb + ω) and

s− = 1
2 (ωb − ω). The effective local equilibrium distribution function for this lattice scheme (derived by inverse

shifting and transformation of the equilibrium central moments) can be expressed as:

feqi (ρ, ~u) = wiρ

[
1 +

3 (êi · ~u)

c2
+

9 (êi · ~u)
2

2c4
− 3u2

2c2
+

9 (êi · ~u)
3

2c6
− 9 (êi · ~u)u2

2c4
+

9u2
xu

2
y

4c8
(
3e2
i,x − 1

) (
3e2
i,y − 1

)]
.

42 CHAPTER 5. DL MESO LBE FEATURES

Interfacial and external forces can be applied using each of the four forcing methods. The Martys-Chen method

is applied by substituting the fluid velocity in the moment transformation matrix N with ~v = ~u +
τf∆t ~F
ρ .

The source term for the Exact Difference Method can be applied after calculating post-collisional distribution

functions using the following local equilibrium distribution function with third-order velocity terms in Equation

5.2[80, 81]:

feqi (ρ, ~u) = wiρ

[
1 +

3 (êi · ~u)

c2
+

9 (êi · ~u)
2

2c4
− 3u2

2c2
+

9 (êi · ~u)
3

2c6
− 9 (êi · ~u)u2

2c4

]
.

To apply forces using Guo’s or He’s method, central moments of the source terms:

S̃pqr =
∑
i

Si (ei,x − ux)
p

(ei,y − uy)
q

(ei,z − uz)r (5.27)

can be calculated and added to the collided central moments in the following manner:

∆M̃pqr =
(
1− 1

2ωpqr
)
S̃pqr∆t (5.28)

where ωpqr is the relaxation frequency for the given central moment. Along with replacing the fluid velocity with

~v = ~u +
~F∆t
2ρ , these modified collided central moments can be used in the same expressions for post-collisional

distribution functions.

The central moment form of the Guo source terms can be calculated from matrix multiplications of the standard

source terms, i.e. ~̃S = NT~S. The equivalent central moment source terms for He forcing can be derived using

the same approach as local equilibria, i.e. using the general form of local equilibrium (Equation 4.4) in Equation

5.5 [32, 30]. Certain odd-numbered orders of central moment have non-zero values, i.e.

S̃100 = Fx

S̃010 = Fy

S̃001 = Fz

S̃120 = S̃102 = = c2sFx

S̃210 = S̃012 = = c2sFy

S̃201 = S̃021 = = c2sFz

S̃122 = c4sFx

S̃212 = c4sFy

S̃221 = c4sFz.

Similar schemes are available for the D3Q19 and D3Q27 [30] lattices: no scheme for D3Q15 is currently available.

5.1.2 Rheological models

Any of the above collision operators can be applied for fluids with either constant or variable relaxation times.

Since the relaxation time τf can be related to dynamic viscosity µ as follows:

τf =
ν

c2s
+

1

2
=

µ

ρc2s
+

1

2
, (5.29)

it is possible to determine a grid point’s relaxation time from its viscosity, which can be described as a function

of the local shear rate γ̇:

γ̇ =

√
2
∑
α,β

SαβSαβ , (5.30)

where Sαβ is the rate-of-strain tensor for dimensions α and β and defined as sums of velocity gradients:

Sαβ =
1

2

(
∂uβ
∂xα

+
∂uα
∂xβ

)
. (5.31)

5.1. COLLISION AND PROPAGATION ALGORITHMS 43

To avoid calculating (non-local) velocity gradients, it is possible to obtain the rate-of-strain tensors from mo-

mentum flux tensors[4, 9]:

Sαβ = − 3

2τfρ∆t
Παβ = − 3

2τfρ∆t

∑
i

(fi − feqi) ei,αei,β (5.32)

which can be calculated locally from distribution functions. While the above expression can be used directly

for BGK collisions, it can be generalised for collision operators with more than one relaxation time:

Sαβ =
3

2ρ∆t

∑
i

ei,αei,β
∑
j

Λij
(
fj − feqj

)
. (5.33)

For TRT collisions, the above expression reduces to:

Sαβ = − 3

2ρ∆t

∑
i

ei,αei,β
[
τf,p (fi − feqi) + τf,m

(
fj − feqj

)]
(5.34)

where in this case êj = −êi (i.e. j is the conjugate link to i). The equivalent expression for MRT collisions[17]

is given as:

Sαβ = − 3

2ρ∆t

∑
i

ei,αei,β
∑
j

(
T−1ΛT

)
ij

(
fj − feqj

)
, (5.35)

and similarly, the expression for cascaded LBE collisions can be given as:

Sαβ = − 3

2ρ∆t

∑
i

ei,αei,β
∑
j

(
T−1N−1ΛNT

)
ij

(
fj − feqj

)
. (5.36)

All of the above expressions for Sαβ are implicit with the relaxation time τf (the property being determined)

included in some form. While it may be possible to obtain a direct expression for the relaxation time for the

BGK case given a particular rheological expression for the viscosity [88], this cannot realistically be achieved

for other collision forms due to their complexity. The previously obtained relaxation time is therefore used in

the expressions for Sαβ and the calculated value of shear rate γ̇ is used to update τf . (This could be made

self-consistent by subsequently repeating the rate-of-strain tensor calculations and iterating τf until it converges

within a small tolerance, but this is generally not necessary as convergence is usually obtained in a small number

of timesteps.)

Seven rheological models are included in DL MESO:

1. Simple Newtonian fluid (constant kinematic viscosity/relaxation time):

µ = ρν0

2. (Density-dependent) Newtonian fluid (constant dynamic viscosity):

µ = µ0

3. Power-law fluid:

µ = Kγ̇n−1

4. Bingham plastic[8]:

µ = µ0 +
σy
γ̇

(σ = µγ̇ > σy)

5. Herschel-Bulkley plastic[51]:

µ = Kγ̇n−1 +
σy
γ̇

(σ = µγ̇ > σy)

6. Casson fluid[16]:

µ =

(
√
µ0 +

√
σy
γ̇

)2

(σ = µγ̇ > σy)

44 CHAPTER 5. DL MESO LBE FEATURES

7. Carreau-Yasuda fluid[12, 14, 142]:

µ = µ∞ + (µ0 − µ∞)
(

1 + (λγ̇)
d
)n−1

d

where ν0 is a constant kinematic viscosity, µ0 is constant dynamic viscosity (at zero shear rate), µ∞ is constant

dynamic viscosity (at infinite shear rate), K is a consistency viscosity (when shear rate is equal to unity), σy is a

yield stress (below which no flow may occur for Bingham-like plastics and Casson fluids), λ is a yield relaxation

time for the Carreau-Yasuda fluid, and n and d are indices acting on the shear rate.

Each fluid can use any one of these seven rheological models, although the simple Newtonian fluid is used by

default if the model is not specified. The relaxation time or frequency still needs to be set for fluids using

models other than constant kinematic viscosities, as these will be used to initialise local relaxation times for

each lattice point.

Setting the power n to 1 for power-law and Carreau-Yasuda fluids will revert to Newtonian (constant dynamic

viscosity) behaviour, while the same for Herschel-Bulkley plastics will revert to Bingham plastic behaviour.

If the yield stress σy in Bingham plastics or Casson fluids is set to zero, the fluid will revert to Newtonian

behaviour; setting the same for Herschel-Bulkley plastics will revert to power-law behaviour (if n 6= 1) or

Newtonian behaviour (if n = 1).

The discontinuities in the Bingham plastic, Herschel-Bulkley plastic and Casson fluid models can be overcome

by multiplying the yield stress contribution by a growth exponential function[90], i.e.

• Bingham plastic:

µ = µ0 +
σy
γ̇

(
1− e−mγ̇

)
• Herschel-Bulkley plastic:

µ = Kγ̇n−1 +
σy
γ̇

(
1− e−mγ̇

)
• Casson fluid:

µ =

(
√
µ0 +

√
σy
γ̇

(
1− e−mγ̇

))2

where m is the stress growth exponent, with large values giving good approximations to the original functions.

5.1.3 Propagation algorithms

The simplest implementation, the two-lattice algorithm, involves the use of a temporary array to copy post-

collisional distribution functions to their new positions, which are subsequently copied back to the main distri-

bution function array. While this particular method is clear, easy to understand and can be applied throughout

the system’s lattice points in any order, its drawbacks include the use of two loops for propagation and array

copying, two large arrays for the distribution functions at each lattice node and significant amounts of time

expended in memory access.

An alternative, more efficient implementation of propagation is the swap algorithm[85], whereby this process

is carried out by systematic swapping of pairs of collided distribution function values. To make this easier to

implement, the lattice links are organised so that the conjugate link j to link i (i.e. êj = −êi) is equal to

i + m−1
2 for i = 1 . . . m−1

2 . Looping i between 1 and m−1
2 the post-collisional distribution functions for each

lattice point fi (~x) are initially swapped with their conjugate values fj (~x). then at each point the value fj (~x)

is then swapped with fi (~x+ êi∆t).

These sets of swaps can be carried out either in two separate steps or in one go. The use of separate swap steps

requires two sweeps through the domain, but the order in which the distribution functions are swapped does not

matter and no boundary domain is necessary for serial calculations. Simultaneous swapping cannot make use

of automatic periodic boundary conditions (thus a non-zero domain boundary is required) and requires lattice

5.2. BOUNDARY CONDITIONS 45

links to be additionally ordered so that the first half are all directed to lattice points that have previously gone

through at least the first swap stage, but only a single sweep through the domain is required.

By default the serial and multithreaded versions of DL MESO LBE use propagations based on two separate

swap steps, while the parallel version (without multithreading) uses the combined (simultaneous) swap step.

The user can use combined swap propagations in serial (without multithreading) using a form of the customised

code supplied with DL MESO that includes additional routines to deal with boundary halos: more details of

this version can be found in the DL MESO Developer Manual.

5.2 Boundary conditions

To apply boundary conditions to a Lattice Boltzmann Equation simulation, the distribution functions fi at

boundary lattice points have to be modified or replaced during each time step to give the required fluid velocity

or pressure/concentration/temperature. This may take place either between the collision and propagation stages

or at the end of each time step. A space property is used to define the boundary conditions for each lattice

node in the system.

5.2.1 Periodic

Periodic boundaries are used to simulate bulk fluids sufficiently far away from the actual boundaries of a real

physical system so that surface effects can be neglected. As the fluid moves out of one face of the system volume,

it reappears on the opposite face with the same velocity, density etc.

DL MESO LBE applies periodic boundary conditions in two different ways depending on the size of the bound-

ary domains. If there is no boundary domain (the default for serial running), periodic boundary conditions

are automatically applied during the propagation step by using a modulo function to adjust the destination of

distribution functions leaving the system so they are placed at the opposite side. No periodic boundary using

this implementation needs to be defined by the space property, which can be left equal to zero as for the bulk

fluid.

For systems that include a non-zero boundary domain size, the distribution functions at the edges of the actual

system are copied into the buffer at the opposing sides before collisions and propagation take place. This

requires the use of the space property to determine the location of the domain buffer and identify boundary

halo grid points.

Seven different boundary types exist in DL MESO LBE: two variants of bounce-back can be applied to any

lattice point in a system, while outflow boundaries can only be applied at planar surfaces (or edges in two-

dimensional systems). Constant velocity or density boundary conditions can be applied at the extremes of a

rectangular or cuboidal system, including concave edges and corners along with planar surfaces, using one of

four schemes: Zou-He (non-equilibrium bounce-back), Inamuro, regularised and kinetic.

5.2.2 On-grid bounce-back

The on-grid bounce-back condition applies a no-slip condition (i.e. zero fluid velocity) at a boundary that lies

halfway between grid points. This is applied after the propagation stage by reversing the distribution functions

sitting on each wall node (~xw), i.e.

fi(~xw, t) = fj(~xw, t) (5.37)

where j is the opposite lattice link to i, i.e. êj = −êi. The reflection of distribution functions occurs on-grid.

On-grid bounce-back is a first-order approximation of the boundary condition[87], i.e. the error is proportional

to the lattice spacing ∆x, but it is completely local (i.e. only uses distribution functions at the wall node).

46 CHAPTER 5. DL MESO LBE FEATURES

5.2.3 Mid-grid bounce-back

Like the on-grid version, the mid-grid bounce-back condition applies a no-slip condition at a boundary halfway

between lattice points[123]. This is applied by assigning post-collisional distribution functions to the wall node

based on those values at neighbouring points, i.e.

fi(~xw, t
+) = fj(~xw + êi∆t, t

+). (5.38)

This method essentially applies the actual reflection halfway between timesteps and is a spatially second-order

method, although it is weakly non-local due to its use of distribution functions from neighbouring nodes.

5.2.4 Outflow

Free outflow conditions can be achieved by using a Neumann boundary condition (zero gradient) to determine

the distribution functions for lattice links pointing back into the fluid[78]. A first-order approximation for the

gradient uses neighbouring fluid points to determine relevant distribution functions for inward pointing lattice

links, i.e.

fi(~xw, t
+) = fi(~xw + ∆x, t+)

while a second-order approximation uses the neighbour and next-neighbour grid points in the fluid, i.e.

fi(~xw, t
+) = 2fi(~xw + ∆x, t+)− fi(~xw + 2∆x, t+).

Either of these conditions can be used for all distribution functions (density, solute concentration, temperature),

regardless of mesoscopic interaction type or collision operator.

5.2.5 Zou-He

To specify velocities or densities (pressures), solute concentrations or temperatures at planar boundaries, the

Zou-He method[148] is available in DL MESO LBE. This is based upon applying the bounce-back rule to the

non-equilibrium distribution functions, i.e.

f
(1)
i (~xw, t) = f

(1)
j (~xw, t) (5.39)

where f
(1)
i = fi − feqi , with the equilibrium distribution function feqi as a function of density and velocity.

This function can be used to determine the missing wall velocity or density along with the known distribution

function values. For instance, for a top edge with a known velocity ~uw using the D2Q9 lattice scheme, the wall

density and missing distribution functions (all for the boundary node at ~xw) are given as:

ρw =
f0 + f2 + f6 + 2(f1 + f7 + f8)

1 + uw,y

f4 = f8 −
2ρwuw,y

3
f3 = f7 + 1

2 (f6 − f2)− 1
2ρwuw,x −

1
6ρwuw,y

f5 = f1 − 1
2 (f6 − f2) + 1

2ρwuw,x −
1
6ρwuw,y

A simplified form of the Zou-He boundary for constant velocity conditions is also available, which simply applies

the non-equilibrium bounce-back rule for all unknown distribution functions without considering tangential

corrections, e.g. for the top boundary

ρw =
f0 + f2 + f6 + 2(f1 + f7 + f8)

1 + uw,y

f4 = f8 −
2ρwuw,y

3
f3 = f7 − 1

6ρwuw,x −
1
6ρwuw,y

f5 = f1 + 1
6ρwuw,x −

1
6ρwuw,y

5.2. BOUNDARY CONDITIONS 47

The other form, specifying the wall fluid density, requires the calculation of the wall velocity, which can be

simplified by setting non-orthogonal velocity components to zero. For the analogous example of a constant

density at the top wall for D2Q9, the same equations for f4, f3 and f5 can be used together with

ρwuw,x = 0, ρwuw,y = f0 + f2 + f6 + 2(f1 + f7 + f8)− ρw.

Different local equilibrium distribution functions may result in slightly different expressions to those above, e.g.

when using cascaded LBE collisions, some terms with higher order powers of velocity will result. A notable

exception is Swift free-energy-based calculations: while the expressions for local equilibria include additional

terms, these cancel out when differences are applied.

One complication for three-dimensional lattices is the requirement to apply the non-equilibrium bounce-back

to all unknown distribution functions, which ordinarily over-specifies the system but can be counteracted using

transverse momentum corrections for directions other than orthogonal to the boundary, which are non-zero for

e.g. shearing flows. It should be noted that if the wall velocity is set to zero, the boundary condition reduces

to on-grid bounce-back.

Concave corners (in two or three dimensions) and edges (in three-dimensions) can also be dealt with in a similar

fashion, although this approach requires both density and velocity to be specified: in the case of constant

velocity boundaries, the density can be taken from a nearby fluid lattice point, while the velocity is set to

zero for constant density boundaries. For instance, in the case of a two-dimensional bottom-left corner, the

non-equilibrium bounce-back rule can be applied to distribution functions along the neighbouring edges:

f6 = f2 + 2
3ρwuw,x

f8 = f4 + 2
3ρwuw,y,

the diagonal link between these two re-entering the fluid can be found from the x- and y-components of mo-

mentum:

f7 = f3 + 1
6ρwuw,x + 1

6ρwuw,y,

and the remaining diagonal links (considered ‘buried’ as they neither originate from nor re-enter the fluid) can

be found to satisfy both the momentum and fluid density:

f1 = 1
2 (ρw − f0)− f2 − f3 − f4 − 1

2ρwuw,x −
1
3ρwuw,y

f5 = 1
2 (ρw − f0)− f2 − f3 − f4 − 1

3ρwuw,x −
1
2ρwuw,y.

For three-dimensional systems with fewer governing equations than unknown distribution functions, each un-

known distribution function beyond those along other boundaries (edges or planar surfaces) can be considered

to consist of unknown contributions for wall density (Q0) and components of momentum (~Q). Edges can use

non-equilibrium bounce-back with a tangential correction in a similar fashion to planar surfaces: this tangential

correction can also be used in the ‘buried’ links. All other contributions can be assumed to apply to each

unknown link weighted by wi [18], i.e. fi = wi

(
Q0 + êi · ~Q

)
. These can be inserted into the equations for

density and momentum, allowing the unknowns to be solved based on known properties.

For solute concentrations and temperatures, the wall velocity will already either be set or calculated from the

fluid density calculation. In this situation, all links that are not directly orthogonal to the boundary use the

non-equilibrium bounce-back rule, while the distribution functions for the orthogonal link are calculated by

ensuring the sum of all distribution functions gives the specified concentration or temperature.

DL MESO LBE includes implementations of the Zou-He boundary condition for all four lattice schemes: D2Q9,

D3Q15, D3Q19 and D3Q27. Planar surfaces, concave edges and corners can be dealt with using this method,

whose expressions are extended from those above to incorporate fluid forces.

5.2.6 Inamuro

To specify velocities or densities (pressures), solute concentrations or temperatures at planar, edge or corner

boundaries, the Inamuro method[59, 58] can be used in DL MESO LBE. This is based upon substituting the

48 CHAPTER 5. DL MESO LBE FEATURES

unknown distribution functions for a boundary point with local equilibrium values, but using an adjusted densi-

ty/concentration/temperature and (if applying for the fluids) an additional slip velocity in components tangen-

tial to the boundary. These properties are calculated by substituting the equilibrium distribution function for

the unknown populations into the sum of distribution functions (equal to required density/concentration/tem-

perature) and the sums of first moments (equal to the momentum).

For instance, for a bottom edge with a known velocity ~uw using the D2Q9 lattice scheme, the wall density,

adjusted density and slip velocity (all for the boundary node at ~xw) are given as:

ρw =
f0 + f2 + f6 + 2(f3 + f4 + f5)

1− uw,y

ρ′ =
6 (ρwuw,y + f3 + f4 + f5)

1 + 3uw,y + 3u2
w,y

us,x =
1

1 + 3uw,y

[
6 (ρwuw,x + f2 + f3 − f5 − f5)

ρ′

]
− uw,x

with the missing populations (i = 1, 7, 8 in this case) given by

fi = wiρ
′

[
1 +

3 (êi · ~uws)
c2

+
9 (êi · ~uws)2

2c4
− 3u2

ws

2c2

]

where ~uws = ~uw + ~us. A constant density boundary uses the same relationships to calculate the orthogonal

velocity component, adjusted velocity and tangential velocity components, making the assumption that the

tangential wall velocities (excluding slip terms) are zero, while solute concentration and temperature conditions

are implemented by using the known wall velocity and calculating an adjusted concentration/temperature. Since

Swift free-energy-based interactions and CLBE collisions make use of different local equilibrium distribution

functions, different expressions for adjusted densities and slip velocities are required.

A similar approach can be used for corners and edges, applying the modified local equilibrium distribution

function to all unknown links (including ‘buried’ ones). Three-dimensional edges for fluids apply a tangential

velocity component, while all corners use the adjusted density as its only unknown quantity, which can be found

to satisfy the required wall density and momentum.

DL MESO LBE includes implementations of the Inamuro boundary condition for all four lattice schemes. Planar

surfaces, concave edges and corners can be dealt with using this method, whose expressions are extended from

those above to incorporate fluid forces.

5.2.7 Regularised

To specify velocities or densities (pressures) at planar, edge and corner boundaries, the regularised boundary

condition method[69] is available in DL MESO LBE. This is based upon calculating post-collisional values for

non-equilibrium momentum flux tensors, which can then be used to calculate replacement values for distribution

functions. The non-equilibrium momentum flux tensor can be calculated as follows:

Πneq
αβ = Παβ −Πeq

αβ

=
∑
I

ei,αei,βfi −
∑
I

ei,αei,βf
eq
i

=
∑
I

ei,αei,βfi − ρuαuβ − ρc2sδαβ

= −2c2sρτfSαβ

where Sαβ = 1
2

(
∂uβ
∂xα

+ ∂uα
∂xβ

)
is the strain rate tensor. The same non-equilibrium distribution function bounce-

back condition as for simplified Zou-He boundaries (fi − feqi = fj − feqj) can be used to obtain the unknown

distribution functions. For instance, for a bottom edge with known velocity ~uw using the D2Q9 lattice scheme

5.2. BOUNDARY CONDITIONS 49

(V??CETF), the various terms of the non-equilibrium momentum flux tensor are given as follows:

Πneq
xx = f2 + f6 + 2 (f3 + f5) + ρw

(
1
3uw,y − u

2
w,x − 1

3

)
Πneq
yy = 2 (f3 + f4 + f5) + ρw

(
uw,y − u2

w,y − 1
3

)
Πneq
yx = Πneq

xy = 2 (f3 − f5) + ρw
(

1
3uw,x − uw,xuw,y

)
.

The replacement distribution functions are determined from local equilibrium distribution functions for the

given density and velocity, plus an additional term dependent on the non-equilibrium momentum flux tensor or

the strain rate tensor:

fi − feqi (ρw, ~uw) ≈ −ρwwiτf
c2s

(
~ei~ei − c2sI

)
: S

=
wi
2c2s

(
~ei~ei − c2sI

)
: Πneq.

Combining the above expression for the regularised non-equilibrium distribution function with the expression

for the non-equilibrium momentum flux tensor gives a local boundary scheme. For instance, for the above

boundary condition for D2Q9, the replacement distribution functions are given as:

fi = f
(eq)
i (ρw, ~uw) +

wi
2c4s

[(
ei,xei,x − c2s

)
Πneq
xx +

(
ei,yei,y − c2s

)
Πneq
yy + 2ei,xei,yΠneq

xy

]
and are to be calculated for all link vectors. A constant density boundary uses the same relationships to calculate

the non-equilibrium momentum flux tensor and distribution functions, albeit assuming that the tangential wall

velocities are zero. Since incompressible, cascaded lattice Boltzmann and Swift free-energy models use different

local equilibrium distribution functions, different expressions for the momentum flux tensor and distribution

functions to those shown above are required.

DL MESO LBE includes implementations of regularised boundary conditions for all four lattice schemes. Planar

surfaces, concave edges and corners can be dealt with using this method, whose expressions for momentum flux

tensors are extended to incorporate fluid forces [104], adding ∆t
2 (uw,βFα + uw,αFβ) to the above expressions.

This kind of boundary condition cannot be used for solute concentrations or temperatures as non-equilibrium

momentum flux tensors cannot be defined from the relevant distribution functions.

5.2.8 Kinetic

To specify velocities or densities (pressures) at planar, edge and corner boundaries, the kinetic boundary con-

dition method[3] is available in DL MESO LBE. This is based on the assumption that particles re-entering the

system forget their history and their velocities are renormalised using a Maxwellian distribution. This scheme

produces a non-zero, physically realistic slip velocity at a given wall boundary, which is especially suited to

higher flow speeds and/or low density, rarefied gas flows[55].

The boundary condition is applied by replacing the incoming distribution functions with values determined

from local equilibrium distribution functions with an adjusted density ρ′, i.e.

fi = feqi (ρ′, ~uw) .

The adjusted density is obtained by ensuring mass conservation between distribution functions leaving and

re-entering the system. For instance, for a bottom edge in the D2Q9 lattice scheme for mildly compressible

fluids (either V??CETF or P??CETF), the adjusted density is given by:

ρ′ =
f3 + f4 + f5

1
ρw

(feq1 (ρw, ~uw) + feq7 (ρw, ~uw) + feq8 (ρw, ~uw))
=

6 (f3 + f4 + f5)

1 + 3uw,y + 3u2
w,y

.

For incompressible and Swift free-energy systems, only the parts of the distribution functions affected by the

(variable) density are used in the expression for adjusted density, as other terms in the equilibrium distribution

functions used in these cases do not depend upon this quantity.

50 CHAPTER 5. DL MESO LBE FEATURES

DL MESO LBE includes implementations of the kinetic boundary condition for all four lattice schemes, with

different variants for incompressible fluids, cascaded LBE collisions and Swift free-energy mesoscopic interactions

due to changes in local equilibrium distribution functions. Planar surfaces, concave edges and corners can be

dealt with using this method, whose expressions are extended from those above to incorporate fluid forces,

primarily in calculations of density or velocity for planar surfaces and ‘buried’ links for edges and corners.

5.3 Mesoscale interactions

DL MESO LBE includes a number of algorithms that can be used to apply interactions between fluid compo-

nents at the mesoscale, most commonly to model immiscible fluids. The user should take care to ensure the

correct model is used for the type of system being modelled.

If lbin.init files are used to insert fluid drops into the simulation domain, DL MESO LBE includes the option

of carrying out equilibration to allow the shapes of drops to settle by modelling the system without external

body forces and boundaries imposing specific velocities, densities, solute concentrations or temperatures. This

option can be selected using the equilibration step keyword in the lbin.sys file.

5.3.1 Shan-Chen pseudopotential model

The Shan-Chen model[108, 109] models interactions between multiple phases and components by calculating

pairwise interaction potentials. These potentials use an ‘effective mass’ or pseudopotential for each component,

ψa, which is a function of density. Defining gab as the interaction coefficient between components a and b, the

interfacial force on fluid component a (due to interactions with itself and other components) can be defined as

~F a = −c2sψa
∑
b

gab∇ψb. (5.40)

If a single component (a) is considered, this force gives the following equation of state[106]

P = ρc2s +
1

2
c2sgaaψ

2
a(ρ) (5.41)

and interfacial tension[107]

σab = −e4gaac
4
s(∆x)2

2

∫ +∞

−∞

(
dψa
dz

)2

dz (5.42)

where e4 is a lattice-dependent constant and z distance along the normal from the phase interface. Both the

equation of state and the interfacial tension are governed by the form of pseudopotential used for interactions.

To carry out collisions for multiple fluid systems, the fluid velocity used to calculate local equilibrium distribution

functions is weighted by the relaxation times, i.e.

~u =

∑
a

∑
i f

a
i êiτ

−1
f,a∑

a

∑
i f

a
i τ
−1
f,a

. (5.43)

Separate routines looping through the grid points, fCollision*ShanChen, are available to make use of this

definition of fluid velocity and all variants of the Shan-Chen model employ these routines.

Original Shan-Chen model

An approximation of the spatial gradient of the pseudopotential can be made for a lattice-based system[70]:

c2s∆t∇ψb ≈
∑
i

wiψb (~x+ êi) êi.

Its substitution into equation 5.40 gives an easily calculable expression for the overall force on fluid component

a:
~F a = −ψa (~x)

∑
b

gab
∑
i

wiψb (~x+ êi) êi. (5.44)

5.3. MESOSCALE INTERACTIONS 51

which can be applied in a Lattice Boltzmann Equation simulation with any suitable forcing algorithm. The

additional fluid-solid interaction forces can be given in a similar manner, i.e.

~F awet = −ψa (~x) ga,wall
∑
i

wis (~x+ êi) êi. (5.45)

Shan-Chen model with quadratic terms

An alternative form of force was devised by Zhang and Chen[146]:

~F = −∇(p− ρc2s)

where the quantity p − ρc2s can be seen to be related to the square of the pseudopotential. Re-expressing the

force for fluid component a in terms of the pseudopotential for all components gives:

~F a = −c
2
s

2

∑
b

gab∇ψ2
b

which is equivalent to the force applied by the original Shan-Chen model and gives the same equation of state

and interfacial tension. For lattice-based calculations, this force can be approximated by

~F a = −1

2

∑
b

gab
∑
i

wiψ
2
b (~x+ êi) êi. (5.46)

A weighted combination of the Shan-Chen and Zhang-Chen forces can be shown to give greater accuracy below

the critical point for vapour/liquid systems[40, 66], i.e.

~F a = −ψa (~x)
∑
b

gabβab
∑
i

wiψb (~x+ êi) êi −
1

2

∑
b

gab(1− βab)
∑
i

wiψ
2
b (~x+ êi) êi (5.47)

where βab is the weighting factor for components a and b, which can be tuned for various equations of state2.

The original Shan-Chen and Zhang-Chen models can be recovered by setting βab equal to 1 and 0 respectively.

Values of βaa for all fluid species can be specified in lbin.sys by a single directive: by default the values of

βab for a 6= b are set to 1, in common with models involving multiple components and phases that use this

approach[57].

Surface wetting

Additional forces on the fluids due to surface wetting can be included with either form of the Shan-Chen model.

A switching function s(~x) can be defined to represent the existence (s(~x) = 1) or absence (s(~x) = 0) of surfaces

at a lattice site ~x. The gradient of the switching function can then be used to mimic an adhesive force between

the solid and fluid. Three forms are available in DL MESO LBE according to the fluid property used at the

lattice site:

• Density-based interactions[84]:

~F awet(~x) = −ga,wallρa(~x)
∑
i

wis(~x+ êi)êi, (5.48)

• Potential-based interactions[99, 100]:

~F awet(~x) = −ga,wallψa(~x)
∑
i

wis(~x+ êi)êi, (5.49)

• Screened potential interactions[75]:

~F awet(~x) = −ga,wallψa(~x)
∑
i

wiφ(~x)s(~x+ êi)êi (5.50)

where φ(~x) is a screening function, currently set as φ(~x) = ψa(~x) but can be changed by the user (see the

DL MESO Developer Manual). The interaction coefficient between component a and the wall, ga,wall, can be

given a positive (negative) value to reduce (increase) its wetting.

2The original parameter used in [66], A, is equivalent to 1
2

(1− β).

52 CHAPTER 5. DL MESO LBE FEATURES

Pseudopotentials

Pseudopotentials are calculated for each fluid species at each lattice point. While the same form of pseudopo-

tential is normally used for every fluid species, it is possible to use different pseudopotential forms for different

species.

There are two subsets of pseudopotentials available in DL MESO LBE. The first subset relies on the value of

gab as an effective system ‘temperature’. These include:

• The original Shan-Chen (1993) model[108]:

ψa = ρa0

[
1− exp

(
−ρ

a

ρa0

)]
(5.51)

• The Shan-Chen thermodynamically consistent (1994) model[109]:

ψa = ψa0 exp

(
−ρ

a
0

ρa

)
(5.52)

• The Qian (1995) model[98]:

ψa =
ρa0ρ

a

ρa0 + ρa
(5.53)

• The density model:

ψa = ρa (5.54)

where ρa, ρa0 and ψa0 are the local fluid density (for the lattice point), reference density and maximum value

for the pseudopotential of component a respectively. A critical point can be determined for each of these

pseudopotentials: for interaction parameters below this value, separation of the fluid into dense (liquid) and

light (vapour) phases will occur.

The original Shan-Chen pseudopotential (1993) is a switch-like form that gives a sharp transition between

liquid and vapour phases for gaa < gc,a = − 4
ρa0

(with a corresponding critical density ρac = ρa0 ln 2). The second

Shan-Chen pseudopotential (1994) guarantees that the pressure tensor normal to an interface is equal to the

static bulk pressure and ensures thermodynamic consistency: the critical value of the interaction coefficient is

gc,a = − ρa0
ψa0
e2 and the critical density ρac = ρa0 . The Qian model gives a transition between liquid and vapour

phases for gaa < gc,a = − 27
4ρa0

(with a corresponding critical density ρac = 1
2ρ
a
0). The density model gives a

quadratic equation of state and therefore does not give phase separation: this pseudopotential provides no

critical point, yields zero pressure when ρ = − 1
gaa

and is only suitable for low density gases.

The other subset of pseudopotentials are those derived by rearranging equation 5.41 to apply particular equations

of state for the fluids[145]:

ψa =

√
2 (P − ρc2s)
gaac2s

(5.55)

where the interaction strength gaa is used to ensure the expression inside the square root is positive. To explicitly

use interaction strengths between different fluid species (while setting gaa = 1 for all a), the pseudopotential

can be rewritten using a signum function as

ψa = sgn
(
P − ρc2s

)√
2

∣∣∣∣Pc2s − ρ
∣∣∣∣. (5.56)

The function in this form can be used to apply phase separation for a single component, and can be changed

by the user by modifying the subroutine fCalcPotential ShanChen.

Seven equations of state (ideal, cubic and rigid-sphere) are provided in DL MESO using this form of pseudopo-

tential:

5.3. MESOSCALE INTERACTIONS 53

Table 5.1: Equation of state parameters

Equation of state a b Tc Pc ρc

van der Waals
27R2T 2

c

64pc
RTc
8pc

8a
27bR

a
27b2

1
3b

Redlich-Kwong 0.42748
R2T 2.5

c

pc
0.08664RTcpc 0.34504

(
a
bR

) 2
3 0.02989

(
a2R
b5

) 1
3 0.25992

b

Carnahan-Starling-van der Waals 0.49639
R2T 2

c

pc
0.18729RTcpc 0.37731 a

bR 0.07067 a
b2

0.52178
b

Soave-Redlich-Kwong 0.42748
R2T 2

c

pc
0.08664RTcpc 0.20268 a

bR 0.01756 a
b2

0.25992
b

Peng-Robinson 0.45724
R2T 2

c

pc
0.07780RTcpc 0.17014 a

bR 0.01324 a
b2

0.25308
b

Carnahan-Starling-Redlich-Kwong 0.46112
R2T 2.5

c

pc
0.10483RTcpc 0.37248

(
a
bR

) 2
3 0.03905

(
a2R
b5

) 1
3 0.33258

b

• Ideal gas:

P = ρRT

• van der Waals:

P =
ρRT

1− bρ
− aρ2

• Carnahan-Starling-van der Waals[13]:

P = ρRT

(
1 + φ+ φ2 − φ3

(1− φ)
3

)
− aρ2

• Redlich-Kwong[101]:

P =
ρRT

1− bρ
− aρ2

√
T (1 + bρ)

• Soave-Redlich-Kwong[118]:

P =
ρRT

1− bρ
− aα(Tr, ω)ρ2

1 + bρ

• Peng-Robinson[91]:

P =
ρRT

1− bρ
− aα(Tr, ω)ρ2

1 + 2bρ− b2ρ2

• Carnahan-Starling-Redlich-Kwong[13]:

P = ρRT

(
1 + φ+ φ2 − φ3

(1− φ)
3

)
− aρ2

√
T (1 + bρ)

where R is the universal gas constant, a and b are species-dependent coefficients, α is a function of reduced

temperature (Tr = T
Tc

, where Tc is the critical temperature for the species) and acentric factor ω for the Soave-

Redlich-Kwong and Peng-Robinson equations, and φ = bρ
4 for the Carnahan-Starling equations. Two versions

of pseudopotentials for the Soave-Redlich-Kwong, Peng-Robinson and Carnahan-Starling-Redlich-Kwong equa-

tions exist: one set for systems with constant temperature (i.e. when thermal fields are not used) and another

for variable temperature systems (i.e. when thermal fields are explicitly modelled).

The coefficients a and b can be derived from critical temperatures and pressures, since the pressure curve forms

a saddle point at the critical point (i.e. both first and second derivatives of pressure by density are zero):

approximate relationships between the coefficients and critical properties are given in Table 5.1.

The functions of reduced temperature and acentric factor for the Soave-Redlich-Kwong and Peng-Robinson

equations are empirical equations fitted to experimental data. The original functions are given as:

• Soave-Redlich-Kwong:

α(Tr, ω) =
[
1 + (0.480 + 1.574ω − 0.176ω2)(1−

√
Tr)
]2

54 CHAPTER 5. DL MESO LBE FEATURES

• Peng-Robinson:

α(Tr, ω) =
[
1 + (0.37464 + 1.54226ω − 0.26992ω2)(1−

√
Tr)
]2

but alternatives can be substituted by modifying the subroutines that read in parameters and calculate pseu-

dopotentials (see the DL MESO Developer Manual).

5.3.2 Lishchuk continuum-based model

The Lishchuk model[77, 47] is a modified form of the ‘chromodynamic’ model devised by Gunstensen and

Rothman[44], which models interactions between multiple components by applying forces based on the exis-

tence of those components. This continuum-based model is primarily suited for systems where hydrodynamic

interactions dominate and no further fluid separation takes place.

A phase field is defined between components a and b as

ρNab =
ρa − ρb

ρa + ρb
. (5.57)

noting that ρNba = −ρNab. The interfacial normal between the phases can be determined from a first-order spatial

differential of this quantity, i.e.

n̂ab =
∇ρNab∣∣∇ρNab∣∣ . (5.58)

This differential can either be determined non-locally (for lattice points without neighbouring walls) using a

fourth-order accurate isotropic scheme[70, 48]:

∇ρNab =
1

c2s∆t

∑
i

wiêiρ
N
ab (~x+ êi∆t) (5.59)

or it can be approximated locally using phase fields determined from individual links[120], i.e.

∇ρNab = − 1

c2s∆t

∑
i

wiêi

(
fai − f bi
fai + f bi

)
(5.60)

which may be sufficiently accurate for calculating the interfacial normal vector but not the phase field differential

itself. This form is not as numerically robust as the non-local method and has to be used solely in interfacial

regions (i.e. when |ρNab| ≤ 1−ε, where ε is a small value) to avoid numerical instabilities. The interfacial normals

can subsequently be used to determine the interfacial tension forces acting between fluid components, which

can be applied by either calculating an interfacial force and using any available forcing algorithm, or by directly

calculating a forcing term to be applied during collisions.

Rather than colliding each fluid separately, a single ‘achromatic’ distribution function is defined as the sum of

distribution functions for all fluids

fi =
∑
a

fai (5.61)

the sum of which is equal to the density of all fluids, ρ. This distribution function is collided using any valid

method with all interaction forces combined together and collision operators interpolated according to local

mass fraction, e.g.
1

τf
=

1

ρ

∑
a

ρa

τaf
. (5.62)

If the two-relaxation-time (TRT) scheme is used and a value for the ‘magic number’ (Λeo) is specified, this

value will be used along with the calculated value of τf (τ+) for the combined fluids to give the antisymmetric

relaxation time (τ−).

After the achromatic fluid is collided, the fluids are segregated to produce post-collisional distribution functions

for each fluid. This is achieved using the D’Ortona algorithm[24], which gives a non-zero boundary thickness

between the fluids and reduces non-physical effects such as pinning of drops to the lattice, spatial anisotropy

5.3. MESOSCALE INTERACTIONS 55

in interfacial tension and spurious microcurrents. The equation for the post-collisional segregated distribution

function for fluid a[119] is given as

fai
(
~x, t+

)
=
ρa

ρ
fi
(
~x, t+

)
+
∑
b6=a

βabwi
ρaρb

ρ2
êi · n̂ab (5.63)

where βab is the segregation parameter that controls the width of the diffuse boundary between phases and

βba = βab.

This class of mesoscale interaction method can directly simulate a specified interfacial tension (σab), which is

related to the lattice-based parameter gab by

σab =
4gabν

2ρ0

c4s (2τf − 1)
2

∆x
(5.64)

using the physical mean density (ρ0), kinematic viscosity (ν) and relaxation time (τf) of a reference fluid (e.g.

the continuous fluid for the system).

5.3.2.1 Original Lishchuk algorithm

The original Lishchuk algorithm requires the calculation of local curvatures at interfaces between fluids (ex-

pressed between fluids a and b), which can be obtained from the relevant interfacial normals:

Kab = −∇S · n̂ab. (5.65)

This quantity is used to calculate the interfacial tension force acting between the two fluids

~F ab =
1

2
gabKab∇ρNab, (5.66)

where the first-order spatial differential of the phase field can be obtained from the interfacial normal, the

densities of the two components and of all fluids (ρ) and the segregation parameter between the two fluids

(βab):

∇ρNab =
4βabρaρb

ρ3
n̂ab. (5.67)

The interfacial forces can be applied using any available forcing algorithm, although the Guo forcing algorithm

is generally recommended to reduce spurious microcurrents originating from the interface. This version of the

algorithm is robust for interactions between pairs of fluids, but cannot readily be used at grid points where more

than two fluids are in contact as the curvature cannot be defined at these points. (Note that this form of the

Lishchuk algorithm will still work for multiple fluid systems, provided no more than two fluids are in contact

at any given lattice point: this can be ensured by setting gab between drops of different fluids to significantly

higher values than those between the background fluid and the drop fluids.)

A similar form of force can be used at solid boundaries to apply surface wetting effects[25], assuming that fluid

0 is the background fluid and wets the walls, applying an uncompensated Young stress on fluid a:

~F 0a
wet = −1

2
gwall,a∇S,wallρN0a =

2gwall,aβ
0aρ0ρa

ρ3
(n̂w (n̂0a · n̂w)− n̂0a) , (5.68)

where n̂w is the normal vector to the solid surface. This force is applied parallel to solid walls and the parameter

gwall,a can be selected to vary the contact angle of drops of fluid a.

This form of the algorithm calculates interfacial normals from non-local spatial gradients of phase indices as per

equation 5.59. As interfacial normals are needed in boundary points for collisions and curvature calculations,

an additional communication per timestep is needed in parallel running. All interaction forces between pairs of

fluid species are carried out using equation 5.66 with non-local calculations of interfacial curvatures, and surface

wetting forces are calculated with equation 5.68. Modified collision routines are used to apply achromatic

collisions, forces using the required forcing scheme and D’Ortona segregation of the fluids.

56 CHAPTER 5. DL MESO LBE FEATURES

5.3.2.2 Lishchuk-Spencer algorithm

A variant of the Lishchuk algorithm exists to avoid calculating curvatures between pairs of fluids[119], which

uses the following force acting between components a and b:

~F ab = −2gabβ
ab∇ ·

(
ρaρb

ρ3
n̂abn̂ab

)
. (5.69)

This force produces the same interfacial tension between the components as the original force (equation 5.66), but

also produces a reduction in density of up to gabβ
ab

2c2s
in the interfacial region of mixed fluids and larger interfacial

microcurrents than the original Lishchuk method. This method can be shown to give correct behaviour at

points with more than two fluids, where it is difficult to accurately define the curvature.

Compared to the original Lishchuk algorithm, the interaction forces between pairs of fluid species are calculated

differently, using equation 5.69 in this case with non-local calculations of gradients of fluid densities and inter-

facial normals. This algorithm is otherwise very similar: the interfacial normals are calculated in the same way

with non-local spatial gradients of phase indices, the same surface wetting forces are calculated and the same

form of collisions are used to apply forces, achromatic collisions and fluid segregation.

5.3.2.3 Lishchuk-Spencer-tensor algorithm

A further variant of the above Lishchuk-Spencer algorithm avoids calculating interfacial forces between fluid

species (as well as interfacial curvatures) and instead uses a direct forcing term for the interaction between the

components[119, 120], i.e.

F abi =
wiβ

abgabρaρb

c4sρ
3τf∆t

(n̂abn̂ab − I) :
(
êiêi − c2sI

)
. (5.70)

which requires no further forcing term nor adjustment of the equilibrium fluid velocity used for collision calcu-

lations.

Along with the standard non-local calculations of interfacial normals (equation 5.59), this forcing term makes

up the so-called ‘Spencer tensor’ variant of the Lishchuk algorithm, which provides correct interactions at grid

points with more than two fluids as well as avoiding the drop in total density in the interfacial region. In

parallel calculations, the use of the forcing term also avoids the need to communicate interfacial forces between

processor cores.

As before, this form of the algorithm calculates interfacial normals (non-locally) and surface wetting forces

in the same way as the original Lishchuk algorithm. No interaction forces in bulk fluids are calculated: the

forcing terms in equation 5.70 are used instead in this form of the algorithm during the collision stage alongside

achromatic fluid collisions and D’Ortona segregation.

5.3.2.4 Local form of Lishchuk algorithm

Another variant of the Lishchuk-Spencer algorithm makes use of the direct forcing term (equation 5.70) and

locally-calculated interfacial normals (equation 5.60). This provides a completely local form of the Lishchuk

model, i.e. interactions at a lattice point do not require information from any neighbouring lattice points.

Like the Lishchuk-Spencer and Spencer tensor methods, this form of the Lishchuk algorithm will give correct

behaviour for more than two fluids in contact, albeit with larger microcurrents due to the local approximation

of the phase index gradient used to calculate interfacial normals.

The approximate phase index gradients are used to calculate interfacial normals for all fluid lattice points in the

main domain and in boundary halos: as such, no communication of interfacial normals is required for parallel

running. Note that phase index gradients are not calculated at grid points with boundary conditions: surface

wetting forces are calculated at these points using equation 5.68 and also do not need to be communicated

between processor cores. As for the Spencer tensor method, collisions are applied achromatically to all fluids

with the direct forcing term (equation 5.70) and D’Ortona segregation.

5.3. MESOSCALE INTERACTIONS 57

5.3.3 Free-energy models

Free-energy lattice Boltzmann models[126, 125] are available for two-phase and two-fluid systems that give

thermodynamic consistency at the continuum. The Swift-Osborne-Yeomans approach exploits the van der

Waals formulation of a two-phase isothermal fluid by defining a Landau free energy density function Ψ as:

Ψ =

∫ [κ
2
|∇ρ|2 + ψ (ρ)

]
dV, (5.71)

where the first term is the energy penalty in building density gradients (with κ as an interfacial surface tension

parameter) and the second term describes the bulk free energy density. The chemical potential is given by the

derivative of the free energy density function with density (µ = dΨ
dρ). The non-local pressure is related to the

free energy density function by

P = ρ
dΨ

dρ
−Ψ = P0 − κρ∇2ρ− κ

2
|∇ρ|2 , (5.72)

where

P0 = ρ
dψ

dρ
− ψ (5.73)

is the equation of state for the fluid. The full pressure tensor in a non-uniform fluid

Pαβ = Pδαβ + κ∂αρ∂βρ (5.74)

includes non-diagonal terms that are related to interfacial surface tension effects at equilibrium. Since the

pressure tensor is equal to the second moment of the local equilibrium distribution function with lattice links

(Pαβ =
∑
i fieiαeiβ), it can be incorporated into the lattice Boltzmann equation model by adding terms to the

local equilibrium distribution function. As this type of free-energy model affects the definition of the distribution

function, it is currently unavailable if cascaded LBE collision models are in use, but it is available for BGK,

TRT and MRT collisions.

One fluid vapour/liquid systems

For the square lattices used in DL MESO LBE, the local equilibrium distribution function for a vapour/liquid

system[94, 26, 93, 67] is given as:

feqi = w00
i ρ+ wi

[
ρ

{
(êi · ~u) +

3

2
(êi · ~u)

2 − 1

2
u2

}
+ λ {3 (êi · ~u) (êi · ∇ρ) + [γi (êi · êi) + δi] (~u · ∇ρ)}

]
+wpi P0 − wtiκρ∇2ρ+ wxxi κ (∂xρ)

2
+ wyyi κ (∂yρ)

2
+ wzzi κ (∂zρ)

2

+wxyi κ∂xρ∂yρ+ wxzi κ∂xρ∂zρ+ wyzi κ∂yρ∂zρ

(5.75)

where wi, w
00
i , γi, δi, w

p
i , wti , w

xx
i , wyyi , wzzi , wxyi , wxzi and wyzi are lattice-dependent weighting parameters and

are selected to ensure that
∑
i f

eq
i = ρ: values for the two-dimensional lattice D2Q9 are given in Table 5.2. The

parameter λ is used to ensure Galilean invariance[54] and is defined as

λ = ν

(
1− 3

(
∆t

∆x

)2
∂P0

∂ρ

)
, (5.76)

which reduces to zero if the standard equation of state for a lattice gas, P0 = c2sρ, is used. The derivatives and

Laplacian of density can be calculated using stencils to give contributions from neighbouring sites, which can

be chosen to reduce spurious velocities[94]. For a two-dimensional problem, the best choice of stencils is

∂x =
1

12∆x

 −1 0 1

−4 0 4

−1 0 1

 (5.77)

∇2 =
1

6(∆x)2

 1 4 1

4 −20 4

1 4 1

 (5.78)

58 CHAPTER 5. DL MESO LBE FEATURES

Table 5.2: Weighting parameters for D2Q9 free-energy model

i wi w00
i γi δi wpi wti wxxi wyyi wzzi wxyi wxzi wyzi

0 4
3 1 0 − 21

8 − 5
3 − 5

3 − 1
6 − 1

6 0 0 0 0
1 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24 − 1
24 0 − 1

4 0 0
2 1

3 0 3
2 − 3

2
1
3

1
3

1
3 − 1

6 0 0 0 0
3 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24 − 1
24 0 1

4 0 0
4 1

3 0 3
2 − 3

2
1
3

1
3 − 1

6
1
3 0 0 0 0

5 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24 − 1
24 0 − 1

4 0 0
6 1

3 0 3
2 − 3

2
1
3

1
3

1
3 − 1

6 0 0 0 0
7 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24 − 1
24 0 1

4 0 0
8 1

3 0 3
2 − 3

2
1
3

1
3 − 1

6
1
3 0 0 0 0

with the matrices centred on the grid point of interest. Collisions can be applied using any available algorithm,

although modifications are required for some equilibrium moments (energy, squared energy, stress tensor and

fourth-order moments) in multiple-relaxation-time (MRT) schemes to add terms for the bulk pressure (P0),

interfacial tension (κ) and Galilean invariance (λ).

Beyond the default equation of state for an ideal lattice gas (P0 = ρc2s), the following equations of state can be

used in DL MESO LBE with Swift free-energy interactions:

• Shan-Chen (1993) model[108]:

P0 = ρc2s + 1
2c

2
sgρ

2
0

(
1− e−

ρ
ρ0

)2

• Shan-Chen (1994) model[109]:

P0 = ρc2s + 1
2c

2
sgψ

2
0e
− 2ρ0

ρ

• Qian (1995) model[98]:

P0 = ρc2s + 1
2c

2
sg

ρ2
0ρ

2

(ρ0 + ρ)
2

• Density (rho) model:

P0 = ρc2s + 1
2c

2
sgρ

2

• Ideal gas:

P0 = ρRT

• van der Waals:

P0 =
ρRT

1− bρ
− aρ2

• Carnahan-Starling-van der Waals[13]:

P0 = ρRT

(
1 + φ+ φ2 − φ3

(1− φ)
3

)
− aρ2

• Redlich-Kwong[101]:

P0 =
ρRT

1− bρ
− aρ2

√
T (1 + bρ)

• Soave-Redlich-Kwong[118]:

P0 =
ρRT

1− bρ
− aα(Tr, ω)ρ2

1 + bρ

• Peng-Robinson[91]:

P0 =
ρRT

1− bρ
− aα(Tr, ω)ρ2

1 + 2bρ− b2ρ2

5.3. MESOSCALE INTERACTIONS 59

• Carnahan-Starling-Redlich-Kwong[13]:

P0 = ρRT

(
1 + φ+ φ2 − φ3

(1− φ)
3

)
− aρ2

√
T (1 + bρ)

As for Shan-Chen pseudopotentials based on cubic and Carnahan-Starling equations of state, either a heat

transfer lattice (see below) can be used to find local temperature, or a constant temperature can be chosen for

the entire system if no temperature field is used.

The first and second order gradients of fluid density are calculated for all grid points, while the bulk pressure

P0 and Galilean invariance corrector λ can also be calculated at each grid point for the given equation of state.

These values can then be used to calculate local equilibrium distribution functions used for BGK and TRT

collisions: alternatively, equilibrium distribution functions transformed to moment space for MRT collisions can

be obtained.

Two fluid systems

To extend the Swift free-energy approach to two-fluid systems, a second distribution function can be defined to

give a concentration field, i.e. ∑
i

gi = φ =
ρa − ρb
ρa + ρb

(5.79)

where φ represents the density difference between fluids a and b and can have values between −1 and 1. The

standard distribution function becomes the total density of both fluids, i.e.
∑
i fi = ρ = ρa + ρb. As with

density, the Landau free energy can consist of an energy penalty due to concentration gradients and a bulk free

energy density that can additionally be a function of concentration, i.e.

Ψ =

∫ [κ
2

(
|∇ρ|2 + |∇φ|2

)
+ ψ (ρ, φ)

]
dV. (5.80)

The non-local pressure now includes derivatives of the concentration, making the equation of state for the fluids

P0 = ρ
∂ψ

∂ρ
+ φ

∂ψ

∂φ
− ψ. (5.81)

It should be noted that if the equation of state is of the form P0 = c2sρ + f(φ) (i.e. ideal lattice gases with

a concentration dependence), all spatial derivatives of ρ in the bulk free energy density and density local

equilibrium distribution function get set equal to zero[95]. The derivative of the Landau free energy with

respect to concentration
∂Ψ

∂φ
=
∂ψ

∂φ
− κ∇2φ = µ (5.82)

gives the chemical potential between the two fluids.

For two-fluid systems, the local equilibrium distribution function for the density field should include concen-

tration gradients for all terms involving κ. The most general form is given by substituting the derivatives of

density in equation 5.75 with sums of derivatives of density and concentration[125], i.e.

feqi = w00
i ρ+ wi

[
ρ

{
(êi · ~u) +

3

2
(êi · ~u)

2 − 1

2
u2

}
+ λ {3 (êi · ~u) (êi · ∇ρ) + [γi (êi · êi) + δi] (~u · ∇ρ)}

]
+wpi P0 − wtiκ(ρ∇2ρ+ φ∇2φ) + wxxi κ((∂xρ)

2
+ (∂xφ)

2
) + wyyi κ((∂yρ)

2
+ (∂yφ)

2
) + wzzi κ((∂zρ)

2
+ (∂zφ)

2
)

+wxyi κ(∂xρ∂yρ+ ∂xφ∂yφ) + wxzi κ(∂xρ∂zρ+ ∂xφ∂zφ) + wyzi κ(∂yρ∂zρ+ ∂yφ∂zφ).

(5.83)

If the equation of state is based on ideal lattice gases, the derivatives of density for all terms (∂αρ and ∇2ρ)

involving κ can be set to zero[95]. Combined with the elimination of the λ term (since ∂P0

∂ρ = c2s), this gives a

simplified local equilibrium distribution function for density:

feqi = w00
i ρ+ wiρ

{
(êi · ~u) +

3

2
(êi · ~u)

2 − 1

2
u2

}
+ wpi P0 − wtiκφ∇2φ

+wxxi κ (∂xφ)
2

+ wyyi κ (∂yφ)
2

+ wzzi κ (∂zφ)
2

+ wxyi κ∂xφ∂yφ+ wxzi κ∂xφ∂zφ+ wyzi κ∂yφ∂zφ.

(5.84)

60 CHAPTER 5. DL MESO LBE FEATURES

As for single-fluid, two-phase systems, collisions can be applied using any scheme (with corrections to equilibrium

moments for MRT schemes), using the concentration to find the relaxation time from values for the two fluids.

The second moment of the concentration distribution function gives∑
i

gieiαeiβ = Γµδij + φuαuβ (5.85)

where Γ is a mobility parameter between the two fluid species. Along with the concentration relaxation time

τφ, the mobility can be expressed as

M = Γ∆t

(
τφ −

1

2

)
. (5.86)

As before, the concentration tensor can be implemented by selecting an equilibrium distribution function, which

for square lattices can be chosen as

geqi = w00
i φ+ wiφ

{
(êi · ~u) +

3

2
(êi · ~u)

2 − 1

2
u2

}
+ wpi Γµ (5.87)

using the same weighting parameters as before. Collisions for the concentration distribution function can

be applied using any scheme, although the BGK single-relaxation-time scheme is normally sufficient as the

magnitude of mobility can be easily controlled using Γ[95].

DL MESO LBE currently only has the quartic form for the concentration part of the bulk free energy density

and the equation of state, i.e.:

ψ = f(ρ) + a

(
−1

2
φ2 +

1

4
φ4

)
P0 = f(ρ) + a

(
−1

2
φ2 +

3

4
φ4

)
which provide a double well potential:

µ = a
(
−φ+ φ3

)
− κ∇2φ.

For this form of potential, the surface tension between the two fluids is given as γ =
√

8
9κa and the interfacial

width is ξ =
√

κ
a .

The first and second order gradients of fluid density and concentration are calculated for all grid points, while

the bulk pressure P0, Galilean invariance corrector λ and chemical potential µ can also be calculated at each grid

point for the given equation of state and form of chemical potential. As for one-fluid systems, these values can

be used to calculate local equilibrium distribution functions (BGK and TRT collisions) or moment-transposed

versions for density (MRT collisions): the concentration distribution function is always collided using BGK

collision schemes and the local equilibrium function for concentration can also be calculated.

Surface wetting

Surface wetting can be accommodated into the free-energy model by an additional term to the Landau free-

energy functional[10, 95], i.e.

Ψs =

∫
Φ(ρs, φs)dS, (5.88)

where Φ(ρs, φs) is a surface free energy density, which can be expressed as power series in surface density ρs

and surface concentration φs. Expansions up to quadratic terms, i.e.

Φ(ρs, φs) = a0ρs +
1

2
a1ρ

2
s + b0φs +

1

2
b1φ

2
s

are sufficient for surface wetting, with a value of zero for Φ giving a contact angle of 90◦. Minimising the free

energy gives an equilibrium boundary condition for the surface, e.g. for density (with ŝ as the unit normal to

the surface pointing into the fluid):

κŝ · ∇ρs =
∂Φ

∂ρs
= a0 + a1ρs, (5.89)

5.4. DIFFUSION AND HEAT TRANSFER 61

which can be applied at the collision step by using the resulting density (or concentration) gradient in the local

equilibrium distribution function[95], with one-sided approximations for gradients used to calculate second-order

gradients[10]. If a bounce-back boundary condition is used, the velocity in the local equilibrium distribution

function is set to zero for the collision step.

5.4 Diffusion and heat transfer

In a similar fashion to multiple fluid systems, the Lattice Boltzmann Equation method can be applied to

problems involving diffusion and/or heat transfers by using additional distribution functions for each solute

and/or temperature[58, 144].

For a system consisting of a number of dilute solutes along with a bulk fluid, the governing equation for each

solute is given as

gi (~x+ êi∆t, t+ ∆t)− gi (~x, t) = −∆t

τs
[gi (~x, t)− geqi] (5.90)

where gi is the distribution function for the solute and τs the solute relaxation time, which is related to its

diffusivity

D =
1

3

(
τs −

1

2

)
(∆x)

2

∆t

and the Schmidt number can be determined by

Sc =
ν

D
=

2τf − 1

2τs − 1
.

Taking the concentration of the solute as Cs =
∑
i gi, the equilibrium distribution function for the solute is

given by a simpler form of Equation 4.11:

geqi = wiCs

[
1 + 3

(êi · ~u)

c2

]
(5.91)

where the velocity used is that of the bulk fluid.

Heat transfers can be coupled to the system in a similar manner, using a thermal distribution function hi and

a thermal relaxation time τt, which gives the governing equation

hi (~x+ êi∆t, t+ ∆t)− hi (~x, t) = −∆t

τt
[hi (~x, t)− heqi] (5.92)

The temperature at each lattice point (relative to a mean value) can be determined as the sum of the distribution

functions, T =
∑
i hi, which can be used to determine the equilibrium distribution function

heqi = wiT

[
1 + 3

(êi · ~u)

c2

]
, (5.93)

again using the bulk fluid velocity. The thermal relaxation time is related to the thermal diffusivity

α =
1

3

(
τt −

1

2

)
(∆x)

2

∆t

with the Prandtl number for the system determined by a ratio of relaxation times, i.e.

Pr =
ν

α
=

2τf − 1

2τt − 1
.

It should be noted that if two-relaxation-time (TRT), multiple-relaxation-time (MRT) or cascaded LBE schemes

are to be used, these only apply to fluids: all diffusion and heat transfer processes are calculated using the BGK

single relaxation time schemes described in this section.

62 CHAPTER 5. DL MESO LBE FEATURES

5.4.1 Boussinesq approximation

The coupling of fluid flows to heat transfer described above only produces heat conduction effects. To model

convective heat transfer processes, an additional force on the fluid is required to link flow to thermal trans-

port. The most common form is the Boussinesq approximation[45], which applies a buoyancy force on fluid a

proportional to the temperature difference:

~F a = −ρ~gβa
(
T − T0

Th − Tl

)
(5.94)

where ~g is gravitational acceleration, βa is the volumetric expansion coefficient for fluid a, Th and Tl are

respectively the maximum and minimum temperatures of the system and T0 = 1
2 (Th + Tl) is a reference

temperature.

DL MESO LBE can calculate this force for all lattice points. The product of gravitational acceleration and

volumetric expansion (~gβa) for each fluid, as well as the maximum and minimum temperatures Th and Tl, can

be included in the lbin.sys file.

5.5 Compressible and incompressible fluids

The standard Lattice Boltzmann Equation scheme is capable of modelling compressible fluids. Incompressible

fluids can be modelled by making a simple modification to the local equilibrium distribution function[49]:

feqi = wi

[
ρ+ ρ0

(
3 (êi · ~u)

c2
+

9 (êi · ~u)
2

2c4
− 3u2

2c2

)]
(5.95)

where ρ0 is the fixed density of the incompressible fluid and the density ρ becomes an analogue to pressure

(Pρ0 = c2sρ). While Equation 4.1 is still applicable to calculate ρ, the fluid velocity is now calculated by

ρ0uα =

q∑
i=0

fieiα (5.96)

DL MESO LBE allows users to select incompressible fluids using the keyword incompressible fluids in the

lbin.sys file. Additional collision and equilibrium distribution function routines are included to allow the user

to model incompressible fluids. All of these routines use a specified constant density for each fluid in the system

as the value of ρ0, which can also be specified in the lbin.sys file. (Note that incompressible fluids are not

available when using Swift free-energy-based interactions or cascaded LBE collisions.)

Chapter 6

DL MESO LBE Input and Output Files

6.1 Input files

All user-specified input files for DL MESO LBE must be in ANSI text format, with keywords (where necessary)

and numerical values separated from each other with spaces or tabs.

Define system: lbin.sys

The use of the DL MESO GUI is recommended for producing lbin.sys, although existing files of that name can

also be edited. Its format consists of a keyword and an associated numerical parameter on each line separated

by spaces or tabs. No allowances are made for typographical errors or abbreviations in keywords, which must

be included in full and in the form described below.

Ten keywords are compulsory for all LBE simulations, as these determine the lattice scheme to be used, the

number of lattices to use, and the sizes of the system and boundary regions.

keyword: meaning:

space dimension sets the number of dimensions in the system (2 or 3)

discrete speed sets the number of lattice links per grid point (9, 15, 19 or 27)

number of fluid sets the number of fluid lattices (Nf) for the system (if modelling solutes, this

must be set to 1)

number of solute sets the number of solutes (Nc) to be modelled

temperature scalar determines whether or not a lattice is needed to model heat transfers (set to 1

if needed, 0 if not)

phase field determines whether or not a lattice is needed to represent phase fields (set to

1 if needed, 0 if not)1

grid number x sets the number of grid points in the x-dimension

grid number y sets the number of grid points in the y-dimension

grid number z sets the number of grid points in the z-dimension (if a two-dimensional system

is modelled, this will be reset to 1)

domain boundary width sets the size of the boundary region (if running DL MESO in serial, this is

usually reset to 0)

Additional keywords can be used to specify the algorithms for collisions, forcing and mesophase interactions,

the format and data type for output files, whether fluids are compressible or incompressible, and whether or

not restart files should be used. If these are omitted, DL MESO LBE will assume that a new simulation is to

take place with compressible fluids subjected to BGK (single-relaxation-time) collisions using standard forcing

and no mesophase interactions, producing VTK formatted files in big endian binary. (If using the customizable

1No multiple fluid phase scheme included in DL MESO currently requires this lattice.

63

64 CHAPTER 6. DL MESO LBE INPUT AND OUTPUT FILES

versions of DL MESO LBE, all of these keywords may be omitted except for incompressible fluids, which is

required to correctly calculate fluid velocities in initialization and output files and apply boundary conditions.)

If all three flags for combining data from processor cores are switched on for three-dimensional calculations

(or the x- and y-components are both switched on for two-dimensional systems), MPI-IO will be used to put

together data slices in single output files.

keyword: meaning:

collision type sets the type of collisions and forcing (BGK (0), BGKEDM (1), BGKGuo (2), TRT (3),

TRTEDM (4), TRTGuo (5), MRT (6), MRTEDM (7), MRTGuo (8), CLBE (9), CLBEEDM

(10) or CLBEGuo (11) 2)

interaction type sets the type of mesophase interactions3 (ShanChen (1), ShanChenQuadratic

(2), Lishchuk (10), LishchukSpencer (11), LishchukSpencerTensor (12),

LishchukLocal (13) or Swift (20))

output format sets the format for output files (VTK (0), LegacyVTK (1), Plot3D (2))

output type sets the data type for output files (Binary (0), Text or ANSI (1))

output combine x combines data from processor cores along the x-axis into single output files (0

= off, 1 = on)

output combine y combines data from processor cores along the y-axis into single output files (0

= off, 1 = on)

output combine z combines data from processor cores along the z-axis into single output files (0

= off, 1 = on)

incompressible fluids determines whether or not the fluids should be incompressible (set to 0 for

compressible fluids, 1 for incompressible fluids)

restart simulation determines whether or not the simulation should be restarted (set to 0 for a new

simulation, 1 to restart the simulation from the state given in the lbout.dump

restart file)

The following keywords can be used to specify other information, such as fluid densities, velocities, relaxation

times or frequencies etc. Superfluous parameters can be omitted, while new ones would require additions to

the parameter recognition loop in the fInputParameters subroutine in lbpIO. Note that if there are duplicate

entries for any keyword, the value associated with the last one in the lbin.sys file will be used.

keyword: meaning:

total step sets total number of timesteps for the simulation

equilibration step sets number of timesteps for equilibration of the simulation (without solid

boundary conditions or external forcing)

save span sets interval for writing output files

dump span sets interval for writing restart files (default: 10000 - if set to zero, restart file

only written at end of simulation)

calculation time sets available calculation time (in seconds) before closing down the simulation

(default: 0 - simulation will not stop until last timestep is reached4)

boundary type sets type of boundary conditions for fluid flows (ZouHe (0), Inamuro (1),

Regularized/Regularised (2), SimpleZouHe (10) or Kinetic (11))

solute boundary type sets type of boundary conditions for solutes (ZouHe (0) or Inamuro (1))

thermal boundary type sets type of boundary conditions for thermal flows (ZouHe (0) or Inamuro (1))

noise intensity gives maximum variation in initial fluid densities for multiple fluid systems

2Either the keyword or the number can be used to specify the types.
3If set to an unrecognised word or to 0, interactions will be switched off.
4Not recommended on computing platforms with queue managers as restart files might not be written in time before the

calculation is halted.

6.1. INPUT FILES 65

evaporation limit gives minimum fluid density for non-continuous fluids when dealing with edge

or corner boundaries (default value 10−8)

trt magic number sets the TRT ‘magic number’ Λeo

gas constant sets the universal gas constant R for equations of state (Shan-Chen pseudopo-

tential and Swift free-energy interactions: default value 1)

gradient order sets the order of gradient approximations (i.e. number of neighbouring grid

points used) at boundary/near-boundary points (1 or 2: default value 1)

sound speed sets speed of sound for fluid 0 in real-life (i.e. non-lattice-based) units

kinetic viscosity sets kinematic viscosity for fluid 0 in real-life units

total step sets total number of timesteps for the simulation

oscillating freq sets frequency for sinusoidal oscillating forces across system

oscillating period sets period for sinusoidal oscillating forces across system (reciprocal of fre-

quency)

oscillating freq top sets frequency for sinusoidal oscillating velocity at top boundary

oscillating period top sets period for sinusoidal oscillating velocity at top boundary (reciprocal of

frequency)

oscillating freq bot sets frequency for sinusoidal oscillating velocity at bottom boundary

oscillating period bot sets period for sinusoidal oscillating velocity at bottom boundary (reciprocal

of frequency)

oscillating freq lef sets frequency for sinusoidal oscillating velocity at left boundary

oscillating period lef sets period for sinusoidal oscillating velocity at left boundary (reciprocal of

frequency)

oscillating freq rig sets frequency for sinusoidal oscillating velocity at right boundary

oscillating period rig sets period for sinusoidal oscillating velocity at right boundary (reciprocal of

frequency)

oscillating freq fro sets frequency for sinusoidal oscillating velocity at front boundary

oscillating period fro sets period for sinusoidal oscillating velocity at front boundary (reciprocal of

frequency)

oscillating freq bac sets frequency for sinusoidal oscillating velocity at back boundary

oscillating period bac sets period for sinusoidal oscillating velocity at back boundary (reciprocal of

frequency)

speed ini n sets initial velocity for all fluids (n = 0 for x-component, n = 1 for y-component,

n = 2 for z-component)

speed top n sets constant velocity at top boundary for all fluids

speed oscil top n sets oscillating velocity amplitude at top boundary for all fluids

speed bot n sets constant velocity at bottom boundary for all fluids

speed oscil bot n sets oscillating velocity amplitude at bottom boundary for all fluids

speed lef n sets constant velocity at left boundary for all fluids

speed oscil lef n sets oscillating velocity amplitude at left boundary for all fluids

speed rig n sets constant velocity at right boundary for all fluids

speed oscil rig n sets oscillating velocity amplitude at right boundary for all fluids

speed fro n sets constant velocity at front boundary for all fluids

speed oscil fro n sets oscillating velocity amplitude at front boundary for all fluids

speed bac n sets constant velocity at back boundary for all fluids

speed oscil bac n sets oscillating velocity amplitude at back boundary for all fluids

density ini f sets initial density for fluid f throughout system (f between 0 and Nf − 1)

density inc f sets constant density for incompressible fluid f

density top f sets density for fluid f at top boundary

density bot f sets density for fluid f at bottom boundary

density lef f sets density for fluid f at left boundary

density rig f sets density for fluid f at right boundary

66 CHAPTER 6. DL MESO LBE INPUT AND OUTPUT FILES

density fro f sets density for fluid f at front boundary

density bac f sets density for fluid f at back boundary

rheology fluid f sets rheology model for fluid f (see below)

rheology parameter a f sets rheological model parameter a for fluid f

rheology parameter b f sets rheological model parameter b for fluid f

rheology parameter c f sets rheological model parameter c for fluid f

rheology parameter d f sets rheological model parameter d for fluid f

rheology power f sets rheological model power index n for fluid f

relaxation fluid f sets (initial) relaxation time (τf) for fluid f (symmetric relaxation time for

TRT)

relax freq fluid f sets (initial) relaxation frequency (τ−1
f) for fluid f (symmetric relaxation fre-

quency for TRT)

bulk relaxation fluid f sets bulk relaxation time (τf,bulk) for fluid f

bulk relax freq fluid f sets bulk relaxation frequncy (τ−1
f,bulk) for fluid f

mrt relax i sets ith relaxation time for MRT scheme, applicable for all fluids (see below

for details: i = 0, 1 for D2Q9 lattice, i = 0, 1, 2 for D3Q15 and D3Q19 lattices,

i = 0, 1, 2, 3, 4, 5, 6, 7 for D3Q27 lattice)

mrt relax freq i sets ith relaxation frequency for MRT scheme, applicable for all fluids (see

below for details: i = 0, 1 for D2Q9 lattice, i = 0, 1, 2 for D3Q15 and D3Q19

lattices, i = 0, 1, 2, 3, 4, 5, 6, 7 for D3Q27 lattice)

clbe3 relaxation fluid f sets CLBE third-order relaxation time (τ3) for fluid f

clbe3 relax freq fluid f sets CLBE third-order relaxation frequency (ω3 = τ−1
3) for fluid f

clbe4 relaxation fluid f sets CLBE fourth-order relaxation time (τ4) for fluid f

clbe4 relax freq fluid f sets CLBE fourth-order relaxation frequency (ω4 = τ−1
4) for fluid f

relax mobility sets mobility relaxation time (τφ) for two-fluid Swift free-energy interactions

relax freq mobility sets mobility relaxation frequency (τ−1
φ) for two-fluid Swift free-energy inter-

actions

mobility parameter sets mobility parameter Γ for two-fluid Swift free-energy interactions

surface tension parameter sets the surface tension parameter κ for Swift free-energy interactions (both

one and two fluid systems)

solute ini s sets initial concentration for solute s throughout system (s between 0 and

lbsy.nc− 1)

solute top s sets concentration for solute s at top boundary

solute bot s sets concentration for solute s at bottom boundary

solute lef s sets concentration for solute s at left boundary

solute rig s sets concentration for solute s at right boundary

solute fro s sets concentration for solute s at front boundary

solute bac s sets concentration for solute s at back boundary

relax solute s sets relaxation time (τs) for solute s

relax freq solute s sets relaxation frequency (τ−1
s) for solute s

temperature ini sets initial temperature throughout system

temperature top sets temperature at top boundary

temperature bottom sets temperature at bottom boundary

temperature left sets temperature at left boundary

temperature right sets temperature at right boundary

temperature front sets temperature at front boundary

temperature back sets temperature at back boundary

temperature system sets temperature of entire system if using equations of state and no temperature

scalar

heating rate sys sets rate of change in temperature (with time based on real-life units) through-

out system

6.1. INPUT FILES 67

heating rate top sets rate of change in temperature at top boundary

heating rate bottom sets rate of change in temperature at bottom boundary

heating rate left sets rate of change in temperature at left boundary

heating rate right sets rate of change in temperature at right boundary

heating rate front sets rate of change in temperature at front boundary

heating rate back sets rate of change in temperature at back boundary

relax thermal sets thermal relaxation time (τt)

relax freq thermal sets thermal relaxation frequency (τ−1
t)

body force n sets constant external body force on fluid f : n = 3f for x-component, n = 3f+1

for y-component, n = 3f + 2 for z-component

body force x f sets x-component of constant external body force on fluid f

body force y f sets y-component of constant external body force on fluid f

body force z f sets z-component of constant external body force on fluid f

oscillating force n sets amplitude of sinusoidal oscillating body force on fluid f : n = 3f for x-

component, n = 3f + 1 for y-component, n = 3f + 2 for z-component

oscillating force x f sets x-component of amplitude of sinusoidal oscillating body force on fluid f

oscillating force y f sets y-component of amplitude of sinusoidal oscillating body force on fluid f

oscillating force z f sets z-component of amplitude of sinusoidal oscillating body force on fluid f

boussinesq force n sets Boussinesq force constant (~gβ) for fluid f : n = 3f for x-component, n =

3f + 1 for y-component, n = 3f + 2 for z-component

boussinesq force x f sets x-component of Boussinesq force constant (~gβ) for fluid f

boussinesq force y f sets y-component of Boussinesq force constant (~gβ) for fluid f

boussinesq force z f sets z-component of Boussinesq force constant (~gβ) for fluid f

boussinesq boussinesq high sets high reference temperature for Boussinesq convection (Th)

boussinesq boussinesq low sets low reference temperature for Boussinesq convection (Tl)

interaction n sets interaction parameter between fluids f1 and f2: n = Nf × f1 + f2

interaction f1 f2 sets interaction parameter between fluids f1 and f2

quadratic weight sets Shan-Chen quadratic term weighting parameter β between all pairs of fluid

species

quadratic weight n sets Shan-Chen quadratic term weighting parameter β between fluids f1 and

f2: n = Nf × f1 + f2

quadratic weight f1 f2 sets Shan-Chen quadratic term weighting parameter β between fluids f1 and

f2

potential type sets the pseudopotential type for Shan-Chen interactions (see below) or chem-

ical potential type for Swift free-energy interactions (None (0), Quartic (1))

potential type f sets the pseudopotential type for Shan-Chen interactions (see below) for fluid

f

equation of state sets equation of state for all fluids with Swift free-energy interactions (see below

for options)

eos parameter a sets equation-of-state parameter a for all fluid species

eos parameter a f sets equation of state parameter a for fluid f

eos parameter b sets equation of state parameter b for all fluid species

eos parameter b f sets equation of state parameter b for fluid f

potential parameter a sets chemical potential parameter a for all fluid species (Swift free-energy in-

teractions)

potential parameter b sets chemical potential parameter b for all fluid species (Swift free-energy in-

teractions)

shanchen psi0 f sets Shan-Chen pseudopotential parameter ψ0 for fluid f

critical temperature f sets critical temperature Tc for fluid f

critical pressure f sets critical pressure Pc for fluid f

acentric factor f sets acentric factor ω for fluid f

68 CHAPTER 6. DL MESO LBE INPUT AND OUTPUT FILES

segregation sets fluid segregation parameter between all fluids species

segregation n sets fluid segregation parameter between fluids f1 and f2: n = Nf × f1 + f2

segregation f1 f2 sets fluid segregation parameter between fluids f1 and f2

wetting type sets the basis for wetting interactions between solid points and all fluid species

for Shan-Chen interactions (Density (0), Potential (1), ScreenedPotential

(2)) or for Swift free-energy interactions (None (0), Quadratic (1))

wetting type f sets the basis for Shan-Chen wetting interactions between solid points and fluid

species f (Density (0), Potential (1), ScreenedPotential (2))

wall interaction f sets Shan-Chen interaction parameter between fluid f and solid walls

wetting parameter rho n sets Swift wetting potential parameter for fluid density (an, n = 0 or 1)

wetting parameter phi n sets Swift wetting potential parameter for fluid concentration (bn, n = 0 or 1)

When using MRT collisions, the following relaxation times or frequencies can be specified for all fluids in the

simulation (overriding the default values given here):

MRT parameter number i Relaxation frequency for lattice model

D2Q9[68] D3Q15[23] D3Q19[23] D3Q27[124]

0 s2 = 1.14 s2 = 1.2 s2 = 1.4 s10 = 1.5

1 s4 = 1.92 s4 = 1.6 s4 = 1.4 s13 = 1.83

2 - s14 = 1.2 s16 = 1.98 s16 = 1.4

3 - - - s17 = 1.61

4 - - - s18 = 1.98

5 - - - s20 = 1.98

6 - - - s23 = 1.74

7 - - - s26 = 1.74

with the relaxation times corresponding to those given in the original references. (More details about these can

be found in Appendix D.)

The following rheological models are available, with the respective key numbers and words in the lbin.sys

file and correspondence of parameters to those required in the input file (noting that the power gives n for all

relevant models):

Model number Key word Equation Parameters

a b c d

0 Simple5 µ = c2sρ
(
τf − 1

2

)
∆t τf - - -

1 Newtonian µ = µ0 µ0 - - -

2 PowerLaw (Power) µ = Kγ̇n−1 K - - -

3 Bingham µ = µ0 +
σy
γ̇

(
1− e−mγ̇

)
µ0 σy m -

4 HerschelBulkley (Herschel) µ = Kγ̇n−1 +
σy
γ̇

(
1− e−mγ̇

)
K σy m -

5 Casson µ =
(√

µ0 +
√

σy
γ̇

(
1− e−mγ̇

))2

µ0 σy m -

6 CarreauYasuda (Carreau) µ = µ∞ + (µ0 − µ∞)
(

1 + (λγ̇)
d
)n−1

d

µ∞ µ0 λ d

where µ0 and µ∞ are specified constant viscosities (at zero-shear and infinite-shear), K is a consistency viscosity

for power-law fluids, σy is a yield stress, λ is a yield relaxation time for Carreau fluids, m is a stress growth

exponent for dealing with discontinuities in plastic models with yield stresses, n and a are power indices.

The following equations of state are available for Shan-Chen pseudopotentials and Swift free-energy bulk pres-

sures, with the respective key numbers and words in the lbin.sys file (note that some numbers are skipped to

give alternatives for constant and variable temperature systems):

5The density ρ is either the local value for a given lattice point or the constant value for incompressible fluids ρ0.

6.1. INPUT FILES 69

Table 6.4: Boundary condition category

value meaning
0 liquid
10 domain boundary
11 inside solid
12 on-grid bounce-back boundary
13 mid-link bounce-back boundary
21–99 outflow boundary
100–199 constant speed, composition and temperature boundary
200–299 constant speed, Neumann composition and temperature boundary
300–399 constant speed and composition, Neumann temperature boundary
400–499 constant speed and temperature, Neumann composition boundary
500–599 constant pressure, composition and temperature boundary
600–699 constant pressure, Neumann composition and temperature boundary
700–799 constant pressure and composition, Neumann temperature boundary
800–899 constant pressure and temperature, Neumann composition boundary

0 IdealLattice p = ρc2s

1 ShanChen1993 p = ρc2s + 1
2c

2
sgρ

2
0

(
1− e−

ρ
ρ0

)2

2 ShanChen1994 p = ρc2s + 1
2c

2
sgψ

2
0

(
e

−2ρ0
ρ

)
3 Qian1995 p = ρc2s + 1

2c
2
sg
(
ρ0ρ
ρ0+ρ

)2

4 Rho p = ρc2s + 1
2c

2
sgρ

2

5 Ideal p = ρRT

6 vanderWaals (vdW) p = ρRT
1−bρ − aρ

2

7 CarnahanStarlingvanderWaals (CSvdW) p = ρRT
(

1+φ+φ2−φ3

(1−φ)3

)
− aρ2

8 RedlichKwong (RK) p = ρRT
1−bρ −

aρ2√
T (1+bρ)

10 SoaveRedlichKwong (SRK) p = ρRT
1−bρ −

aα(Tr,ω)ρ2

1+bρ

12 PengRobinson (PR) p = ρRT
1−bρ −

aα(Tr,ω)ρ2

1+2bρ−b2ρ2

14 CarnahanStarlingRedlichKwong (CSRK) p = ρRT
(

1+φ+φ2−φ3

(1−φ)3

)
− aρ2√

T (1+bρ)

where φ = 1
4bρ for the Carnahan-Starling equations of state. For Swift free-energy interactions with Shan-Chen

equations of state (numbers 1 to 4 in the above table), values for g and ψ0 can either be specified for fluid 0 or

the global equation-of-state parameters a and b (respectively) can be used.

Define space: lbin.spa

The GUI is recommended for creating the lbin.spa file, which stores the data in the following format:

x,y,z,space property

An empty lbin.spa file represents all boundaries as periodic. The space property of a grid point is represented

by an integer value in DL MESO LBE. For example, 0 represents a liquid site and 12 represents an on-grid

bounce-back boundary. Table 6.4 lists the categories of space properties.

The orientation of a solid-liquid boundary is also represented by the value of an integer. For example, a planar

surface with normal vector along the y-axis is denoted by 21, while a concave corner face at the top-right-front

corner is denoted by 31. It must be pointed out that only those space positions located in the surface of a

face-centered cube have been included and translated in DL MESO LBE. Points with random orientations, e.g.

47◦ plane, have not been included.

The boundary condition number can be rather confusing and difficult to understand. To assist in producing

the space properties, the DL MESO GUI includes a translator that interprets a word as its corresponding

70 CHAPTER 6. DL MESO LBE INPUT AND OUTPUT FILES

integer number. The word is made up of defined letters as listed in Table 6.5. The boundary conditions with

combinations of type and orientation are listed in Table 6.6. The letters are in the order of:

1. Fluid property: constant speed or constant pressure.

2. Solute property: constant composition or bounceback boundary.

3. Temperature property: isothermal (constant) or heat bath (bounceback boundary).

4. Geometric property: planar surface, concave corner or concave edge.

5. Boundary orientation: one letter for planar surface, two letters for concave corners or three letters for

concave edges.

For example, a shearing planar surface facing downwards along the y-axis with constant composition and

temperature (i.e. isothermal) is represented as VCBPSD and translated as 322.

Table 6.5: Boundary condition category

letter meaning
O Outflow
V Constant Velocity
P Constant Pressure (Density)
C Constant Solute Composition
T Constant Temperature
B Bounceback Boundary Condition (Solute Composition or Temperature)
PS Planar Surface
CC Concave Corner
CE Concave Edge
T Normal Vector Pointing to Top
D Normal Vector Pointing Downwards
L Normal Vector Pointing to Left
R Normal Vector Pointing to Right
F Normal Vector Pointing to Front
B Normal Vector Pointing to Back

6.1. INPUT FILES 71

Table 6.6: Notation of boundary condition

OPST 21 OPSD 22 OPSL 23

OPSR 24 OPSF 25 OPSB 26

OCETF 47 OCELF 48 OCEDF 49

OCERF 50

VCTPST 121 VCTPSD 122 VCTPSL 123

VCTPSR 124 VCTPSF 125 VCTPSB 126

VCTCCTRB 127 VCTCCTLB 128 VCTCCDLB 129

VCTCCDRB 130 VCTCCTRF 131 VCTCCTLF 132

VCTCCDLF 133 VCTCCDRF 134 VCTCETR 143

VCTCETL 144 VCTCEDL 145 VCTCEDR 146

VCTCETF 147 VCTCELF 148 VCTCEDF 149

VCTCERF 150 VCTCETB 151 VCTCELB 152

VCTCEDB 153 VCTCERB 154 VCBPST 221

VCBPSD 222 VCBPSL 223 VCBPSR 224

VCBPSF 225 VCBPSB 226 VCBCCTRB 227

VCBCCTLB 228 VCBCCDLB 229 VCBCCDRB 230

VCBCCTRF 231 VCBCCTLF 232 VCBCCDLF 233

VCBCCDRF 234 VCBCETR 243 VCBCETL 244

VCBCEDL 245 VCBCEDR 246 VCBCETF 247

VCBCELF 248 VCBCEDF 249 VCBCERF 250

VCBCETB 251 VCBCELB 252 VCBCEDB 253

VCBCERB 254 VBTPST 321 VBTPSD 322

VBTPSL 323 VBTPSR 324 VBTPSF 325

VBTPSB 326 VBTCCTRB 327 VBTCCTLB 328

VBTCCDLB 329 VBTCCDRB 330 VBTCCTRF 331

VBTCCTLF 332 VBTCCDLF 333 VBTCCDRF 334

VBTCETR 343 VBTCETL 344 VBTCEDL 345

VBTCEDR 346 VBTCETF 347 VBTCELF 348

VBTCEDF 349 VBTCERF 350 VBTCETB 351

VBTCELB 352 VBTCEDB 353 VBTCERB 354

VBBPST 421 VBBPSD 422 VBBPSL 423

VBBPSR 424 VBBPSF 425 VBBPSB 426

VBBCCTRB 427 VBBCCTLB 428 VBBCCDLB 429

VBBCCDRB 430 VBBCCTRF 431 VBBCCTLF 432

VBBCCDLF 433 VBBCCDRF 434 VBBCETR 443

VBBCETL 444 VBBCEDL 445 VBBCEDR 446

VBBCETF 447 VBBCELF 448 VBBCEDF 449

VBBCERF 450 VBBCETB 451 VBBCELB 452

VBBCEDB 453 VBBCERB 454 PCTPST 521

PCTPSD 522 PCTPSL 523 PCTPSR 524

PCTPSF 525 PCTPSB 526 PCTCCTRB 527

PCTCCTLB 528 PCTCCDLB 529 PCTCCDRB 530

PCTCCTRF 531 PCTCCTLF 532 PCTCCDLF 533

PCTCCDRF 534 PCTCETR 543 PCTCETL 544

PCTCEDL 545 PCTCEDR 546 PCTCETF 547

PCTCELF 548 PCTCEDF 549 PCTCERF 550

PCTCETB 551 PCTCELB 552 PCTCEDB 553

PCTCERB 554 PCBPST 621 PCBPSD 622

PCBPSL 623 PCBPSR 624 PCBPSF 625

72 CHAPTER 6. DL MESO LBE INPUT AND OUTPUT FILES

Table 6.6: Notation of boundary condition (continued)

PCBPSB 626 PCBCCTRB 627 PCBCCTLB 628

PCBCCDLB 629 PCBCCDRB 630 PCBCCTRF 631

PCBCCTLF 632 PCBCCDLF 633 PCBCCDRF 634

PCBCETR 643 PCBCETL 644 PCBCEDL 645

PCBCEDR 646 PCBCETF 647 PCBCELF 648

PCBCEDF 649 PCBCERF 650 PCBCETB 651

PCBCELB 652 PCBCEDB 653 PCBCERB 654

PBTPST 721 PBTPSD 722 PBTPSL 723

PBTPSR 724 PBTPSF 725 PBTPSB 726

PBTCCTRB 727 PBTCCTLB 728 PBTCCDLB 729

PBTCCDRB 730 PBTCCTRF 731 PBTCCTLF 732

PBTCCDLF 733 PBTCCDRF 734 PBTCETR 743

PBTCETL 744 PBTCEDL 745 PBTCEDR 746

PBTCETF 747 PBTCELF 748 PBTCEDF 749

PBTCERF 750 PBTCETB 751 PBTCELB 752

PBTCEDB 753 PBTCERB 754 PBBPST 821

PBBPSD 822 PBBPSL 823 PBBPSR 824

PBBPSF 825 PBBPSB 826 PBBCCTRB 827

PBBCCTLB 828 PBBCCDLB 829 PBBCCDRB 830

PBBCCTRF 831 PBBCCTLF 832 PBBCCDLF 833

PBBCCDRF 834 PBBCETR 843 PBBCETL 844

PBBCEDL 845 PBBCEDR 846 PBBCETF 847

PBBCELF 848 PBBCEDF 849 PBBCERF 850

PBBCETB 851 PBBCELB 852 PBBCEDB 853

PPBCERB 854

Define initial condition: lbin.init

This optional file cannot currently be created by the GUI: the user must create this file or use the utility

lbeinitcreate if it is required. The following format is required for each lattice point whose default velocity,

fluid densities, solute concentrations or temperature needs replacing:

x,y,z,ux,uy,uz,ρ
0 . . . ρNf−1,c0 . . . cNc−1,T

Note that three values for each grid position and velocity must be included (the values for z-components in two-

dimensional simulations must be set to zero). At each grid point specified, density/concentration/temperature

values must be included for all lattices used in calculations: the total number of values in each line must be

equal to 6 +Nf +Nc +Nt (where Nf and Nc are the numbers of fluids and solutes respectively, and Nt equals

1 if temperatures are in use or 0 if they are not).

6.2 Output files

DL MESO LBE prints information about the simulation to the screen or standard output:

• welcome messages

• a brief description of the simulation to be carried out, including system-wide parameters (e.g. relaxation

times)

• details of domain decomposition if running in parallel

6.2. OUTPUT FILES 73

• reports on the masses and momentum of fluids in the system at user-specified intervals (with timings in

seconds)

• a final summary including a calculation efficiency measure and a reminder to cite DL MESO for any

published results

This information can be directed to a file specified at the command line, e.g. by launching DL MESO LBE

using the command

• ./lbe.exe > OUTPUT

Restart capability: lbout.dump

A binary restart file (lbout.dump) containing data to allow an interrupted simulation to be restarted is generated

at regular intervals (every lbdump time steps) and at the end of the allotted number of time steps. This can be

read into DL MESO LBE if the value for restart simulation in lbin.sys is set equal to 1. (The number of

processor cores used to restart the simulation does not have to equal the number used to create the lbout.dump

file.)

The file format consists of a header made up of 12 integers with the following properties:

• The number of dimensions

• The number of lattice speeds

• The number of grid points in the x-dimension

• The number of grid points in the y-dimension

• The number of grid points in the z-dimension

• The number of fluids (Nf)

• The number of solutes (Nc)

• The switch for temperature field (Nt)

• The (currently unused) switch for phase field (Npf)

• The timestep at the point when the file was created

• The number of snapshot output files previously written

• The switch for incompressible fluids

followed by the constant densities (in double precision format) for incompressible fluids (if these were in use).

The positions for each grid point then follow (in the Cartesian coordinates x, y, z) as a single block of integers,

before the distribution functions and local relaxation frequencies (used for non-Newtonian rheological models)

follow in a block of double precision numbers. The grid points do not have to be ordered in any way but the

order corresponds to the values of distribution function and relaxation frequencies found in the block of double

precision numbers. (Each grid point’s data start with distribution functions ordered by fluid/solute/temperature

and then lattice link, followed by the relaxation frequencies for the fluids.)

The utility lbedumpinit in the LBE/utility directory can read lbout.dump files and produce a lbin.init

initialization file for a new simulation. The utility lbedumpvtk can produce a Structured Grid XML VTK

formatted file of the system at the timestep when the restart file was generated. Further details on both utilities

can be found in Appendix C or the README file in the LBE/utility directory.

74 CHAPTER 6. DL MESO LBE INPUT AND OUTPUT FILES

Simulation snapshots: lbout*.vts, lbout*.vtk, lbout*.q

Snapshots of the simulation can be written in Structured Grid XML VTK, Structured Grid Legacy VTK and

standard Plot3D data format, either in big endian binary format (by default) or ANSI (text). These may be

modified by the user as required.

By default, DL MESO LBE will produce an output file per frame per processor core: to reduce the number

of files produced per frame, the output combine options can be switched on in the lbin.sys file. Processor

cores along a particular line or plane can gather together their data onto a single core in a group, which writes a

file with their combined data instead of getting each core to write its own file. Each dimension (x, y and z) can

be switched on independently of each other for data combination: switching on all three dimensions will gather

all data together onto a single core for writing and thus produce one output file per frame. The option for one

output file per frame is implemented by gathering data in one or two dimensions to give groups orthogonal to

the other dimension that can be put together contiguously using MPI-IO (e.g. in three-dimensions, the x- and

y- dimensions are combined into two-dimensional groups that are placed side-by-side in the z-direction).

The utility lbeplot3dgather in the LBE/utility directory can directly combine binary Plot3D files generated

in parallel, while Parallel Structured Grid XML VTK files (lbtout*.pvts) that refer to the files from each

processor can be created using the utility lbevtkgather: further details can be found in Appendix C or the

README file in the same directory. By default all properties for a simulation – fluid densities, mass fractions,

solute concentrations and temperatures – are written to each output file (or to individual output files for Plot3D

for each property). The customizable version of DL MESO LBE allows users to select which properties should

be written to output files: further details about this can be found in the Developer Manual.

Structured Grid XML VTK format: lbout*.vts

Structured Grid VTK files written by DL MESO LBE include the lattice dimensions (numbers of grid points

in each direction), the Cartesian coordinates of the grid points in real-life units, and the same data as in Legacy

VTK files (see below). Output files produced in ANSI text format include the data between XML tags, e.g.

<DataArray>, while those produced in big endian binary use the <DataArray> tags to refer to the starting point

for the data in a stream of binary numbers inside an <AppendedData> tag.

If each core or I/O group produces its own file per frame, these files represent the data in each subdomain (or

collected subdomain) and should be retained when plotting the entire system, as the parallel VTK format links

to these rather than creating combined files for the entire system. The utility lbevtkgather can be used to

do this, which also requires the lbout.info and lbout.ext files generated when running DL MESO LBE in

parallel to obtain information about the data and how the (collections of) subdomains fit together.

Legacy VTK format: lbout*.vtk

Legacy VTK files written by DL MESO LBE include the lattice dimensions (numbers of grid points in each

direction), the Cartesian coordinates of the grid points in real-life units, and the following data:

• A scalar property (fluid density, mass fraction, solute concentration or scalar temperature), e.g.

ρ0,0,0

. . .

ρnx−1,ny−1,nz−1

• Fluid velocity

U0,0,0 V0,0,0 W0,0,0

. . .

Unx−1,ny−1,nz−1 Vnx−1,ny−1,nz−1 Wnx−1,ny−1,nz−1

6.2. OUTPUT FILES 75

• The space (boundary condition) property

φ0,0,0

. . .

φnx−1,ny−1,nz−1

If all properties are to be output, they are all included in the same file for each time step under unique names.

Plot3D format

This format consists of two file types: one indicating the grid positions, and the other providing solution data

for macroscopic properties.

Output grid position: lbout*.xyz

nx, ny, nz

x0,0,0, . . . xnx−1,ny−1,nz−1

y0,0,0, . . . ynx−1,ny−1,nz−1

z0,0,0, . . . znx−1,ny−1,nz−1

where nx is the total number of grid points in x-direction, ny is the total number of grid points in y-direction,

nz is the total number of grid points in z-direction and (xi,j,k, yi,j,k, zi,j,k) is the Cartesian coordinate of grid

point (i, j, k).

Output macroscopic quantities: lbout.q

nx, ny, nz

c, 1.0, Re, t

ρ0,0,0, . . . ρnx−1,ny−1,nz−1, U0,0,0, . . . Unx−1,ny−1,nz−1

V0,0,0, . . . Vnx−1,ny−1,nz−1,W0,0,0, . . .Wnx−1,ny−1,nz−1

φ0,0,0, . . . φnx−1,ny−1,nz−1

where c is the speed of sound for the lattice, Re the Reynolds number for the flow, t the time step, ρ the

density, U the x-component of velocity, V the y-component of velocity, W the z-component of velocity and φ

the space (boundary condition) property. (The 1.0 between the lattice speed of sound and flow Reynolds number

represents the freestream angle of attack.) The density of the fluid may be replaced with its concentration or

scalar temperature.

If all properties are output, each property is given a uniquely named file based on the number of fluid or

solute (e.g. lbout00dens*.q for the density of fluid 0) and its property (lbout*dens*.q, lbout*frac*.q,

lbout*conc*.q and lbouttemp*.q).

Chapter 7

DL MESO LBE Examples

Test cases for Lattice Boltzmann Equation simulations using DL MESO – including the required input and

sample output files – can be found in the DEMO/LBE subdirectory. They can be run using either the serial or

parallel versions of DL MESO LBE.

Images of all test cases and videos for some can be found in the Example Simulations page of the DL MESO

website: a link to it can be found at www.ccp5.ac.uk/DL MESO

7.1 2D Pressure

This is a 2D simulation of a single fluid on a 42×42 grid with fixed pressure (density) boundary conditions on the

left and right boundaries and solid walls (represented by bounce back) at the top and bottom. A visualization

with vector glyphs and a plot of fluid speed against vertical position can be seen in Figure 7.1, which show the

boundary conditions result in a laminar flow with a parabolic velocity profile.

(a) Vector plot of system

0 0.0001 0.0002
Vertical position

0

0.0005

0.001

0.0015

0.002

0.0025

F
lu

id
 s

p
ee

d

(b) Variation of fluid speed with vertical position

Figure 7.1: Results from LBE 2D Pressure test case

7.2 2D Shear

This is a 2D simulation of a single fluid on a 42 × 42 grid with a shear boundary condition. The vector plot

in Figure 7.2 demonstrates the ability of the applied boundary conditions to generate a linear shearing Couette

flow throughout the grid, which is confirmed by the plot of horizontal velocity component as a function of

vertical position at the last time step for the simulation.

7.3 2D CylinderFlow

This is a 2D simulation of a single fluid on a 125× 50 grid with a constant horizontal body force and a circular

obstacle of radius 12, representing channel flow past an infinitely-long cylinder. Figure 7.3 shows this flow as

77

78 CHAPTER 7. DL MESO LBE EXAMPLES

(a) Vector plot of system

0 0.0001 0.0002
Vertical position

-0.001

-0.0005

0

0.0005

0.001

F
lu

id
 v

el
o

ci
ty

:
x

-c
o

m
p

o
n

en
t

(b) Variation of horizontal velocity with vertical posi-
tion

Figure 7.2: Results from LBE 2D Shear test case

streamlines coloured by density (from blue to red for low to high), with solid black lines representing the solid

boundaries (both walls and the cylinder).

Figure 7.3: Density (scale: blue to red) and velocity streamline plot from LBE 2D CylinderFlow test case

7.4 2D KarmanVortex

This is a 2D simulation of a single fluid on a 250× 50 grid with a constant horizontal body force and a circular

obstacle of radius 8, representing channel flow past an infinitely-long cylinder that eventually produces a von

Kármán vortex street between two solid walls. Figure 7.4 shows the flow field at the final time step: an .AVI

video file has been rendered from the calculation and can be found in the Example Simulations page of the

DL MESO website.

Figure 7.4: Velocity streamline plot from LBE 2D KarmanVortex test case (colour scale for velocity magnitude:
blue to red)

7.5 2D KarmanVortexOutflow

This is a 2D simulation of a single fluid using cascaded LBE collisions on a 520 × 180 grid with a constant

velocity of 0.04 applied to the left boundary, an outflow boundary condition to the right, periodic boundaries at

the top and bottom, and a circular obstacle of radius 20. This represents unbounded flow past an infinitely-long

cylinder that eventually produces a von Kármán vortex street. Figure 7.5 shows the flow field at the final time

step.

7.6. 2D LIDCAVITY 79

Figure 7.5: Velocity colour map plot from LBE 2D KarmanVortexOutflow test case (colour scale for velocity
magnitude: blue to red)

7.6 2D LidCavity

This is a 2D simulation of a single incompressible fluid on a 128× 128 grid with a shear boundary condition at

the top and solid walls surrounding the other edges of the system, resulting in lid-driven cavity flow. Figure 7.6

shows the fully-developed velocity field for a Reynolds number of 100 at the final time step.

Figure 7.6: Velocity streamline and magnitude plot from LBE 2D Lidcavity test case

7.7 2D RayleighBenard

This is a 2D simulation of a single fluid undergoing natural (Rayleigh-Bénard) convection on a 102 × 51 grid.

The fluid is contained between two solid walls: the wall at the bottom of the system is maintained at a higher

temperature than that at the top. Figure 7.7 shows the fully-developed temperature field with flow streamlines

at the final time step for a Prandtl number of 1 and a Rayleigh number of ∼ 21250.

7.8 2D DropShear

This is a 2D simulation of an initially static drop on a 150× 50 grid undergoing linear shear[48] using Lishchuk

continuum-based mesophase interactions with Guo forcing. The drop and continuous fluid are contained between

two solid walls: after an equilibration period to allow the drop shape to settle, the wall at the top of the system

80 CHAPTER 7. DL MESO LBE EXAMPLES

Figure 7.7: Plot of fluid temperature and streamlines for LBE 2D RayleighBenard test case (temperature scale:
blue to red)

is set to move horizontally while the wall at the bottom is kept stationary. Figure 7.8 shows the fluid density

(pressure) field and drop positions at time steps throughout the simulation, demonstrating traverse migration

(lift) due to linear shear, for a system with droplet Reynolds number of 0.135 and capillary number (ratio of

inertial to interfacial stresses) of 0.147. An .AVI video file has been rendered from an example calculation,

which can be found in the Example Simulations page of the DL MESO website.

(a) t = 17 000

(b) t = 86 500

(c) t = 390 000

Figure 7.8: Plots of fluid density (pressure) and drop positions for LBE 2D DropShear test case

7.9 2D PhaseSeparation

This is a 2D simulation of a single fluid on a 50× 50 grid, which interacts using a Shan/Chen pseudopotential

chosen to apply the cubic Peng-Robinson equation of state[145], using parameters of a = 2
49 , b = 2

21 , an acentric

factor ω = 0.344 and gas constant R = 1. The temperature of the fluid is set to a value below the critical

temperature, which causes the fluid to separate into liquid and vapour phases. Figure 7.9 shows the phase

separation process in a number of snapshots, with the liquid phase forming into a circular drop. (This test case

is courtesy of Christopher Stiles at the College of Nanoscale Science and Engineering, State University of New

York.)

7.10. 2D POWERLAW 81

(a) t = 100 (b) t = 500 (c) t = 5000

Figure 7.9: Progressive density plots from LBE 2D PhaseSeparation test case (red for liquid phase ρL = 7.633,
blue for vapour phase ρV = 0.0462)

7.10 2D PowerLaw

This is a 2D simulation of a single fluid on a 64 × 128 grid with constant density boundaries at the left and

right, mid-link bounce back conditions at the top and bottom, MRT collisions using local calculations of shear

rate to modify relaxation times at grid points to obtain power law rheological behaviour. A pressure drop is

applied using the constant density boundaries and the flow profile can be measured. Figure 7.10 shows how the

velocity profile changes with different powers n.

0 0.2 0.4 0.6 0.8 1
Vertical	position,	y/Ly

0

0.2

0.4

0.6

0.8

1

H
or
iz
on
ta
l	v

el
oc
ity

	re
la
tiv

e	
to
	m

ax
im

um
	v
al
ue
,	v

x/
v m

ax

n	=	0.5
n	=	0.75
n	=	1

Figure 7.10: Plot of horizontal velocity as a function of vertical position for LBE 2D PowerLaw test case using
different powers n

7.11 3D PhaseSeparation

This is a 3D simulation of two fluids on a 100×100×100 grid with periodic boundary conditions and Shan/Chen

pseudopotential mesoscopic interactions (using the original pseudopotential[108]) that cause the fluids to sepa-

rate. Figure 7.11 shows the phase separation process in a number of snapshots: two .AVI video files have been

rendered from an example calculation (one giving a 3D view of the system, the other showing a plane normal

to the x-axis) which can be found in the Example Simulations page of the DL MESO website.

7.12 3D Shear

This is a 3D simulation of a single fluid on a 40 × 30 × 25 grid with a shear boundary condition. Figure 7.12

shows a vector plot for this system, demonstrating that linear shear is generated and maintained by the moving

boundaries in the planes normal to the y-axis, and a plot of the horizontal component of fluid velocity against

vertical position at the last time step.

82 CHAPTER 7. DL MESO LBE EXAMPLES

(a) t = 400 (b) t = 1200 (c) t = 2000

Figure 7.11: Progressive density plots in plane normal to y-axis from LBE 3D PhaseSeparation test case (red
for fluid 0, blue for fluid 1)

(a) Vector plot of system

0 0.0001
Vertical position

-0.001

-0.0005

0

0.0005

0.001

F
lu

id
 v

el
o

ci
ty

:
x

-c
o

m
p

o
n

en
t

(b) Plot of horizontal velocity with vertical position

Figure 7.12: Results from LBE 3D Shear test case

7.13 3D RayleighBenard

This is a 3D simulation of a single fluid undergoing natural (Rayleigh-Bénard) convection on a 80 × 40 × 80

grid. The fluid is contained between two solid walls: the wall at the bottom of the system is maintained at a

higher temperature than that at the top. Figure 7.13 shows the fully-developed temperature and convective

flow fields at the final time step for a Prandtl number of 1 and a Rayleigh number of ∼ 10000.

Figure 7.13: Plot of fluid temperature for LBE 3D RayleighBenard test case (scale: blue to red) with streamlines
depicting convective flow

7.14. 3D DROPSHEAR 83

7.14 3D DropShear

This is a 3D simulation of an initially static drop on a 150 × 50 × 50 grid undergoing linear shear[48] using

Lishchuk continuum-based mesophase interactions with Guo forcing. It operates in an identical manner to the

2D DropShear test case, with the initially stationary drop being subjected to linear shear. Figure 7.14 shows

the fluid velocity streamlines (coloured using velocity magnitude) and the density (pressure) field applied to the

surface of the deformed drop at the final time step.

Figure 7.14: Plot of fluid streamlines and density on drop surface for LBE 3D DropShear test case (velocity and
density scales: blue to red)

Part II

Dissipative Particle Dynamics (DPD)

85

Chapter 8

Dissipative Particle Dynamics: Basic Theory

8.1 Introduction

Dissipative Particle Dynamics (DPD) is an off-lattice, discrete particle method for modelling mesoscopic systems.

It has little in common with Lattice Boltzmann methods, except in its application to systems of similar length

and time scales.

The DPD method inherits its methodology from classical Molecular Dynamics (MD), particularly from Brownian

Dynamics (BD). It differs from BD, however, in an important way: it is Galilean invariant and for this reason

conserves hydrodynamic behaviour, while the BD method does not. Many systems are crucially dependent on

hydrodynamic interactions and it is essential to retain this feature in the model. DPD is particularly useful for

simulating systems on the near-molecular scale, such as polymers, biopolymers, lipids, emulsions and surfactants

– systems in which large scale structure evolves on a time scale that is too long to be modelled effectively by

MD. DPD may also be used when such systems experience shear and flow gradients.

The DPD algorithm can be summarized by the following:

• A condensed phase system may be modelled as a system of free particles interacting directly through ‘soft’

forces.

• The system is coupled to a heat bath via stochastic forces, which act on the particles in a pairwise manner.

• The particles also experience a damping or drag force, which also acts in a pairwise manner.

• Thermodynamic equilibrium is maintained through the balance of the stochastic and drag forces, i.e. the

method satisfies the fluctuation-dissipation theorem.

• At equilibrium (or steady state) the properties of the system are calculated as averages over the individual

particles, as in Molecular Dynamics.

8.2 Outline of Method

In DPD1 the system is modelled as a system of free particles, which are spherical and interact over a range

that is of the same order as their diameters. The particles can be thought of as assemblies or aggregates of

molecules, such as solvent molecules or polymers, or more simply as carriers of momentum.

The equations governing the time evolution in a DPD simulation resemble those of ordinary MD:

d~vi
dt

=
~Fi
mi

(8.1)

d~ri
dt

= ~vi (8.2)

1The outline of the DPD method supplied here is based on [43].

87

88 CHAPTER 8. DISSIPATIVE PARTICLE DYNAMICS: BASIC THEORY

in which ~ri, ~vi and ~Fi are the position, velocity and force of the ith particle, which has mass mi. The force on

the particle is a sum of pair forces:

~Fi =

N∑
j 6=i

(
~FCij + ~FDij + ~FRij

)
(8.3)

in which ~FCij , ~FDij and ~FRij are the conservative, drag and random (or stochastic) pair forces respectively. Each

represents the force exerted on particle i due to the presence of particle j. Additional pairwise forces may be

included for more complicated systems, such as those involving chains of particles bonded together[103].

The conservative interactions are usually ‘soft’ (i.e. weakly interacting) so that the particles can pass by each

other (or even through each other) relatively easily so that equilibrium is achieved quickly. A common form of

interaction potential is an inverse parabola:

V (rij) =
1

2
Aijrc

(
1− rij

rc

)2

(8.4)

where rij = |~rj − ~ri|, rc is a cutoff radius and Aij is the interaction strength. Aij may be the same for all

particle pairs or may be different for different particle types. The cutoff radius is related to the length scale for

the particles: this can also vary for different particles and pairs.

Equation (8.4) gives rise to a repulsive force of the form

~FCij = Aijw
C(rij)

~rij
rij

= Aij

(
1− rij

rc

)
~rij
rij

(8.5)

This is the deterministic or conservative force ~FCij exerted on particle i by particle j. Note the switching function

wC(rij) and the force are zero when rij > rc and thus the particles have an effective radius of 1 in units of the

cutoff radius rc (often used as the length scale for the system).

The stochastic forces experienced by the particles is again pairwise in nature and takes the form

~FRij = σijw
R (rij) ζij∆t

− 1
2
~rij
rij

(8.6)

in which ∆t is the time step and wR (rij) is a switching function which imposes a finite limit on the range of

the stochastic force. ζij is a random number with zero mean and unit variance. The constant σij is related to

the temperature, as is understood from the role of the stochastic force in representing a heat bath.

Finally the particles are subject to a drag force, which depends on the relative velocity between interacting

pairs of particles:

~FDij = −γijwD (rij) (~rij · ~vij)
~rij
r2
ij

(8.7)

where wD (rij) is once again a switching function and ~vij = ~vj − ~vi. The constant γij is the drag coefficient. It

follows from the fluctuation-dissipation theorem that for thermodynamic equilibrium to result from this method

the following relations must hold.

σ2
ij = 2γijkBT (8.8)

wD (rij) =
[
wR (rij)

]2
(8.9)

In practice the switching functions are defined through

wD (rij) =

(
1− rij

rc

)2

(rij < rc) (8.10)

which ensures that all interactions are switched off at the range rij = rc. In many DPD simulations, the

stochastic and drag coefficients are often constant for all interactions, i.e. σij ≡ σ and γij ≡ γ, although this

assumption does not have to apply.

8.3. EQUATION OF STATE AND DYNAMIC PROPERTIES 89

8.3 Equation of state and dynamic properties

The form of the conservative force determines the equation of state for a DPD fluid, which can be derived using

the virial theorem to express system pressure as follows:

p = ρkBT +
1

3V

〈∑
j>i

(~ri − ~rj) · ~FCij

〉
(8.11)

= ρkBT +
2π

3
ρ2

∫ rc

0

rA

(
1− r

rc

)
g(r)r2 dr (8.12)

where g(r) is a radial distribution function for the soft sphere model[43] and ρ is the DPD particle density. For

sufficiently large densities (ρ > 2), g(r) takes the same form and the equation of state can be well-approximated

by:

p = ρkBT + αAρ2 (8.13)

where the parameter α ≈ 0.101 ± 0.001 has units equivalent to r4
c . This expression permits the use of fluid

compressibilities to obtain conservative force parameters for bulk fluids, e.g. for water A ≈ 75kBT
ρ . Alternative

equations of state may be obtained by modifying the functional form of conservative interactions to include

localized densities (i.e. many-body DPD)[89, 130].

Transport coefficients for a DPD fluid can be derived using the expressions for the drag and stochastic forces[43,

64, 83]. For the given switching functions, the kinematic viscosity can be found to be

ν ≈ 45kBT

4πγρr3
c

+
2πγρr5

c

1575
(8.14)

while the self-diffusion coefficient is given as

D ≈ 45kBT

2πγρr3
c

. (8.15)

The ratio of these two properties, the Schmidt number (Sc = ν
D), is therefore:

Sc ≈ 1

2
+

(2πγρr4
c)

2

70875kBT
(8.16)

and for values of the drag coefficient and density frequently used in DPD simulations, this value is of the order

of unity, which is an appropriate magnitude for gases but three orders of magnitude too small for liquids.

This property of standard DPD does not rule it out for simulations of liquid phases except when hydrodynamics

are important. It may also be argued that the self-diffusion of DPD particles might not correspond to that

of individual molecules and thus a Schmidt number of the order 103 is unnecessary for modelling liquids[92].

Alternative thermostats are available which can model systems with higher Schmidt numbers[79, 121].

8.4 Derivation of Equilibrium

The derivation of the DPD algorithm is based on the Fokker-Planck equation

∂ρ

∂t
= Lρ (8.17)

where ρ is the equilibrium distribution function and L is the evolution operator, which may be split into

conservative and dissipative parts:

L = LC + LD (8.18)

with

LC = −
N∑
i=1

~pi
mi

∂

∂~ri
−

N∑
i 6=j

~FCij
∂

∂~pi
(8.19)

LD =

N∑
i=1

êij ·
∂

∂~pi

[
γwD (êij · ~vij) +

σ2

2

{
wR (rij)

}2
êij ·

{
∂

∂~pi
− ∂

∂~pj

}]
(8.20)

90 CHAPTER 8. DISSIPATIVE PARTICLE DYNAMICS: BASIC THEORY

where êij =
~rij
rij

.

When α = γ = 0 then Equation (8.17) becomes

∂ρ

∂t
= LCρ (8.21)

for which the equilibrium solution is evidently

ρeq =
1

Z
exp

 1

kBT

 N∑
i=1

p2
i

2mi
+

1

2

N∑
j 6=i

φ (rij)

 (8.22)

which is, of course, the Boltzmann distribution function for an equilibrium system. Thus it is apparent that for

the simulation based on Equation (8.17) to maintain the same distribution function, the terms in the operator

LD of Equation (8.20) must sum to zero. It follows that the conditions given in Equations (8.8) and (8.9) must

apply.

8.5 Summary of Dissipative Particle Dynamics

DPD is a simple method. All that is required is a system of spherical particles enclosed in a periodic box

undergoing time evolution as a result of the above forces. In implementation it differs very little from Molecular

Dynamics. It should be noted that all computed interactions are pairwise, which means that the principle of the

conservation of momentum in the system, or ‘Galilean invariance’, is preserved. The conservation of momentum

is required for the preservation of hydrodynamic forces.

Chapter 9

DL MESO DPD Features

9.1 Domain decomposition and linked-list cell calculations

The Domain Decomposition (DD) strategy is one of several ways to parallelize particle-based simulations[114].

Its basis is the division of the simulated system into equal-sized spatial blocks or domains, each of which is

allocated to a specific processing unit of a parallel computer. The arrays defining the coordinates, velocities

and forces for all N particles in the system are divided into sub-arrays of size ≈ N
P on each of the P processing

units, with the particles allocated geometrically among them. In order for the strategy to work efficiently, the

simulated system should possess a reasonably uniform density so that each processing unit is allocated as equal

a portion of particle data as possible. The computation of forces and integration of the equations of motion are

shared (more or less) equally between the processing units and to a large extent can be computed independently

on each unit. While tricky to program, this method is conceptually simple and particularly suited to large-scale

simulations.

The DD strategy which underpins DL MESO DPD is based on the link cell algorithm[53], which requires a

relatively short-ranged cutoff for interparticle potentials and forces. There is a need for processing units to

exchange ‘halo data’, i.e. sending the contents of link cells at the boundaries of each domain to neighbouring

units so each may have all the necessary information to compute pairwise forces acting on the particles in

its allotted domain. Similarly the force and virial contributions from particles in boundary halos need to be

returned to their original processing units for summation. The link cell algorithm is also applied in serial by

duplicating system data to create the boundary halo across periodic boundaries. Further parallelization of the

link cell algorithm is possible by dividing up the link cells among the available threads when locating particle

pairs and calculating forces between them.

The size of the boundary halo – which can be specified by the user in the CONTROL file – should not be greater

than the minimum system dimension per domain; for good parallel performance, it is recommended that the

halo size should be no larger than one-third of the smallest subdomain dimension. The maximum number of

particles per domain is calculated after reading the input files: this gives the sizes of force, velocity and position

arrays. This value should be large enough to hold all particles in each domain plus any particles in boundary

halos, including duplicates when running in serial or using smaller numbers of processing units. If the density

of the system is likely to be uneven, the user can increase the maximum number of particles by specifying an

additional density variation in the CONTROL file.

For parallel running, the size of the transfer buffer needs to be sufficiently large to hold data for particles

being transferred into boundary halos. This value is based upon the maximum number of particles likely to

be transferred, which is initially estimated by assuming a constant particle density. While this initial estimate

is usually sufficient for homogeneously distributed systems, it may need adjusting if the system becomes less

evenly distributed: this value is checked either during equilibration or if many-body DPD interactions are in

use and increased if required. (If a system is restarted with an export files or started using a CONFIG file, the

likely number of buffer particles is checked and the initial size of the transfer buffer can be increased to better

91

92 CHAPTER 9. DL MESO DPD FEATURES

suit the configuration at the start of the calculation.)

9.1.1 Intramolecular interactions

Intramolecular interactions may be handled in two different ways: either (1) locally with each processing unit

being allocated a subset of bonds to deal with (including bonds across neighbouring units), or (2) globally with

all units holding all bond data and sharing bonded particle positions, each carrying out all bond calculations

and appropriately allocating forces to local particles. The former method may require larger boundary halo

sizes for the bond lengths being simulated but is more efficient for larger numbers of molecules and processing

units, while the latter method requires the sharing of information between all units but does not require halo

information and is guaranteed to find all bonds.

Bookkeeping arrays list all particles involved in bonded interactions according to global index numbers and

point to appropriate arrays of parameters to define the potential. If the ‘key’ bonded particle for a bond1 moves

from one processing unit to another, the entry in the bookkeeping array is also moved. At each time step a list

of bonded particles in each domain is created to relate global index numbers to the local index numbers used

by the processing unit in force, velocity and coordinate arrays. This global/local index list is sorted by global

index number to allow cross-referencing to local index numbers by means of a binary search.

9.1.2 Electrostatic interactions

For systems with periodic boundary conditions DL MESO DPD uses Ewald sums to calculate Coulombic inter-

actions (see Section 9.5). Calculation of real space components uses a similar but separate link cell algorithm

as for other pairwise interactions. A separate cutoff for the real space part (re) should be specified, which can

be larger than the maximum cutoff radius for non-electrostatic interactions (rc,max). These interactions require

a larger boundary halo than typically used for standard pairwise interactions.

9.2 Thermostats and integration algorithms

The integration algorithms in DL MESO DPD are based on the second-order Velocity Verlet (VV) scheme[131],

which yields the positions, velocities and forces of particles at the same time and is generally used in molecular

dynamics simulations. This algorithm has two stages. The first stage advances the particle velocities to time

t+ 1
2∆t by integrating the forces and uses the new half-step velocities to advance the position to time t+ ∆t:

~vi
(
t+ 1

2∆t
)

= ~vi (t) +
∆t

2

~Fi (t)

mi
(9.1)

~ri (t+ ∆t) = ~ri (t) + ∆t~vi
(
t+ 1

2∆t
)

(9.2)

The positions at the end of the time step allow the forces to be recalculated, before the second stage of the

algorithm is applied to advance the half-step velocities to the end of the time step by integrating with the new

force:

~vi (t+ ∆t) = ~vi
(
t+ 1

2∆t
)

+
∆t

2

~Fi (t+ ∆t)

mi
(9.3)

Five thermostatting algorithms are currently available in DL MESO DPD: two variants of the standard DPD

thermostat and three alternative schemes which apply velocity corrections to the particles after force integration.

The algorithm can be selected in the CONTROL file using the directive ensemble with the keyword nvt for

constant volume simulations, npt for constant pressure simulations or nst for constant normal pressure and

surface area or tension simulations. Dissipative force parameters and collision frequencies can be specified for

each interacting species pair in the FIELD file. Frozen particles are involved in thermostatting algorithms due to

the contributions they make to system virials and pressure; however they are excluded from the force integration

algorithm and their velocities are reset to their previous values (usually zero).

1This is the first referenced particle in stretching bonds and the second for bond angles and dihedrals.

9.2. THERMOSTATS AND INTEGRATION ALGORITHMS 93

9.2.1 DPD thermostat with standard Velocity Verlet integration (MD-VV) (mdvv)

This algorithm uses the drag (dissipative) and random forces, ~FDij and ~FRij respectively as described in Chapter

8, as the system thermostat, i.e. the thermostatting force ~FTij = ~FDij + ~FRij . This thermostatting force is

combined with all other forces between particles – pairwise conservative (standard and/or density-dependent),

bonding, electrostatic, planar surface, external (body) forces – and integrated using the standard Velocity Verlet

integrator.

The combination of the DPD thermostat with the standard MD-type VV algorithm is the simplest and least

time-consuming thermostatting algorithm available in DL MESO DPD. (If no ensemble type is selected in the

CONTROL file, DL MESO DPD will use this algorithm by default.) The drag force does, however, depend upon

particle velocities and is therefore only approximated using the mid-step values: this frequently produces a

system temperature higher than that specified by the user and requires a small time step ∆t to reduce the offset

to tolerable levels.

9.2.2 DPD thermostat with DPD Velocity Verlet integration (DPD-VV) (dpdvv)

As with the MD-VV scheme, this algorithm uses the drag and random forces as the system thermostat, which

are combined with all other forces before being integrated using the Velocity Verlet scheme. The drag force is

subsequently recalculated after the second stage using the velocities at the end of the time step[37].

The recalculation of drag forces after force integration helps to alleviate the temperature offset produced by the

MD-VV, and hence larger time steps may be used for reasonable temperature control. It does require the re-use

of the linked-list cells and inter-processor communications to recalculate the drag forces, which can increase the

time required per time step compared to the MD-VV scheme.

9.2.3 DPD thermostat using Shardlow splitting (dpds1 and dpds2)

Shardlow splitting[110] exploits an operator splitting approach to integrate the drag and random forces in the

DPD thermostat. The changes in particle velocities due to the thermostat during a timestep can be determined

separately from changes due to other forces (conservative, bonding interactions etc.) by rigorously expanding

velocity Verlet integration of the thermostatting forces. The separate integration of drag and random forces

can be described as a Trotter (first-order) or Strang (second-order) operator.

The first-order Shardlow operator can be achieved in two stages, equivalent to the first and second stages of

velocity Verlet integration of drag and random forces (~FDij and ~FRij). The first stage is simply integration of the

forces over half of the timestep ∆t for all particle pairs (i and j) within the thermostat cutoff:

~vi(t+ 1
2∆t) = ~vi(t)−

∆t

2mi

[
−γijwD (rij)

(
~rij
rij
· ~vij(t)

)
+ σijw

R (rij) ζij∆t
− 1

2

]
~rij
rij

(9.4)

~vj(t+ 1
2∆t) = ~vj(t) +

∆t

2mj

[
−γijwD (rij)

(
~rij
rij
· ~vij(t)

)
+ σijw

R (rij) ζij∆t
− 1

2

]
~rij
rij
. (9.5)

The equations for the second velocity Verlet stage would ordinarily be implicit due to the inclusion of the relative

velocity between particle pairs at the end of the timestep in the dissipative force. However, these equations can

be rewritten in an explicit form that gives the velocity changes based on the mid-step relative velocities:

~vi(t+ ∆t) = ~vi(t+ 1
2∆t)− ∆t

2mi

(
1 + 1

2µijγijw
D (rij) ∆t

) ×[
−γijwD (rij)

(
~rij
rij
· ~vij(t+ 1

2∆t)

)
+ σijw

R (rij) ζij∆t
− 1

2

]
~rij
rij

(9.6)

~vj(t+ ∆t) = ~vj(t+ 1
2∆t) +

∆t

2mj

(
1 + 1

2µijγijw
D (rij) ∆t

) ×[
−γijwD (rij)

(
~rij
rij
· ~vij(t+ 1

2∆t)

)
+ σijw

R (rij) ζij∆t
− 1

2

]
~rij
rij
, (9.7)

where µij =
mimj
mi+mj

is the reduced mass between the two particles. Other forces can subsequently be integrated

using the standard velocity Verlet algorithm, which do not depend upon the particle velocities.

94 CHAPTER 9. DL MESO DPD FEATURES

The second-order Shardlow operator is virtually identical to the first-order operator, except for replacing all

instances of ∆t with ∆t
2 in the above velocity corrections and applying them twice, both before (starting at

t) and after (starting at t + 1
2∆t) integration of other forces. In both cases, correct integration of drag and

random forces from known velocity data allows larger timesteps to be used than for standard Velocity Verlet

integration. Both first-order and second-order Shardlow operators can be coupled with a barostat to allow for

constant pressure, surface area or surface tension simulations[76].

9.2.4 Lowe-Andersen thermostat (lowe)

The Lowe-Andersen thermostat[79] is an alternative to the use of drag and random forces in the DPD thermostat,

which uses a variant of the Andersen thermostat[1]. After all other forces (conservative, bonding interactions

etc.) are integrated using the Velocity Verlet scheme, a random sample of particle pairs have their relative

velocity replaced by a value from a Maxwellian distribution, i.e.

v◦ij = ζij

√
kBT

µij
(9.8)

where µij =
mimj
mi+mj

is the reduced mass between the two particles. The velocities of particles i and j thus

become:

~vi = ~vi −
µij
mi

(
− (êij · ~vij) + v◦ij

)
êij (9.9)

~vj = ~vj +
µij
mj

(
− (êij · ~vij) + v◦ij

)
êij (9.10)

The probability of a particle pair being thermostatted is equal to Γ∆t, where Γ is defined as the collision

frequency (with a maximum effective value of 1
∆t), and the velocity corrections to particle pairs are applied in

a random order to prevent biasing.

The above pairwise correction of velocities is equivalent to applying a thermostatting force equal to

~FTij =
µij
∆t

(
− (êij · ~vij) + v◦ij

)
êij (9.11)

and thus a virial correction of −~FTij · ~rij is applied for each particle pair being thermostatted.

The viscosity and self-diffusivity generated by this thermostat for a single species are

ν =
πρΓr5

c

75m
(9.12)

D =
kBTτD
m

(9.13)

where τD is the decay time for velocity correlations and inversely proportional to the collision frequency. The

Schmidt number is therefore proportional to Γ2

kBT
and can thus reach values up to O(107).

This thermostat is suited to systems with higher viscosities and low diffusivities while giving the correct system

temperature for a wide range of time step sizes (within numerical errors due to Velocity Verlet force integration).

Its implementation requires a randomized list of particle pairs due for thermostatting, which must be identical

on all processing units and has to be worked through sequentially, using the latest available values for the

velocities. Additional memory is thus required on each processing unit to store this list, which includes the

particle numbers, processor numbers and ~rij , and whose size will depend on the number of particles in the entire

system and the value of Γ. Communication of particle velocities, the random relative velocity, v◦ij , and masses

between processing units is necessary if a pair of particles crosses domain boundaries.

9.2.5 Peters thermostat (peters)

The Peters thermostat[92] is a modification of the Lowe-Andersen thermostat that reduces to standard DPD as

the time step tends to zero. After integrating all forces using the Velocity Verlet scheme, all particle pairs have

9.2. THERMOSTATS AND INTEGRATION ALGORITHMS 95

their velocities modified (in a random order) using:

~vi = ~vi −
1

mi

(
−aij (êij · ~vij) ∆t+ bijζij

√
∆t
)
êij (9.14)

~vj = ~vj +
1

mj

(
−aij (êij · ~vij) ∆t+ bijζij

√
∆t
)
êij (9.15)

where the coefficients aij and bij are chosen so that

bij =

√
2kBTaij

(
1− aij∆t

2µij

)
.

To ensure that the thermostat both reduces to the DPD thermostat as the time step reduces to zero and is not

restricted by the choice of time step, the coefficients are chosen as follows:

aij =
µij
∆t

(
1− exp

[
−γijω(rij)∆t

µij

])
(9.16)

bij =

√
kBTµij

∆t

(
1− exp

[
−2γijω(rij)∆t

µij

])
(9.17)

The above velocity corrections give an equivalent thermostatting force of

~FTij =

(
−aij (êij · ~vij) +

bijζij√
∆t

)
êij (9.18)

and a correction to the virial of −~FTij · ~rij is also applied for each particle pair.

This thermostat can be used with larger time steps than the standard DPD thermostat but with similarly

low system viscosities. As for the Lowe-Andersen thermostat, its implementation in parallel running uses a

replicated data strategy for the list of particle pairs to be thermostatted, which requires additional memory

on each processing unit for storing this list. The efficiency of the Peters thermostat therefore depends upon

the total number of particles in the system: since all particle pairs are modified, calculation times for this

thermostat will be comparable to those for the Lowe-Andersen thermostat when Γ∆t ≈ 1.

9.2.6 Stoyanov-Groot thermostat (stoyanov)

The Stoyanov-Groot thermostat[121] is a combination of the Lowe-Andersen thermostat and a Galilean-invariant

Nosé-Hoover thermostat which acts locally and on pairs of particles. During force calculations after the first

Velocity Verlet stage, the choice to use either the Lowe-Andersen or Nosé-Hoover thermostats for each particle

pair is made at random; the Lowe-Andersen thermostat is selected with a probability of Γ∆t. The system

temperature is also determined in terms of relative velocities for all particle pairs, i.e.

kBT
∗ =

∑
i>j ψ

T (rij)µij~vij
2

3
∑
i>j ψ

T (rij)
(9.19)

where ψT (rij) is a smearing function for the temperature, chosen to reduce to zero when rij ≥ rc: by default this

is set as ψT (rij) = 1 for r < rc. For all particle pairs that are to be subjected to the Nosé-Hoover thermostat

(i.e. those not subjected to the Lowe-Andersen thermostat), an additional thermostatting force is included:

~FTij = −αwT (rij)

(
1− kBT

∗

kBT

)
[~vij · êij] êij (9.20)

with α as a system-wide thermostat coupling parameter and wT (rij) as a switching function, which by default

is equivalent to wR(rij) = 1 − rij
rc

for standard DPD. A virial correction of −~FTij · ~rij is also made for each

particle pair.

This thermostat can produce a wide range of system viscosities and diffusivities with good temperature control

and hydrodynamics, using the collision frequency Γ to obtain the required Schmidt number. The replicated

data strategy is again used for the Lowe-Andersen part, which requires memory in every processing unit to store

the data for particle pair modification using the Lowe-Andersen scheme: the Nosé-Hoover scheme calculates the

thermostatting forces locally.

96 CHAPTER 9. DL MESO DPD FEATURES

9.3 Barostats

In addition to a thermostat, a barostat may be included in simulations to obtain a desired average pressure

(P0) by adjusting the size (and shape) of the simulation cell. DL MESO DPD includes two such algorithms: a

Langevin-type barostat[60] and the Berendsen barostat[6], both of which have been coupled to all six available

thermostats.

The isotropic pressure in a system is calculated using the virial theorem:

P (t) =
1

3V (t)

[∑
i

miv
2
i (t) +

∑
i

~Fi(t) · ~ri(t)

]
(9.21)

while for anisotropic orthorhombic systems the pressure in dimension α, related to the instantaneous stress

tensor component σαα(t), is defined as

Pα(t) =
1

V (t)

[∑
i

miv
2
i,α(t) +

∑
i

Fi,α(t)ri,α(t)

]
(9.22)

=
σαα
V (t)

. (9.23)

In both equations, the instantaneous values required for barostats include only the interaction forces (e.g. soft

pairwise interactions, bonds, electrostatics): they do not include virial contributions from thermostatting, which

are included in reported values of system pressure.

All barostat definitions are expressed for the general anisotropic case with surface tensions (γ0) acting in the

z-dimension (i.e. NσT ensembles) and the simulation box remaining orthogonal (monoclinic): unlike solids,

fluid systems typically modelled using DPD cannot resist shear. The anisotropic definitions can be applied to

isotropic systems (NPT ensembles) by setting Px(t), Py(t) and Pz(t) all equal to P (t) and γ0 = 0. Semi-isotropic

systems with even variations in the x- and y-dimensions can be obtained by replacing Px(t) and Py(t) with the

arithmetic mean value of these two pressure components. Constant normal pressure and surface area systems

(NPnAT ensembles) can be modelled by only applying the barostat in the z-dimension, keeping the box sizes

in the x- and y-dimensions constant.

The barostat can be selected in the CONTROL file using either ensemble npt or ensemble nst as directives:

the barostat type should be specified after the coupled thermostat. If using a constant normal pressure and

surface tension ensemble, the surface tension should be specified in the same line. The word semi can be used

to apply semi-isotropic variations in simulation box size in the x- and y-dimensions for constant surface tension

simulations. The target system pressure must also be specified in the same file using the directive pressure:

DL MESO DPD will close with an error message if no target pressure is specified when using a barostat. Frozen

particles are moved when a barostat is applied but their positions relative to the dimensions of the system remain

constant during calculations.

9.3.1 Langevin barostat (langevin)

The governing equation for the Langevin barostat on an orthorhombic simulation cell[60] is the force exerted

by the piston (expressed as the time-derivative of its momentum pg,α = Wgug,α):

ṗg,α = V

(
Pα − P0 +

γ0

Lz

)
+

1

Nf

∑
i

miv
2
i − γppg,α + σpζp,α∆t−

1
2 (α = x, y)

ṗg,z = V (Pz − P0) +
1

Nf

∑
i

miv
2
i − γppg,z + σpζp,g∆t

− 1
2

where Nf is the number of degrees of freedom: for a three-dimensional box containing N moving (i.e. non-

frozen) particles, Nf = 3(N − 1). γp and σp ≡
√

2
3γpWgkBT are respectively the drag and random coefficients

for the piston and ζp,α is a Gaussian random number for dimension α. The Gaussian random number is set to

the same value for all three dimensions if operating isotropically or the same value for the x- and y-dimensions

9.3. BAROSTATS 97

if operating semi-isotropically. When both γp and σp are set to zero, the Langevin barostat reduces to the

extended system method.

The subsequent simulation cell size Lα can be determined by

L̇α =
pg,αLα
Wg

= ug,αLα (9.24)

with the barostat mass Wg chosen to be equal to NkBTτ
2
p , where τp is the characteristic barostat time and

should be set equal to between 2
γp

and 10
γp

.

The velocities and positions of the particles are calculated by integration of slightly modified differential equa-

tions:

dvi,α
dt

=
Fi,α
mi
− ug,αvi,α −

1

Nf
vi,α

∑
α

ug,α (9.25)

dri,α
dt

= vi,α + ug,αri,α (9.26)

where the force on particle i, ~Fi, includes any thermostatting forces: the time integral of these forces can be

determined for all thermostat types.

The implementation of this barostat is carried out using the Velocity Verlet scheme to integrate the equations

of motion for both the particles and the barostat. The first Velocity Verlet stage integrates the forces on the

particles

vi,α
(
t+ 1

2∆t
)

= vi,α (t) +
∆t

2

Fi,α (t)

mi
−∆tug,αvi,α (9.27)

which is followed by a similar integration for the barostat velocity:

ug,α
(
t+ 1

2∆t
)

= ug,α (t) +
∆t

2

Fg,α (t)

Wg
(9.28)

before the positions and simulation box dimensions are updated:

ri,α (t+ ∆t) = exp
(
ug,α

(
t+ 1

2∆t
)

∆t
) {
ri,α (t) + ∆tvi,α

(
t+ 1

2∆t
)}

(9.29)

Lα (t+ ∆t) = exp
(
ug,α

(
t+ 1

2∆t
)

∆t
)
Lα (t) (9.30)

At this point the forces at the end of the time step are calculated (including thermostatting forces), along with

the system pressure. Since the the barostat force requires correct velocities for both the particles and barostat,

an iterative procedure is required which begins by calculating an initial guess for the barostat velocity at the

end of the time step:

u(0)
g,α (t+ ∆t) = ug,α (t−∆t) +

2Fg,α (t) ∆t

Wg

Each iteration starts by calculating the particle velocities in a slightly modified second Velocity Verlet step:

v
(n+1)
i,α (t+ ∆t) =

exp
(
ug,α

(
t+ 1

2∆t
)

∆t
)
vi,α

(
t+ 1

2∆t
)

+ ∆t
2
Fi,α(t+∆t)

mi

1 + u
(n)
g,α∆t

(9.31)

The barostat force is then calculated using the same Gaussian random numbers for each iteration:

F (n+1)
g,α (t+ ∆t) = V (Pα − P0) +

1

Nf

∑
i

mi

(
v

(n+1)
i

)2

− γpu(n)
g,αWg + σpζp,α (9.32)

and the barostat velocity is recalculated:

u(n+1)
g,α (t+ ∆t) = ug,α

(
t+ 1

2∆t
)

+
F

(n+1)
g,α (t+ ∆t) ∆t

2Wg
(9.33)

Equations 9.31 to 9.33 are repeated until convergence in particle velocities is achieved, i.e. when∑
i

(
~v

(n+1)
i (t+ ∆t)− ~v(n)

i (t+ ∆t)
)2

3Nf
≤ ε

with ε as a numerical tolerance (set to 10−6 by default). This normally takes a few iterations per time step

without requiring recalculation of particle forces or rescaling of particle coordinates.

98 CHAPTER 9. DL MESO DPD FEATURES

9.3.2 Berendsen barostat (berendsen)

The governing equation for the Berendsen barostat[6] is a simple differential equation for the pressure:

dPα
dt

=
P0 − Pα

τp
(9.34)

which can be solved to give a scaling factor for the simulation volume, ~η(t):

ηα(t) = 1− β∆t

3τp

(
P0 − Pα(t)− γ0

Lz

)
(α = x, y) (9.35)

ηz(t) = 1− β∆t

3τp
(P0 − Pz(t))

where β is the isothermal compressibility of the system. The exact value of this property is not critical to the

algorithm, since it relies on the ratio β
τp

.

The barostat is implemented using a variant of the Velocity Verlet algorithm; after the midstep velocities are

determined, the scaling factor for time t is used to modify the particle positions and resize the simulation volume

ri,α (t+ ∆t) = ηα(t)ri,α (t) + ∆tvi,α
(
t+ 1

2∆t
)

(9.36)

Lα (t+ ∆t) = ηα(t)Lα (t) (9.37)

The remainder of the Velocity Verlet algorithm is unchanged, although the scaling factor for the beginning of

the next time step can be calculated at this point using Equation 9.35. No iteration is required for this barostat.

9.4 Particle-particle interactions

Pairwise particle interaction parameters in DL MESO DPD are specified in the FIELD file for each species

pair using the directive interactions. Interaction parameter values and lengthscales are stored in preparation

for DPD calculations, with the maximum number of parameters per interaction dependent on the unbonded

potential models in use. Energy parameters (εij or Aij) can either use the absolute values given in the FIELD

files or use these values scaled by the specified system temperature (kBT).

If interaction parameters between different particle species are not specified in the FIELD file, these can be

determined by mixing rules. Energy and dissipative parameters (e.g. Aαβ and γαβ for DPD) can be determined

for unlike particle pairs as geometric means of these parameters for same-species interactions, e.g.

Aαβ =
√
AααAββ

while interaction lengths are set to the arithmetic mean, e.g.

rc,αβ =
rc,αα + rc,ββ

2

It should be noted that interaction lengths should be less than or equal to the maximum interaction cut-off

radius rc,max: if any interaction lengths are larger, the potentials and forces will be truncated at rc,max. If the

maximum interaction cut-off radius is not specified in the CONTROL file, the largest interaction length specified

in the FIELD file (rc,αβ) will be used. Frozen particles are included in all interactions but the resultant forces

on these particles are not subsequently integrated.

Four types of pairwise interactions between particles are available in DL MESO DPD: Lennard-Jones, Weeks-

Chandler-Andersen, Groot-Warren (standard) DPD and many-body (density-dependent) DPD. In the case that

many-body DPD interactions are used for any particle pair, mixing rules cannot be used and thus interaction

parameters for all particle pairs must be specified by the user.

9.4.1 Lennard-Jones (lj)

The Lennard-Jones potential[62] is a mathematically simple model that approximates interactions (both attrac-

tive and repulsive) between pairs of neutral atoms or molecules:

U(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(9.38)

9.4. PARTICLE-PARTICLE INTERACTIONS 99

where εij is the depth of the potential well and σij is the finite distance at which the potential is zero between

particles i and j. This potential and its related force are calculated for all interparticle distances (rij) less than

the maximum interaction cutoff radius rc,max. Long-range system-wide corrections to the potential and virial

are required:

U lr =
8π

V

∑
α

∑
β≥α

(2− δαβ)NαNβεαβ

(
σ12
αβ

9r9
c,max

−
σ6
αβ

3r3
c,max

)
(9.39)

W lr = −16π

V

∑
α

∑
β≥α

(2− δαβ)NαNβεαβ

(
2σ12

αβ

3r9
c,max

−
σ6
αβ

r3
c,max

)
(9.40)

where δαβ is the Kronecker delta (1 when α = β, 0 when α 6= β) and Nα the total number of particles of species

α. These corrections multiplied by the volume are stored in the array clr to eliminate the need to adjust them

if the system volume is changed by a barostat.

9.4.2 Weeks-Chandler-Andersen (wca)

The Weeks-Chandler-Andersen potential[137] is a modification of the Lennard-Jones potential to produce purely

repulsive, short-range interactions:

U(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+ εij . (9.41)

This interaction is applied for interparticle distances up to 2
1
6σij , which should be less than or equal to the

maximum cutoff radius rc,max. No long-range corrections to potential energy or virials are required.

9.4.3 Standard DPD (dpd)

The Groot-Warren (standard) form of DPD[43] uses the following purely repulsive, soft potential:

U (rij) =
1

2
Aijrc,ij

(
1− rij

rc,ij

)2

. (9.42)

This conservative interaction is applied for interparticle distances up to rc,ij , which should be less than or equal

to the maximum value rc,max.

9.4.4 Many-body DPD (mdpd)

The conservative force in standard DPD depends only upon the species interacting and the interparticle separa-

tion, which yields a quadratic equation of state. Many-body DPD[89, 130] is a method of providing alternative

thermodynamic behaviours to DPD particles by making conservative forces additionally dependent on local

densities.

The free energy of an inhomogeneous system with density ρ(r) can be defined as the following in both continuous

and ensemble-averaged discrete forms:

F =

∫
d~rρ(~r)ψ(ρ(~r)) (9.43)

=

〈∑
i

ψ(ρ(~ri))

〉
(9.44)

where ψ(ρ) is the free energy per particle in a homogeneous system and ρ(~ri) is a function related to the density

at (and near) the position of particle i (~ri). The latter can be approximated by a function dependent on the

positions of particles close to particle i (ρ̃i) to allow the calculation of an instantaneous free-energy:

F̃ =
∑
i

ψ(ρ̃i).

100 CHAPTER 9. DL MESO DPD FEATURES

The effective (conservative) force on particle i can be obtained from the spatial derivative of the free energy,

although only the excess part (equivalent to the potential energy U) is required since the kinetic motion of

particles automatically accounts for the ideal contribution:

~FCi = −∂F̃
ex({~rk})
∂~ri

= −
∑
j

∂ψex(ρ̃j)

∂~ri
(9.45)

The force can also be expressed in terms of pairwise interactions, taking a form similar to the standard DPD

conservative force (Equation 8.5):

~FCij =

(
∂ψex(ρ̃i)

∂ρ̃i
+
∂ψex(ρ̃j)

∂ρ̃j

)
wC(rij)

~rij
rij

(9.46)

The local-density approximation can be defined as a weighted average of instantaneous densities:

ρ̃i =

∫
d~r wρ(| ~r − ~ri |)ρ(~r, {~rk})

=
∑
j 6=i

∫
d~r wρ(| ~r − ~ri |)δ(~r − ~rj)

ρ̃i =
∑
j 6=i

wρ(rij) (9.47)

with wρ(r) as the weight function vanishing beyond a cutoff rd (which can be equal to rc or smaller) and

normalized so that
∫∞

0
4πr2wρ(r)dr = 1. The most frequently used form for the weight function is

wρ(rij) =
15

2πr3
d

(
1− rij

rd

)2

(rij < rd) (9.48)

which reduces to standard DPD when the excess free energy per particle is set to ψex(ρ̃) = π
30Aρ̃.

Multiple-component many-body DPD is also possible by defining partial local densities, e.g. for component α

ρ̃αi =
∑

j∈α,j 6=i

wρ(rij) (9.49)

and generalizing Equation 9.46:

~FCij =

(
∂ψexc(i)({ρ̃

α}i)
∂ρ̃c(j)

+
∂ψexc(j)({ρ̃

α}j)
∂ρ̃c(i)

)
wC(rij)

~rij
rij

(9.50)

with c(i) as the component to which particle i belongs (e.g. if i ∈ α, c(i) = α) and {ρ̃α}i as the set of local

densities of different components at the position of particle i.

The manybody module includes a routine (local density) to calculate local densities for each species using

Equation 9.49: the overall density for each particle can be obtained by a simple sum over all species. The

user can modify the routine manybody potential in this module and conservativeforce in field module to

apply their own choices for many-body potentials and forces respectively. Up to five many-body interaction

parameters per species pair can be specified in the FIELD file.

The many-body DPD example provided with DL MESO DPD produces a van der Waals-like equation of state

and can be used to model vapour/liquid interfaces[132]. The potential (excess free energy) per particle is given

by:

ψex(ρ̃) =
π

30
Aijρ+

πr4
d

30
Bij ρ̃

2 (9.51)

where ρ is equivalent to ρ̃ but with the cutoff set to rc instead of rd. The associated pairwise force is equal to

~FCij =

[
Aij

(
1− rij

rc,ij

)
+Bij (ρi + ρj)

(
1− rij

rd

)]
~rij
rij

(9.52)

9.5. LONG-RANGED ELECTROSTATIC (COULOMBIC) POTENTIALS 101

where ρi and ρj are the local densities considering all particle species. In the routine provided, the terms with

Aij for both force and potential are calculated as though they are standard DPD. By setting Aij < 0 and

Bij > 0, a vapour/liquid mixture can be modelled and its equation of state for a single component is given as

p = ρkBT + αAρ2 + 2αBr4
d

(
ρ3 − cρ2 + d

)
where α ≈ 0.101, c and d are numerical offsets. Parameters Aij and Bij for each interacting pair of species

can be specified in the FIELD file, although it is recommended that the values of Bij are kept the same for all

species pairs to ensure the many-body DPD forces are conservative (i.e. ∇j ~Fi = ∇i ~Fj)[134].

9.5 Long-ranged Electrostatic (Coulombic) Potentials

Compared to other interactions in DPD, electrostatic interactions act over considerably longer ranges, which

can also include periodic images of the system. The governing equation for finding the electric potential is the

Poisson equation, shown here in dimensionless form[42]:

∇ · (p(~r)∇ϕ) = −Γρ (9.53)

where ϕ is the electric potential, ρ the charge density (concentration of cations minus concentration of anions

per unit volume), p(~r) the local polarizability relative to a reference medium (e.g. water) and Γ the coupling

constant for the reference medium2. The latter is given by

Γ =
e2

kBTε0εrrc

with e as the electron charge, ε0 the dielectric constant of a vacuum and εr the relative permittivity of the

reference medium. For water at room temperature (298K) with Nm molecules per DPD particle, Γ ≈ 20.00N
− 1

3
m .

(The value of Γ can be scaled with the specified temperature if the relevant option is selected in the FIELD file.)

The total electrostatic potential energy can be expressed as a sum of Coulombic energies (which also include

periodic images), which can be derived from the charge distributions for each ion by integrating the Poisson

equation. The most frequently used solution in molecular dynamics is for point charges, i.e. defining δ = (~r − ~ri)
as the Dirac delta function, when ρi = qiδ (~r − ~ri) the total electrostatic potential energy of the system is given

by

UEtot =
Γ

4π

∑
i

∑
j>i

qiqj
rij

. (9.54)

This gives the standard Coulombic potential between two point charges:

UEij =
Γ

4π

qiqj
rij

. (9.55)

The Coulombic potential between point charges often cannot be used unmodified for DPD simulations: soft

beads used in combination with unlike point charges may collapse on top of each other, forming infinitely strong

ion pairs[42]. To prevent this from happening, the charges can be spread out over a finite volume using a

smearing charge distribution.

9.5.1 Standard Ewald sum

The electrostatic potential can often be determined using an Ewald summation[29], which can be applied to

neutral periodic (or pseudo-periodic) systems with charged particles. The basic model is a system of point

charges mutually interacting via the Coulomb potential. The Ewald sum method makes two changes to this

system:

1. Each point charge is effectively neutralised at long range by superimposing a spherical Gaussian cloud of

opposite charge centred on the particle.

2This property is related to the Bjerrum length: λB = Γrc
4π

.

102 CHAPTER 9. DL MESO DPD FEATURES

2. A set of further Gaussian charges is superimposed on the point charges with the same sign to nullify the

first set of Gaussians.

The assembly of point ions and Gaussian charges produced by the first modification becomes the real space

part of the Ewald sum: this is now short-ranged and can be calculated in a pairwise fashion within a cutoff

radius. The potential from the second set of Gaussian charges is obtained by solving the Poisson equation using

a Fourier series in reciprocal space: this can be calculated directly by analytical means as the Fourier transform

of a Gaussian is an exponential. To complete the Ewald sum, an additional self-energy correction is needed to

remove the potential of a Gaussian acting on its own site.

The electrostatic potential for the system is therefore split into a number of terms:

UEtot ≡ qϕ

= Usr + U lr + Usc + U cc + U lr,corr + Udip (9.56)

where Usr, U lr and Usc are the short-range (real space), long range (reciprocal space) and self-energy correction

terms respectively. An additional term for systems with a net charge, U cc, can also be included, while a

dipole-based term Udip can be included for systems with slab-like geometries (e.g. with non-periodic boundary

conditions in one dimension). The electrostatic interactions between pairs of frozen particles should be excluded

and while these can be simply omitted from the real space term, additional corrections need to be made to the

reciprocal space term (U lr,corr): these cannot be calculated easily in reciprocal space so they are calculated in

real space.

For systems with point charges, the real space (short-range) potential energy between particles i and j is given

as

Usrij =
Γqiqj
4πrij

erfc(αrij) (9.57)

where α is the Ewald convergence parameter3 and erfc is the complementary error function (note that erf(x) +

erfc(x) = 1). This term is evaluated for all pairs within an electrostatic short-range cutoff, re. The real space

force is given by

~FE,srij =
Γqiqj
4πr2

ij

(
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)

)
~rij
rij

(9.58)

and the associated virial term by

WE,sr
ij = −~FE,srij · ~rij

= −Γqiqj
4πrij

(
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)

)
(9.59)

The total long range contribution to electrostatic potential for the point charge system is given as follows:

U lrtot =
Γ

2V

~kmax∑
~k 6=0

exp
(
− k2

4α2

)
k2

∣∣∣∣∣∣
∑
j

qj exp
(
−i~k · ~rj

)∣∣∣∣∣∣
2

(9.60)

where i is the imaginary constant (
√
−1) and ~k is a reciprocal vector, which can be defined for an orthogonal

periodic simulation box of dimensions Lx × Ly × Lz as

~k =


2πk1
Lx

2πk2
Ly

2πk3
Lz


where k1, k2 and k3 are integers (positive and negative) from zero to maximum values specified by the user as

kmax1 , kmax2 and kmax3 respectively for x-, y- and z-dimensions. (Adjustments can be made to the reciprocal

3This parameter is related to the standard deviation of the Gaussian function, σ, by α ≡ 1√
2σ

.

9.5. LONG-RANGED ELECTROSTATIC (COULOMBIC) POTENTIALS 103

vector to account for shearing boundaries[138].) A maximum reciprocal vector, ~kmax, can be defined using the

maximum k values: while an infinite number of images should theoretically be used, in practice smaller finite

numbers can be used as the reciprocal space term converges rapidly. The reciprocal space force acting on each

charged particle can be determined by differentiation, i.e.

~FE,lrj = −Γqj
V

~kmax∑
~k 6=0

i~k exp
(
i~k · ~rj

) exp
(
− k2

4α2

)
k2

∑
n

qn exp
(
−i~k · ~rn

)
(9.61)

and the virial can be obtained by differentiation of the potential with volume[113]:

WE,lr
tot = − Γ

2V

~kmax∑
~k 6=0

exp
(
− k2

4α2

)
k2

∣∣∣∣∣∣
∑
j

qj exp
(
−i~k · ~rj

)∣∣∣∣∣∣
2(

1− k2

2α2

)
. (9.62)

The self-correction term required to remove all Gaussian distributions in real space is given by the limit of the

pairwise reciprocal space term (i.e. expressed similarly to the real space term) for zero separation, i.e.

Usctot = − Γα

4π
3
2

∑
i

q2
i (9.63)

and is constant for a given system over all time steps. No additional forces or virial terms are required for

self-correction since this potential term is not dependent on the positions of charge particles.

If the system is not charge neutral, a correction for systems with net charge[73] can also be made:

U cctot = − Γ

8α2V

(∑
i

qi

)2

(9.64)

and again no additional force or virial terms are required.

If a non-periodic boundary condition is included in dimension α, a potential correction based on the dipole

moment in that dimension[143] can be made:

Udiptot,α =
Γ

2V

(∑
i

qiri,α

)2

(9.65)

which also involves an additional force on each particle in that dimension, i.e.

F dipj,α =
Γqj
V

∑
i

qiri,α. (9.66)

To minimise periodic effects due to the multiple images of the reciprocal space potential, an additional vacuum

gap can be included to the volume used for reciprocal space calculations to put some empty space between

images of the slab in dimension α: this gap can be specified for DL MESO DPD without increasing the system

volume.

To remove the reciprocal space terms between pairs of frozen particles, the reciprocal space potential can be

expressed in a similar fashion to the real space term and then subtracted, i.e.

U lr,corrij = −Γqiqj
4πrij

erf(αrij). (9.67)

Similarly the forces and virial contributions for frozen particle pairs need to be removed:

~F lr,corrij =
Γqiqj
4πr2

ij

(
2αrij√
π

exp(−α2r2
ij)− erf(αrij)

)
~rij
rij

(9.68)

W lr,corr
ij =

Γqiqj
4πrij

(
erf(αrij)−

2αrij√
π

exp(−α2r2
ij)

)
. (9.69)

Even though the forces on frozen particles are ignored during integration, they do contribute to the system

potential energy, virial and stress tensor terms and should therefore be evaluated. These corrections only need

104 CHAPTER 9. DL MESO DPD FEATURES

to be calculated once for constant volume systems (as the frozen particles do not move during the simulation)

but would need to be recalculated at every time step if a barostat is used.

Since smeared charge distributions are required for DPD simulations, the above expressions for the various terms

of the Ewald sum would need modification. However, it is possible to select appropriate smearing functions

that converge towards the standard Coulombic potential for larger particle separations; by doing this, the

point charge forms for the reciprocal space, self-energy and net system charge terms in the Ewald sum can be

used unmodified and only the real space and reciprocal space corrections for frozen particles would need to be

changed. Two examples of distributions that can be used for DPD simulations in DL MESO DPD are given

below.

The real space (short-range) component of electrostatic interactions is calculated using a link cell algorithm

with a cutoff radius of re, which can be larger than that used for standard pairwise interactions (rc,max). The

reciprocal space (long-range) component is calculated using the scheme described by [115] and parallelized by

distribution over particle sites, which requires global summations but is more efficient in terms of memory usage

than distribution of ~k vectors. The same routine also adds the self-interaction and charged system corrections,

which are calculated before the simulation starts. Corrections to forces, potential energy, virial and stress tensors

to exclude interactions between charged frozen particles can be calculated: these only need to be calculated

once for constant volume systems (since the frozen particles do not move) but have to be recalculated at each

time step if a barostat is applied.

This method can be invoked by using the directives ewald in the CONTROL file: this can be used either to directly

set the real-space convergence parameter (α) and k-space vector range (~kmax), or specify a required precision

(i.e. a maximum relative error, ε) to calculate the convergence parameter and/or k-space vector.

εreal ≈
erfc(αre)

re
(9.70)

εrecip ≈
exp

(
− k2

4α2

)
k2

(9.71)

where k = 2π
L kmax. If Gaussian charge smearing is selected with the equal length scale option for charge

smearing and Ewald summation, the value of α specified by the ewald directive (either directly specified or

using the precision option) will be ignored if the smearing length σG is specified.

The permittivity coupling constant Γ can be set using the permittivity directive in the CONTROL file, or alter-

natively the Bjerrum length λB can be specified with the bjerrum (length) directive. Vacuum gaps for systems

with non-periodic boundary conditions (i.e. hard surfaces or frozen bead walls) can be specified using the di-

rective vacuum (gap) in the CONTROL file, although these will be ignored for systems with shearing boundaries

and have no effect on the physical system volumes being modelled: non-zero values can be used to invoke dipole

moment corrections to potentials and forces.

9.5.2 Smooth Particle Mesh Ewald (SPME)

Smooth Particle Mesh Ewald is a modification of the standard Ewald method[28], which changes the way in

which the reciprocal space terms are calculated. Rather than directly calculating the Fourier transforms of

the Gaussian charges, the charges are added to a three-dimensional rectangular grid using an interpolation

procedure involving (complex) B-splines and a Fast Fourier Transform (FFT) is applied to the charge grid. For

larger k-space vectors, this can greatly reduce the computational cost compared to the direct Ewald sum.

The complex exponential terms for positions in the direct sum – exp
(
−i~k · ~rj

)
– are interpolated using the

approximation (shown here for one dimension):

exp (2πiujk/L) ≈ b(k)

∞∑
`=−∞

Mn (uj − `) exp (2πik`/K) (9.72)

where k is the integer index of the reciprocal space vector in a principal direction, K and L the total number

of grid points and the box length respectively in the same direction, and uj the fractional coordinate of ion j

9.5. LONG-RANGED ELECTROSTATIC (COULOMBIC) POTENTIALS 105

scaled by the factor K (i.e. uj = Krj). The coefficients Mn(u) are B-splines of order n – noting that these are

dependent on K and thus limit the infinite sum over ` – and the factor b(k) is a constant that can be computed

as follows:

b(k) = exp (2πi(n− 1)k/K)

[
n−2∑
`=0

Mn(`+ 1) exp (2πik`/K)

]−1

. (9.73)

The structure factor, ordinarily defined as the following for the standard Ewald sum:

S
(
~k
)

=
∑
n

qn exp
(
−i~k · ~rn

)
, (9.74)

can be approximated by:

S
(
~k
)
≈ b1(k1)b2(k2)b3(k3)Q†(k1, k2, k3) (9.75)

where Q†(k1, k2, k3) is the discrete Fourier transform of the charge array Q(`1, `2, `3), which is defined as:

Q(`1, `2, `3) =

N∑
j=1

qj
∑

n1,n2,n3

Mn(uj,x − `1 − n1Lx)Mn(uj,y − `2 − n2Ly)Mn(uj,z − `3 − n3Lz) (9.76)

where the sums over n1, n2 and n3 are required to capture contributions from all relevant periodic cell images

(i.e. nearest images).

The total long range (reciprocal space) contribution to electrostatic potential for the point charge system can

be approximated as:

U lrtot =
Γ

2V

∑
k1,k2,k3

G†(k1, k2, k3)Q(k1, k2, k3) (9.77)

where G† is the discrete Fourier transform of the function

G(k1, k2, k3) =
exp

(
− k2

4α2

)
k2

B(k1, k2, k3)
(
Q†(k1, k2, k3)

)∗
(9.78)

with
(
Q†(k1, k2, k3)

)∗
as the complex conjugate of Q†(k1, k2, k3) and

B(k1, k2, k3) = |b1(k1)|2 |b2(k2)|2 |b3(k3)|2 . (9.79)

The function G(k1, k2, k3) is a relatively simple product of the Gaussian screening term appearing in the con-

ventional Ewald sum, the function B(k1, k2, k3) and the discrete Fourier transform of Q(k1, k2, k3).

The forces on each charged particle can be calculated from

~FE,lrj = −∇jU lr = − Γ

V

∑
k1,k2,k3

G†(k1, k2, k3)∇jQ(k1, k2, k3), (9.80)

which is straightforward due to the recursive properties of B-splines. The approximations made for SPME mean

that the total forces on all charged particles may not be zero: this can be overcome by subtracting the net force

from each particle. The virials and stress tensor are calculated in a similar way to the standard Ewald sum but

using the charge grid to determine the structure factor as shown above, e.g.

WE,lr
tot = − Γ

2V

∑
k1,k2,k3

exp
(
− k2

4α2

)
k2

B(k1, k2, k3)
∣∣Q†(k1, k2, k3)

∣∣2(1− k2

2α2

)
. (9.81)

Electrostatic interactions using the Smooth Particle Mesh Ewald technique are currently calculated in

DL MESO DPD by putting together a charge grid replicated over all processor cores, which is also solved

by every core with a three-dimensional FFT solver4. Different three-dimensional Fast Fourier Transform (FFT)

solvers are available at compile time with the necessary parts of the code activated using compiler flags:

4Work is ongoing to allow for distributed charge arrays with parallel FFT solvers, e,g, [11], that can determine Fourier transforms
for locally held grid points.

106 CHAPTER 9. DL MESO DPD FEATURES

• An internal (serial) 3D FFT solver (no compiler flag required)[112];

• IBM Engineering and Scientific Subroutine Library (ESSL);

• The Fastest Fourier Transform in the West (FFTW)[33].

There are restrictions on the size of the maximum k-space vector: certain FFT solvers may require the values

in this vector to be products of powers of 2, 3 and/or 5, and DL MESO will adjust any non-qualifying values

upwards. The real space part is calculated in the same manner as the standard Ewald sum, as are corrections

to forces, potentials, virials and stress tensors for pairs of frozen particles.

SPME can be invoked by using the directive spme in the CONTROL file. One option is to specify the real-space

convergence parameter (α and k-space vector range (~kmax), while the other is to specify the required precision

(maximum relative error) and estimate values for α and ~kmax. Note that because the maximum k-vector in

SPME represents the sides of a cube rather than a radius of convergence, the maximum reciprocal vector should

be double the size of that used for the standard Ewald sum. Both options for the spme directive in the CONTROL

file can also be used to specify the B-spline interpolation order n: if no value is specified, a default value of 8

will be assumed, while a minimum value of 4 will be accepted and any odd number will be increased by 1 to

ensure an even order is used.

9.5.3 Charge smearing

Charge smearing for DPD can be selected to reduce the possibility of opposite-charge collapse at shorter sep-

arations between ion pairs while still ensuring the potential is Coulombic (proportional to the reciprocal of

separation) at larger distances and allowing for unmodified calculations of reciprocal space terms in Ewald sums.

Five types of charge smearing are currently available in DL MESO DPD: no charge smearing (point charges),

linear[42], Slater-type[41] (in both truncated and exact forms), Gaussian[21, 136] and sinusoidal dampling[34].

All forms of charge smearing can be expressed in terms of corrections to the standard (point-charge) Coulombic

potential, i.e.

U(rij) =
Γqiqj
4πrij

[1− f(rij)] (9.82)

where f(rij) is a distance-dependent correction. The short-range (real space) potential between particles i and

j for Ewald summation can be expressed as:

Usrij =
Γqiqj
4πrij

[erfc(αrij)− f(rij)] (9.83)

and the equivalent force and virial contribution between the particles is given by:

~FE,srij =
Γqiqj
4πr2

ij

(
2αrij√
π

exp(−α2r2
ij) + erfc(αrij) + rij

df

drij
− f(rij)

)
~rij
rij

(9.84)

WE,sr
ij = −Γqiqj

4πrij

(
2αrij√
π

exp(−α2r2
ij) + erfc(αrij) + rij

df

drij
− f(rij)

)
. (9.85)

Corrections to reciprocal-space terms for pairs of frozen beads can be made using equations (9.67), (9.68) and

(9.69) for all smearing types.

9.5.3.1 Point charges: no charge smearing

If repulsions between particles are generally high enough to ensure sufficiently large excluded volumes (e.g.

higher values of Aij or using hard-core potentials), point charges can be safely used as ion collapse will not

occur[127]. In this case, no charge smearing scheme will be used, i.e. f(rij) = 0, and thus the standard equations

for the real space contributions for potential, force and virial – equations (9.57), (9.58) and (9.59) respectively

– can be used unmodified.

If no smear directive is included in the CONTROL file, point charges will be assumed, but the user can still

optionally include smear none in this file. No smearing length needs to be included: any specified value will

be ignored for this charge smearing scheme.

9.5. LONG-RANGED ELECTROSTATIC (COULOMBIC) POTENTIALS 107

9.5.3.2 Linear charge smearing

Linear charge smearing is based on using the following charge distribution:

ρ(r) =

 3q
πR3

(
1− r

R

)
(r < R)

0 (r ≥ R)
(9.86)

where R is a smearing distance. While this charge distribution was devised for solution with a Particle-Particle

Particle-Mesh method[42], a pairwise potential can be devised for solution with methods based on Ewald

summation. A good mathematical description of the pairwise potential is as follows:

U(rij) =


Γqiqj
4πrij

[
52
35
rij
R −

4
5

(rij
R

)3
+ 2

5

(rij
R

)5 − 2120
15603

(rij
R

)6.145
]

(rij < R)

Γqiqj
4πrij

[
1− 36813504

11468205
rij
R

(
1− rij

2R

)6]
(R ≤ rij < 2R)

Γqiqj
4πrij

(rij ≥ 2R).

(9.87)

and the resulting pairwise force between particles i and j is

~FEij (rij) =


Γqiqj
4πr2ij

[
8
5

(rij
R

)3 − 8
5

(rij
R

)5
+ 2597

3715

(rij
R

)6.145
]
~rij
rij

(rij < R)

Γqiqj
4πr2ij

[
1− 35776

3715

(rij
R

)2 (
1− rij

2R

)5] ~rij
rij

(R ≤ rij < 2R)

Γqiqj
4πr2ij

~rij
rij

(rij ≥ 2R)

(9.88)

The associated correction function for comparison with the Coulombic potential is given as:

f(rij) =


1− 52

35
rij
R + 4

5

(rij
R

)3 − 2
5

(rij
R

)5
+ 2120

15603

(rij
R

)6.145
(rij < R)

36813504
11468205

rij
R

(
1− rij

2R

)6
(R ≤ rij < 2R)

0 (R ≥ 2R).

and leads to the following equations for the real space potential for Ewald sums between pairs of charged

particles:

Usrij =


Γqiqj
4πrij

[
52
35
rij
R −

4
5

(rij
R

)3
+ 2

5

(rij
R

)5 − 2120
15603

(rij
R

)6.145 − erf(αrij)
]

(rij < R)

Γqiqj
4πrij

[
erfc(αrij)− 36813504

11468205
rij
R

(
1− rij

2R

)6]
(R ≤ rij < 2R)

Γqiqj
4πrij

erfc(αrij) (R ≥ 2R)

(9.89)

the pairwise force:

~FE,srij =


Γqiqj
4πr2ij

[
2αrij√
π

exp(−α2r2
ij)− erf(αrij) + 8

5

(rij
R

)3 − 8
5

(rij
R

)5
+ 2597

3715

(rij
R

)6.145
]
~rij
rij

(rij < R)

Γqiqj
4πr2ij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)− 35776

3715

(rij
R

)2 (
1− rij

2R

)5] ~rij
rij

(R ≤ rij < 2R)

Γqiqj
4πr2ij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)

]
~rij
rij

(rij ≥ 2R)

(9.90)

and contributions to the virial:

WE,sr
ij =


−Γqiqj

4πrij

[
2αrij√
π

exp(−α2r2
ij)− erf(αrij) + 8

5

(rij
R

)3 − 8
5

(rij
R

)5
+ 2597

3715

(rij
R

)6.145
]

(rij < R)

−Γqiqj
4πrij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)− 35776

3715

(rij
R

)2 (
1− rij

2R

)5]
(R ≤ rij < 2R)

−Γqiqj
4πrij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)

]
(rij ≥ 2R)

(9.91)

These forms of charge smearing can be invoked using the directive smear in the CONTROL file with the keyword

linear. The smearing length R can be given using the directive smear length: the electrostatic real space cutoff

distance for the Ewald sum re should have a value of at least 2D to ensure the modified pairwise potential at

shorter distances is applied correctly.

108 CHAPTER 9. DL MESO DPD FEATURES

9.5.3.3 Slater-type (exponential) charge smearing

Slater-type charge smearing is based on using a decaying exponential function for the correction function f(rij)

in the electrostatic potential. The Slater charge distribution is given as:

ρ(r) =
q

πλ3
exp

(
−2r

λ

)
(9.92)

where λ is the decay length of the charge. This gives a potential energy between charged particles i and j[135]

of

U(rij) =
Γqiqj
4πrij

[
1− exp (−2βrij)

(
1 + 11

8 βrij + 3
4β

2r2
ij + 1

6β
3r3
ij

)]
(9.93)

and the corresponding electrostatic force is

~FEij (rij) =
Γqiqj
4πr2

ij

[
1− exp (−2βrij)

(
1 + 2βrij + 2β2r2

ij + 7
6β

3r3
ij + 1

3β
4r4
ij

)] ~rij
rij
, (9.94)

where β = 1
λ in both equations.

The related correction function to the standard Coulombic potential in this case is

f(rij) = exp (−2βrij)
(
1 + 11

8 βrij + 3
4β

2r2
ij + 1

6β
3r3
ij

)
and leads to the following equations for the real space potential for Ewald sums between pairs of charged

particles:

Usrij =
Γqiqj
4πrij

[
erfc(αrij)− exp (−2βrij)

(
1 + 11

8 βrij + 3
4β

2r2
ij + 1

6β
3r3
ij

)]
(9.95)

the corresponding pairwise force:

~FE,srij =
Γqiqj
4πr2

ij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)− exp (−2βrij)

(
1 + 2βrij + 2β2r2

ij + 7
6β

3r3
ij + 1

3β
4r4
ij

)] ~rij
rij

(9.96)

and the real space contribution to the virial:

WE,sr
ij = −Γqiqj

4πrij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)− exp (−2βrij)

(
1 + 2βrij + 2β2r2

ij + 7
6β

3r3
ij + 1

3β
4r4
ij

)]
.

(9.97)

An approximation to the above Slater potential can be obtained by truncating the polynomial multiplied to the

exponential. The following frequently-used form has been proposed[41]:

U(rij) =
Γqiqj
4πrij

[1− (1 + βrij) exp(−2βrij)] (9.98)

where β is related to the charge decay length λ in one of three possible ways:

1. β = 1
λ : direct correspondence to the exact Slater potential.

2. β = 5
8λ : correspondence to the overlap potential (when rij = 0)5.

3. β = 1√
2λ

: correspondence to the second moment of charge distribution (σ = 1
3

∫∞
0

4πr4ρ(r)dr), which

allows comparisons with other charge smearing models.

The resulting electrostatic force is given as

~FEij (rij) =
Γqiqj
4πr2

ij

[1− exp(−2βrij) (1 + 2βrij(1 + βrij))]
~rij
rij
, (9.99)

which is also a truncated form of the force for the exact Slater potential. The charge density in this case is

slightly different to the exact Slater model:

ρ(r) =
qβ2

πr
exp (−2βr) . (9.100)

5Mixing of charge decay lengths also corresponds with this model, e.g. [15].

9.5. LONG-RANGED ELECTROSTATIC (COULOMBIC) POTENTIALS 109

The related correction function to the standard Coulombic potential is

f(rij) = exp (−2βrij) (1 + βrij)

with the short-range potential energy between particles i and j given as

Usrij =
Γqiqj
4πrij

[erfc(αrij)− exp(−2βrij)(1 + βrij)] (9.101)

and the pairwise force is

~FE,srij =
Γqiqj
4πr2

ij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)− exp(−2βrij) (1 + 2βrij(1 + βrij))

]
~rij
rij
. (9.102)

The associated virial contribution is given as

WE,sr
ij = −Γqiqj

4πrij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)− exp(−2βrij) (1 + 2βrij(1 + βrij))

]
. (9.103)

These forms of charge smearing can be invoked using the directive smear in the CONTROL file with the keyword

slater and followed by either exact or approx for the exact and approximate (truncated) forms of the Slater-

type potential: if this additional word is omitted, the exact form is assumed. The smearing length λ for both

the exact and approximate models can be given using the directive smear length, with an additional keyword

that can optionally be placed after the value of λ:

• original (or no word): use original relationship between λ and β, i.e. β = 1
λ .

• overlap: use β = 5
8λ to match overlap potentials.

• distribution: use β = 1√
2λ

to match charge distributions.

Alternatively, the value of β can be specified directly using the directive smear beta: the same words after the

value can be used to identify the relationship between β and λ.

9.5.3.4 Gaussian charge smearing

A Gaussian charge distribution is described as the following:

ρ(r) = q

(
1

2πσG

) 3
2

exp

(
− r2

2σ2
G

)
(9.104)

where σG is the length scale of the charge. This gives a potential energy between charged particles i and j of

U(rij) =
Γqiqj
4πrij

erf

(
rij

2σG

)
(9.105)

and the corresponding electrostatic force is

~FEij (rij) =
Γqiqj
4πr2

ij

[
erf

(
rij

2σG

)
− rij
σG
√
π

exp

(
−
r2
ij

4σ2
G

)]
~rij
rij
. (9.106)

The correction function for the Coulombic potential is given as

f(rij) = 1− erf

(
rij

2σG

)
= erfc

(
rij

2σG

)
resulting in the following real space potential energy between particles i and j

Usrij =
Γqiqj
4πrij

[
erfc(αrij)− erfc

(
rij

2σG

)]
, (9.107)

110 CHAPTER 9. DL MESO DPD FEATURES

the corresponding pairwise force

~FE,srij =
Γqiqj
4πr2

ij

[
erfc(αrij)− erfc

(
rij

2σG

)
+

2αrij√
π

exp(−α2r2
ij)−

rij
σG
√
π

exp

(
−
r2
ij

4σ2
G

)]
~rij
rij
, (9.108)

and an associated virial contribution as

WE,sr
ij = −Γqiqj

4πrij

[
erfc(αrij)− erfc

(
rij

2σG

)
+

2αrij√
π

exp(−α2r2
ij)−

rij
σG
√
π

exp

(
−
r2
ij

4σ2
G

)]
. (9.109)

It should be noted that when σG = 1
2α , all real space terms (potential, force, virial) reduce to zero and therefore

do not need to be evaluated: in this situation, all of the electrostatic interactions can be dealt with solely in

reciprocal space, which can reduce the required computation time.

This form of charge smearing can be invoked using the directive smear in the CONTROL file with the keyword

gauss. The smearing length scale σG can be specified using the directive smear length: if the word equal

follows the value of σG, the Ewald sum real-space convergence factor α will be set equal to 1
2σG

to eliminate

real space contributions and the value given in the ewald or spme directive will be ignored.

9.5.3.5 Sinusoidal charge smearing

For high charge density systems with small Debye screening lengths, the following pairwise force scheme is

proposed[34]:

~FEij (rij) =


Γqiqj
4πr2ij

sin6
(

2πrij
4D

)
~rij
rij

(rij < D)

Γqiqj
4πr2ij

~rij
rij

(rij ≥ D)
(9.110)

where the Coulombic force is recovered exactly beyond the charge smearing length D. Assuming the potential

for rij ≥ D corresponds to the standard Coulombic potential, this implies the following potential for the case

when rij < D:

U(rij) = −Γqiqj
4π

∫ rij

D

sin6
(

2πr
4D

)
r2

dr (9.111)

=
Γqiqj
4πrij

sin6

(
2πrij
4D

)
+

Γqiqj
4πD

∞∑
k=2

Ck

(
1−

(rij
D

)2k+1
)

(9.112)

where the coefficients for the infinite series required to solve the integral are given by

Ck =
(−1)kπ2(k+1)

32(2k + 1)!(2k + 1)

(
15− 6(2)2(k+1) + 32(k+1)

)
.

The correction term compared to the Coulombic potential is given as

f(rij) =

1− sin6
(

2πrij
4D

)
− rij

D

∑∞
k=2 Ck

(
1−

(rij
D

)2k+1
)

(rij < D)

0 (rij ≥ D)

which leads to the following expression for the Ewald real space potential contribution between particles i and

j:

Usrij =


Γqiqj
4πrij

[
sin6

(
2πrij
4D

)
+

rij
D

∑∞
k=2 Ck

(
1−

(rij
D

)2k+1
)
− erf(αrij)

]
(rij < D)

Γqiqj
4πrij

erfc(αrij) (rij ≥ D)
(9.113)

the related force between the particles:

~FE,srij =


Γqiqj
4πr2ij

[
2αrij√
π

exp(−α2r2
ij)− erf(αrij) + sin6

(
2πrij
4D

)]
~rij
rij

(rij < D)

Γqiqj
4πr2ij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)

]
(rij ≥ D)

(9.114)

and the associated virial contribution:

WE,sr
ij =

−
Γqiqj
4πrij

[
2αrij√
π

exp(−α2r2
ij) + sin6

(
2πrij
4D

)
− erf(αrij)

]
(rij < D)

−Γqiqj
4πrij

[
2αrij√
π

exp(−α2r2
ij) + erfc(αrij)

]
(rij ≥ D)

(9.115)

9.6. BOND INTERACTIONS BETWEEN PARTICLES 111

This form of charge smearing can be invoked using the directive smear in the CONTROL file with the keyword

sinusoidal. The smearing length scale D can be specified using the directive smear length.

9.6 Bond interactions between particles

Molecules of particles bonded together can be included in calculations using a FIELD file to define the properties

and topologies of the bonds, angles and dihedrals between them. These data are used to add the specified

numbers of molecules into the system before DPD calculations commence and to create tables listing the

particles that are included in bonds, angles and dihedrals.

9.6.1 Stretching bonds

DL MESO DPD can model four forms of bond potential (and corresponding force) between specified particles,

all of which are functions of the distance between them. The available bond forms between particles i and j are

as follows:

1. Harmonic (Hookean/Fraenkel) bond:

U (rij) =
κ

2
(rij − r0)

2
(9.116)

2. (Shifted) Finitely Extendible Non-linear Elastic (FENE) bond:

U (rij) =

{
− 1

2κr
2
max ln

[
1− (rij−r0)2

r2max

]
rij < r0 + rmax

∞ rij ≥ r0 + rmax
(9.117)

3. Marko-Siggia Worm-Like Chain (WLC)[82]:

U (rij) =

 kBT
2Ap

[
1

2(1−
rij
rmax

)
− 1

2

(
1 +

rij
rmax

)
+

r2ij
r2max

]
rij < rmax

∞ rij ≥ rmax
(9.118)

4. Morse potential bond[86]:

U (rij) = De [1− exp (−β (rij − r0))]
2

(9.119)

where ~rij = ~ri − ~rj , r0 is an equilibrium bond length, rmax the maximum specified bond length or extension,

κ is a spring force constant, Ap the persistence length of a wormlike chain, De the potential well depth and β

the potential ‘width’. The spring force constants or potential well depths can be scaled with temperature if this

option is selected in the FIELD file. (The effective spring force constant for worm-like chains already includes a

temperature dependence, so persistence lengths do not need to be scaled with temperature.)

The force on particle i due to a bond potential is obtained from the general formula:

~Fi = − 1

rij

[
∂

∂rij
U (rij)

]
~rij (9.120)

with the force acting on particle j equal to the negative of this, and the virial contribution from the stretching

bond given by

W = −~rij · ~Fi, (9.121)

with only one contribution per bond6.

6This expression is also used for the virial contribution from the standard DPD pairwise forces, i.e. Equation (8.3), again only
applying a single contribution per particle pair.

112 CHAPTER 9. DL MESO DPD FEATURES

9.6.2 Bond angles

DL MESO DPD includes three methods for modelling potentials and forces between three bonded particles due

to the angle formed between them, θijk. The potentials are given as follows:

1. Harmonic:

U (θijk) =
κ

2
(θijk − θ0)

2
(9.122)

2. Harmonic cosine:

U (θijk) =
κ

2
(cos θijk − cos θ0)

2
(9.123)

3. Cosine:

U (θijk) = A [1 + cos (mθijk − δ)] (9.124)

where A and κ are angle force constants, m is the multiplicity, δ the angle at minimum potential and θ0 an

equilibrium bond angle. The angle force constants can be scaled with temperature if this option is selected in

the FIELD file.

The angle across particles i, j and k can be determined from the bond vectors ~rij = ~ri − ~rj and ~rkj = ~rk − ~rj :

θijk = cos−1

{
~rij · ~rkj
rijrkj

}
(9.125)

The most general form for the bond angle potential is given thus:

U (θijk, rij , rkj) = A (θijk)S (rij)S (rkj)S (rik) (9.126)

with A (θ) as a purely angular function and S (r) a screening or truncation function. The force on particle ` in

dimension α is thus given by:

Fα` = − ∂

∂xα
U (θijk, rij , rkj) (9.127)

= −S (rij)S (rkj)S (rik)
∂

∂rα`
A (θijk)

−A (θijk)S (rkj)S (rik) (δ`i − δ`j)
rαij
rij

∂

∂rij
S (rij)

−A (θijk)S (rij)S (rik) (δ`k − δ`j)
rαkj
rkj

∂

∂rkj
S (rkj)

−A (θijk)S (rij)S (rkj) (δ`k − δ`i)
rαik
rik

∂

∂rik
S (rik) (9.128)

with δab = 1 if a = b and δab = 0 if a 6= b. In the absence of screening terms, the above formula reduces to

Fα` = − ∂

∂rα`
A (θijk) (9.129)

=
1

sin θijk

∂

∂θijk
A (θijk)×{

(δ`j − δ`i)
rαkj
rijrkj

+ (δ`j − δ`k)
rαij

rijrkj
− cos (θijk)

[
(δ`j − δ`i)

rαij
r2
ij

+ (δ`j − δ`k)
rαkj
r2
kj

]}
(9.130)

The contribution to the virial from the angle is given by

W = −
(
~rij · ~Fi + ~rkj · ~Fk

)
(9.131)

which is equal to zero for bond angle potentials without screening terms[116].

9.6. BOND INTERACTIONS BETWEEN PARTICLES 113

9.6.3 Bond dihedrals

Three potential models for bond dihedrals along particles i, j, k and l are provided in DL MESO DPD as

follows:

1. Cosine torsion:

U (φijkl) = A [1 + cos (mφijkl − δ)] (9.132)

2. Harmonic:

U (φijkl) =
κ

2
(φijkl − φ0)

2
(9.133)

3. Harmonic cosine:

U (φijkl) =
κ

2
(cosφijkl − cosφ0)

2
(9.134)

where A and κ are dihedral force constants, m is the multiplicity, δ the dihedral at minimum potential and φ0

an equilibrium bond dihedral. The dihedral force constants can be scaled with temperature if this option is

selected in the FIELD file.

The dihedral angle across all four particles (or between planes ij and kl) is given by

φijkl = cos−1B (~rij , ~rjk, ~rkl) (9.135)

where

B (~rij , ~rjk, ~rkl) =
(~rij × ~rjk) · (~rjk × ~rkl)
|~rij × ~rjk||~rjk × ~rkl|

(9.136)

which gives a negative value for φijkl if the vector (~rij × ~rjk) · (~rjk × ~rkl) is in the same direction as the bond

vector ~rjk and positive if in the opposite direction.

The force on particle ` acting in the α direction is given by

Fα` = − ∂

∂xα
U (φijkl) (9.137)

=
1

sinφijkl

∂

∂φijkl
U (φijkl)

∂

∂rα`
B (~rij , ~rjk, ~rkl) . (9.138)

Using the following definition [
~a ~b
]
α
≡
∑
β

(1− δαβ) aβbβ

the derivative of B (~rij , ~rjk, ~rkl) is given by

∂

∂rα`
B (~rij , ~rjk, ~rkl) =

1

|~rij × ~rjk||~rjk × ~rkl|
∂

∂rα`
{(~rij × ~rjk) · (~rjk × ~rkl)}

−cosφijkl
2

{
1

|~rij × ~rjk|2
∂

∂rα`
|~rij × ~rjk|2 +

1

|~rjk × ~rkl|2
∂

∂rα`
|~rjk × ~rkl|2

}
(9.139)

with

∂

∂rα`
{(~rij × ~rjk) · (~rjk × ~rkl)} = rαij

(
[~rjk~rjk]α (δ`k − δ`l) + [~rjk~rkl]α (δ`k − δ`j)

)
+

rαjk
(
[~rij~rjk]α (δ`l − δ`k) + [~rjk~rkl]α (δ`j − δ`i)

)
+

rαkl
(
[~rij~rjk]α (δ`k − δ`j) + [~rjk~rjk]α (δ`i − δ`j)

)
+

2rαjk [~rij~rkl]α (δ`l − δ`k) (9.140)

∂

∂rα`
|~rij × ~rjk|2 = 2rαij

(
[~rjk~rjk]α (δ`j − δ`i) + [~rij~rjk]α (δ`j − δ`k)

)
+

2rαjk
(
[~rij~rij]α (δ`k − δ`j) + [~rij~rjk]α (δ`i − δ`j)

)
(9.141)

114 CHAPTER 9. DL MESO DPD FEATURES

∂

∂rα`
|~rjk × ~rkl|2 = 2rαkl

(
[~rjk~rjk]α (δ`l − δ`k) + [~rjk~rkl]α (δ`j − δ`k)

)
+

2rαjk
(
[~rkl~rkl]α (δ`k − δ`j) + [~rjk~rkl]α (δ`k − δ`l)

)
(9.142)

It can be shown both algebraically and thermodynamically that the dihedral makes no contribution to the

virial[116].

Improper dihedrals — which limit the geometry of molecules — can be applied using the same procedure as

standard dihedrals and no distinction is made between them in DL MESO DPD.

9.7 Frozen bead walls

One method of representing solid boundaries is to include layers of frozen beads that do not move during

the simulation but still interact with all other particles. On their own, frozen bead walls can achieve no-slip

boundaries if appropriate choices for the density of frozen beads in the walls and interactions between frozen

and non-frozen particles are made. Non-porous boundaries with no slip conditions can be obtained, albeit at the

cost of density fluctuations near the walls[102]. Frozen bead walls can also be supplemented by hard reflecting

boundaries (see below) shifted by the wall thickness or a larger distance to ensure they are non-porous and

reduce density fluctuations.

To use this boundary condition, a species of frozen beads needs to be specified in the FIELD file, along with

the interaction types and parameters between this species and all others. The directive frozen (walls) is used

in the CONTROL file to specify which boundary surfaces should include frozen beads, while the same directive in

the FIELD file identifies the frozen bead species, the bead density and thickness of the wall regions: the number

of beads required is automatically determined and the size of the system is adjusted to include the additional

wall regions, i.e. the user does not have to include the walls in the system dimensions given in the CONTROL file.

This boundary condition can be set up in this manner for new simulations, either starting from scratch or using

a CONFIG file. If creating a CONFIG file from a previous simulation, users are advised to use the hard reflecting

boundary condition described above to ensure molecules remain within the required non-periodic boundaries.

Simulations with frozen bead walls can be restarted but these walls must already be included in restart (export)

files and cannot subsequently be added.

9.8 Surface interactions

The default boundaries for a simulation box are periodic, i.e. particles leaving the system are replaced at

the opposite face with the same velocity. Certain systems may require alternative boundary conditions and

DL MESO DPD can include these at the system boundaries. The directive surface in the CONTROL file can be

used to specify the type of surface interaction (shear or hard) and which surface(s) are to be included: for hard

surfaces, the type of particle reflection (specular or bounce-back) and displacement of the boundary from the

edges of the simulation volume can also be specified.

Care should be taken to ensure that the initial configuration does not include bonds crossing any non-periodic

solid boundary. DL MESO DPD will ensure this is the case for simulations starting from scratch but cannot

check for bonds crossing solid boundaries in CONFIG files.

9.8.1 Shearing periodic walls (shear)

Shearing walls moving at a specified velocity are applied using the Lees-Edwards boundary condition[71]: each

particle that moves through the otherwise periodic boundary has its velocity modified and is shifted by a

distance related to the wall velocity, i.e.

∆~xw = ~Vwt (9.143)

where ~Vw is the velocity of the moving boundary. All interactions between pairs of particles across the periodic

boundary are calculated. To correctly apply pairwise thermostats and avoid excessive damping in regions near

9.8. SURFACE INTERACTIONS 115

the boundary, the tangential components for relative velocities between pairs of particles crossing the boundary

are adjusted to remove the change due to the boundary scheme’s velocity modification[72], i.e. ~vadjij = ~vij±2~Vw
7.

The directive surface is used in the CONTROL file to specify which boundaries should move and at which time

step shearing should start, while the external directive in the FIELD file is used to specify the velocity of the

moving wall at xi = Li for dimension i (the wall at xi = 0 is given the negative value).

9.8.2 Hard reflecting boundaries (hard)

This boundary condition is applied by using a combination of reflection (either specular or bounce-back, giving

free-slip or no-slip boundaries respectively) at the system boundaries or at a user-specified displacement from

those boundaries with a short-range wall potential. Specular reflections are achieved by moving any particle

leaving the system at a particular boundary back into it and inverting the velocity component normal to the

wall (but maintaining the tangential momentum). Bounce-back reflections reverse particle momentum from the

point at which the particle would move through the boundary, completely reversing the particle velocity. In

both cases, since the boundaries are assumed to be non-porous, no interactions across them are included and

thus adjacent boundary halos are not used. Both types of reflection can be used in conjunction with frozen

bead walls, which is generally applied at or near the wall surface.

A short-range wall potential can be included to reduce density oscillations[97]. This can either be a DPD-like

soft short-range wall repulsion

Uwall(z) = 1
2Awall,αzc,α

(
1− z

zc,α

)2

, (z < zc,α) (9.144)

or a Weeks-Chandler-Andersen (WCA) repulsion

Uwall(z) = 4εwall,α

[(σα
z

)12

−
(σα
z

)6
]

+ εwall,α,

(
z < 2

1
6σα

)
. (9.145)

In the above, z is the distance between the particle and the boundary, Awall,α is the DPD repulsive force

magnitude with species α, zc,α the surface repulsion range for the given species, εwall,α the potential well depth

for species α with the boundary and σα the distance at which the potential is equal to εwall,α. The type of wall

repulsion and its parameters can be specified in the FIELD file for each species using the directive surface: the

same directive in the CONTROL file is used to determine the maximum surface repulsion cutoff, which boundary

surfaces should be hard and reflecting, the type of reflection (specular or bounceback) to be used and the

displacement from the system boundary.

7The adjustment in relative velocities supersedes a previously implemented scheme of switching off pairwise thermostats across
shearing boundaries[19].

Chapter 10

DL MESO DPD Input and Output Files

10.1 Input files

All user-specified input files for DL MESO DPD must be in ANSI text format, with keywords (where necessary)

and numerical values separated from each other with spaces, tabs or commas.

Define system: CONTROL

The CONTROL file contains the control variables for running a DPD simulation and is read by the subroutine

read control in config module. Such files can can be obtained either via use of the DL MESO GUI or by

editing existing files of that name, such as those in the DEMO/DPD directory. These consist primarily of directives:

character strings that appear as the first entry of a data record and invoke a particular operation or provide

numerical parameters. Extra options may be added by the inclusion of keywords to qualify a particular directive.

Directives can be included in any order except for the simulation name (up to 80 characters long) on the first

line of the file and the finish directive which marks the end of the file.

A list of the directives available follows, with bold type specifying the minimum number of letters required by

DL MESO DPD. Some directives may include optional words or parameters as indicated by brackets.

directive: meaning:

bjerrum (length) f sets the Bjerrum length λB = Γrc
4π for the system to f (if specified in FIELD

file, this property can be scaled with temperature)

boundary halo f sets size of boundary halo (overriding default values determined from inter-

action cutoff, maximum bond lengths and short-range electrostatics) as f

length units

close time f sets job closure time to f seconds

conf ig (origin) zero sets origin of CONFIG file as bottom left back corner instead of default of

box centre: this option can be used for backwards compatibility with older

versions of DL MESO

cutoff f sets maximum interaction cutoff radius, rc,max, to f length units

densvar f allows for local variation of ≈ f % in the system density of particles (useful

for non-homogeneous or non-equilibrium simulations, default f = 0

electrostatic cutoff f sets required short-range electrostatic cutoff radius, re, to f length units

(default f = rc)

ensemble nvt mdvv selects NVT (constant volume/temperature) ensemble, DPD thermostat

with standard MD-like Velocity Verlet integration (default ensemble if oth-

erwise not specified)

ensemble nvt dpdvv selects NVT ensemble, DPD thermostat with DPD Velocity Verlet integra-

tion

117

118 CHAPTER 10. DL MESO DPD INPUT AND OUTPUT FILES

ensemble nvt dpds1 selects NVT ensemble, DPD thermostat with first-order Shardlow splitting

ensemble nvt dpds2 selects NVT ensemble, DPD thermostat with second-order Shardlow split-

ting

ensemble nvt lowe selects NVT ensemble, Lowe-Andersen thermostat

ensemble nvt peters selects NVT ensemble, Peters thermostat

ensemble nvt stoyanov α selects NVT ensemble, Stoyanov-Groot thermostat with coupling parameter

α

ensemble npt Q langevin f1 f2 selects NPT (constant pressure/temperature) ensemble, thermostat type Q

(i.e. mdvv, dpdvv, dpds1, dpds2, lowe, peters or stoyanov α) with Langevin

barostat, setting relaxation time (τp) and viscosity parameter (γp) as f1 and

f2 respectively

ensemble npt Q berendsen f selects NPT ensemble, thermostat type Q with Berendsen barostat, setting

ratio of compressibility to relaxation time, β
τp

, to f

ensemble nst Q langevin f1 f2 selects (orthogonally constrained) NσT (constant stress/temperature) en-

semble, thermostat type Q with Langevin barostat, setting relaxation time

(τp) and viscosity parameter (γp) as f1 and f2 respectively

ensemble nst Q berendsen f selects (orthogonally constrained) NσT ensemble, thermostat type Q with

Berendsen barostat, setting ratio of compressibility to relaxation time, β
τp

,

to f

ensemble nst Q1 Q2 area selects NPnAT (constant normal pressure/surface area/temperature) en-

semble, thermostat type Q1 and barostat type Q2 (i.e. langevin f1 f2 or

berendsen f)

ensemble nst Q1 Q2 tension γ0 selects NPnγT (constant normal pressure/surface tension/temperature)

anisotropic ensemble, thermostat type Q1 and barostat type Q2 with target

surface tension γ0

ensemble nst Q1 Q2 tension γ0 semi selects NPnγT (constant normal pressure/surface tension/temperature)

semi-isotropic ensemble, thermostat type Q1 and barostat type Q2 with

target surface tension γ0, varying the (x, y) plane isotropically

ensemble nst Q1 Q2 orthogonal selects NPnγT (constant normal pressure/surface tension/temperature)

anisotropic ensemble, thermostat type Q1 and barostat type Q2 with target

surface tension γ0 = 01

ensemble nst Q1 Q2 orth semi selects NPnγT (constant normal pressure/surface tension/temperature)

semi-isotropic ensemble, thermostat type Q1 and barostat type Q2 with

target surface tension γ0 = 0

equilibration (steps) n equilibrates system for the first n timesteps (default n = 0)

ewald precision f calculates electrostatic forces using Ewald sum, setting the real-space con-

vergence parameter α and reciprocal space (k-vector) range (k1, k2, k3)

based on achieving the relative error f

ewald (sum) α k1 k2 k3 calculates electrostatic forces using Ewald sum with real-space convergence

parameter α and reciprocal space (k-vector) range (k1, k2, k3)

finish closes the CONTROL file (last data record)

frozen (wall) i sets frozen bead walls orthogonal to i-axis (x, y, z) if specified (multiple

walls can be specified if separated with spaces or commas). Note that this

directive can only be used for new simulations: this directive is ignored if a

simulation is restarted.

global bonds calculates bonded interactions globally by storing bond data on all pro-

cessors and sharing bonded particle positions (default: calculate bonded

interactions locally)

job time f sets maximum job time to f seconds

1This option is equivalent to the orthogonal NσT ensemble and is included for equivalence to DL POLY.

10.1. INPUT FILES 119

l init creates CONFIG file (called CFGINI) of initial system configuration (with

velocities and forces) for new simulations2

l scr redirects simulation output to the standard (default) output of the machine

and operating system, e.g. the screen

manybody cutoff f sets required many-body DPD interaction radius, rd, to f length units (de-

fault f = rc)

ndump n writes restart data to export files every n timesteps (default n = 1000)

nfold i j k option to create volumetrically expanded version of current system (de-

scribed by CONFIG and FIELD files) by replicating CONFIG file’s contents (i,

j, k) times while preserving topology of FIELD file3

no conf ig ignores contents of CONFIG file and create initial configuration based purely

on FIELD file

no electrostatics ignores electrostatics in simulation

no index ignores particles’ indices as read from CONFIG file and set their indexing

according to order of reading

openmp (critical) uses OpenMP critical regions to assign forces in multithreaded calculations

(instead of using additional memory per thread)

permittivity (constant) f sets permittivity constant for system, Γ = 4πλB
rc

, to f (if specified in FIELD

file, this property can be scaled with temperature)

pressure f sets required system pressure to f (target pressure for constant pressure

ensembles)

print (every) n prints system data every n timesteps

print partial (temperatures) prints partial temperatures (for each dimension) in both OUTPUT and

CORREL. (This option is automatically switched on if a constant force or

shear is applied to the system.)

rcut f see cutoff

restart restarts job from end point of previous run (i.e. continue current simulation

using export files)

restart noscale restarts job from previous run without rescaling to system temperature (i.e.

begin a new simulation from older run without temperature reset)

restart scale restarts job from previous run after rescaling to system temperature (i.e.

begin a new simulation from older run with temperature reset)

scale (temperature) (every) n rescales system temperature every n steps during equilibration

seed n modifies random number generator seeds used in DPD calculations

smear Q applies charge smearing type to Q (none, linear, slater (exact), slater

approx, gauss or sinusoidal)

smear beta f (Q) sets Slater-type smearing parameter β: can be followed by Q (original,

overlap or distribution) to specify how β is related to the smearing length

λ (λ = 1
β , λ = 5

8β or λ = 1√
2β

respectively)

smear length f sets smearing length (R, λ, σG or D) to f

smear length f equal sets smearing length for Gaussian smearing (σG) to f and set Ewald real-

space convergence parameter α = 1
2σG

to override any other specified value4

smear length f Q sets smearing length for Slater-type smearing (λ) to f : can be followed by

Q (original, overlap or distribution) to specify how β is related to the

smearing length λ (β = 1
λ , β = 5

8λ or β = 1√
2λ

respectively)

2If simulation is started using a CONFIG file with velocities and forces without volumetric expansion, this option is ignored.
3If restarting a system with an export file that was originally set up this way, this option can be used to avoid modifying the

FIELD file.
4The real space terms for the Ewald sum are omitted when this option is selected.

120 CHAPTER 10. DL MESO DPD INPUT AND OUTPUT FILES

spme precision f n calculates electrostatic forces using Smooth Particle Mesh Ewald, setting the

real-space convergence parameter α and reciprocal space (k-vector) range

(k1, k2, k3) based on achieving the relative error f , and maximum B-spline

order n (default value of 8 if this value is omitted or set to less than 4)

spme (sum) α k1 k2 k3 n calculates electrostatic forces using Smooth Particle Mesh Ewald with real-

space convergence parameter α, reciprocal space (k-vector) range (k1, k2,

k3)5 and maximum B-spline order n (default value of 8 if this value is

omitted or set to less than 4)

stack (size) n sets rolling average stack to n timesteps

stats (every) n accumulates statistics data and write to CORREL file every n timesteps

steps n runs simulation for n timesteps

stress i j Q accumulates separated stress tensors and writes to Stress *.d file(s) with

controls: i = start timestep for writing stress tensors, j = timestep interval

between stress tensor data, Q = (up to four) separated stress tensor sets to

write to files (potential, dissipative, random, kinetic, all four)

surface cutoff f sets required maximum surface repulsive range, zc, to f length units (default

f = rc)

surface hard i bounceback (f) sets hard adsorbing walls orthogonal to i-axis (x, y, z) if specified (multiple

walls can be specified if separated with spaces or commas) with bounce-back

reflections at a distance f from simulation boundaries (optional: default

f = 0)

surface hard i (specular) (f) sets hard adsorbing walls orthogonal to i-axis (x, y, z) if specified (multiple

walls can be specified if separated with spaces or commas) with specular

reflections at a distance f from simulation boundaries (optional: default

f = 0)

surface shear i j sets moving Lees-Edwards periodic walls orthogonal to i-axis (x, y, z) if

specified (a single wall can be specified and only the first specified dimension

will be used), starting shearing from time step j

temperature f sets required simulation temperature (kBT) to f (target temperature for

constant temperature ensembles)

thermostat cutoff f sets thermostat cutoff radius, rc, to f length units

trajectory i j k writes trajectory data to HISTORY file with controls: i = start timestep for

dumping configurations (default: equilibration time), j = timestep interval

between configurations, k = data level to be included (default: 0; 0 =

positions, 1 = positions and velocities, 2 = positions, velocities and forces)

timestep f set timestep to f time units

vacuum (gap) f1 f2 f3 sets size of vacuum gap (additional volume) for reciprocal space

Ewald/SPME calculations of slab-like systems as orthorhombic dimensions

(f1, f2, f3)

volume f1 (f2 f3) sets system size to either cubic volume f1 or orthorhombic dimensions (f1,

f2, f3)

While not every directive has to be included in the CONTROL file for a valid simulation and many hold default

values if unspecified, the following are mandatory and must be set to values greater than zero:

• temperature

• timestep

• volume (if no CONFIG file is available or the supplied CONFIG omits volume data)

5This vector should be double the size of that used for the standard Ewald sum, as the k-vector is applied cubically rather than
spherically.

10.1. INPUT FILES 121

The maximum interaction cutoff should also be set greater than zero, but if this value is omitted in the CONTROL

file, this value will be set as the maximum interaction length specified in the FIELD file (σij or rc,ij). Superfluous

parameters and switches for particular systems (e.g. specified pressure for constant volume simulations) can

be safely omitted from the CONTROL file without causing runtime problems. If the user wishes to include new

directives in the CONTROL file, modifications to the parameter recognition loop in the read config subroutine

(config module) will be required.

Define interactions: FIELD

The FIELD file contains the species and force field information required for both bonded and unbonded interac-

tions, and is read by the scan field and read field subroutines in config module. Apart from the name of

the simulation (up to 80 characters) in the first line, this file contains a number of directives, each indicating

the type and number of interactions to follow.

If the values of all energy-based parameters for interactions (e.g. Aij , κ) specified in the FIELD file need to be

scaled, an optional directive units can be used to select the scaling. No scaling is ordinarily applied – which

can be reinforced using the directive units constant – while the directive units kT will scale the parameters

with the required system temperature (kBT).

The species information must be provided before any interaction data (which can be included in any order),

using the directive species n. This indicates that data for n species are to follow, each species given in a single

line using the following format:

name a8 name of species

mass real particle mass for species

charge real particle charge for species

populations integer unbonded population of species

frozen integer determines whether particles of this species are frozen (1) or not (0)

The unbonded population can be omitted for species which are wholly contained in molecules, as can the frozen

particle parameter for unfrozen species.

Non-bonded interactions are specified with the directive interactions n, with n pairwise interactions to follow;

each is given in a single line using the format:

species 1 a8 name of species 1

species 2 a8 name of species 2

key a4 interaction key, see Table 10.2

variable 1 real interaction parameter, see Table 10.2

variable 2 real interaction parameter, see Table 10.2

variable 3 real interaction parameter, see Table 10.2

variable 4 real interaction parameter, see Table 10.2

variable 5 real interaction parameter, see Table 10.2

variable 6 real interaction parameter, see Table 10.2

variable 7 real interaction parameter, see Table 10.2

If any interactions are many-body DPD, the interactions for all possible species pairs must be specified in the

FIELD file and values for all parameters must be given, even if not all of them are required for the many-body

DPD model in use. Otherwise only like-like (same species, i.e. i = j) interactions are required, as any missing

interaction data can be derived using mixing rules: the mixing rule for interaction lengths can be invoked

122 CHAPTER 10. DL MESO DPD INPUT AND OUTPUT FILES

by setting its value (σij or rc,ij) equal to zero for a particular interaction. If using the Lowe-Andersen or

Stoyanov-Groot thermostats, the dissipative factor γij should be replaced with the bath collision frequency Γij .

Table 10.2: Non-bonded interactions

key interaction type Parameters (1-7)

lj Lennard-Jones εij σij γij - - - -

wca Weeks-Chandler-Andersen εij σij γij - - - -

dpd Groot-Warren DPD Aij rc,ij γij - - - -

mdpd Many-body DPD Aij Bij Cij Dij Eij rc,ij γij

Molecules are specified using the directive molecules n, with data for n molecule types to follow. Immediately

after this directive, the following records are included to define each molecule type:

1. Molecule name

which can be a character string of up to 8 characters in length

2. nummols n

where n is the number of times a molecule of this type appears in the system. This is followed by the

data for the molecule type:

3. beads n

where n gives the number of beads (particles) in this molecule type. A number of records follow for each

bead:

name a8 name of species

x real relative x-coordinate for bead

y real relative y-coordinate for bead

z real relative z-coordinate for bead

The relative coordinates are used to define the initial shape of the molecule when it is inserted into the

system: these are not used if an initial configuration is already available.

4. no isomer

indicates that the molecule shape should not be reflected or otherwise modified when added to the system.

This directive is optional and should be left out if no restrictions on molecule insertion are to apply.

5. bonds n

where n gives the number of flexible bonds in the molecule. Each of the subsequent n records contains:

bond key a4 potential key, see Table 10.3

index 1 (i) integer first bead index in bond

index 2 (j) integer second bead index in bond

variable 1 real potential parameter, see Table 10.3

variable 2 real potential parameter, see Table 10.3

variable 3 real potential parameter, see Table 10.3

variable 4 real potential parameter, see Table 10.3

10.1. INPUT FILES 123

Note that the bead indices are those arising from numbering each bead in the molecule from 1 to the

number specified in the beads directive for this molecule. The same numbering scheme applies for all

descriptions of the molecule: DL MESO DPD will itself construct the global numbers for all particles in

the system.

6. angles n

where n gives the number of angle bonds in the molecule. Each of the n records following contains:

angle key a4 potential key, see Table 10.4

index 1 (i) integer first bead index in bond angle

index 2 (j) integer second bead index in bond angle (central site)

index 3 (k) integer third bead index in bond angle

variable 1 real potential parameter, see Table 10.4

variable 2 real potential parameter, see Table 10.4

variable 3 real potential parameter, see Table 10.4

variable 4 real potential parameter, see Table 10.4

Angle-based parameters, e.g. θ0, should be given in degrees. This directive and associated data records

need not be specified if the molecule contains no bond angles.

7. dihedrals n

where n gives the number of dihedral interactions in the molecule. Each of the following n records contains:

dihedral key a4 potential key, see Table 10.5

index 1 (i) integer first bead index in bond dihedral

index 2 (j) integer second bead index in bond dihedral (central site)

index 3 (k) integer third bead index in bond dihedral

index 4 (l) integer fourth bead index in bond dihedral

variable 1 real potential parameter, see Table 10.5

variable 2 real potential parameter, see Table 10.5

variable 3 real potential parameter, see Table 10.5

variable 4 real potential parameter, see Table 10.5

Angle-based parameters, e.g. φ0, should be given in degrees. This directive and associated data records

need not be specified if the molecule contains no bond dihedrals.

8. finish

indicates the end of details for a molecule type. Each subsequent molecule type can be entered after this

directive, beginning with its name and ending with the finish directive.

Surface interactions can be specified using the directive surface n. If hard adsorbing surfaces are to be used,

this directive should be followed by entries specifying the soft short-range repulsions for n species:

name a8 name of species

key a4 interaction key

variable 1 real interaction parameter, see Table 10.6

variable 2 real interaction parameter, see Table 10.6

where the interaction keys currently available are dpd and wca.

If frozen bead surfaces are in use, the frozen directive should be followed by a single line specifying the properties

for the walls to be constructed:

124 CHAPTER 10. DL MESO DPD INPUT AND OUTPUT FILES

Table 10.3: Bond potentials

key potential type Variables (1-4) functional form

harm Harmonic κ r0 - - U(r) = 1
2κ(r − r0)2

fene (Shifted) FENE κ rmax r0 - U(r) = −0.5κrmax ln

[
1−

(
r−r0
rmax

)2
]

: r < rmax + r0

U(r) =∞ : r ≥ rmax + r0

wlc Worm-like chain Ap rmax - - U(r) = kBT
2Ap

[
1

2(1− r
rmax

)
− 1

2

(
1 + r

rmax

)
+ r2

r2max

]
: r < rmax

U(r) =∞ : r ≥ rmax

mors Morse De r0 β - U(r) = De[1− exp(−β(r − r0))]2

Table 10.4: Bond angle potentials

key potential type Variables (1-4) functional form

harm Harmonic κ θ0 - - U(θ) = 1
2κ(θ − θ0)2

hcos Harmonic cosine κ θ0 - - U(θ) = 1
2κ(cos θ − cos θ0)2

cos Cosine A δ m - U(θ) = A [1 + cos (mθ − δ)]

Table 10.5: Bond dihedral potentials

key potential type Variables (1-4) functional form

cos Cosine torsion A δ m - U(φ) = A[1 + cos(mφ− δ)]

harm Harmonic κ φ0 - - U(φ) = 1
2κ(φ− φ0)2

hcos Harmonic cosine κ φ0 - - U(φ) = 1
2κ(cosφ− cosφ0)2

Table 10.6: Surface interactions

key interaction type Parameters (1-2)

dpd Groot-Warren DPD Awall,i zc,i

wca Weeks-Chandler-Andersen εwall,i σi

10.1. INPUT FILES 125

name a8 name of frozen bead species

ρwall real density of frozen beads in wall regions

xwall real thickness of wall region

External fields are flagged by the directive external, followed by a line with a keyword indicating the type of

field to be applied and the field parameters. A gravitational field can be specified using the keyword grav and

three real values representing the x-, y- and z-components of gravitational acceleration (adding an additional

force of m~G to each particle), i.e.

grav Gx Gy Gz

while a constant electric field can be specified using the keyword elec and three real values representing the x-,

y- and z-components of the electric field (adding an additional force of q ~E to each particle with non-zero charge

q), i.e.

elec Ex Ey Ez

If using the Lees-Edwards shearing boundary condition, the velocity of the walls in dimension α can be specified

using the keyword shear and three real values representing the x-, y- and z-components for the velocity at

xα = Lα, i.e.

shear Vw,x Vw,y Vw,z

Note that the velocity at xα = 0 will be equal in magnitude but opposite in direction, and that the velocity

component for dimension α will be ignored.

The FIELD file must be closed with the directive close.

If molecules are to be included in the system, the supplied C++ program molecule-generate in the directory

DPD/utility can be used to either create a new FIELD file with the required data or append it to a pre-existing

file: see Appendix C for more details. Example files in the DEMO/DPD directory can be examined for this purpose.

Define initial state: CONFIG

An optional CONFIG file can be included to define the initial state of the system, which can include the positions,

velocities and forces for each particle6. This file is read by the subroutine read config in start module and

scanned by the subroutine scan config in config module.

At the beginning of the file, five lines of information (of which the first two are mandatory) have to be included:

• The simulation name (80 characters)

• The CONFIG file key levcfg (integer), the periodic boundary key imcon (integer), the number of particles

in the file (integer, optional) and the configuration energy (real, optional)

• The x-, y- and z-components for the x-axis vector (real, optional)

• The x-, y- and z-components for the y-axis vector (real, optional)

• The x-, y- and z-components for the z-axis vector (real, optional)

The file key levcfg is set depending on the information available for each particle: 0 for positions only, 1 for

positions and velocities or 2 for positions, velocities and forces. If particle velocities are not specified, these

6This file is formatted identically to CONFIG files used in DL POLY[117, 129], with the origin is set as the centre of the simulation
volume.

126 CHAPTER 10. DL MESO DPD INPUT AND OUTPUT FILES

are generated at random to produce a distribution corresponding to the required system temperature, while

unknown forces are set to zero. The simulation name, number of particles in the file and configuration energy

are not read by DL MESO DPD and can thus be ignored (although the line for the simulation name must

remain). If axes vectors are included in the CONFIG file and the value of imcon is greater than zero, these will

be read on the assumption that the simulation volume is orthorhombic (the only possible shape available in

DL MESO DPD).

Each particle is represented by a block record, with at least two lines of information:

• The species name (8 characters) or number (integer) and the global particle number (integer, optional)

• The x-, y- and z-coordinates for the particle (real)

• The x-, y- and z-components of particle velocity (real, if levcfg> 0)

• The x-, y- and z-components of force on the particle (real, if levcfg> 1)

If global particle numbers are not included or the no index option is invoked in the CONTROL file, these are

generated automatically for the particles in the order specified by the CONFIG file. Care should be taken that any

particles belonging to molecules are numbered correctly, since the bond information is assigned in an identical

fashion to unspecified systems, i.e. numbering after all loose particles in the relative order specified by the FIELD

file. If the nfold option is invoked in the CONTROL file, DL MESO DPD will duplicate the given configuration

in each Cartesian direction and assign global particle numbers to the enlarged system in a similar fashion, i.e.

unbonded particles precede bonded ones and molecules are ordered according to the FIELD file.

CONFIG files can be created from restart files or trajectory files from previous simulations using the supplied For-

tran90 programs export config or history config respectively in the directory DPD/utility; see Appendix

C for more details. Frozen particle walls, if specified in the CONTROL file, can be added to systems with CONFIG

files (with or without duplication) but users have to ensure that any molecules do not cross boundaries where

frozen particle walls will be placed: no checks are available to prevent this from happening but CONFIG files

could be created from previous simulations involving hard adsorbing surfaces.

If the l init option is selected in the CONTROL file, a file CFGINI will be created in the same CONFIG file format to

provide the initial configuration of the simulation with particle velocities and forces. This option is automatically

switched off if a CONFIG file with forces acting on particles is supplied and no volume expansion (with the nfold

option) is selected, since the CFGINI file would be identical to the CONFIG file.

10.2 Output files

General output file: OUTPUT

This ANSI text file is generated by all DPD calculations and contains:

• The number of processors available and their endianness.

• The system and bond/angle/dihedral properties used for calculations.

• Domain decomposition details (Parallel version only).

• The starting positions and velocities of a particle sample.

• The calculation time, current values and rolling averages for the total energy, potential energies (total,

electrostatic, and from bond stretching, angles and dihedrals), virial, kinetic energy, pressure and temper-

ature (overall and partial for each dimension) every nsbpo time steps.

• Final averages and fluctuations (standard deviations) for all reported properties plus stress tensors over

all time steps after equilibration.

10.2. OUTPUT FILES 127

• The final positions and velocities of a particle sample.

• Elapsed and average times for the calculation.

Only the properties relevant to the simulation will be printed: electrostatic and bond energies will be output if

the simulation includes these kinds of interactions, while the partial temperatures will be output if the system

is likely to include dynamics (e.g. if a constant force or shear is applied) or if this option is switched on using

the print partial directive in the CONTROL file.

If the l scr directive is included in the CONTROL file, the above simulation information will be redirected to

the standard output for the machine and its operating system (e.g. to the screen) and no OUTPUT file will be

generated. This directive may be useful when a simulation crashes but no error messages or other information

are printed to the OUTPUT file7.

Restart files: export and REVIVE

A restart file with the name export is produced every ndump time steps. This binary file contains the following

information for the time step:

• Name of DPD calculation.

• Total number of particles, specified temperature, size of timestep, system volume and boundary displace-

ment due to shear.

• Particle global identify numbers, species and molecule numbers, Cartesian coordinates, velocities and

forces.

An additional streamed binary file called REVIVE is also produced at the same time and contains the following

information:

• Name of DPD calculation.

• Current values of barostat parameters.

• Current statistical properties (current values, cumulative sums and fluctuations, rolling averages and

stacks).

• Numbers of processor cores and threads in use.

• Current state of random number generators on all cores and threads.

In combination, the export and REVIVE files can restore a stopped DPD calculation, while the export file on

its own can be used as an initial configuration for a new simulation, with or without velocity scaling to account

for changes in system temperature. The export file can also be used to generate a plot at the given time step

or a CONFIG file for subsequent simulations using the utilities export image and export config respectively in

the DPD/utility directory; Appendix C gives instructions for their use.

The export file is written in parallel by assigning processor cores to groups, which each gather their particle

data onto a root processor: the root processors subsequently write their data into the export file collaboratively

using MPI-IO. The majority of the REVIVE file is written by a single processor core, but all cores collaboratively

write their random number generator states using MPI-IO.

7This directive can also be used to direct this output to a user-named file as an alternative to OUTPUT: see Appendix B for more
details.

128 CHAPTER 10. DL MESO DPD INPUT AND OUTPUT FILES

Trajectory file: HISTORY

If the trajectory option is specified in the CONTROL file, a trajectory file with the name HISTORY will be generated

and data added to it periodically: the timestep intervals and the initial timestep for writing to this file are

specified by the user using this directive. This streamed binary file contains some of the system properties —

including unique indices for particles and molecules — followed by data for every particle in the domain at each

timestep: the level of data (positions, velocities, forces) is chosen by the user. If multiple processor cores are

used for the simulation, processor cores are assigned into groups and each group gathers its data onto a single

root processor, which subsequently writes the data in collaboration with other root processors to the HISTORY

file using MPI-IO.

The HISTORY file can be used with eight utilities provided in the DPD/utility directory. The utilities

traject vtf and traject selected vtf produce plottable VMD files [56], with sets of bonded particles rep-

resented as residues. The utility traject xml produces plottable XML files formatted for the coarse-grained

molecular dynamics code GALAMOST [147], which can be read into the visualisation software package OVITO

[122]. The utility history config can produce a CONFIG file from a selected time step in the HISTORY file. The

utility local can calculate localized properties (e.g. temperature, composition) and produces VTK files with

these properties as cell data. The utility isosurfaces can produce isovolumetric plots based on a given species

in VTK files and calculate order parameters to determine the structure of a mesophase. The utility radius cal-

culates the end-to-end distances and radii of gyration for all molecules, as well as give normalised distributions

of end-to-end distances. The utility dipole calculates the dipole moments for all molecules in the system, au-

tocorrelation functions of dipole moments and their Fourier transforms. The utilities rdf and rdfmol calculate

radial distribution functions (RDFs) for pairs of particle species and molecule types respectively, with the option

of calculating Fourier transforms of the RDFs to give structure factors. The utility widom insertion calculates

excess chemical potentials of individual particles or molecules by random insertions into particle configurations

supplied from trajectory frames. Appendix C gives instructions for their use.

Statistical data file: CORREL

If specified by the stats directive in the CONTROL file, DL MESO DPD will generate an ANSI text file containing

statistical data at a timestep interval specified by the user, which can later be imported into a spreadsheet or

used by graph-plotting software. The formatting of the data varies depending on which kinds of interactions

(bonds, angles, dihedrals, electrostatics) were used and whether a barostat was applied, based on the overall

format (in a single line):

t Etot Epot,tot Epot,elec Epot,bond Epot,angle Epot,dihed

P Pxx Pxy Pxz Pyx Pyy Pyz Pzx Pzy Pzz V Lx Ly Lz γz T Tx Ty Tz

〈rbond〉 rbond,max rbond,min 〈θangle〉 〈φdihed〉

where t is the time, E energy (tot denoting total, pot potential), P pressure, Pij pressure tensor (ratio of stress

tensor to volume), V volume, Lα box length in dimension α (α = x, y, z), γz interfacial tension along z-axis, T

temperature, Tα = 〈
∑
imiv

2
i,α〉 partial temperature for dimension α, 〈rbond〉 the mean bond length, rbond,max

and rbond,min the maximum and minimum bond lengths, 〈θangle〉 the mean bond angle (in degrees) and 〈φdihed〉
the mean bond dihedral (in degrees).

Any property which does not vary or is not measured during the simulation, e.g. volume for NVT ensembles,

is omitted from each line of data. Headers are placed at the top of the file to indicate which properties are

included, starting with a hash character to allow easier reading by graphing software.

Separated stress tensor files: Stress *.d

If specified by the stress directive in the CONTROL, DL MESO DPD will generate at least one ANSI text file

containing stress tensors at a timestep interval from an initial timestep, both of which are specified by the user.

These stress tensors are separated out into up to four components with associated filenames:

10.2. OUTPUT FILES 129

• Interaction potential (conservative, many-body, bonded and electrostatic) components: Stress pot.d

• Dissipative components: Stress diss.d

• Random components: Stress rn.d

• Kinetic components: Stress kin.d

and the user can select which components are written to these files in the CONTROL file. The data is formatted

in a similar form to the CORREL file:

t P PQxx PQxy PQxz PQyx PQyy PQyz PQzx PQzy PQzz V

where t is the time, P the total pressure, PQij = σQij/V the separated pressure tensor (where i and j can each be

x, y or z, Q representing potential, dissipative, random or kinetic types) and V the system volume. Headers are

placed at the top of each file to indicate the properties in each column, starting with a hash character to allow

easier reading by graphing software. The data in these files can be used to analyse the rheological behaviour

of the system, e.g. integrating autocorrelation functions of the potential and dissipative components of stress

tensors to find the zero-shear viscosity[27].

Chapter 11

DL MESO DPD Examples

Test cases for Dissipative Particle Dynamics simulations using DL MESO – including the required input and

sample output files – can be found in the DEMO/DPD subdirectory. All of the following examples can be run using

either the serial or parallel versions of DL MESO DPD, with or without OpenMP multithreading. The smaller

problems (i.e. with up to 20 000 particles) are best suited to running in serial or on a small number of processor

cores (e.g. 16 or less) to limit the times required for interprocess communication, while larger problems are

better suited to running in parallel on larger numbers of processor cores to reduce the memory requirements

per processor core.

Images of all test cases and videos for some can be found in the Example Simulations page of the DL MESO

website: a link to it can be found at www.ccp5.ac.uk/DL MESO

11.1 Mixture Small

This simulation consists of 1000 particles with 3 species with populations of 333, 333 and 334 respectively.

All particle types have identical sizes and masses but different energy parameters, using the default mixing

rules for unlike particle parameters. Figure 11.1 gives a snapshot of the system at the end of the simulation,

demonstrating mixing between the three particle types (represented by different colours).

Figure 11.1: Visualisation of system at final time step from DPD Mixture Ser test case

11.2 Mixture Large

This simulation example is similar to Mixture Small but larger: it consists of 512 000 particles with 2 species,

each with a population of 256 000 particles. The particle types have identical sizes and masses but different

energy parameters, using the default mixing rules for unlike particle parameters. Figure 11.2 gives a snapshot

of the system at the end of the simulation, demonstrating good mixing between the two particle types.

131

132 CHAPTER 11. DL MESO DPD EXAMPLES

Figure 11.2: Visualisation of system at final time step from DPD Mixture Par test case

11.3 PhaseSeparation

This simulation example consists of 3000 particles with 2 species, each with a population of 1500. Both particle

types have identical sizes, masses and like-like energy parameters, but the unlike energy parameter has been

set to a larger value to produce phase separation, which can clearly be seen in Figure 11.3. The initial state of

this simulation has been provided in a CONFIG file. An .AVI video file of the simulation can be found in the

Example Simulations page of the DL MESO website.

(a) t = 2 (b) t = 10 (c) t = 30 (d) t = 60

Figure 11.3: Visualisations of DPD PhaseSeparation test case (red for particle type 1, blue for type 2)

11.4 Aggregate

This simulation consists of 3000 unbonded particles and 30 molecules of 10 particles each with harmonic bonds

between them. The unbonded particles and molecules are made up of different species with a higher energy

parameter for unlike particle interactions. This causes the molecules to aggregate, which can be seen in Figure

11.4, a snapshot of the simulation.

11.5. POLYELECTROLYTE 133

Figure 11.4: Visualisation of system during the DPD Aggregate test case

11.5 Polyelectrolyte

This simulation example consists of a slightly hydrophobic polyelectrolyte molecule of 50 particles, each with a

relative charge of +0.5, immersed in a salt solution of concentration 0.14M [41]. The salt solution consists of 9900

neutral water particles, 75 cationic salt particles (net charge +1), 75 anions of charge −1 and 25 counterions of

charge −1 to keep the system neutral. A similar simulation is included with the polyelectrolyte replaced with a

neutral polymer of the same number of particles and the counterions replaced with water (FIELD-neutral: this

should be renamed to FIELD to run the simulation and used with the same CONTROL file). Figure 11.5 gives a

comparison between the polyelectrolyte and neutral polymer at the final time step, which have measured radii

of gyration of 3.21 and 2.58 respectively. The evolution of radii of gyration can be seen in the files radius and

radius-neutral for the polyelectrolyte and neutral polymer respectively, given in the fourth column of each

file.

(a) Polyelectrolyte (b) Neutral polymer

Figure 11.5: Visualisations of DPD Polyelectrolyte test case: red for polyelectrolyte/polymer, green for salt
cations, cyan for anions, orange for counterions (water omitted for clarity)

11.6 AmphiphileMesophases

This example consists of four separate simulations, each with 12 000 particles consisting of dimers (molecules

consisting of two particles, one hydrophilic and the other hydrophobic, with harmonic bonds of equilibrium

length 0.5 between them) and unbonded monomers[63]. Defining the composition φ as the ratio of DPD

particles within dimers to the total number of particles in the system, the interaction data for simulations with

dimer compositions of 30%, 55%, 75% and 90% are provided with filenames FIELD-30, FIELD-55, FIELD-75

134 CHAPTER 11. DL MESO DPD EXAMPLES

and FIELD-90 respectively. (Each of these files should be renamed to FIELD to run the simulation, while the

CONTROL defining the simulation properties can be used for all four simulations.)

These systems provide four points on a phase diagram corresponding to isotropic dimer, hexagonal, lamellar

and isotropic monomer phases respectively. The final configurations obtained for each phase can be seen in

Figure 11.6, shown as isosurfaces of the hydrophobic particles to highlight the distinctions between the phases.

The three eigenvalues of the second moment of isosurface normal distributions can be used as order parameters

for these mesophases[97]: the evolution of these values over time are given by the files moment-30, moment-55,

moment-75 and moment-90.

(a) φ = 0.30, µ1 ≈ 0.323,
µ2 ≈ 0.335, µ3 ≈ 0.341

(b) φ = 0.50, µ1 ≈ 0.053,
µ2 ≈ 0.445, µ3 ≈ 0.502

(c) φ = 0.75, µ1 ≈ 0.032,
µ2 ≈ 0.037, µ3 ≈ 0.931

(d) φ = 0.90, µ1 ≈ 0.316,
µ2 ≈ 0.338, µ3 ≈ 0.346

Figure 11.6: Visualisations of DPD AmphiphileMesophases test case at final time step (isosurfaces of hydropho-
bic particles)

11.7 VesicleFormation

This simulation example consists of 37 440 unbonded water particles and 1008 molecules, each consisting of

one hydrophilic head particle and three hydrophobic tail particles bonded together with stiff harmonic bonds

of equilibrium length 1.0 between them[141]. The molecules represent amphiphiles and during the course of

the simulation self-assemble into a vesicle and encapsulate a number of water particles. Figure 11.7 shows the

self-assembled vesicle, both in three dimensions and in a cross-section to show the encapsulated water. An .AVI

video file of the simulation can be found in the Example Simulations page of the DL MESO website.

(a) Vesicle (water omitted for clarity) (b) Cross-section orthogonal to z-axis

Figure 11.7: Visualisations of DPD VesicleFormation test case at t = 50 000 (red for hydrophile, green for
hydrophobe, cyan for water)

11.8. LIPIDBILAYER 135

11.8 LipidBilayer

This simulation example consists of 35 152 unbonded water particles and 2000 molecules, each consisting of

one hydrophilic head particle and six hydrophobic tail particles bonded together with stiff harmonic bonds of

equilibrium length 0.5 between them and cosine angle potentials between each pair of bonds[111]. The molecules

represent amphiphilic lipids and self-assemble into a bilayer. Figure 11.8 shows the self-assembled lipid bilayer.

Figure 11.8: Visualisation of system at the end of the DPD LipidBilayer test case

11.9 AlkylSulphate

This simulation example consists of 22,200 unbonded water particles and 360 molecules, each consisting of a

terminating alkyl bead (CH3), two two-carbon alkyl beads (CH2CH2) and a combined alkyl/sulphate bead with

a negative charge (CH2OSO−3) to represent sodium hexyl sulphate (S6S)[2]: each molecule is also accompanied

by a free-moving positively-charged sodium ion (Na+). The simulation is carried out in a periodic box of

20 × 20 × 20 DPD length units using Smooth Particle Mesh Ewald calculations with approximate Slater-type

(exponential) charge smearing to determine electrostatic interactions. The molecular concentration is higher

than the critical micelle concentration, so several micelles are formed as shown in Figure 11.9.

Figure 11.9: Visualisation of system at the end of the DPD AlkylSulphate test case (red for alkyl/sulphate
beads, cyan for alkyl beads, translucent yellow for sodium ions)

136 CHAPTER 11. DL MESO DPD EXAMPLES

11.10 FloryHuggins

This simulation example consists of 3840 unbonded particles in a box of 20× 8 DPD length units: each half of

the box consists of one particle type. The conservative force parameter between the two species is set to a higher

value than that between pairs of same-species particles. The volume fraction of either component away from the

interface between them – as shown in Figure 11.10 – allows for calculation of the Flory-Huggins χ parameter:

varying the conservative force parameter between the two components allows the relationship between Aij and

χ to be determined[43].

0 5 10 15 20
Horizontal	position,	x

0

0.2

0.4

0.6

0.8

1

Ti
m
e-
av

er
ag

ed
	v
ol
um

e	
fr
ac

tio
n	
of
	c
om

po
ne

nt
	A

,	<
φ A
>

Figure 11.10: Time-averaged plot of species concentration along x-axis of box in FloryHuggins test case:
Aij = 37, Aii = Ajj = 25, φA ≈ 0.96578, χ ≈ 3.585

11.11 PoiseuilleFlow

This simulation example consists of 3000 unbonded particles in a box of 10×10×10 DPD length units with walls

of frozen particles added to the surfaces orthogonal to the x-axis of thickness 1 DPD length unit and particle

density of 3, as well as bounce back reflections at those surfaces to prevent particles penetrating the walls. A

constant body force in the direction of the y-axis is added to each non-frozen particle which, in combination

with the frozen particle walls approximating no-slip boundaries, gives Poiseuille flow of the DPD fluid. Figure

11.11 gives a snapshot of the system at the final time step, as well as plots of y-component velocity, density of

the fluid particles and temperature (defined only by x- and z-components of velocity in this case). The emergent

velocity profile is similar to that expected for Poiseuille flow, while the temperature and density profiles are

mainly flat across the entire spacing between the walls, apart from significant density fluctuations close to the

walls.

11.12 ShearFlow

This simulation example consists of 3000 unbonded particles in a box of 10×10×10 DPD length units with Lees-

Edwards shearing boundaries orthogonal to the y-axis. The Stoyanov-Groot thermostat is used for this system

to control both the fluid viscosity and system temperature. Figure 11.12 gives the emergent time-averaged

velocity profile, yielding a shear rate of 0.2013 (in DPD units, close to the applied shear rate of 0.2) against a

measured stress component 〈σyx〉 = −0.1985.

11.13. VAPOURLIQUID 137

(a) Visualisation of system at t = 2 000

0 2 4 6 8 10 12
Horizontal	position,	x

0

0.25

0.5

0.75

1

1.25

1.5

Ti
m
e-
av
er
ag
ed
	v
er
tic
al
	v
el
oc
ity

,	<
v y
>

(b) Time-averaged y-component of velocity

0 2 4 6 8 10 12
Horizontal	position,	x

0

1

2

3

4

5

Ti
m
e-
av
er
ag
ed
	p
ar
tic
le
	d
en
si
ty
	<
ρ >
	o
r	t
em

pe
ra
tu
re
	<
T > Density

Temperature

(c) Time-averaged fluid density and temperature

Figure 11.11: Visualisation and plots from DPD PoiseuilleFlow test case: broken lines denote positions of
no-slip boundaries due to frozen particle walls

11.13 VapourLiquid

This simulation example consists of 1000 unbonded water particles initially distributed uniformly in a box of

5 × 5 × 22 DPD length units, using the default many-body DPD interactions with Aij = −50 and Bij = 25

to apply vapour-liquid interactions and surface tension[132, 36]. Figure 11.13 shows the system at the final

timestep after the water particles have coalesced into a single body surrounded by empty space, along with the

time-averaged zz stress component (σzz) along the z-dimension of the box.

11.14 SurfaceDrop

This simulation example consists of 4000 unbonded water particles initially distributed uniformly in a box of

27 × 13 × 27 DPD length units, with walls of frozen particles added to the surfaces orthogonal to the y-axis

of thickness 1 DPD length unit and particle density of 3. A constant body (gravitational) force is applied

downwards to each non-frozen particle and many-body DPD interactions similar to those in the VapourLiquid

example are used, with a higher value of Aij between the water and wall particles to give a hydrophobic surface.

Figure 11.14 shows the system at the final timestep after the water particles have coalesced into drops sitting

on the bottom wall. An MPEG-4 video file of the simulation can be found in the Example Simulations page

of the DL MESO website. (This test case is courtesy of Erik Johansson at the Department of Energy Sciences,

Faculty of Engineering, Lund University, Sweden[61].)

138 CHAPTER 11. DL MESO DPD EXAMPLES

0 2 4 6 8 10
Vertical	position,	y

-1

-0.5

0

0.5

1

Ti
m
e-
av
er
ag
ed
	h
or
iz
on
ta
l	v
el
oc
ity
,	<
v x
>

Figure 11.12: Plot of x-component velocity from DPD ShearFlow test case: red line denotes best-fit for deter-
mining shear rate

(a) Visualisation at final time step

0 5 10 15 20
Distance	along	box,	z

0

2

4

6

8

St
re
ss
	te
ns
or
,	σ
zz

(b) Time-averaged stress component σzz

Figure 11.13: Visualisation of system at final time step from DPD VapourLiquid test case

11.14. SURFACEDROP 139

Figure 11.14: Visualisation of DPD SurfaceDrop test case at final time step

Appendix A

Changes to input files from previous versions

of DL MESO

This appendix the major differences in input file formats between previous versions of DL MESO and the current

one, particularly those that may affect users’ abilities to repeat previous calculations.

A.1 DL MESO LBE

All lbin.sys and lbin.spa files from at least version 2.2 of DL MESO onwards are backwards compatible, i.e.

these can still be read and used by the current version of DL MESO LBE (with some caveats: see below), as

are lbin.init files from version 2.5 onwards. No fundamental changes have ever been made to lbin.spa and

lbin.init file formats: additional boundary types have been added to lbin.spa (e.g. mid-grid bounce back

since version 2.4, outflow conditions in version 2.7), but these have not required modifications to previously

defined boundary condition codes.

As it was not possible to specify collision algorithm, mesophase interaction type, output file format etc. in

lbin.sys files prior to version 2.5, older versions of the LBE code had to have these variations hard-coded

by the user in the main program source file. The input file format for lbin.sys up until version 2.5 could

only read numbers (double precision or integer) for each keyword. DL MESO will apply particular defaults for

information that is not included in a lbin.sys file, but it is the user’s responsibility to ensure these defaults are

suitable for the given simulation. Salient information about the simulation is written to the screen or standard

output prior to calculation, which gives the user the opportunity to see what DL MESO has selected based on

the input files. The user may also wish to use the Java GUI to read the lbin.sys file and see how it might be

interpreted by DL MESO LBE, as well as save an updated version of the same file.

A number of significant changes have occurred between versions 2.6 and 2.7 of DL MESO LBE that are reflected

in changes to lbin.sys files:

• Multiple types of constant density/velocity boundary condition for fluids (Zou/He, Inamuro, regularised,

kinetic) can now be selected (compared to previously fixed Zou/He conditions, which are still the default)

using the keyword boundary type in lbin.sys.

• Multiple types of constant solute concentration and temperature conditions (Zou/He, Inamuro) can now

be selected (compared to previously fixed Inamuro conditions from version 2.4): the default is now

Zou/He instead of Inamuro. These can be specified using the keywords solute boundary type and

thermal boundary type in lbin.sys.

• The number of output files written per frame can be reduced by collecting together data among processors

in one, two or three directions using the keywords output combine x, output combine y and out-

put combine z. If all directions for a simulation are selected for collecting data, MPI-IO is used to put

the data together into a single file.

141

142 APPENDIX A. CHANGES TO INPUT FILES FROM PREVIOUS VERSIONS OF DL MESO

• Simulations can be restarted from a new lbout.dump file containing the distribution functions at all grid

points: the frequency of creating this file is specified with the keyword dump span, while the use of the

file for a simulation restart is specified with restart simulation.

• Maximum calculation runtimes can be specified with calculation time in lbin.sys to ensure simulations

come to a stop, e.g. if running on a computing platform with a job submission system.

Chapter 6 gives more details about the keywords and values that can now be specified in the lbin.sys file.

A.2 DL MESO DPD

Since version 2.5 of DL MESO, the CONTROL and FIELD input files for the DPD code have been formatted in a

similar manner to DL POLY: the utility convert-input.cpp is available to convert the input files for earlier

versions of DL MESO DPD (up to and including version 2.4) to the DL POLY-based form used by version 2.7.

A few minor changes to CONTROL and FIELD files have been made between versions 2.6 and 2.7:

• The specification of charge smearing type and parameter has changed from one line in the CONTROL file

to two, one specifying the smearing type and the other specifying the parameter (which can either be

the smearing length or its reciprocal). For instance, if approximate Slater smearing with the parameter

β = 0.929 is required, the directive

smear slater 0.929

in version 2.6 should now be changed to

smear slater approx

smear beta 0.929

for version 2.7. If this change is not made, DL MESO DPD will close with an error message stating that

the charge smearing length has not been specified.

• Frozen bead walls can now be specified separately from other boundary conditions, allowing reflective

boundaries (either specular or bounceback) to be applied at the edge of a frozen bead wall to prevent

penetration by fast-moving particles. This has necessitated the introduction of new keywords in the

CONTROL and FIELD files. For instance, frozen bead walls in the y-dimension that were specified in the

CONTROL file in version 2.6 by

surface frozen y

should now be changed to

frozen walls y

for version 2.7. Similarly, the following two lines in the FIELD file in version 2.6 specifying the frozen wall

species, density and thickness:

SURFACES

WALL 3.0 1.0

should be changed to the following for version 2.7:

FROZEN

WALL 3.0 1.0

A.2. DL MESO DPD 143

• Surface interactions have been expanded for version 2.7 to allow different types (DPD and Weeks-Chandler-

Andersen) and length scales (e.g. cutoff distances) to be specified. The surface directive in the FIELD file

has been altered for version 2.7: instead of specifying the interactions strengths for all particle species in

versions 2.5 and 2.6, e.g.

surface

A 25.0

B 30.0

this directive is now similar to the interactions directive with a number in the same line indicating the

number of parameter sets to follow, each of which consists of the species, the type, the interaction strength

and length scale, e.g.

surface 2

A dpd 25.0 1.0

B dpd 30.0 1.0

Chapter 10 gives more details about the keywords and values that can now be specified in the CONTROL and

FIELD files.

Appendix B

Manual compiliation and running of DL MESO

B.1 DL MESO LBE

DL MESO LBE has been written in C++ in a modular form and the main program codes – slbe.cpp for

serial running, plbe.cpp for parallel running – are designed to allow the user to change algorithms for collision,

mesophases etc. by specifying them in input files. Customised codes (slbecustom.cpp1 and plbecustom.cpp)

are also available to allow users to ‘hardwire’ the algorithms for collisions, mesophases etc. into the code, which

might improve computational efficiency.

To compile the code and produce an executable in the working directory, at a command line type:

• c++ ../LBE/slbe.cpp -o lbe.exe2

assuming that c++ is the name of the available C++ compiler, slbe.cpp is the version of the code being

compiled and lbe.exe is the name of the executable required. If compiling the parallel version of the code,

the command for the C++ compiler ‘wrapped’ with MPI is required, which is commonly mpiCC or mpicxx.

Additional compiler flags may be used between the compiler name and the reference to the code to improve

computation speed or assist in debugging. To compile the OpenMP multithreaded versions of the codes, an

additional compiler flag is needed to invoke the OpenMP libraries (e.g. -fopenmp).

Two compile-time options are available for the parallel version of the code:

• MPIold: this is a backwards compatibility option to use MPI-1.x subroutines for creating MPI derived

data types (used in communications) instead of the default subroutines for MPI-2.x and later.

• Packbuf: this replaces communications using MPI derived data types with packed and unpacked buffers.

If OpenMP multithreading is used for the code, the packing and unpacking of buffers will be split between

threads.

and these can be invoked using compiler flags, e.g. -DPackbuf.

Before running the executable, the required input files (lbin.sys, lbin.spa and optionally lbin.init) need

to be copied or moved into the working directory. If running in serial, the executable can just be run using the

command:

• lbe.exe if running in Windows, or

• ./lbe.exe if running in Unix-like operating systems,

while the parallel version requires a command to run N identical copies of the program on N processors, e.g.

1If preferred, an alternative version that uses a boundary layer, slbecombine.cpp, is available.
2/ may need to be replaced by \ on computers running Windows.

145

146 APPENDIX B. MANUAL COMPILIATION AND RUNNING OF DL MESO

• mpirun -np N ./lbe.exe

and may need to be launched via a batch job script: please consult your machine administrator or documentation

for further details.

The diagnostic output from DL MESO LBE (indicating the masses and momentum of the fluids in the system)

is ordinarily sent to the machine and operating system’s standard output, which can either be the screen or (if

running using a batch job script) an automatically generated text file. To redirect this output to a specific file,

the command used to run the simulation (either in the terminal or in the batch job script file) can be modified

to ‘pipe’ its output, e.g.

• ./lbe.exe > output

Modifications may be made to the customised versions of the code to select or leave out routines for e.g. specific

collision, propagation and mesophase interaction algorithms instead of relying on keywords in the lbin.sys.

The user can also create new subroutines and functions in the lbpUSER.cpp and lbpUSER.hpp files. (Further

details about these can be found in the Developer Manual.)

B.2 DL MESO DPD

The Fortran modules for DL MESO DPD (ending in *.F90 to automatically invoke preprocessing) must be

compiled in a particular order to satisfy dependencies of shared variables and arrays:

• constants

• variables

• numeric container

• comms module

• error module

• parse utils

• bond module

• surface module

• domain module

• manybody module

• ewald module

• spme module

• start module

• config module

• field module

• integrate dpd mdvv

• integrate dpd dpdvv

• integrate dpd shardlow

• integrate lowe

B.2. DL MESO DPD 147

• integrate peters

• integrate stoyanov

• statistics module

• run module

• dlmesodpd

If running DL MESO DPD in serial, the modules comms module and domain module should be replaced

by comms module ser and domain module ser respectively. If using the OpenMP multithreaded ver-

sion of DL MESO DPD, the modules numeric container, bond module, manybody module, ewald module,

spme module and field module should be replaced by similarly named modules ending with omp, and

dlmesodpd should be replaced with dlmesodpd omp.

To simplify the process, a makefile may be created either in the DPD directory or in the working directory to

automatically compile the modules and build the executable. Examples of these for running in the DPD directory

may be found in the DPD/makefiles directory and modified by the user. The compiler (after CFC=) and flags

(after FFLAGS=) may need changing depending on the Fortran compiler available: if MPI is available, the Fortran

compiler ‘wrapped’ with MPI (most commonly mpifort or mpif90) is required, while if OpenMP is available,

the correct compiler flag to include its libraries is needed. If invoking from the working directory, the modules

for DL MESO DPD should either be preceded by the path, i.e. ../DPD/, in the list of compile sources or the

directive VPATH=../DPD/ can be used before the source list; the latter strategy is used by the DL MESO GUI

when creating makefiles.

If an alternative FFT solver to that supplied with DL MESO DPD is to be used, compile time options can be

used to invoke the correct lines when compiling the code:

• FFTW: this uses the Fastest Fourier Transform in the West (FFTW)[33], linking the C libraries rather than

legacy Fortran versions;

• ESSL: this uses the FFT solver supplied with the IBM Engineering and Scientific Subroutine Library

(ESSL).

which can be invoked by adding a compiler flag to the list (after FFLAGS=), e.g. -DFFTW: the same line may

also require the location of any include files for the FFT solver, e.g. -I/usr/local/fftw/3.3.8/include/.

The relevant library also has to be linked in when the executable is built: both the location of the li-

brary and the compiler flag to link the library can be added to the LFLAGS= line, e.g. LFLAGS= $(FFLAGS)
-L/usr/local/fftw/3.3.8/lib/ -lfftw3.

DL MESO DPD can be compiled using the command make if the makefile is called Makefile, or if it has a

custom name (e.g. Makefile-custom) by the command

• make -f Makefile-custom

The example makefiles will produce an executable with the name dpd.exe, which can be copied to the working

directory (if necessary). The required input files (CONTROL and FIELD) will also need to be created in or copied

into the same directory, as well as an optional CONFIG file to specify an initial configuration for a new simulation.

export and REVIVE files from a previous run can be used for restarting a previous simulation: the number of

processing units does not have to remain the same. The utility export config can be used to convert the

restart files into a CONFIG file for a new simulation.

If running in serial, the executable can just be run using the command:

• dpd.exe if running in Windows, or

148 APPENDIX B. MANUAL COMPILIATION AND RUNNING OF DL MESO

• ./dpd.exe if running in Unix-like operating systems,

while the parallel version requires a command to run N identical copies of the program on N processors, e.g.

• mpirun -np N ./dpd.exe

and on distributed computers may need to be launched via a batch job script: please consult your machine

administrator or documentation for further details.

If the l scr directive has been included in the CONTROL file, the diagnostic output that is ordinarily written

to the OUTPUT file will be sent to the machine and operating system’s standard output, i.e. the screen or an

automatically generated text file for batch jobs. This output can be redirected to a user-specified output file by

modifying the command used to launch DL MESO DPD, e.g.

• mpirun -np N ./dpd.exe > output

The maximum numbers of particles per process (maxdim), pairs of unbonded interactions (maxpair) and the

initial values for the maximum number of particles in buffers (maxbfbd) and the maximum sizes of transfer

buffers (maxbuf) are automatically set according to the total number of particles in the system and the number

of processing units to be used for simulations. The value of maxdim can be increased by the user to allow for

non-evenly distributed systems by setting a value for densvar in the CONTROL file. The values of maxbfbd and

maxbuf are automatically adjusted during equilibration and for systems with many-body DPD interactions.

If using alternative many-body DPD interactions to the vapour-liquid example provided, the subroutines

manybody potential in manybody module.f90 and conservative force in field module.f90 should be mod-

ified by the user as necessary; the routine local density should not be altered by the user but the function

weight rho can be changed if an alternative weighting function for calculating local densities is required.

Additional bond, angle and dihedral types can also be added to the subroutines bond force, angle force

and dihedral force respectively in bond module.f90, but this will also require changes to scan field and

read field in config module.f90 to include a four-letter code for the bond/angle/dihedral type that can be

read from the FIELD file. (Further details about these can be found in the Developer Manual.)

Appendix C

DL MESO Utilities

DL MESO includes a number of utility programs which are not directly needed for Lattice Boltzmann or DPD

simulations but are useful both for producing files required as inputs for those calculations and to process output

files for visualization and analysis. These may be found in the /LBE/utility and /DPD/utility directories.

Compilation can either be carried out individually or collectively using makefiles: each utility directory includes

a makefile to compile all the utilities therein and the working directory /WORK includes one to compile both sets

for use with the GUI1. The latter can be invoked using the command

• make -f Makefile-utils

Some further details on these utilities can be found in the README files in the source directories.

C.1 DL MESO LBE

All utilities for the LBE code can be run at the command line with optional arguments, e.g.

• utility.exe [arguments]

for Windows machines, or

• ./utility.exe [arguments]

for machines running Unix, Linux or Mac (Mac OS X or macOS) operating systems. One command line

argument all LBE utilities have in common is -h (for help), which will give a brief description of the utility and

its available command line arguments before quitting. All utilities that work on input or output files should

be run in the same directory as those files, which should have the default names for those types (lbin.sys,

lbout*.vts, lbout*.q etc.).

lbeinitcreate

lbeinitcreate is a utility written in C++ to create initialisation files (lbin.init) to override the default

initial conditions. This utility can add fluid drops to the system (either circular in 2D or spherical in 3D) and

rectangular ‘sources’ of specified solute concentrations or temperature to a system.

If c++ is the command for the available C++ compiler, the executable init.exe can be produced by typing

• c++ -o init.exe lbeinitcreate.cpp

1If using the GUI and the utilties are to be compiled manually or in their source directories, copies of the executables are
required in the directory from which the GUI is to be launched, e.g. /WORK.

149

150 APPENDIX C. DL MESO UTILITIES

and run at the command line (init.exe or ./init.exe).

A pre-existing lbin.sys file needs to exist in the directory where the utility is run, as this provides information

on the dimensions and size of the simulation system, the numbers of fluids and initial and constant densities for

each fluid, the number of solutes, whether or not a thermal lattice is included and the default initial velocity.

This information is displayed on the screen when the utility is run: if no lbin.sys file can be found, an error

message will be displayed and the utility will terminate.

If a single fluid is specified in the lbin.sys file with different initial and constant densities, the utility will ask

for the number of drops to be added to the system: for each drop, the user will need to specify its radius, where

its centre is located on the lattice grid and its density. If more than one fluid is specified in the lbin.sys file,

the utility will then attempt to determine the continuous fluid for the system from the initial densities and,

if necessary, ask the user to identify it. The utility will then ask for the number of drops to be added to the

system: for each drop, the user will need to specify the fluid, its radius, where its centre is located on the

lattice grid and its density. (Note that it is possible for a drop to extend beyond the grid boundaries if periodic

boundaries are in use, but the drop centre must be within those boundaries.)

If any solutes are to be included, the utility will ask for the number of solute ‘sources’ (i.e. regions of constant

solute concentration): for each source, it will then ask for the solute number, the required concentration, the

location of one corner of the rectangular source and its extent in each dimension (which can extend beyond

periodic boundaries). Similarly, if a temperature grid is included in the system, the utility will ask for the

number of temperature ’sources’, followed by the required temperature and the location of the corner and the

extent of the source.

Once all of the above information is obtained, the utility will then create the lbin.init file, which specifies the

grid points, velocities, fluid densities, solute concentrations and temperatures for any locations in the system

that require non-default initial conditions.

lbeplot3dgather

lbeplot3dgather is a utility written in C++ to gather Plot3D output files produced by the parallel version

of DL MESO LBE and produce a single structure file (lbtout.xyz or lbtout.xy) and a single set of solution

files (lbtout*.q) for visualisation of the entire system.

If c++ is the command for the available C++ compiler, the executable plot3d.exe can be produced by typing

• c++ -o plot3d.exe lbeplot3dgather.cpp

and either run at the command line or via the GUI under Gather LBE Data.

All lbout*.xyz and lbout*.q files should be copied to the directory including the executable (if necessary)

before running, as well as the lbout.info file to give information on the sizes of integers and floating point

numbers. No user input is required, although the utility will stop with an error message if no lbout.info file is

available. No other error messages are produced, so care should be taken to ensure no solution files are missing.

lbevtkgather

lbevtkgather is a utility written in C++ to gather Structured Grid XML-formatted VTK output files produced

by the parallel version of DL MESO LBE (lbout*.vts) and produce a set of linking files (lbtout*.pvts) for

visualisation of the entire system.

If c++ is the command for the available C++ compiler, the executable vtk.exe can be produced by typing

• c++ -o vtk.exe lbevtkgather.cpp

and either run at the command line or via the GUI under Gather LBE Data.

C.1. DL MESO LBE 151

All lbout*.vts files should be copied to the directory including the executable (if necessary) before running,

as well as the lbout.info and lbout.ext files to give information about the number of writing processors used

for the simulation (i.e. the number of files per frame) and the extents of each piece.

The executable for this utility can be run with any of the following command line arguments:

• -a

Create linking files for output files that contain all properties from the LBE simulation (fluid densities,

fluid mass fractions, solute concentrations and temperatures)

• -d

Create linking files for output files that contain a single fluid density

• -f

Create linking files for output files that contain a single fluid mass fraction

• -c

Create linking files for output files that contain a single solute concentration

• -t

Create linking files for output files that just contain temperatures

If no command-line argument is specified, the utility will assume all properties are contained in the output files.

(If the GUI is used, the level of data to link together can be selected using the pulldown list in the Gather

LBE Data panel.) No other user input is required, but error messages will be produced if either of the files

lbout.info and lbout.ext are missing. No other error messages are produced, so care should be taken to

ensure no VTK files for the pieces are missing, particularly since these files are required for plotting as the

linking files do not include the data.

lbedumpvtk

lbedumpvtk is a utility written in C++ to create an XML-formatted structured VTK file lbdump.vts from the

lbout.dump restart file generated by DL MESO LBE. The resulting file can be used to visualise the system at

the point when the restart data was written (e.g. when the simulation was terminated) and verify the simulation

is proceeding as expected, even when no other output files are generated.

If c++ is the command for the available C++ compiler, the executable dump to vtk.exe can be produced by

typing

• c++ -o dump to vtk.exe lbedumpvtk.cpp

and either run at the command line or via the GUI under Gather LBE Data. No other files are needed to

create the VTK file, as the lbout.dump file includes all required data for visualisation.

lbedumpinit

lbedumpvtk is a utility written in C++ to create an initialisation file lbin.init from the lbout.dump restart

file generated by DL MESO LBE. The resulting file can be used to start a new simulation from the state of a

previous one.

If c++ is the command for the available C++ compiler, the executable dump to init.exe can be produced by

typing

• c++ -o dump to init.exe lbedumpinit.cpp

152 APPENDIX C. DL MESO UTILITIES

and either run at the command line or via the GUI under Gather LBE Data. No other files are needed to

create the lbin.init file, as the lbout.dump file includes all required data for determining the state of the

simulation (i.e. macroscopic properties at each grid point).

C.2 DL MESO DPD

All utilities for the DPD code can be run at the command line with optional arguments, e.g.

• utility.exe [arguments]

for Windows machines, or

• ./utility.exe [arguments]

for machines running Unix, Linux or Mac (Mac OS X or macOS) operating systems. One command line

argument all DPD utilities have in common is -h (for help), which will give a brief description of the utility and

its available command line arguments before quitting. All utilities that work on input or output files should be

run in the same directory as those files, which should have the default names for those types (CONTROL, FIELD,

export, HISTORY etc.).

convert-input

convert-input is a utility written in C++ to read DPD input files created for earlier versions of DL MESO

(up to version 2.4) and create CONTROL and FIELD files formatted in the style for versions 2.7 and later.

This utility can be compiled to produce the executable convert.exe with the command

• c++ -o convert.exe convert-input.cpp

if c++ is the command for the available C++ compiler.

This utility can be run with any (or all) of these optional command line arguments:

• -c [CONTROL]

Uses a CONTROL file as input called [CONTROL]

• -f [FIELD]

Uses a FIELD file as input called [FIELD]

• -m [MOLECULE]

Uses a MOLECULE file as input called [MOLECULE]

• -v

Verbose option: writes out data read from input files onto screen or standard output

Note that if the default names are used for input, the old CONTROL and FIELD files are renamed after being read

to prevent them being overwritten with the new versions of those files. (The MOLECULE file is no longer required

and therefore does not need to be renamed.)

molecule-generate

molecule-generate is a utility written in C++ to generate the input files required for modelling particles

in DPD simulations that are bonded together, i.e. molecules. A random flight generation system is used to

generate the coordinates of bonded beads – which can form branched molecule chains – a constant distance

C.2. DL MESO DPD 153

apart within a cube of a size specified by the user, which will be used by DL MESO DPD to insert the molecule

into the system.

This utility can be compiled to produce the executable molecule.exe with the command

• c++ -o molecule.exe molecule-generate.cpp

if c++ is the command for the available C++ compiler. This utility can be run from the command line or via

the GUI in Set DPD Molecules (which runs the utility in a new command line/shell window).

This utility can be run with any (or all) of these optional command line arguments:

• -p

Write data to a separate file (molecule) instead of a FIELD file: this is used by the GUI to insert molecular

data into the FIELD file it generates

• -s n [SPEC1] [SPEC2] ... [SPECn]

Define n particle species and provide their names ([SPEC1], [SPEC2] to [SPECn])

If a FIELD file exists in the same directory as the executable with species data and the -s command-line option

is not used, the number of species and their names will be read from it; otherwise the user will be asked to enter

this information and this will be written to a new FIELD file (if the separate file is not specified). The user will

then be asked for the number of molecules required, the numbers of bond, angles and dihedrals and their types

and parameters.

For each molecule, the user is asked for its name, the number to be included in the system and whether or

not isomers of the molecule can be included. The side length for the cube inside which the molecule will fit is

then required, followed by the bond length, the number of molecule chains and the number of particles for each

chain. If the chain in question is not the first (primary) chain, the user will also be asked for a pre-existing

bead number as the starting point for the chain.

After this, the default species for the beads in the molecule will be requested: the user will then be asked enter

the bead numbers for each of the other species (0 can be entered to finish specifying bead numbers). If more

than one bond type is to be included, the user will be asked to select the default bond type and then select the

bonds that are of different types by typing the index bead number (and optionally the destination bead if more

than one is available). Bond angles and/or dihedrals can also be selected by typing in the index bead number

and then selecting the required bead triple or quadruple if more than one is available.

The molecules will either be appended to the FIELD file in the correct format (see Section 10.1 for more details)

with positions for the beads relative to each molecule’s centre of mass, or the data will be written to the separate

molecule file. Note that the FIELD file will not be quite complete after running this utility: data for unbonded

interactions and external force fields may be required (if it is created from scratch using the utility) and a close

directive will be required at the end.

export config

export config is a utility written in Fortran to produce a configuration file in DL POLY format (CONFIG)

from DL MESO DPD restart files (export), which can be used as a starting point for new simulations. Since

a limited amount of data is included in restart files, the FIELD file for the simulation is also needed to provide

some additional information.

The source code for this utility, export config.F90, can be used for export files created by both the serial

and parallel versions of DL MESO DPD. If the utility is to be run on a different machine to the one used for

DPD calculations, care should be taken to ensure the utility can read files with the same endianness by using

a compiler flag to force big or little endianness.

154 APPENDIX C. DL MESO UTILITIES

If the available Fortran compiler is invoked by the command f90, the executable export config.exe can be

produced by typing

• f90 -o export config.exe export config.F90

and either run at the command line or by using the GUI in Process DPD Data after entering the number of

processes used in the required field and selecting the required CONFIG file key in the pulldown list.

The executable for this utility can be run with any of the following command line arguments:

• -k i

Set CONFIG file key, levcfg, to i (0 = positions only, 1 = positions and velocities, 2 = positions, velocities

and forces)

• -s

Write particles to CONFIG file after sorting them in order by particle number

• -u

Write particles to CONFIG file without sorting them

If no command-line argument is given, the utility will ask the user to type in the CONFIG file key and assume

the particles are not sorted before writing to the file. (Note that particles in export files produced by the serial

version of DL MESO will be automatically in numerical order.)

export image vtf

export image vtf is a utility written in Fortran to produce a VTF format trajectory file (export.vtf) from

DL MESO DPD restart files (export) that can be visualized in VMD [56] to give a snapshot of the last

simulation timestep. Since a limited amount of data is included in restart files, the FIELD file for the simulation

is needed to provide some additional information.

The source code for this utility, export image vtf.F90, can be used for export created by both the serial

and parallel versions of DL MESO DPD: if the utility is to be run on a different machine to the one used for

DPD calculations, care should be taken to ensure the utility can read files with the same endianness by using

a compiler flag to force big or little endianness.

If the available Fortran compiler is invoked by the command f90, the executable export image vtf.exe can

be produced by typing

• f90 -o export image vtf.exe export image vtf.F90

and either run at the command line (export image vtf.exe or ./export image vtf.exe) or by using the GUI

in Process DPD Data. The optional commend-line argument -s can be used to sort the particles into order

of global particle index. So long as both the export and FIELD files are available in the same directory, the

utility will produce the VTF trajectory file without any prompting.

export image xml

export image xml is a utility written in Fortran to produce a trajectory file in GALAMOST [147] XML format

(export.xml) from DL MESO DPD restart files (export) that can be visualized in OVITO [122] to give a

snapshot of the last simulation timestep. Since a limited amount of data is included in restart files, the FIELD

file for the simulation is needed to provide some additional information.

The source code for this utility, export image xml.F90, can be used for export created by both the serial

and parallel versions of DL MESO DPD: if the utility is to be run on a different machine to the one used for

C.2. DL MESO DPD 155

DPD calculations, care should be taken to ensure the utility can read files with the same endianness by using

a compiler flag to force big or little endianness.

If the available Fortran compiler is invoked by the command f90, the executable export image xml.exe can

be produced by typing

• f90 -o export image xml.exe export image xml.F90

and either run at the command line (export image xml.exe or ./export image xml.exe) or by using the GUI

in Process DPD Data. So long as both the export and FIELD files are available in the same directory, the

utility will produce the XML trajectory file without any prompting.

history config

history config is a utility written in Fortran to take DL MESO DPD trajectory output data files (HISTORY)

and produce a configuration file in DL POLY format (CONFIG) from them, which can be used as a starting point

for new simulations (including restarting simulations on different numbers of processes).

The source code for this utility, history config.F90, reads HISTORY files generated by the serial and parallel

versions of DL MESO DPD respectively: because HISTORY files include a number in their headers as an endi-

anness check, the utility should be able to read these files created on different machines. The utility outputs

data for every particle for the selected timestep: the maximum level of data (particle positions, velocities and

forces) is fixed by the HISTORY file but the user can choose up to that particular level to write to the CONFIG

file.

If f90 is the command for the available Fortran compiler, the executable history config.exe can be produced

by typing

• f90 -o history config.exe history config.F90

and either run at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with any of the following command line arguments:

• -k i

Set CONFIG file key, levcfg, to i (0 = positions only, 1 = positions and velocities, 2 = positions, velocities

and forces)

• -f i

Use trajectory data in frame i of HISTORY file for configuration in CONFIG file

• -l i

Use last frame of trajectory data in HISTORY file for configuration in CONFIG file

• -s

Write particles to CONFIG file after sorting them in order by particle number

• -u

Write particles to CONFIG file without sorting them

If no command-line argument is given or the CONFIG file key or trajectory frame number are out of range for

the given HISTORY file, the utility will ask the user to type in valid numbers for the CONFIG file key (if more

than positions are available) and trajectory frame number (unless the last one is selected at the command line),

as well as assume that the particles are not sorted when writing to the CONFIG file.

156 APPENDIX C. DL MESO UTILITIES

traject vtf

The Fortran utility traject vtf reads in HISTORY output data files generated by DL MESO DPD and pro-

duces a VTF format trajectory file (traject.vtf) that can visualize the simulation using VMD [56], such that

snapshots at the recorded timesteps and animations can be produced. An option exists to produce separate

VTF format trajectory files for unbonded particles (traject bead.vtf) and bonded particles in molecules

(traject mole.vtf), and another option exists to write the structure and coordinates into separate files

(traject.vsf and traject.vcf respectively).

The source code for this utility, traject vtf.F90, reads HISTORY files generated by the serial and parallel ver-

sions of DL MESO DPD respectively: because HISTORY files include a number in their headers as an endianness

check, the utility should be able to read these files created on different machines. The utility outputs every

particle for all recorded timesteps, including bond data for particles in molecules represented as residues.

If f90 is the command for the available Fortran compiler, the executable traject vtf.exe can be produced by

typing

• f90 -o traject vtf.exe traject vtf.F90

and either run at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with the following optional command line arguments:

• -b

Write trajectory data to separate files for bonded and unbonded particles

• -s

Write particles to traject.vtf file after sorting them in order by particle number

• -u

Write particles to traject.vtf file without sorting them

• -sc

Separate structure and coordinates into traject.vsf and traject.vcf files respectively (option can be

used with -b)

By default, a single trajectory file will be written and the particles will not be sorted into order of global index

number.

traject selected vtf

The Fortran utility traject selected vtf works in a similar fashion to traject vtf but allows the user to

select which particles and timesteps to output to the trajectory file. If f90 is the command for the available

Fortran compiler, the executable trajects vtf.exe can be produced by typing

• f90 -o trajects vtf.exe traject selected vtf.F90

and run at the command line (note that it cannot be invoked using the GUI). The executable for this utility

can be run with the following optional command line arguments:

• -s

Write particles to traject.vtf file after sorting them in order by particle number

• -u

Write particles to traject.vtf file without sorting them

C.2. DL MESO DPD 157

• -sc

Separate structure and coordinates into traject.vsf and traject.vcf files respectively

By default the particles will not be sorted into order of global index number. Beyond these, the user will

be shown information about the contents of the HISTORY file and asked to type in what is required in the

traject.vtf file.

The user will then need to choose which particles are to be written to the VTF file (or VSF and VCF files):

the utility will first show the user how many particles (total and unbonded) are in each frame of the HISTORY

file, as well as the names and numbers of particle species and molecule types. The user will then be asked to

select one of the following options to include in the file(s):

1. All particles

2. A contiguous range of particles based on global particle indices

3. All particles belonging to particular species and molecule types

4. Individual particle numbers

5. Individual molecule numbers

and based on this choice, further questions will be asked to select the range of particle indices, species or

molecule types, particle numbers or molecule numbers respectively. The user will then be shown the number

of available trajectory frames in the HISTORY file and asked to select which one to start with, which one to end

with and the frequency to write to the output file(s) (i.e. whether or not to skip over frames).

traject xml

The Fortran utility traject xml reads in HISTORY output data files generated by DL MESO DPD and produces

a series of numbered trajectory files in GALAMOST [147] XML format (traject *.xml) that can be used to

visualize the simulation using OVITO [122], such that snapshots at the recorded timesteps and animations can

be produced with the correct bond connectivity if molecules are present.

The source code for this utility, traject xml.F90, reads HISTORY files generated by the serial and parallel ver-

sions of DL MESO DPD respectively: because HISTORY files include a number in their headers as an endianness

check, the utility should be able to read these files created on different machines. The utility outputs every

particle for all recorded timesteps, including bond data for particles in molecules. (Each molecule type is used

to identify the types of bonds between particles.)

If f90 is the command for the available Fortran compiler, the executable traject xml.exe can be produced by

typing

• f90 -o traject xml.exe traject xml.F90

and either run at the command line or via the GUI in Process DPD Data.

No command line arguments are required to run this utility. A series of trajectory files will be written: because

global index numbers cannot be explicitly assigned in this format, the particles’ data are sorted by global index

before being written to the files .If velocities are included in the HISTORY file, these will also be written to the

trajectory files.

traject selected xml

The Fortran utility traject selected xml works in a similar fashion to traject xml but allows the user to

select which particles and timesteps to output to the trajectory files. If f90 is the command for the available

Fortran compiler, the executable trajects xml.exe can be produced by typing

158 APPENDIX C. DL MESO UTILITIES

• f90 -o trajects xml.exe traject selected xml.F90

and run at the command line (note that it cannot be invoked using the GUI). The user will be shown information

about the contents of the HISTORY file and asked to type in what is required in the traject.vtf file.

The user will then need to choose which particles are to be written to the XML files: the utility will first show

the user how many particles (total and unbonded) are in each frame of the HISTORY file, as well as the names

and numbers of particle species and molecule types. The user will then be asked to select one of the following

options to include in the file(s):

1. All particles

2. A contiguous range of particles based on global particle indices

3. All particles belonging to particular species and molecule types

4. Individual particle numbers

5. Individual molecule numbers

and based on this choice, further questions will be asked to select the range of particle indices, species or

molecule types, particle numbers or molecule numbers respectively. The user will then be shown the number

of available trajectory frames in the HISTORY file and asked to select which one to start with, which one to end

with and the frequency to write to the output file(s) (i.e. whether or not to skip over frames).

isosurfaces

The Fortran utility isosurfaces reads in HISTORY output data files generated by DL MESO DPD and produces

grid-based density maps at each recorded timestep for a specified species in Legacy VTK format for visualization

of isosurfaces. It also calculates the second moment of the isosurface normal distribution, whose eigenvalues

can be used to determine the mesophase for the system.

The source code for this utility, isosurfaces.F90, can read HISTORY files generated by the serial and parallel

versions of DL MESO DPD respectively: an endianness check to their headers will allow the utility to work out

which endianness to use for reading them. An executable isosurfaces.exe can be created by typing

• f90 -o isosurfaces.exe isosurfaces.F90

if f90 is the command for the available Fortran compiler. This can be run either at the command line or via

the GUI in Process DPD Data.

The executable for this utility can be run with the following command line arguments:

• -b [SPECIES]

Use particle species [SPECIES] to create density maps (either name or number based on its order in the

FIELD file)

• -p f

Set spacing between grid points to f (overriding default value of 0.25)

• -s f

Set Gaussian standard deviation σ to f (overriding default value of 0.4)

• -sf i

Start collecting and writing data from frame i of HISTORY file (overriding default value of 1)

C.2. DL MESO DPD 159

• -sl i

Finish collecting and writing data at frame i of HISTORY file (overriding default value of last available

frame)

• -tf i

Set frequency of frames used from HISTORY file to i (overriding default value of 1)

For instance, if isosurfaces of species TAIL are required with a target grid spacing of 0.2 and a Gaussian standard

deviation of 0.5 between frames 4 and 10 every 2 frames, the utility can be launched using one of the following

commands:

• isosurfaces.exe -b TAIL -p 0.2 -s 0.5 -sf 4 -sl 10 -tf 2

• ./isosurfaces.exe -b TAIL -p 0.2 -s 0.5 -sf 4 -sl 10 -tf 2

Note that if no species is specified at the command line, the user will be asked to choose one based on the

contents of the HISTORY file.

For each recorded timestep, the volume of every particle is smeared using a Gaussian function of standard

deviation σ:

f(~r) =
1

(2πσ2)
3
2

exp

(
−|~r − ~ri|

2

2σ2

)
where ~ri is the position of particle i. All points on a regular orthogonal grid within a distance of 3σ from the

particle position are assigned contributions from this smearing function. The resulting totals for all particles of

the specified species are subsequently written to Legacy VTK files named density *.vtk. The densities can

then be used to construct the isosurface normal distribution p(~n), using the mean value of density over the

system as the threshold for isosurfaces. Its second moment

M =

∫
~n~np(~n)d~n

gives an indication of how the particles in the species are arranged in the system. The three eigenvalues of

the second moment (µ1, µ2, µ3) can be used as mesophase order parameters[97, 133]: µ1 ≈ µ2 ≈ µ3 indicates

an isotropic mesophase, µ1 � µ2, µ3 indicates a hexagonal mesophase and µ1, µ2 � µ3 indicates a lamellar

mesophase. The eigenvalues are written to a file named moment, which contains columns for the time and the

three eigenvalues in numerical order: this file can be imported into graph plotting software to display how the

system mesophase changes over time.

radius

The Fortran utility radius reads in HISTORY output data files generated by DL MESO DPD and calculates the

end-to-end distances and radii of gyration at each recorded timestep for all molecules in the system, as well as

finding the time-averaged distributions of end-to-end distances for each molecule type.

The source code for this utility, radius.F90, can read both HISTORY and HISTORY* files generated by the serial

and parallel versions of DL MESO DPD respectively. If f90 is the command for the available Fortran compiler,

the executable radius.exe can be produced by typing

• f90 -o radius.exe radius.F90

and run either at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with the following command line arguments:

• -c f

Set maximum end-to-end distance for distribution to f (overriding default value of 2.0)

160 APPENDIX C. DL MESO UTILITIES

• -d f

Set histogram spacing for distribution to f (overriding default value of 0.05)

• -sf i

Start collecting and writing data from frame i of HISTORY file (overriding default value of 1)

• -sl i

Finish collecting and writing data at frame i of HISTORY file (overriding default value of last available

frame)

• -tf i

Set frequency of frames used from HISTORY file to i (overriding default value of 1)

Note that if the HISTORY file includes no molecules, the utility will stop with an error message.

For each recorded timestep and all molecules, the end-to-end distance along the main molecular branch and the

radius of gyration

R2
g =

1

N

N∑
i

(~ri − ~rmean)
2

are calculated, where N is the number of particles in the molecule and ~rmean =
∑N
i mi~ri∑N
i mi

is the centre-of-mass

for the molecule. Files named radius * are produced for each molecule type: these text files contain columns

for the time, root mean squared end-to-end distance, the mean squared end-to-end distance and root mean

squared radius of gyration over all molecules of the specified type, which can be plotted using graph plotting

software.

A single file named MOLDIST is also produced to give the time-averaged distributions of end-to-end distance for

every molecule type, normalised to give
∫∞

0
4πr2dr g(r) = 1. The file starts with two lines, the first giving the

name of the simulation and the second with the number of timesteps used and the number of distance divisions

used (the number of shells). The distributions for each molecule type are then given, starting with a line giving

the molecule name and followed by columns with the radius r (the mid-point for each shell) and the distribution

g(r): each type is separated by two blank lines.

dipole

The Fortran utility dipole reads in HISTORY output data files generated by DL MESO DPD and calculates

the total dipole moments for each molecule type, autocorrelation functions of dipole moments and (optionally)

their Fourier transforms.

The source code for this utility, dipole.F90, can read HISTORY files generated by the serial and parallel versions

of DL MESO DPD respectively, regardless of which endianness is used. If f90 is the command for the available

Fortran compiler, the executable dipole.exe can be produced by typing

• f90 -o dipole.exe dipole.F90

and run either at the command line or via the GUI in Process DPD Data.

The executable for this utility can be run with the following command line arguments:

• -n i

Set number of bins to calculate dipole autocorrelation functions (DAFs) to i

• -fft

Calculate Fourier Transforms of dipole autocorrelation functions

C.2. DL MESO DPD 161

• -fc i

Set number of bins for DAFs to i (overriding default value of maximum between 500 and double the

number of bins for DAF calculations)

• -sf i

Start collecting and writing data from frame i of HISTORY file (overriding default value of 1)

• -sl i

Finish collecting and writing data at frame i of HISTORY file (overriding default value of last available

frame)

• -tf i

Set frequency of frames used from HISTORY file to i (overriding default value of 1)

If no value for the number of bins for dipole autocorrelation functions is given in the command line or it exceeds

the number of frames in the HISTORY file (or the number used based on starting/finishing frames and frequency),

the user will be asked to type one in. Note that no Fourier transforms for the dipole autocorrelation functions

will be calculated unless the -fft command line argument is used.

For each recorded timestep, the total dipole moment for each molecule is calculated using the formula ~p =∑
i qi~ri, where qi is the charge on particle i (obtained from the HISTORY file) and ~ri is the position of that

particle with adjustments made for periodic boundary conditions where necessary. These dipole moments are

summed up for each molecule type to give the total dipole moment ~P . Files named dipole * are produced

for each molecule type: these text files contain columns for the time, x-, y- and z-components of the dipole

moment, the squared dipole moment P 2 and the ratio of the squared dipole moment P 2 to volume (P
2

V).

The dipole autocorrelation function for each molecule type is calculated as C(t) =
〈
~P (0) · ~P (t)

〉
over the

number of time steps given by the user, ensemble averaging across all possible samples from the given trajectory

data. A single file called DIPOLEDAT is produced, containing the DAFs for all available molecule types. Starting

with two lines – the first with the simulation name, the second with the total number of timesteps used and

the number of time steps used for DAFs – the names and data for each molecule type is given, the latter in

columns for time t, the absolute value of the ensemble averaged DAF C(t) and the value scaled with the value

at t = 0 (i.e. Z(t) = C(t)
C(0)). The data for each molecule type are separated by two blank lines.

If the Fourier transforms are requested, this appears in an additional file called DIPOLEFFT, which is similarly

formatted to DIPOLEDAT apart from the data for each molecule type, which are the frequency k and the real

and imaginary terms of the Fourier transform S(k) (i.e. <(S(k)) and =(S(k))).

rdf

rdf is a utility written in Fortran that can read in HISTORY output data files generated by DL MESO DPD and

determine radial distribution functions (RDFs) between all pairs of particle species (including self-interactions).

The source code for this utility rdf.F90 can read HISTORY files generated by the serial and parallel versions

of DL MESO DPD respectively. It can exploit OpenMP multithreading to speed up RDF calculations: the

source code includes directives to use different blocks of code depending on whether or not it is compiled with

OpenMP, which require preprocessing. (The source code filename extension .F90 should automatically invoke

the compiler’s C preprocessor.)

If f90 is the command for the available Fortran compiler, the executable rdf.exe can be produced by typing

either

• f90 -o rdf.exe rdf.F90

for the serial (single thread) version, or by typing

162 APPENDIX C. DL MESO UTILITIES

• f90 -o rdf.exe -openmp rdf.F90

for the OpenMP multithreaded version, substituting -openmp with the required compiler flag for invoking

OpenMP (e.g. -fopenmp for gfortran).

The utility can either be run at the command line or via the GUI in Process DPD data. A number of

command line arguments can be used after the command:

• -c f

Set maximum distance between pairs of particles to f (overriding default value of 2.0)

• -d f

Set histogram spacing for radial distribution function calculations to f (overriding default value of 0.05)

• -fft

Calculate Fourier Transforms of radial distribution functions (structure factors)

• -fc i

Set number of bins for structure factors to i (overriding default value of maximum between 500 and double

the number of bins for RDF calculations)

• -sf i

Start collecting and writing data from frame i of HISTORY file (overriding default value of 1)

• -sl i

Finish collecting and writing data at frame i of HISTORY file (overriding default value of last available

frame)

• -tf i

Set frequency of frames used from HISTORY file to i (overriding default value of 1)

Note that no Fourier transforms for the radial distribution functions will be calculated unless the -fft command

line argument is used.

At each recorded timestep, linked-cell lists for the particles are created and used to determine the particle-particle

distances between pairs within the maximum distance rc. These distances are used to increase counters for the

appropriate histogram bins (of width ∆r) for each species pair. The sums of these histograms are averaged over

time to give n(r) (the mean number of particles in the bin at distance r) and the radial distribution function is

given as

g(r) =
n(r)

4πr2∆rρ

where ρ is the mean particle density. The Fourier transform of g(r) gives the structure factor:

S(k) = 1 +
4πρ

k

∫ ∞
0

(g(r)− 1)r sin(kr)dr

which is a property that can be measured experimentally using e.g. X-ray diffraction.

A single file RDFDAT containing all radial distribution function data is produced. Starting with two lines –

the first giving the simulation name, the second giving the number of timesteps and the number of histogram

bins used – the names and the data for each species pair are given, the latter in columns for the radius r (the

mid-point for each shell), the RDF g(r) and the sum of g(r) (the average number of particles of one type within

r around a particle of the other). The data for each species pair are separated by two blank lines and an

additional data set of the same form is given for all particles regardless of species type at the end of the file.

If the Fourier transforms are requested, an additional RDFFFT file is created. This file has a similar format to

RDFDAT, except that the data is given in two columns: one for the frequency k and the other for S(k) (the

Fourier transform of g(r)− 1).

C.2. DL MESO DPD 163

rdfmol

rdfmol is a utility written in Fortran that can read in HISTORY output data files generated by DL MESO DPD

and determine radial distribution functions (RDFs) between all pairs of molecules by type (including self-

interactions).

The source code for this utility rdfmol.F90 can read HISTORY files generated by the serial and parallel versions

of DL MESO DPD. It can exploit OpenMP multithreading to speed up calculations: the source code includes

directives to use different blocks of code depending on whether or not it is compiled with OpenMP.

If f90 is the command for the available Fortran compiler, the executable rdfmol.exe can be produced by typing

either

• f90 -o rdfmol.exe rdfmol.F90

for the serial (single thread) version, or by typing

• f90 -o rdfmol.exe -openmp rdfmol.F90

for the OpenMP multithreaded version, substituting -openmp with the required compiler flag for invoking

OpenMP.

The utility can either be run at the command line or via the GUI in Process DPD data. A number of

command line arguments can be used after the command:

• -c f

Set maximum distance between pairs of particles to f (overriding default value of 2.0)

• -d f

Set histogram spacing for radial distribution function calculations to f (overriding default value of 0.05)

• -fft

Calculate Fourier Transforms of radial distribution functions (structure factors)

• -fc i

Set number of bins for DAFs to i (overriding default value of maximum between 500 and double the

number of bins for RDF calculations)

• -sf i

Start collecting and writing data from frame i of HISTORY file (overriding default value of 1)

• -sl i

Finish collecting and writing data at frame i of HISTORY file (overriding default value of last available

frame)

• -tf i

Set frequency of frames used from HISTORY file to i (overriding default value of 1)

Note that no Fourier transforms for the radial distribution functions will be calculated unless the -fft command

line argument is used.

At each recorded timestep, the centres of mass for each molecule are determined (taking periodic or shearing

boundaries into account) and these coordinates are assigned to linked-cell lists, which are used to determine

the distances between pairs of molecules within the maximum distance rc. These distances are used to fill

histograms with bin sizes of ∆r and are later time-averaged and divided by the shell volumes (as for standard

RDFs) to give the radial distribution functions between molecule types. Fourier transforms of molecular RDFs

give structure factors for the molecules.

164 APPENDIX C. DL MESO UTILITIES

The standard output from this utility is the file RDFMOLDAT: this is formatted in a similar manner to RDFDAT

except the RDF data is given by molecule type pairs. If Fourier transforms are requested, these are given in

the file RDFMOLFFT and formatted similarly to RDFFFT.

local

local is a utility written in Fortran that can read in HISTORY output data files generated by DL MESO DPD

and produce series of Legacy VTK format files containing statistical properties – number of beads, density,

compositions per particle and molecule types, temperature and mean velocity, local stress tensors – in cuboidal

subdivisions of the simulation volume for plotting and/or visualization.

The source code for this utility, local.F90, can read both HISTORY and HISTORY* files generated by the serial

and parallel versions of DL MESO DPD respectively: if the utility is to be run on a different machine to the one

used for DPD calculations, care should be taken to ensure the utility can read files with the same endianness by

using a compiler flag to force big or little endianness. If f90 is the command for the available Fortran compiler,

the executable local.exe can be produced by typing

• f90 -o local.exe local.F90

and either run at the command line or via the GUI in Process DPD Data after entering the number of

divisions required in each dimension.

This utility can be run with the following command line arguments specifying the number of divisions in each

dimension:

• -nx i

Set number of system divisions in x-dimension to i

• -ny i

Set number of system divisions in y-dimension to i

• -nz i

Set number of system divisions in z-dimension to i

• -av i

Only write time-averaged data (suppress files for each frame)

• -sf i

Start collecting and writing data from frame i of HISTORY file (overriding default value of 1)

• -sl i

Finish collecting and writing data at frame i of HISTORY file (overriding default value of last available

frame)

• -tf i

Set frequency of frames used from HISTORY file to i (overriding default value of 1)

If these values are not set at the command line, the user will be asked to enter these values.

Unless the -av option is selected, files named local *.vtk are produced for all the specified time steps after

equilibration containing the data for each cuboidal cell. The level of data available in the HISTORY files (i.e.

keytrj: 0 = particle positions, 1 = particle positions and velocities, 2 = particle positions, velocities and forces)

dictates which of the following properties are output:

• the number of unfrozen beads

• densities for each bead species

C.2. DL MESO DPD 165

• volume fractions for bead species

• volume fractions for molecule types (including a ‘type’ for all unbonded beads)

• the mean velocity for all unfrozen beads

• overall temperature

• partial temperatures for each dimension (i.e. for dimension α, Tα =
∑
imiv

2
i,α

N)

• local pressure tensors (based on Method of Planes[128])

An additional file, averages.vtk, is also produced with time-averaged values for the species densities, velocities,

overall and partial temperatures, and local pressure tensor in each cuboidal cell based on the starting/finishing

frames and frequency selected.

The scalar properties (including compositions) may be considered to act across the entire volumes of the cells,

while the velocities and pressure tensors are representative of the cell centres.

widom insertion

widom insertion is a utility written in Fortran that can carry out Widom insertions to determine excess

chemical potentials[139, 140]. This utility reads in trajectories from HISTORY output data files generated by

DL MESO DPD, along with relevant simulation and interaction information from CONTROL and FIELD files, and

randomly inserts a user-selected particle or molecule at different positions (and orientations) in the simulation

box. The change in potential energy due to each insertion of particle or molecule i (∆Ui) is measured and an

ensemble average can be used to calculate the excess chemical potential, i.e.

µexi = −kBT ln

〈
exp

(
−∆Ui
kBT

)〉
for a constant volume ensemble, or

µexi = −kBT ln


〈
V exp

(
−∆Ui
kBT

)〉
〈V 〉


for simulations with varying volume (constant pressure, surface area or surface tension).

The source code for this utility, widom insertion.f90, can read HISTORY files generated by the serial and

parallel versions of DL MESO DPD respectively: endianness checks in the utility mean it should be possible

to run the utility on a different machine to that used to generate the trajectory data. It can exploit OpenMP

multithreading to speed up calculations: the source code includes directives to use different blocks of code

depending on whether or not it is compiled with OpenMP.

If f90 is the command for the available Fortran compiler, the executable widom.exe can be produced by typing

• f90 -o widom.exe widom insertion.F90

for the serial (single thread) version, or by typing

• f90 -o widom.exe -openmp widom insertion.F90

for the OpenMP multithreaded version, substituting -openmp with the required compiler flag for invoking

OpenMP (e.g. -fopenmp for gfortran). The utility can be run either at the command line or via the GUI in

Process DPD Data.

This utility can be run with the following command line arguments:

166 APPENDIX C. DL MESO UTILITIES

• -p [SPECIES]

Insert a single particle of species [SPECIES] for each trial insertion

• -m [MOLE]

Insert a molecule of type [MOLE] for each trial insertion

• -rm

Use a randomly chosen molecule in each trajectory frame as a template for molecule trial insertion (over-

riding default of configuration given in FIELD file)

• -n i

Set number of trial insertions per trajectory frame to i

• -sf i

Start accumulating statistics on trial insertions from trajectory frame i (overriding default of 1)

• -sl i

Stop accumulating statistics on trial insertions at trajectory frame i (overriding default of last available

frame)

• -r i

Set random number generator seed to i (only if RNDSEED file is unavailable)

• -v

Uses verbose mode: prints excess chemical potential values to screen or standard output as well as to the

CHEMPOT * file

The particle or molecule type and the number of trial insertions per frame are essential to carry out Widom

insertions: if these are not included in the command line, the user will be asked to type in these data.

The utility will produce two files: a file called RNDSEED giving the final state of the random number generator

(which can be used as the initial state for future calculations), and one called CHEMPOT *, ending with the name

of the bead species or molecule being inserted. The latter plottable file contains five columns with the time

(in DPD units), the ‘instantaneous’ block-averaged excess chemical potential for the trajectory frame and its

standard deviation, the time-averaged excess chemical potential and its standard deviation.

Appendix D

Lattice schemes

This appendix gives details of the various lattice schemes implemented in the LBE code of DL MESO: D2Q9,

D3Q15, D3Q19 and D3Q27. These include details of the defined lattice vectors, weight factors used in lo-

cal equilibrium distribution functions (including those for Swift free-energy interactions), the transformation

matrices, moments, relaxation frequencies and forcing terms used for MRT and cascaded LBE collisions.

D.1 D2Q9

Speed vectors
i ei,x ei,y
0 0 0
1 -1 1
2 -1 0
3 -1 -1
4 0 -1
5 1 -1
6 1 0
7 1 1
8 0 1

Weight factors
i wi
0 4

9

2,4,6,8 1
9

1,3,5,7 1
36

Weight factors for Swift free-energy model
i wi w00

i γi δi wpi wti wxxi wyyi wzzi wxyi wxzi wyzi
0 4

3 1 0 − 21
8 − 5

3 − 5
3 − 1

6 − 1
6 0 0 0 0

1,5 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24 − 1
24 0 − 1

4 0 0
2,6 1

3 0 3
2 − 3

2
1
3

1
3

1
3 − 1

6 0 0 0 0
3,7 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24 − 1
24 0 1

4 0 0
4,8 1

3 0 3
2 − 3

2
1
3

1
3 − 1

6
1
3 0 0 0 0

167

168 APPENDIX D. LATTICE SCHEMES

Multiple relaxation time scheme

Definition of transformation matrix based on [68]:

T =



1 1 1 1 1 1 1 1 1

−4 2 −1 2 −1 2 −1 2 −1

4 1 −2 1 −2 1 −2 1 −2

0 −1 −1 −1 0 1 1 1 0

0 −1 2 −1 0 1 −2 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 0 −1 2 −1 0 1 −2

0 0 1 0 −1 0 1 0 −1

0 −1 0 1 0 −1 0 1 0



For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incom-

pressible fluids as:

~Meq =



ρ

eeq

εeq

jx

qeqx
jy

qeqy
peqxx
peqxy


=



ρ

−2ρ+ 3
ρ0

(
j2
x + j2

y

)
wερ+

wεj
ρ0

(j2
x + j2

y)

jx

−jx
jy

−jy
j2x−j

2
y

ρ0
jxjy
ρ0


where ρ is used in place of ρ0 for mildly compressible fluids, jx = ρ0ux, jy = ρ0uy and, by default, wε = 1 and

wεj = −3. If using Swift free-energy interactions, the equilibrium moments are expressed as:

~Meq =



ρ

eeq

εeq

jx

qeqx
jy

qeqy
peqxx
peqxy


=



ρ

−4ρ+ 3
ρ

(
j2
x + j2

y

)
+ 6(P0 − κ(ρ∇2ρ+ φ∇2φ)) + 15λρ (~p · ∇ρ)

4ρ− 3
ρ (j2

x + j2
y)− 9(P0 − κ(ρ∇2ρ+ φ∇2φ))− 3

2κ
(
|∇ρ|2 + |∇φ|2

)
− 33λ

2ρ (~p · ∇ρ)

jx

−jx
jy

−jy
j2x−j

2
y

ρ + κ((∂xρ)2 − (∂yρ)2 + (∂xφ)2 − (∂yφ)2) + 2λρ (px∂xρ− py∂yρ)
jxjy
ρ + κ(∂xρ∂yρ+ ∂xφ∂yφ) + λ

ρ (px∂yρ+ py∂xρ)



The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

~s = diag
(

1, τ−1
f,bulk, s2, 1, s4, 1, s4, τ

−1
f , τ−1

f

)
where the bulk viscosity can be related to the associated relaxation time by:

ν′ =
1

6

(
τf,bulk −

1

2

)
(∆x)

2

∆t
.

Recommended default values for the two variable relaxation frequencies s2 and s4 are 1.14 and 1.92 respectively

for standard simulations, while both can be set to 1 for simulations with Swift free-energy interactions[95].

D.1. D2Q9 169

Guo forcing can be applied using the following moment transformations of the associated source terms:

~Sm =



0

6(vxFx + vyFy)

−6(vxFx + vyFy)

Fx

−Fx
Fy

−Fy
2(vxFx − vyFy)

vxFy + vyFx


,

and He forcing can be applied using these moment terms:

~Sm =



0

6(vxFx + vyFy)

−6(vxFx + vyFy)

Fx

−Fx(1− 3v2
y) + 6vxvyFy

Fy

−Fy(1− 3v2
x) + 6vxvyFx

2(vxFx − vyFy)

vxFy + vyFx


.

Cascaded LBE scheme

Definitions of transformation and shift matrices based on [32]:

T =



1 1 1 1 1 1 1 1 1

0 −1 −1 −1 0 1 1 1 0

0 1 0 −1 −1 −1 0 1 1

0 1 1 1 0 1 1 1 0

0 1 0 1 1 1 0 1 1

0 −1 0 1 0 −1 0 1 0

0 1 0 −1 0 −1 0 1 0

0 1 0 −1 0 1 0 1 0

0 −1 0 1 0 1 0 1 0



N =



1 0 0 0 0 0 0 0 0

−ux 1 0 0 0 0 0 0 0

−uy 0 1 0 0 0 0 0 0

u2
x −2ux 0 1 0 0 0 0 0

u2
y 0 −2uy 0 1 0 0 0 0

uxuy −uy −ux 0 0 1 0 0 0

−u2
xuy .2uxuy u2

x −uy 0 −2ux 1 0 0

−uxu2
y u2

y 2uxuy 0 −ux −2uy 0 1 0

u2
xu

2
y −2uxu

2
y −2u2

xuy u2
y u2

x 4uxuy −2uy −2ux 1


.

170 APPENDIX D. LATTICE SCHEMES

The equilibrium central moments are expressed as follows:

~̃Meq =



M̃eq
00

M̃eq
10

M̃eq
01

M̃eq
20

M̃eq
02

M̃eq
11

M̃eq
21

M̃eq
12

M̃eq
22


=



ρ

0

0
1
3ρ
1
3ρ

0

0

0
1
9ρ



and transformation of the above leads to the following expressions for the local equilibrium distribution functions:

feq0 = 4
9ρ−

2
3ρu

2
x − 2

3ρu
2
y + ρu2

xu
2
y

feq1 = 1
36ρ−

1
12ρux + 1

12ρuy + 1
12ρu

2
x + 1

12ρu
2
y − 1

4ρuxuy + 1
4ρu

2
xuy − 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq2 = 1
9ρ−

1
3ρux + 1

3ρu
2
x − 1

6ρu
2
y + 1

2ρuxu
2
y − 1

2ρu
2
xu

2
y

feq3 = 1
36ρ−

1
12ρux −

1
12ρuy + 1

12ρu
2
x + 1

12ρu
2
y + 1

4ρuxuy −
1
4ρu

2
xuy − 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq4 = 1
9ρ−

1
3ρuy −

1
6ρu

2
x + 1

3ρu
2
y + 1

2ρu
2
xuy − 1

2ρu
2
xu

2
y

feq5 = 1
36ρ+ 1

12ρux −
1
12ρuy + 1

12ρu
2
x + 1

12ρu
2
y − 1

4ρuxuy −
1
4ρu

2
xuy + 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq6 = 1
9ρ+ 1

3ρux + 1
3ρu

2
x − 1

6ρu
2
y − 1

2ρuxu
2
y − 1

2ρu
2
xu

2
y

feq7 = 1
36ρ+ 1

12ρux + 1
12ρuy + 1

12ρu
2
x + 1

12ρu
2
y + 1

4ρuxuy + 1
4ρu

2
xuy + 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq8 = 1
9ρ+ 1

3ρuy −
1
6ρu

2
x + 1

3ρu
2
y − 1

2ρu
2
xuy − 1

2ρu
2
xu

2
y

The relaxation frequencies can be expressed by the following block diagonal matrix:

Λ = diag

(
1, 1, 1,

[
s+ s−

s− s+

]
τ−1
f , ω3, ω3, ω4

)

where s+ = 1
2

(
τ−1
f,bulk + τ−1

f

)
and s− = 1

2

(
τ−1
f,bulk − τ

−1
f

)
. The bulk viscosity can be related to the associated

relaxation time by:

ν′ =
1

3

(
τf,bulk −

1

2

)
(∆x)

2

∆t
.

Guo forcing can be applied using the following central moment transformations of the associated source terms:

~Sm =



0

Fx

Fy

0

0

0(
1
3 − v

2
x

)
Fy − 2vxvyFx(

1
3 − v

2
y

)
Fx − 2vxvyFy

4vxvy (vyFx + vxFy)


,

D.2. D3Q15 171

and He forcing can be applied using these central moment terms:

~Sm =



0

Fx

Fy

0

0

0
1
3Fy
1
3Fx

0


.

D.2 D3Q15

Speed vectors
i ei,x ei,y ei,z
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 -1
5 -1 -1 1
6 -1 1 -1
7 -1 1 1
8 1 0 0
9 0 1 0

10 0 0 1
11 1 1 1
12 1 1 -1
13 1 -1 1
14 1 -1 -1

Weight factors
i wi
0 2

9

1–3, 8–10 1
9

4–7, 11–14 1
72

Weight factors for Swift free-energy model
i wi w00

i γi δi wpi wti wxxi wyyi wzzi wxyi wxzi wyzi
0 2

3 1 0 − 13
2 − 7

3 − 7
3

1
6

1
6

1
6 0 0 0

1,8 1
3 0 0 1 1

3
1
3

1
3 − 1

6 − 1
6 0 0 0

2,9 1
3 0 0 1 1

3
1
3 − 1

6
1
3 − 1

6 0 0 0
3,10 1

3 0 0 1 1
3

1
3 − 1

6 − 1
6

1
3 0 0 0

4,11 1
24 0 0 −2 1

24
1
24 − 1

48 − 1
48 − 1

48
1
8

1
8

1
8

5,12 1
24 0 0 −2 1

24
1
24 − 1

48 − 1
48 − 1

48
1
8 − 1

8 − 1
8

6,13 1
24 0 0 −2 1

24
1
24 − 1

48 − 1
48 − 1

48 − 1
8

1
8 − 1

8

7,14 1
24 0 0 −2 1

24
1
24 − 1

48 − 1
48 − 1

48 − 1
8 − 1

8
1
8

172 APPENDIX D. LATTICE SCHEMES

Multiple relaxation time scheme

Definition of transformation matrix based on [23]:

T =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−2 −1 −1 −1 1 1 1 1 −1 −1 −1 1 1 1 1

16 −4 −4 −4 1 1 1 1 −4 −4 −4 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 1 0 0 1 1 1 1

0 4 0 0 −1 −1 −1 −1 −4 0 0 1 1 1 1

0 0 −1 0 −1 −1 1 1 0 1 0 1 1 −1 −1

0 0 4 0 −1 −1 1 1 0 −4 0 1 1 −1 −1

0 0 0 −1 −1 1 −1 1 0 0 1 1 −1 1 −1

0 0 0 4 −1 1 −1 1 0 0 −4 1 −1 1 −1

0 2 −1 −1 0 0 0 0 2 −1 −1 0 0 0 0

0 0 1 −1 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 0 1 1 −1 −1

0 0 0 0 1 −1 −1 1 0 0 0 1 −1 −1 1

0 0 0 0 1 −1 1 −1 0 0 0 1 −1 1 −1

0 0 0 0 −1 1 1 −1 0 0 0 1 −1 −1 1


For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incom-

pressible fluids as:

~Meq =



ρ

eeq

εeq

jx

qeqx
jy

qeqy
jz

qeqz
3peqxx
peqww
peqxy
peqyz
peqzx
meq
xyz



=



ρ

−ρ+
(j2x+j2y+j2z)

ρ0

wερ+
wεj
ρ0

(j2
x + j2

y + j2
z)

jx

− 7
3jx

jy

− 7
3jy

jz

− 7
3jz

2j2x−j
2
y−j

2
z

ρ0
j2y−j

2
z

ρ0
jxjy
ρ0
jyjz
ρ0
jzjx
ρ0

0


where ρ is used in place of ρ0 for mildly compressible fluids, jx = ρ0ux, jy = ρ0uy, jz = ρ0uz and, by default,
wε = 1 and wεj = −5. If using Swift free-energy interactions, the equilibrium moments are expressed as:

~M
eq

=



ρ

eeq

εeq

jx
qeqx
jy
qeqy
jz
qeqz

3peqxx
peqww
peqxy
peqyz
peqzx
meqxyz



=



ρ

−2ρ + 3
ρ

(
j2x + j2y + j2z

)
+ 3(P0 − κ(ρ∇2ρ + φ∇2φ))− 1

2
κ
(
|∇ρ|2 + |∇φ|2

)
+ 5λ

ρ
(~p · ∇ρ)

16ρ− 5
ρ

(j2x + j2y + j2z)− 45(P0 − κ(ρ∇2ρ + φ∇2φ)) + 5
2
κ
(
|∇ρ|2 + |∇φ|2

)
− 85λ

ρ
(~p · ∇ρ)

jx
− 7

3
jx

jy
− 7

3
jy

jz
− 7

3
jz

2j2x−j2y−j2z
ρ

+ κ(2(∂xρ)
2 − (∂yρ)

2 − (∂zρ)
2 + 2(∂xφ)2 − (∂yφ)2 − (∂zφ)2) + 2λ

ρ
(2px∂xρ− py∂yρ− pz∂zρ)

j2y−j2z
ρ

+ κ((∂yρ)
2 − (∂zρ)

2 + (∂yφ)2 − (∂zφ)2) + 2λ
ρ

(py∂yρ− pz∂zρ)
jxjy
ρ

+ κ(∂xρ∂yρ + ∂xφ∂yφ) + λ
ρ

(px∂yρ + py∂xρ)
jyjz
ρ

+ κ(∂yρ∂zρ + ∂yφ∂zφ) + λ
ρ

(py∂zρ + pz∂yρ)
jxjz
ρ

+ κ(∂xρ∂zρ + ∂xφ∂zφ) + λ
ρ

(px∂zρ + pz∂xρ)

0



D.2. D3Q15 173

The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

~s = diag
(

1, τ−1
f,bulk, s2, 1, s4, 1, s4, 1, s4, τ

−1
f , τ−1

f , τ−1
f , τ−1

f , τ−1
f , s14

)
where the bulk viscosity can be related to the associated relaxation time by:

ν′ =
2

9

(
τf,bulk −

1

2

)
(∆x)

2

∆t

Recommended default values for the three variable relaxation frequencies s2, s4 and s14 are 1.2, 1.6 and 1.2

respectively.

Guo forcing can be applied using the following moment transformations of the associated source terms:

~Sm =



0

2(vxFx + vyFy + vzFz)

−10(vxFx + vyFy + vzFz)

Fx

− 7
3Fx

Fy

− 7
3Fy

Fz

− 7
3Fz

2(2vxFx − vyFy − vzFz)
2(vyFy − vzFz)
vxFy + vyFx

vyFz + vzFy

vzFx + vxFz

0



,

and He forcing can be applied using these moment terms:

~Sm =



0

2(vxFx + vyFy + vzFz)

−10(vxFx + vyFy + vzFz)

Fx(
− 7

3 + 5v2
y + 5v2

z

)
Fx + 10vxvyFy + 10vxvzFz

Fy(
− 7

3 + 5v2
x + 5v2

z

)
Fy + 10vxvyFx + 10vyvzFz

Fz(
− 7

3 + 5v2
x + 5v2

y

)
Fz + 10vxvzFx + 10vyvzFy

2(2vxFx − vyFy − vzFz)
2(vyFy − vzFz)
vxFy + vyFx

vyFz + vzFy

vzFx + vxFz

3vyvzFx + 3vxvzFy + 3vxvyFz



.

174 APPENDIX D. LATTICE SCHEMES

D.3 D3Q19

Speed vectors
i ei,x ei,y ei,z
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 0
5 -1 1 0
6 -1 0 -1
7 -1 0 1
8 0 -1 -1
9 0 -1 1

10 1 0 0
11 0 1 0
12 0 0 1
13 1 1 0
14 1 -1 0
15 1 0 1
16 1 0 -1
17 0 1 1
18 0 1 -1

Weight factors
i wi
0 1

3

1–3, 10–12 1
18

4–9, 13–18 1
36

Weight factors for Swift free-energy model
i wi w00

i γi δi wpi wti wxxi wyyi wzzi wxyi wxzi wyzi
0 1 1 0 − 9

2 −2 −2 1
2

1
2

1
2 0 0 0

1,10 1
6 0 3

2 − 3
2

1
6

1
6

5
12 − 1

3 − 1
3 0 0 0

2,11 1
6 0 3

2 − 3
2

1
6

1
6 − 1

3
5
12 − 1

3 0 0 0
3,12 1

6 0 3
2 − 3

2
1
6

1
6 − 1

3 − 1
3

5
12 0 0 0

4,13 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24 − 1
24

1
12

1
4 0 0

5,14 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24 − 1
24

1
12 − 1

4 0 0
6,15 1

12 0 3
2 − 3

2
1
12

1
12 − 1

24
1
12 − 1

24 0 1
4 0

7,16 1
12 0 3

2 − 3
2

1
12

1
12 − 1

24
1
12 − 1

24 0 − 1
4 0

8,17 1
12 0 3

2 − 3
2

1
12

1
12

1
12 − 1

24 − 1
24 0 0 1

4

9,18 1
12 0 3

2 − 3
2

1
12

1
12

1
12 − 1

24 − 1
24 0 0 − 1

4

D.3. D3Q19 175

Multiple relaxation time scheme

Definition of transformation matrix based on [23]:

T =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 8 8 8 8 8 8 −11 −11 −11 8 8 8 8 8 8

12 −4 −4 −4 1 1 1 1 1 1 −4 −4 −4 1 1 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0

0 4 0 0 −1 −1 −1 −1 0 0 −4 0 0 1 1 1 1 0 0

0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1

0 0 4 0 −1 1 0 0 −1 −1 0 −4 0 1 −1 0 0 1 1

0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1

0 0 0 4 0 0 −1 1 −1 1 0 0 −4 0 0 1 −1 1 −1

0 2 −1 −1 1 1 1 1 −2 −2 2 −1 −1 1 1 1 1 −2 −2

0 −4 2 2 1 1 1 1 −2 −2 −4 2 2 1 1 1 1 −2 −2

0 0 1 −1 1 1 −1 −1 0 0 0 1 −1 1 1 −1 −1 0 0

0 0 −2 2 1 1 −1 −1 0 0 0 −2 2 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 −1 −1 1 1 0 0 0 0 0 1 1 −1 −1 0 0

0 0 0 0 1 −1 0 0 −1 −1 0 0 0 −1 1 0 0 1 1

0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 1 −1 −1 1



For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incom-

pressible fluids as:

vecMeq =



ρ

eeq

εeq

jx

qeqx
jy

qeqy
jz

qeqz
3peqxx
3πeqxx
peqww
πeqww
peqxy
peqyz
peqzx
meq
x

meq
y

meq
z



=



ρ

−11ρ+ 19
ρ0

(
j2
x + j2

y + j2
z

)
wερ+

wεj
ρ0

(j2
x + j2

y + j2
z)

jx

− 2
3jx

jy

− 2
3jy

jz

− 2
3jz

2j2x−j
2
y−j

2
z

ρ0
wxx
ρ0

(
2j2
x − j2

y − j2
z

)
j2y−j

2
z

ρ0
wxx
ρ0

(
j2
y − j2

z

)
jxjy
ρ0
jyjz
ρ0
jzjx
ρ0

0

0

0



where ρ is used in place of ρ0 for mildly compressible fluids, jx = ρ0ux, jy = ρ0uy, jz = ρ0uz and, by default,
wε = 1, wεj = − 11

2 and wxx = 1
2 . If using Swift free-energy interactions, the equilibrium moments are expressed

176 APPENDIX D. LATTICE SCHEMES

as:

vecM
eq

=



ρ

eeq

εeq

jx
qeqx
jy
qeqy
jz
qeqz

3peqxx
3πeqxx
peqww
πeqww
peqxy
peqyz
peqzx
meqx
meqy
meqz



=



ρ

−30ρ + 19
ρ

(
j2x + j2y + j2z

)
+ 57(P0 − κ(ρ∇2ρ + φ∇2φ))− 19

2
κ
(
|∇ρ|2 + |∇φ|2

)
+ 152λ

ρ
(~p · ∇ρ)

12ρ− 11
2ρ

(j2x + j2y + j2z)− 27(P0 − κ(ρ∇2ρ + φ∇2φ)) + 8κ
(
|∇ρ|2 + |∇φ|2

)
− 109λ

2ρ
(~p · ∇ρ)

jx
− 2

3
jx

jy
− 2

3
jy

jz
− 2

3
jz

2j2x−j2y−j2z
ρ

+ κ(2(∂xρ)
2 − (∂yρ)

2 − (∂zρ)
2 + 2(∂xφ)2 − (∂yφ)2 − (∂zφ)2) + 2λ

ρ
(2px∂xρ− py∂yρ− pz∂zρ

−
2j2x−j2y−j2z

2ρ
− 7

2
κ(2(∂xρ)

2 − (∂yρ)
2 − (∂zρ)

2 + 2(∂xφ)2 − (∂yφ)2 − (∂zφ)2)− λ
ρ

(2px∂xρ− py∂yρ− pz∂zρ)
j2y−j2z
ρ

+ κ((∂yρ)
2 − (∂zρ)

2 + (∂yφ)2 − (∂zφ)2) + 2λ
ρ

(py∂yρ− pz∂zρ)

−
j2y−j2z

2ρ
− 7

2
κ((∂yρ)

2 − (∂zρ)
2 + (∂yφ)2 − (∂zφ)2)− λ

ρ
(py∂yρ− pz∂zρ)

(
j2y − j

2
z

)
jxjy
ρ

+ κ(∂xρ∂yρ + ∂xφ∂yφ) + λ
ρ

(px∂yρ + py∂xρ)
jyjz
ρ

+ κ(∂yρ∂zρ + ∂yφ∂zφ) + λ
ρ

(py∂zρ + pz∂yρ)
jxjz
ρ

+ κ(∂xρ∂zρ + ∂xφ∂zφ) + λ
ρ

(px∂zρ + pz∂xρ)

0

0

0



The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

~s = diag
(

1, τ−1
f,bulk, s2, 1, s4, 1, s4, 1, s4, τ

−1
f , s4, τ

−1
f , s4, τ

−1
f , τ−1

f , τ−1
f , s16, s16, s16

)

where the bulk viscosity can be related to the associated relaxation time by:

ν′ =
2

9

(
τf,bulk −

1

2

)
(∆x)

2

∆t

Recommended default values for the three variable relaxation frequencies s2, s4 and s16 are 1.4, 1.4 and 1.98

respectively.

Guo forcing can be applied using the following moment transformations of the associated source terms:

~Sm =



0

38(vxFx + vyFy + vzFz)

−11(vxFx + vyFy + vzFz)

Fx

− 2
3Fx

Fy

− 2
3Fy

Fz

− 2
3Fz

2(2vxFx − vyFy − vzFz)
−(2vxFx − vyFy − vzFz)

2(vyFy − vzFz)
−(vyFy − vzFz)
vxFy + vyFx

vyFz + vzFy

vzFx + vxFz

0

0

0



,

D.3. D3Q19 177

and He forcing can be applied using these moment terms:

~Sm =



0

38(vxFx + vyFy + vzFz)

−11(vxFx + vyFy + vzFz)

Fx(
− 2

3 + 5
2v

2
y + 5

2v
2
z

)
Fx + 5vxvyFy + 5vxvzFz

Fy(
− 2

3 + 5
2v

2
x + 5

2v
2
z

)
Fy + 5vxvyFx + 5vyvzFz

Fz(
− 2

3 + 5
2v

2
x + 5

2v
2
y

)
Fz + 5vxvzFx + 5vyvzFy

2(2vxFx − vyFy − vzFz)
−(2vxFx − vyFy − vzFz)

2(vyFy − vzFz)
−(vyFy − vzFz)
vxFy + vyFx

vyFz + vzFy

vzFx + vxFz
3
2

(
v2
y − v2

z

)
Fx + 3vxvyFy − 3vxvzFz

3
2

(
v2
z − v2

x

)
Fy + 3vyvzFz − 3vxvyFx

3
2

(
v2
x − v2

y

)
Fz + 3vxvzFx − 3vyvzFy



.

Cascaded LBE scheme

Definitions of transformation and shift matrices based on [32]:

T =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0

0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1

0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1

0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1

0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0

0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1

0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1

0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 1 −1

0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1



178 APPENDIX D. LATTICE SCHEMES

N
=

  

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
u
x

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
u
y

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
u
z

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

u
x
u
y

−
u
y

−
u
x

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

u
x
u
z

−
u
z

0
−
u
x

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0

u
y
u
z

0
−
u
z

−
u
y

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0

u
2 x

−
2u

x
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

u
2 y

0
−

2u
y

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

u
2 z

0
0

−
2u

z
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

−
u
x
u

2 y
u

2 y
2u

x
u
y

0
−

2u
y

0
0

0
−
u
x

0
1

0
0

0
0

0
0

0
0

−
u
x
u

2 z
u

2 z
0

2
u
x
u
z

0
−

2u
z

0
0

0
−
u
x

0
1

0
0

0
0

0
0

0

−
u

2 x
u
y

2u
x
u
y

u
2 x

0
−

2
u
x

0
0

−
u
y

0
0

0
0

1
0

0
0

0
0

0

−
u

2 x
u
z

2
u
x
u
z

0
u

2 x
0

−
2u

x
0

−
u
z

0
0

0
0

0
1

0
0

0
0

0

−
u
y
u

2 z
0

u
2 z

2
u
y
u
z

0
0

−
2u

z
0

0
−
u
y

0
0

0
0

1
0

0
0

0

−
u

2 y
u
z

0
2u

y
u
z

u
2 y

0
0

−
2u

y
0

−
u
z

0
0

0
0

0
0

1
0

0
0

u
2 x
u

2 y
−

2
u
x
u

2 y
−

2
u

2 x
u
y

0
4
u
x
u
y

0
0

u
2 y

u
2 x

0
−

2
u
x

0
−

2
u
y

0
0

0
1

0
0

u
2 x
u

2 z
−

2u
x
u

2 z
0

−
2u

2 x
u
z

0
4u

x
u
z

0
u

2 z
0

u
2 x

0
−

2
u
x

0
−

2u
z

0
0

0
1

0

u
2 y
u

2 z
0

−
2u

y
u

2 z
−

2u
2 y
u
z

0
0

4u
y
u
z

0
u

2 z
u

2 y
0

0
0

0
−

2
u
y
−

2u
z

0
0

1

  .

D.3. D3Q19 179

The equilibrium central moments are expressed as follows:

~̃Meq =



M̃eq
000

M̃eq
100

M̃eq
010

M̃eq
001

M̃eq
110

M̃eq
101

M̃eq
011

M̃eq
200

M̃eq
020

M̃eq
002

M̃eq
120

M̃eq
102

M̃eq
210

M̃eq
201

M̃eq
012

M̃eq
021

M̃eq
220

M̃eq
202

M̃eq
022



=



ρ

0

0

0

0

0

0
1
3ρ
1
3ρ
1
3ρ

0

0

0

0

0

0
1
9ρ
1
9ρ
1
9ρ



and transformation of the above leads to the following expressions for the local equilibrium distribution functions:

feq0 = 1
3ρ−

1
3ρu

2
x − 1

3ρu
2
y − 1

3ρu
2
z + ρu2

xu
2
y + ρu2

xu
2
z + ρu2

yu
2
z

feq1 = 1
18ρ−

1
6ρux + 1

6ρu
2
x − 1

6ρu
2
y − 1

6ρu
2
z + 1

2ρuxu
2
y + 1

2ρuxu
2
z − 1

2ρu
2
xu

2
y − 1

2ρu
2
xu

2
z

feq2 = 1
18ρ−

1
6ρuy −

1
6ρu

2
x + 1

6ρu
2
y − 1

6ρu
2
z + 1

2ρu
2
xuy + 1

2ρuyu
2
z − 1

2ρu
2
xu

2
y − 1

2ρu
2
yu

2
z

feq3 = 1
18ρ−

1
6ρuz −

1
6ρu

2
x − 1

6ρu
2
y + 1

6ρu
2
z + 1

2ρu
2
xuz + 1

2ρu
2
yuz − 1

2ρu
2
xu

2
z − 1

2ρu
2
yu

2
z

feq4 = 1
36ρ−

1
12ρux −

1
12ρuy + 1

12ρu
2
x + 1

12ρu
2
y + 1

4ρuxuy −
1
4ρu

2
xuy − 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq5 = 1
36ρ−

1
12ρux + 1

12ρuy + 1
12ρu

2
x + 1

12ρu
2
y − 1

4ρuxuy + 1
4ρu

2
xuy − 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq6 = 1
36ρ−

1
12ρux −

1
12ρuz + 1

12ρu
2
x + 1

12ρu
2
z + 1

4ρuxuz −
1
4ρu

2
xuz − 1

4ρuxu
2
z + 1

4ρu
2
xu

2
z

feq7 = 1
36ρ−

1
12ρux + 1

12ρuz + 1
12ρu

2
x + 1

12ρu
2
z − 1

4ρuxuz + 1
4ρu

2
xuz − 1

4ρuxu
2
z + 1

4ρu
2
xu

2
z

feq8 = 1
36ρ−

1
12ρuy −

1
12ρuz + 1

12ρu
2
y + 1

12ρu
2
z + 1

4ρuyuz −
1
4ρu

2
yuz − 1

4ρuyu
2
z + 1

4ρu
2
yu

2
z

feq9 = 1
36ρ−

1
12ρuy + 1

12ρuz + 1
12ρu

2
y + 1

12ρu
2
z − 1

4ρuyuz + 1
4ρu

2
yuz − 1

4ρuyu
2
z + 1

4ρu
2
yu

2
z

feq10 = 1
18ρ+ 1

6ρux + 1
6ρu

2
x − 1

6ρu
2
y − 1

6ρu
2
z − 1

2ρuxu
2
y − 1

2ρuxu
2
z − 1

2ρu
2
xu

2
y − 1

2ρu
2
xu

2
z

feq11 = 1
18ρ+ 1

6ρuy −
1
6ρu

2
x + 1

6ρu
2
y − 1

6ρu
2
z − 1

2ρu
2
xuy − 1

2ρuyu
2
z − 1

2ρu
2
xu

2
y − 1

2ρu
2
yu

2
z

feq12 = 1
18ρ+ 1

6ρuz −
1
6ρu

2
x − 1

6ρu
2
y + 1

6ρu
2
z − 1

2ρu
2
xuz − 1

2ρu
2
yuz − 1

2ρu
2
xu

2
z − 1

2ρu
2
yu

2
z

feq13 = 1
36ρ+ 1

12ρux + 1
12ρuy + 1

12ρu
2
x + 1

12ρu
2
y + 1

4ρuxuy + 1
4ρu

2
xuy + 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq14 = 1
36ρ+ 1

12ρux −
1
12ρuy + 1

12ρu
2
x + 1

12ρu
2
y − 1

4ρuxuy −
1
4ρu

2
xuy + 1

4ρuxu
2
y + 1

4ρu
2
xu

2
y

feq15 = 1
36ρ+ 1

12ρux + 1
12ρuz + 1

12ρu
2
x + 1

12ρu
2
z + 1

4ρuxuz + 1
4ρu

2
xuz + 1

4ρuxu
2
z + 1

4ρu
2
xu

2
z

feq16 = 1
36ρ+ 1

12ρux −
1
12ρuz + 1

12ρu
2
x + 1

12ρu
2
z − 1

4ρuxuz −
1
4ρu

2
xuz + 1

4ρuxu
2
z + 1

4ρu
2
xu

2
z

feq17 = 1
36ρ+ 1

12ρuy + 1
12ρuz + 1

12ρu
2
y + 1

12ρu
2
z + 1

4ρuyuz + 1
4ρu

2
yuz + 1

4ρuyu
2
z + 1

4ρu
2
yu

2
z

feq18 = 1
36ρ+ 1

12ρuy −
1
12ρuz + 1

12ρu
2
y + 1

12ρu
2
z − 1

4ρuyuz −
1
4ρu

2
yuz + 1

4ρuyu
2
z + 1

4ρu
2
yu

2
z

The relaxation frequencies can be expressed by the following block diagonal matrix:

Λ = diag

1, 1, 1, 1, τ−1
f , τ−1

f , τ−1
f ,

 s+ s− s−

s− s+ s−

s− s− s+

 , ω3, ω3, ω3, ω3, ω3, ω3, ω4, ω4, ω4



180 APPENDIX D. LATTICE SCHEMES

where s+ = 1
3

(
τ−1
f,bulk + 2τ−1

f

)
and s− = 1

3

(
τ−1
f,bulk − τ

−1
f

)
. The bulk viscosity can be related to the associated

relaxation time by:

ν′ =
2

9

(
τf,bulk −

1

2

)
(∆x)

2

∆t
.

Guo forcing can be applied using the following central moment transformations of the associated source terms:

~Sm =



0

Fx

Fy

Fz

0

0

0

0

0

0(
1
3 − v

2
y

)
Fx − 2vxvyFy(

1
3 − v

2
z

)
Fx − 2vxvzFz(

1
3 − v

2
x

)
Fy − 2vxvyFx(

1
3 − v

2
x

)
Fz − 2vxvzFx(

1
3 − v

2
z

)
Fy − 2vyvzFz(

1
3 − v

2
y

)
Fz − 2vyvzFy

4vxvy (vyFx + vxFy)− 1
3vzFz

4vxvz (vzFx + vxFz)− 1
3vyFy

4vyvz (vzFy + vyFz)− 1
3vxFx



,

and He forcing can be applied using these central moment terms:

~Sm =



0

Fx

Fy

Fz

0

0

0

0

0

0
1
3Fx
1
3Fx
1
3Fy
1
3Fz
1
3Fy
1
3Fz

0

0

0



.

D.4. D3Q27 181

D.4 D3Q27

Speed vectors
i ei,x ei,y ei,z
0 0 0 0
1 -1 0 0
2 0 -1 0
3 0 0 -1
4 -1 -1 0
5 -1 1 0
6 -1 0 -1
7 -1 0 1
8 0 -1 -1
9 0 -1 1

10 -1 -1 -1
11 -1 -1 1
12 -1 1 -1
13 -1 1 1
14 1 0 0
15 0 1 0
16 0 0 1
17 1 1 0
18 1 -1 0
19 1 0 1
20 1 0 -1
21 0 1 1
22 0 1 -1
23 1 1 1
24 1 1 -1
25 1 -1 1
26 1 -1 -1

Weight factors
i wi
0 8

27

1–3, 14–16 2
27

4–9, 17–22 1
54

10–13, 23–26 1
216

Multiple relaxation time scheme

Definition of transformation matrix based on [124]:

182 APPENDIX D. LATTICE SCHEMES

T
=

  1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

0
−

1
0

0
−

1
−

1
−

1
−

1
0

0
−

1
−

1
−

1
−

1
1

0
0

1
1

1
1

0
0

1
1

1
1

0
0
−

1
0
−

1
1

0
0
−

1
−

1
−

1
−

1
1

1
0

1
0

1
−

1
0

0
1

1
1

1
−

1
−

1

0
0
−

1
0

0
0
−

1
1
−

1
1
−

1
1
−

1
1

0
0

1
0

0
1
−

1
1
−

1
1
−

1
1
−

1

−
2
−

1
−

1
−

1
0

0
0

0
0

0
1

1
1

1
−

1
−

1
−

1
0

0
0

0
0

0
1

1
1

1

0
2
−

1
−

1
1

1
1

1
−

2
−

2
0

0
0

0
2
−

1
−

1
1

1
1

1
−

2
−

2
0

0
0

0

0
0

1
−

1
1

1
−

1
−

1
0

0
0

0
0

0
0

1
−

1
1

1
−

1
−

1
0

0
0

0
0

0

0
0

0
0

1
−

1
0

0
0

0
1

1
−

1
−

1
0

0
0

1
−

1
0

0
0

0
1

1
−

1
−

1

0
0

0
0

0
0

0
0

1
−

1
1
−

1
−

1
1

0
0

0
0

0
0

0
1
−

1
1
−

1
−

1
1

0
0

0
0

0
0

1
−

1
0

0
1
−

1
1
−

1
0

0
0

0
0

1
−

1
0

0
1
−

1
1
−

1

0
4

0
0

1
1

1
1

0
0
−

2
−

2
−

2
−

2
−

4
0

0
−

1
−

1
−

1
−

1
0

0
2

2
2

2

0
0

4
0

1
−

1
0

0
1

1
−

2
−

2
2

2
0
−

4
0
−

1
1

0
0
−

1
−

1
2

2
−

2
−

2

0
0

0
4

0
0

1
−

1
1
−

1
−

2
2
−

2
2

0
0
−

4
0

0
−

1
1
−

1
1

2
−

2
2
−

2

0
−

4
0

0
2

2
2

2
0

0
−

1
−

1
−

1
−

1
4

0
0
−

2
−

2
−

2
−

2
0

0
1

1
1

1

0
0
−

4
0

2
−

2
0

0
2

2
−

1
−

1
1

1
0

4
0
−

2
2

0
0
−

2
−

2
1

1
−

1
−

1

0
0

0
−

4
0

0
2
−

2
2
−

2
−

1
1
−

1
1

0
0

4
0

0
−

2
2
−

2
2

1
−

1
1
−

1

4
0

0
0
−

1
−

1
−

1
−

1
−

1
−

1
1

1
1

1
0

0
0
−

1
−

1
−

1
−

1
−

1
−

1
1

1
1

1

−
8

4
4

4
−

2
−

2
−

2
−

2
−

2
−

2
1

1
1

1
4

4
4
−

2
−

2
−

2
−

2
−

2
−

2
1

1
1

1

0
−

4
2

2
1

1
1

1
−

2
−

2
0

0
0

0
−

4
2

2
1

1
1

1
−

2
−

2
0

0
0

0

0
0
−

2
2

1
1
−

1
−

1
0

0
0

0
0

0
0
−

2
2

1
1
−

1
−

1
0

0
0

0
0

0

0
0

0
0
−

2
2

0
0

0
0

1
1
−

1
−

1
0

0
0
−

2
2

0
0

0
0

1
1
−

1
−

1

0
0

0
0

0
0

0
0
−

2
2

1
−

1
−

1
1

0
0

0
0

0
0

0
−

2
2

1
−

1
−

1
1

0
0

0
0

0
0
−

2
2

0
0

1
−

1
1
−

1
0

0
0

0
0
−

2
2

0
0

1
−

1
1
−

1

0
0

0
0
−

1
−

1
1

1
0

0
0

0
0

0
0

0
0

1
1
−

1
−

1
0

0
0

0
0

0

0
0

0
0

1
−

1
0

0
−

1
−

1
0

0
0

0
0

0
0
−

1
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0
−

1
1

1
−

1
0

0
0

0
0

0
0

0
0

1
−

1
−

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0
−

1
1

1
−

1
0

0
0

0
0

0
0

0
0

1
−

1
−

1
1

  

D.4. D3Q27 183

For the standard local equilibrium distribution functions, the equilibrium moments are expressed for incom-

pressible fluids as:

~Meq =



ρ

jx

jy

jz

eeq

3peqxx
peqww
peqxy
peqyz
peqzx
qeqx
qeqy
qeqz
κeqx
κeqy
κeqz
εeq

eeq3
3πeqxx
πeqww
πeqxy
πeqyz
πeqzx
τeqx
τeqy
τeqz
qeqxyz



=



ρ

jx

jy

jz

−ρ+ 1
ρ0

(j2
x + j2

y + j2
z)

2j2x−j
2
y−j

2
z

ρ0
j2y−j

2
z

ρ0
jxjy
ρ0
jyjz
ρ0
jzjx
ρ0

−2jx

−2jy

−2jz

jx

jy

jz

ρ− 2
ρ0

(j2
x + j2

y + j2
z)

−ρ+ 1
ρ0

(j2
x + j2

y + j2
z)

− 2j2x−j
2
y−j

2
z

ρ0

− j
2
y−j

2
z

ρ0

− jxjyρ0
− jyjzρ0
− jzjxρ0

0

0

0

0



where ρ is used in place of ρ0 for mildly compressible fluids, jx = ρ0ux, jy = ρ0uy and jz = ρ0uz.

The relaxation frequencies for the above moments can be expressed by the following diagonal matrix:

~s = diag
(

1, 1, 1, 1, τ−1
f,bulk, τ

−1
f , τ−1

f , τ−1
f , τ−1

f , τ−1
f , s10, s10, s10, s13, s13, s13, s16, s17, s18, s18, s20, s20, s20, s23, s23, s23, s26

)

where the bulk viscosity can be related to the associated relaxation time by:

ν′ =
2

9

(
τf,bulk −

1

2

)
(∆x)

2

∆t
.

Recommended default values for the eight variable relaxation frequencies are: s10 = 1.5, s13 = 1.83, s16 = 1.4,

s17 = 1.61, s18 = s20 = 1.98 and s23 = s26 = 1.74.

184 APPENDIX D. LATTICE SCHEMES

Guo forcing can be applied using the following moment transformations of the associated source terms:

~Sm =



0

Fx
Fy
Fz

2(vxFx + vyFy + vzFz)

2(2vxFx − vyFy − vzFz)

2(vyFy − vzFz)

vyFx + vxFy
vzFy + vyFz
vxFz + vzFx
−2Fx
−2Fy
−2Fz
Fx
Fy
Fz

−4(vxFx + vyFy + vzFz)

6(vxFx + vyFy + vzFz)

−2(2vxFx − vyFy − vzFz)

−2(vyFy − vzFz)

−(vyFx + vxFy)

−(vzFy + vyFz)

−(vxFz + vzFx)

0

0

0

0



,

and He forcing can be applied using these moment terms:

~Sm =



0

Fx
Fy
Fz

2(vxFx + vyFy + vzFz)

2(2vxFx − vyFy − vzFz)

2(vyFy − vzFz)

vyFx + vxFy
vzFy + vyFz
vxFz + vzFx(

−2 + 3v2y + 3v2z

)
Fx + 6vxvyFy + 6vxvzFz(

−2 + 3v2x + 3v2z

)
Fy + 6vxvyFx + 6vyvzFz(

−2 + 3v2x + 3v2y

)
Fz + 6vxvyFx + 6vyvzFy

Fx

(
1− 3v2y − 3v2z

)
− +6vxvyFy − 6vxvzFz

Fy

(
1− 3v2x − 3v2z

)
− 6vxvyFx − 6vyvzFz

Fz

(
1− 3v2x − 3v2y

)
− 6vxvyFx − 6vyvzFy

−4(vxFx + vyFy + vzFz)

6(vxFx + vyFy + vzFz)

−2(2vxFx − vyFy − vzFz)

−2(vyFy − vzFz)

−(vyFx + vxFy)

−(vzFy + vyFz)

−(vxFz + vzFx)(
v2y − v

2
z

)
Fx + 2vxvyFy − 2vxvzFz(

v2z − v
2
x

)
Fy + 2vyvzFz − 2vxvyFx(

v2x − v
2
y

)
Fz + 2vxvzFx − 2vyvzFy

vyvzFx + vxvzFy + vxvyFz



.

Cascaded LBE scheme

Definitions of transformation and shift matrices based on [30]:

D.4. D3Q27 185

T
=

  1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

0
−

1
0

0
−

1
−

1
−

1
−

1
0

0
−

1
−

1
−

1
−

1
1

0
0

1
1

1
1

0
0

1
1

1
1

0
0
−

1
0
−

1
1

0
0
−

1
−

1
−

1
−

1
1

1
0

1
0

1
−

1
0

0
1

1
1

1
−

1
−

1

0
0

0
−

1
0

0
−

1
1
−

1
1
−

1
1
−

1
1

0
0

1
0

0
1
−

1
1
−

1
1
−

1
1
−

1

0
0

0
0

1
−

1
0

0
0

0
1

1
−

1
−

1
0

0
0

1
−

1
0

0
0

0
1

1
−

1
−

1

0
0

0
0

0
0

1
−

1
0

0
1
−

1
1
−

1
0

0
0

0
0

1
−

1
0

0
1
−

1
1
−

1

0
0

0
0

0
0

0
0

1
−

1
1
−

1
−

1
1

0
0

0
0

0
0

0
1
−

1
1
−

1
−

1
1

0
1

0
0

1
1

1
1

0
0

1
1

1
1

1
0

0
1

1
1

1
0

0
1

1
1

1

0
0

1
0

1
1

0
0

1
1

1
1

1
1

0
1

0
1

1
0

0
1

1
1

1
1

1

0
0

0
1

0
0

1
1

1
1

1
1

1
1

0
0

1
0

0
1

1
1

1
1

1
1

1

0
0

0
0
−

1
−

1
0

0
0

0
−

1
−

1
−

1
−

1
0

0
0

1
1

0
0

0
0

1
1

1
1

0
0

0
0

0
0
−

1
−

1
0

0
−

1
−

1
−

1
−

1
0

0
0

0
0

1
1

0
0

1
1

1
1

0
0

0
0
−

1
1

0
0

0
0
−

1
−

1
1

1
0

0
0

1
−

1
0

0
0

0
1

1
−

1
−

1

0
0

0
0

0
0
−

1
1

0
0
−

1
1
−

1
1

0
0

0
0

0
1
−

1
0

0
1
−

1
1
−

1

0
0

0
0

0
0

0
0
−

1
−

1
−

1
−

1
1

1
0

0
0

0
0

0
0

1
1

1
1
−

1
−

1

0
0

0
0

0
0

0
0
−

1
1
−

1
1
−

1
1

0
0

0
0

0
0

0
1
−

1
1
−

1
1
−

1

0
0

0
0

0
0

0
0

0
0
−

1
1

1
−

1
0

0
0

0
0

0
0

0
0

1
−

1
−

1
1

0
0

0
0

1
1

0
0

0
0

1
1

1
1

0
0

0
1

1
0

0
0

0
1

1
1

1

0
0

0
0

0
0

1
1

0
0

1
1

1
1

0
0

0
0

0
1

1
0

0
1

1
1

1

0
0

0
0

0
0

0
0

1
1

1
1

1
1

0
0

0
0

0
0

0
1

1
1

1
1

1

0
0

0
0

0
0

0
0

0
0

1
−

1
−

1
1

0
0

0
0

0
0

0
0

0
1
−

1
−

1
1

0
0

0
0

0
0

0
0

0
0

1
−

1
1
−

1
0

0
0

0
0

0
0

0
0

1
−

1
1
−

1

0
0

0
0

0
0

0
0

0
0

1
1
−

1
−

1
0

0
0

0
0

0
0

0
0

1
1
−

1
−

1

0
0

0
0

0
0

0
0

0
0
−

1
−

1
−

1
−

1
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0
−

1
−

1
1

1
0

0
0

0
0

0
0

0
0

1
1
−

1
−

1

0
0

0
0

0
0

0
0

0
0
−

1
1
−

1
1

0
0

0
0

0
0

0
0

0
1
−

1
1
−

1

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
1

1
1

1

  

186 APPENDIX D. LATTICE SCHEMES

N
=

  

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
u
x

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
u
y

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
u
z

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

u
x
u
y

−
u
y

−
u
x

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

u
x
u
z

−
u
z

0
−
u
x

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

u
y
u
z

0
−
u
z

−
u
y

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

u
2 x

−
2
u
x

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

u
2 y

0
−

2
u
y

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

u
2 z

0
0

−
2
u
z

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
u
x
u
2 y

u
2 y

2
u
x
u
y

0
−

2
u
y

0
0

0
−
u
x

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
u
x
u
2 z

u
2 z

0
2
u
x
u
z

0
−

2
u
z

0
0

0
−
u
x

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
u
2 x
u
y

2
u
x
u
y

u
2 x

0
−

2
u
x

0
0

−
u
y

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

−
u
2 x
u
z

2
u
x
u
z

0
u
2 x

0
−

2
u
x

0
−
u
z

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0

−
u
y
u
2 z

0
u
2 z

2
u
y
u
z

0
0

−
2
u
z

0
0

−
u
y

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0

−
u
2 y
u
z

0
2
u
y
u
z

u
2 y

0
0

−
2
u
y

0
−
u
z

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

−
u
x
u
y
u
z

u
y
u
z

u
x
u
z

u
x
u
y

−
u
z

−
u
y

−
u
x

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

u
2 x
u
2 y

−
2
u
x
u
2 y
−

2
u
2 x
u
y

0
4
u
x
u
y

0
0

u
2 y

u
2 x

0
−

2
u
x

0
−

2
u
y

0
0

0
0

1
0

0
0

0
0

0
0

0
0

u
2 x
u
2 z

−
2
u
x
u
2 z

0
−

2
u
2 x
u
z

0
4
u
x
u
z

0
u
2 z

0
u
2 x

0
−

2
u
x

0
−

2
u
z

0
0

0
0

1
0

0
0

0
0

0
0

0

u
2 y
u
2 z

0
−

2
u
y
u
2 z
−

2
u
2 y
u
z

0
0

4
u
y
u
z

0
u
2 z

u
2 y

0
0

0
0

−
2
u
y
−

2
u
z

0
0

0
1

0
0

0
0

0
0

0

u
2 x
u
y
u
z
−

2
u
x
u
y
u
z
−
u
2 x
u
z

−
u
2 x
u
y

2
u
x
u
z

2
u
x
u
y

u
2 x

u
y
u
z

0
0

0
0

−
u
z

−
u
y

0
0

−
2
u
x

0
0

0
1

0
0

0
0

0
0

u
x
u
2 y
u
z
−
u
2 y
u
z
−

2
u
x
u
y
u
z
−
u
x
u
2 y

2
u
y
u
z

u
2 y

2
u
x
u
y

0
u
x
u
z

0
−
u
z

0
0

0
0

−
u
x

−
2
u
y

0
0

0
0

1
0

0
0

0
0

u
x
u
y
u
2 z
−
u
y
u
2 z

−
u
x
u
2 z
−

2
u
x
u
y
u
z

u
2 z

2
u
y
u
z

2
u
x
u
z

0
0

u
x
u
y

0
−
u
y

0
0

−
u
x

0
−

2
u
z

0
0

0
0

0
1

0
0

0
0

−
u
x
u
2 y
u
2 z

u
2 y
u
2 z

2
u
x
u
y
u
2 z

2
u
x
u
2 y
u
z
−

2
u
y
u
2 z
−

2
u
2 y
u
z
−

4
u
x
u
y
u
z

0
−
u
x
u
2 z
−
u
x
u
2 y

u
2 z

u
2 y

0
0

2
u
x
u
y

2
u
x
u
z

4
u
y
u
z

0
0
−
u
x

0
−

2
u
z
−

2
u
y

1
0

0
0

−
u
2 x
u
y
u
2 z

2
u
x
u
y
u
2 z

u
2 x
u
2 z

2
u
2 x
u
y
u
z
−

2
u
x
u
2 z
−

4
u
x
u
y
u
z
−

2
u
2 x
u
z
−
u
y
u
2 z

0
−
u
2 x
u
y

0
2
u
x
u
y

u
2 z

2
u
y
u
z

u
2 x

0
4
u
x
u
z

0
−
u
y

0
−

2
u
z

0
−

2
u
x

0
1

0
0

−
u
2 x
u
2 y
u
z

2
u
x
u
2 y
u
z

2
u
2 x
u
y
u
z

u
2 x
u
2 y
−

4
u
x
u
y
u
z
−

2
u
x
u
2 y
−

2
u
2 x
u
y
−
u
2 y
u
z
−
u
2 x
u
z

0
2
u
x
u
z

0
2
u
y
u
z

u
2 y

0
u
2 x

4
u
x
u
y
−
u
z

0
0
−

2
u
y
−

2
u
x

0
0

0
1

0

u
2 z
u
2 y
u
2 z
−

2
u
x
u
2 y
u
2 z
−

2
u
2 x
u
y
u
2 z
−

2
u
2 x
u
2 y
u
z

4
u
x
u
y
u
2 z

4
u
x
u
2 y
u
z

4
u
2 x
u
y
u
z

u
2 y
u
2 z

u
2 x
u
2 z

u
2 x
u
2 y
−

2
u
x
u
2 z
−

2
u
x
u
2 y
−

2
u
y
u
2 z
−

2
u
2 y
u
z
−

2
u
2 x
u
y
−

2
u
2 x
u
z
−

8
u
x
u
y
u
z
u
2 z

u
2 y

u
2 x

4
u
y
u
z
4
u
x
u
z
4
u
x
u
y
−

2
u
x
−

2
u
y
−

2
u
z
1

  .

D.4. D3Q27 187

The equilibrium central moments are expressed as follows:

~̃Meq =



M̃eq
000

M̃eq
100

M̃eq
010

M̃eq
001

M̃eq
110

M̃eq
101

M̃eq
011

M̃eq
200

M̃eq
020

M̃eq
002

M̃eq
120

M̃eq
102

M̃eq
210

M̃eq
201

M̃eq
012

M̃eq
021

M̃eq
111

M̃eq
220

M̃eq
202

M̃eq
022

M̃eq
211

M̃eq
121

M̃eq
112

M̃eq
122

M̃eq
212

M̃eq
221

M̃eq
222



=



ρ

0

0

0

0

0

0
1
3ρ
1
3ρ
1
3ρ

0

0

0

0

0

0

0
1
9ρ
1
9ρ
1
9ρ

0

0

0

0

0

0
1
27ρ



188 APPENDIX D. LATTICE SCHEMES

and transformation of the above leads to the following expressions for the local equilibrium distribution functions:

feq0 = 8
27ρ−

4
9ρu

2
x − 4

9ρu
2
y − 4

9ρu
2
z + 2

3ρu
2
xu

2
y + 2

3ρu
2
xu

2
z + 2

3ρu
2
yu

2
z − ρu2

xu
2
yu

2
z

feq1 = 2
27ρ−

2
9ρux + 2

9ρu
2
x − 1

9ρu
2
y − 1

9ρu
2
z + 1

3ρuxu
2
y + 1

3ρuxu
2
z − 1

3ρu
2
xu

2
y − 1

3ρu
2
xu

2
z + 1

6ρu
2
yu

2
z − 1

2ρuxu
2
yu

2
z + 1

2ρu
2
xu

2
yu

2
z

feq2 = 2
27ρ−

2
9ρuy −

1
9ρu

2
x + 2

9ρu
2
y − 1

9ρu
2
z + 1

3ρu
2
xuy + 1

3ρuyu
2
z − 1

3ρu
2
xu

2
y + 1

6ρu
2
xu

2
z − 1

3ρu
2
yu

2
z − 1

2ρu
2
xuyu

2
z + 1

2ρu
2
xu

2
yu

2
z

feq3 = 2
27ρ−

2
9ρuz −

1
9ρu

2
x − 1

9ρu
2
y + 2

9ρu
2
z + 1

3ρu
2
xuz + 1

3ρu
2
yuz + 1

6ρu
2
xu

2
y − 1

3ρu
2
xu

2
z − 1

3ρu
2
yu

2
z − 1

2ρu
2
xu

2
yuz + 1

2ρu
2
xu

2
yu

2
z

feq4 = 1
54ρ−

1
18ρux −

1
18ρuy + 1

18ρu
2
x + 1

18ρu
2
y − 1

36ρu
2
z + 1

6ρuxuy −
1
6ρuxu

2
y − 1

6ρu
2
xuy + 1

12ρuxu
2
z + 1

12ρuyu
2
z

+ 1
6ρu

2
xu

2
y − 1

12ρu
2
xu

2
z − 1

12ρu
2
yu

2
z − 1

4ρuxuyu
2
z + 1

4ρuxu
2
yu

2
z + 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq5 = 1
54ρ−

1
18ρux + 1

18ρuy + 1
18ρu

2
x + 1

18ρu
2
y − 1

36ρu
2
z − 1

6ρuxuy −
1
6ρuxu

2
y + 1

6ρu
2
xuy + 1

12ρuxu
2
z − 1

12ρuyu
2
z

+ 1
6ρu

2
xu

2
y − 1

12ρu
2
xu

2
z − 1

12ρu
2
yu

2
z + 1

4ρuxuyu
2
z + 1

4ρuxu
2
yu

2
z − 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq6 = 1
54ρ−

1
18ρux −

1
18ρuz + 1

18ρu
2
x − 1

36ρu
2
y + 1

18ρu
2
z + 1

6ρuxuz −
1
6ρuxu

2
z − 1

6ρu
2
xuz + 1

12ρuxu
2
y + 1

12ρu
2
yuz

− 1
12ρu

2
xu

2
y + 1

6ρu
2
xu

2
z − 1

12ρu
2
yu

2
z − 1

4ρuxu
2
yuz + 1

4ρu
2
xu

2
yuz + 1

4ρuxu
2
yu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq7 = 1
54ρ−

1
18ρux + 1

18ρuz + 1
18ρu

2
x − 1

36ρu
2
y + 1

18ρu
2
z − 1

6ρuxuz −
1
6ρuxu

2
z + 1

6ρu
2
xuz + 1

12ρuxu
2
y − 1

12ρu
2
yuz

− 1
12ρu

2
xu

2
y + 1

6ρu
2
xu

2
z − 1

12ρu
2
yu

2
z + 1

4ρuxu
2
yuz − 1

4ρu
2
xu

2
yuz + 1

4ρuxu
2
yu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq8 = 1
54ρ−

1
18ρuy −

1
18ρuz −

1
36ρu

2
x + 1

18ρu
2
y + 1

18ρu
2
z + 1

6ρuyuz −
1
6ρu

2
yuz − 1

6ρuyu
2
z + 1

12ρu
2
xuy + 1

12ρu
2
xuz

− 1
12ρu

2
xu

2
y − 1

12ρu
2
xu

2
z + 1

6ρu
2
yu

2
z − 1

4ρu
2
xuyuz + 1

4ρu
2
xu

2
yuz + 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq9 = 1
54ρ−

1
18ρuy + 1

18ρuz −
1
36ρu

2
x + 1

18ρu
2
y + 1

18ρu
2
z − 1

6ρuyuz + 1
6ρu

2
yuz − 1

6ρuyu
2
z + 1

12ρu
2
xuy − 1

12ρu
2
xuz

− 1
12ρu

2
xu

2
y − 1

12ρu
2
xu

2
z + 1

6ρu
2
yu

2
z + 1

4ρu
2
xuyuz − 1

4ρu
2
xu

2
yuz + 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq10 = 1
216ρ−

1
72ρux −

1
72ρuy −

1
72ρuz + 1

72ρu
2
x + 1

72ρu
2
y + 1

72ρu
2
z + 1

24ρuxuy + 1
24ρuxuz + 1

24ρuyuz

− 1
24ρu

2
xuy − 1

24ρu
2
xuz − 1

24ρuxu
2
y − 1

24ρu
2
yuz − 1

24ρuxu
2
z − 1

24ρuyu
2
z − 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z + 1

8ρu
2
xuyuz + 1

8ρuxu
2
yuz + 1

8ρuxuyu
2
z

− 1
8ρu

2
xu

2
yuz − 1

8ρu
2
xuyu

2
z − 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

feq11 = 1
216ρ−

1
72ρux −

1
72ρuy + 1

72ρuz + 1
72ρu

2
x + 1

72ρu
2
y + 1

72ρu
2
z + 1

24ρuxuy −
1
24ρuxuz −

1
24ρuyuz

− 1
24ρu

2
xuy + 1

24ρu
2
xuz − 1

24ρuxu
2
y + 1

24ρu
2
yuz − 1

24ρuxu
2
z − 1

24ρuyu
2
z + 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z − 1

8ρu
2
xuyuz − 1

8ρuxu
2
yuz + 1

8ρuxuyu
2
z

+ 1
8ρu

2
xu

2
yuz − 1

8ρu
2
xuyu

2
z − 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

D.4. D3Q27 189

feq12 = 1
216ρ−

1
72ρux + 1

72ρuy −
1
72ρuz + 1

72ρu
2
x + 1

72ρu
2
y + 1

72ρu
2
z − 1

24ρuxuy + 1
24ρuxuz −

1
24ρuyuz

+ 1
24ρu

2
xuy − 1

24ρu
2
xuz − 1

24ρuxu
2
y − 1

24ρu
2
yuz − 1

24ρuxu
2
z + 1

24ρuyu
2
z + 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z − 1

8ρu
2
xuyuz + 1

8ρuxu
2
yuz − 1

8ρuxuyu
2
z

− 1
8ρu

2
xu

2
yuz + 1

8ρu
2
xuyu

2
z − 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

feq13 = 1
216ρ−

1
72ρux + 1

72ρuy + 1
72ρuz + 1

72ρu
2
x + 1

72ρu
2
y + 1

72ρu
2
z − 1

24ρuxuy −
1
24ρuxuz + 1

24ρuyuz

+ 1
24ρu

2
xuy + 1

24ρu
2
xuz − 1

24ρuxu
2
y + 1

24ρu
2
yuz − 1

24ρuxu
2
z + 1

24ρuyu
2
z − 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z + 1

8ρu
2
xuyuz − 1

8ρuxu
2
yuz − 1

8ρuxuyu
2
z

+ 1
8ρu

2
xu

2
yuz + 1

8ρu
2
xuyu

2
z − 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

feq14 = 2
27ρ+ 2

9ρux + 2
9ρu

2
x − 1

9ρu
2
y − 1

9ρu
2
z − 1

3ρuxu
2
y − 1

3ρuxu
2
z − 1

3ρu
2
xu

2
y − 1

3ρu
2
xu

2
z + 1

6ρu
2
yu

2
z + 1

2ρuxu
2
yu

2
z + 1

2ρu
2
xu

2
yu

2
z

feq15 = 2
27ρ+ 2

9ρuy −
1
9ρu

2
x + 2

9ρu
2
y − 1

9ρu
2
z − 1

3ρu
2
xuy − 1

3ρuyu
2
z − 1

3ρu
2
xu

2
y + 1

6ρu
2
xu

2
z − 1

3ρu
2
yu

2
z + 1

2ρu
2
xuyu

2
z + 1

2ρu
2
xu

2
yu

2
z

feq16 = 2
27ρ+ 2

9ρuz −
1
9ρu

2
x − 1

9ρu
2
y + 2

9ρu
2
z − 1

3ρu
2
xuz − 1

3ρu
2
yuz + 1

6ρu
2
xu

2
y − 1

3ρu
2
xu

2
z − 1

3ρu
2
yu

2
z + 1

2ρu
2
xu

2
yuz + 1

2ρu
2
xu

2
yu

2
z

feq17 = 1
54ρ+ 1

18ρux + 1
18ρuy + 1

18ρu
2
x + 1

18ρu
2
y − 1

36ρu
2
z + 1

6ρuxuy + 1
6ρuxu

2
y + 1

6ρu
2
xuy − 1

12ρuxu
2
z − 1

12ρuyu
2
z

+ 1
6ρu

2
xu

2
y − 1

12ρu
2
xu

2
z − 1

12ρu
2
yu

2
z − 1

4ρuxuyu
2
z − 1

4ρuxu
2
yu

2
z − 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq18 = 1
54ρ+ 1

18ρux −
1
18ρuy + 1

18ρu
2
x + 1

18ρu
2
y − 1

36ρu
2
z − 1

6ρuxuy + 1
6ρuxu

2
y − 1

6ρu
2
xuy − 1

12ρuxu
2
z + 1

12ρuyu
2
z

+ 1
6ρu

2
xu

2
y − 1

12ρu
2
xu

2
z − 1

12ρu
2
yu

2
z + 1

4ρuxuyu
2
z − 1

4ρuxu
2
yu

2
z + 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq19 = 1
54ρ+ 1

18ρux + 1
18ρuz + 1

18ρu
2
x − 1

36ρu
2
y + 1

18ρu
2
z + 1

6ρuxuz + 1
6ρuxu

2
z + 1

6ρu
2
xuz − 1

12ρuxu
2
y − 1

12ρu
2
yuz

− 1
12ρu

2
xu

2
y + 1

6ρu
2
xu

2
z − 1

12ρu
2
yu

2
z − 1

4ρuxu
2
yuz − 1

4ρu
2
xu

2
yuz − 1

4ρuxu
2
yu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq20 = 1
54ρ+ 1

18ρux −
1
18ρuz + 1

18ρu
2
x − 1

36ρu
2
y + 1

18ρu
2
z − 1

6ρuxuz + 1
6ρuxu

2
z − 1

6ρu
2
xuz − 1

12ρuxu
2
y + 1

12ρu
2
yuz

− 1
12ρu

2
xu

2
y + 1

6ρu
2
xu

2
z − 1

12ρu
2
yu

2
z + 1

4ρuxu
2
yuz + 1

4ρu
2
xu

2
yuz − 1

4ρuxu
2
yu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq21 = 1
54ρ+ 1

18ρuy + 1
18ρuz −

1
36ρu

2
x + 1

18ρu
2
y + 1

18ρu
2
z + 1

6ρuyuz + 1
6ρu

2
yuz + 1

6ρuyu
2
z − 1

12ρu
2
xuy − 1

12ρu
2
xuz

− 1
12ρu

2
xu

2
y − 1

12ρu
2
xu

2
z + 1

6ρu
2
yu

2
z − 1

4ρu
2
xuyuz − 1

4ρu
2
xu

2
yuz − 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq22 = 1
54ρ+ 1

18ρuy −
1
18ρuz −

1
36ρu

2
x + 1

18ρu
2
y + 1

18ρu
2
z − 1

6ρuyuz −
1
6ρu

2
yuz + 1

6ρuyu
2
z − 1

12ρu
2
xuy + 1

12ρu
2
xuz

− 1
12ρu

2
xu

2
y − 1

12ρu
2
xu

2
z + 1

6ρu
2
yu

2
z + 1

4ρu
2
xuyuz + 1

4ρu
2
xu

2
yuz − 1

4ρu
2
xuyu

2
z − 1

4ρu
2
xu

2
yu

2
z

feq23 = 1
216ρ+ 1

72ρux + 1
72ρuy + 1

72ρuz + 1
72ρu

2
x + 1

72ρu
2
y + 1

72ρu
2
z + 1

24ρuxuy + 1
24ρuxuz + 1

24ρuyuz

+ 1
24ρu

2
xuy + 1

24ρu
2
xuz + 1

24ρuxu
2
y + 1

24ρu
2
yuz + 1

24ρuxu
2
z + 1

24ρuyu
2
z + 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z + 1

8ρu
2
xuyuz + 1

8ρuxu
2
yuz + 1

8ρuxuyu
2
z

+ 1
8ρu

2
xu

2
yuz + 1

8ρu
2
xuyu

2
z + 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

feq24 = 1
216ρ+ 1

72ρux + 1
72ρuy −

1
72ρuz + 1

72ρu
2
x + 1

72ρu
2
y + 1

72ρu
2
z + 1

24ρuxuy −
1
24ρuxuz −

1
24ρuyuz

+ 1
24ρu

2
xuy − 1

24ρu
2
xuz + 1

24ρuxu
2
y − 1

24ρu
2
yuz + 1

24ρuxu
2
z + 1

24ρuyu
2
z − 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z − 1

8ρu
2
xuyuz − 1

8ρuxu
2
yuz + 1

8ρuxuyu
2
z

− 1
8ρu

2
xu

2
yuz + 1

8ρu
2
xuyu

2
z + 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

feq25 = 1
216ρ+ 1

72ρux −
1
72ρuy + 1

72ρuz + 1
72ρu

2
x + 1

72ρu
2
y + 1

72ρu
2
z − 1

24ρuxuy + 1
24ρuxuz −

1
24ρuyuz

− 1
24ρu

2
xuy + 1

24ρu
2
xuz + 1

24ρuxu
2
y + 1

24ρu
2
yuz + 1

24ρuxu
2
z − 1

24ρuyu
2
z − 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z − 1

8ρu
2
xuyuz + 1

8ρuxu
2
yuz − 1

8ρuxuyu
2
z

+ 1
8ρu

2
xu

2
yuz − 1

8ρu
2
xuyu

2
z + 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

feq26 = 1
216ρ+ 1

72ρux −
1
72ρuy −

1
72ρuz + 1

72ρu
2
x + 1

72ρu
2
y + 1

72ρu
2
z − 1

24ρuxuy −
1
24ρuxuz + 1

24ρuyuz

− 1
24ρu

2
xuy − 1

24ρu
2
xuz + 1

24ρuxu
2
y − 1

24ρu
2
yuz + 1

24ρuxu
2
z − 1

24ρuyu
2
z + 1

8ρuxuyuz

+ 1
24ρu

2
xu

2
y + 1

24ρu
2
xu

2
z + 1

24ρu
2
yu

2
z + 1

8ρu
2
xuyuz − 1

8ρuxu
2
yuz − 1

8ρuxuyu
2
z

− 1
8ρu

2
xu

2
yuz − 1

8ρu
2
xuyu

2
z + 1

8ρuxu
2
yu

2
z + 1

8ρu
2
xu

2
yu

2
z

190 APPENDIX D. LATTICE SCHEMES

The relaxation frequencies can be expressed by the following block diagonal matrix:

Λ = diag

1, 1, 1, 1, τ−1
f , τ−1

f , τ−1
f ,

 s+ s− s−

s− s+ s−

s− s− s+

ω3, ω3, ω3, ω3, ω3, ω3, 1, ω4, ω4, ω4, 1, 1, 1, 1, 1, 1, 1



where s+ = 1
3

(
τ−1
f,bulk + 2τ−1

f

)
and s− = 1

3

(
τ−1
f,bulk − τ

−1
f

)
. The bulk viscosity can be related to the associated

relaxation time by:

ν′ =
2

9

(
τf,bulk −

1

2

)
(∆x)

2

∆t
.

Guo forcing can be applied using the following central moment transformations of the associated source terms:

~Sm =



0

Fx

Fy

Fz

0

0

0

0

0

0(
1
3 − v

2
y

)
Fx − 2vxvyFy(

1
3 − v

2
z

)
Fx − 2vxvzFz(

1
3 − v

2
x

)
Fy − 2vxvyFx(

1
3 − v

2
x

)
Fz − 2vxvzFx(

1
3 − v

2
z

)
Fy − 2vyvzFz(

1
3 − v

2
y

)
Fz − 2vyvzFy

−vyvzFx + vxvzFy + vxvyFz

4vxvy (vyFx + vxFy)

4vxvz (vzFx + vxFz)

4vyvz (vzFy + vyFz)

2vx (2vyvzFx + vxvzFy + vxvyFz)

2vy (vyvzFx + 2vxvzFy + vxvyFz)

2vz (vyvzFx + vxvzFy + 2vxvyFz)

Fx
(

1
9 −

1
3v

2
y − 1

3v
2
z − 3v2

yv
2
z

)
− (vzFy + vyFz)

(
2
3vx + 6vxvyvz

)
Fy
(

1
9 −

1
3v

2
x − 1

3v
2
z − 3v2

xv
2
z

)
− (vzFx + vxFz)

(
2
3vy + 6vxvyvz

)
Fz
(

1
9 −

1
3v

2
x − 1

3v
2
y − 3v2

xv
2
y

)
− (vyFx + vxFy)

(
2
3vz + 6vxvyvz

)
4
3vxvy (vyFx + vxFy) + 4

3vxvz (vzFx + vxFz) + 4
3vyvz (vzFy + vyFz) + 8vxvyvz (vyvzFx + vxvzFy + vxvyFz)



,

D.4. D3Q27 191

and He forcing can be applied using these central moment terms:

~Sm =



0

Fx

Fy

Fz

0

0

0

0

0

0
1
3Fx
1
3Fx
1
3Fy
1
3Fz
1
3Fy
1
3Fz

0

0

0

0

0

0

0
1
9Fx
1
9Fy
1
9Fz

0



.

Appendix E

DL MESO DPD Error Messages

This appendix documents the error and warning messages currently available in the DPD code in DL MESO,

DL MESO DPD, and recommendations for users to try and overcome the errors. Users may contact the authors

of DL MESO after attempting the recommended actions.

Message 1: cutoff radius value not set

A valid cutoff radius (either rc,max or rc) for all (non-electrostatic) interactions cannot be found in the CONTROL

file: this is a compulsory parameter for DPD simulations.

Action: Look in the CONTROL file and make sure either the cutoff directive or the thermostat cutoff directive

is included with a non-zero value.

Message 2: temperature not set

A valid system temperature (kBT) cannot be found in the CONTROL file: this is a compulsory parameter for

DPD simulations.

Action: Look in the CONTROL file and make sure the temperature directive is included with a non-zero value.

Message 3: time step size not set

A valid simulation timestep (∆t) cannot be found in the CONTROL file: this is a compulsory parameter for DPD

simulations.

Action: Look in the CONTROL file and make sure the timestep directive is included with a non-zero value.

Message 4: boundary halo size larger than half subdomain size

The size of the boundary halo (either specified by the user or determined from required interaction and bond

lengths) exceeds half the length of at least one dimension of the subdomain volume assigned to each processor.

The DPD simulation may therefore run less efficiently.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to

reduce the specified boundary halo size or use global bond calculations for future calculations.

Message 5: too many beads per node

The number of particles likely to be assigned to each processor is greater than the calculated maximum value

maxdim.

Action: This error is unlikely to happen as maxdim is calculated according to the numbers of particles and

processors available, but the user may wish to use the densvar directive in the CONTROL file to increase this

value.

193

194 APPENDIX E. DL MESO DPD ERROR MESSAGES

Message 6: system is not charge neutral

The overall charge for the system is non-zero.

Action: None immediately required to ensure the simulation runs as this is a warning message, but the user

may wish to adjust the numbers of charged particles to balance out positive and negative charges. (Ewald sums

do not tend to work for periodic systems with overall charges.)

Message 7: at least one interaction length larger than cutoff radius

The interaction length for at least one interacting pair of species (rc,ij) specified in the FIELD file exceeds the

(global) cutoff radius (rc) specified in the CONTROL file: any overly-long interactions will be truncated at the

global cutoff radius.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to

increase the specified cutoff radius to prevent truncation of interactions at larger separations.

Message 8: boundary halo size larger than subdomain size - cannot apply SPME

The size of the boundary halo (either specified by the user or determined from required interaction and bond

lengths) exceeds the length of at least one dimension of the subdomain volume assigned to each processor. This

prevents correct charge grid assignment for Smooth Particle Mesh Ewald calculations when using distributed

charge grids.

Action: The user should either increase the size of the maximum reciprocal vector or otherwise reduce the size

of the boundary halo.

Message 9: volume not specified in CONTROL or CONFIG file

The system volume cannot be found in either the CONTROL file (for systems initialized from scratch) or the

supplied CONFIG file.

Action: The user should check that either the CONTROL file includes a volume directive or the CONFIG file

includes lines specifying the system volume.

Message 10: cannot read CONFIG file

The supplied CONFIG file cannot be read by DL MESO DPD: it might have been corrupted.

Action: Check the CONFIG file to ensure it is complete and in ANSI (text) format.

Message 20: missing CONTROL file

No input file named CONTROL can be found.

Action: Make sure there is a CONTROL file in the same directory as the DL MESO DPD executable.

Message 21: cannot read CONTROL file

The supplied CONTROL file cannot be read by DL MESO DPD: it might have been corrupted.

Action: Check the CONTROL file to ensure it is complete and in ANSI (text) format.

Message 22: no charge smearing length defined in CONTROL file

The supplied CONTROL file has specified a charge smearing type but no charge smearing length (or reciprocal).

Action: Check the CONTROL file includes a smear length or smear beta directive with a non-zero value. If the

CONTROL file was originally created for earlier versions of DL MESO DPD, it will need modification to specify

both charge smearing type and lengthscale in separate lines: see Appendix A for further details.

195

Message 23: no pressure specified in CONTROL file for barostat

The supplied CONTROL file has specified an ensemble involving a barostat (constant pressure, surface area or

surface tension) but no pressure.

Action: Check the CONTROL file includes a pressure directive.

Message 30: missing FIELD file

No input file named FIELD can be found.

Action: Make sure there is a FIELD file in the same directory as the DL MESO DPD executable.

Message 31: cannot read FIELD file

The supplied FIELD file cannot be read by DL MESO DPD: it might have been corrupted.

Action: Check the FIELD file to ensure it is complete and in ANSI (text) format.

Message 32: unrecognised bond type defined in FIELD file

A bond type not included in Table 10.3 has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond types are valid; if adding a new bond type to DL MESO DPD,

the scan field and read field routines in config module need to be modified.

Message 33: unrecognised bond angle type defined in FIELD file

A bond angle type not included in Table 10.4 has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond angle types are valid; if adding a new bond angle type to

DL MESO DPD, the scan field and read field routines in config module need to be modified.

Message 34: unrecognised bond dihedral type defined in FIELD file

A bond dihedral type not included in Table 10.5 has been found in the FIELD file.

Action: Check the FIELD file to ensure all bond dihedral types are valid; if adding a new bond dihedral type to

DL MESO DPD, the scan field and read field routines in config module need to be modified.

Message 35: name for species number i in FIELD file truncated to 8 characters

The given name for the i-th species in the FIELD file exceeds 8 characters and has had to be truncated.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to

check the FIELD file to ensure this species cannot be confused with another.

Message 36: name for molecule number i in FIELD file truncated to 8 characters

The given name for the i-th molecule type in the FIELD file exceeds 8 characters and has had to be truncated.

Action: None required to ensure the simulation runs as this is a warning message, but the user may wish to

check the FIELD file to ensure this molecule type cannot be confused with another.

Message 37: missing finish directive in FIELD file for molecule i

No finish directive can be found for the i-th molecule type in the FIELD file.

Action: Check the FIELD file, particularly the i-molecule type, and ensure each molecule type ends with a finish

directive.

196 APPENDIX E. DL MESO DPD ERROR MESSAGES

Message 38: non-existent species given in FIELD file for molecule i

An undefined species has been found in the definition for the i-th molecule type in the FIELD file.

Action: Check the FIELD file, particularly the i-th molecule type and the species definitions, to ensure the

species in the molecule are defined.

Message 39: unrecognised bond definition in FIELD file for molecule i

A bond definition has been found in the FIELD file for the i-th molecule that was not detected during the initial

scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 40: out-of-range bead number for bond in FIELD file for molecule i

At least one of the bond definitions for the i-th molecule type refers to a bead number out of range (either

below 1 or above the number of beads for the molecule).

Action: Check the FIELD file, particularly the i-th molecule type, and check that the bond definitions refer to

bead numbers within range.

Message 41: unrecognised bond angle definition in FIELD file for molecule i

A bond angle definition has been found in the FIELD file for the i-th molecule that was not detected during the

initial scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 42: out-of-range bead number for angle in FIELD file for molecule i

At least one of the angle definitions for the i-th molecule type refers to a bead number out of range (either

below 1 or above the number of beads for the molecule).

Action: Check the FIELD file, particularly the i-th molecule type, and check that the angle definitions refer to

bead numbers within range.

Message 43: unrecognised dihedral angle definition in FIELD file for molecule i

A bond dihedral definition has been found in the FIELD file for the i-th molecule that was not detected during

the initial scan of the input file.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 44: out-of-range bead number for dihedral in FIELD file for molecule i

At least one of the dihedral definitions for the i-th molecule type refers to a bead number out of range (either

below 1 or above the number of beads for the molecule).

Action: Check the FIELD file, particularly the i-th molecule type, and check that the dihedral definitions refer

to bead numbers within range.

Message 45: non-existent species given in FIELD file for unbonded interaction i

An undefined species has been found in the i-th (unbonded) interaction definition in the FIELD file.

Action: Check the FIELD file, particularly the i-th interaction type and the species definitions, to ensure the

species in the interaction are defined.

197

Message 46: non-existent species given in FIELD file for surface interaction i

An undefined species has been found in the i-th (hard) surface interaction definition in the FIELD file.

Action: Check the FIELD file, particularly the i-th surface interaction and species definitions, to ensure the

species in the interaction are defined.

Message 47: non-existent species given in FIELD file for frozen wall interaction

An undefined species has been found in the definition for frozen particle walls in the FIELD file.

Action: Check the FIELD file, particularly the frozen particle wall and species definitions, to ensure the required

frozen particle species is defined.

Message 48: incomplete many-body DPD interaction data in FIELD file

Not all species pairs have defined interaction parameters in the FIELD file: this is vital for systems with any

many-body DPD interactions as universal mixing rules are unavailable for many-body DPD parameters.

Action: Check the FIELD file to ensure that unbonded interactions between every possible species pair is defined.

Message 49: no interaction data in FIELD file for single species i

Unbonded interaction data between particle pairs of the same species i are unavailable in the FIELD file: mixing

rules to determine any missing interaction data thus cannot be applied.

Action: Check the FIELD file to ensure that unbonded interactions exist for same-species pairs.

Message 50: zero reciprocal vector range for ewald sum

The maximum reciprocal vector, ~kmax, has not been defined for systems requiring Ewald sum or SPME elec-

trostatics.

Action: Look in the CONTROL file and make sure the ewald or spme directive includes the convergence parameter

α and the extents of the maximum reciprocal vector, k1, k2 and k3.

Message 51: cannot read restart file named export

No valid file called export can be found or read to restart a simulation.

Action: Check for the existence of the export file in the working directory; if no file exists or is needed, remove

the restart directive from the CONTROL file.

Message 52: too many beads needed per node for export file

The total number of particles from the export file for a particular process exceeds the predicted maximum

number of particles per node (maxdim).

Action: This error is unlikely to happen as maxdim is calculated according to the numbers of particles and

processors available, but the user may wish to use the densvar directive in the CONTROL file to increase this

value.

Message 53: cannot read REVIVE file - no previous statistical data available

No valid REVIVE file with statistical accumulators, barostat properties and random number generator states can

be found or read.

Action: No immediate action is necessary to get DL MESO to run as this message is a warning, but the user

may need to consider either ensuring there is a REVIVE file available in the working directory or using the

198 APPENDIX E. DL MESO DPD ERROR MESSAGES

restart noscale directive in the CONTROL file (which starts a new simulation based on the configuration given

in the export file).

Message 54: at least one molecule type incorrectly defined in FIELD file

The FIELD file contains a molecule definition that is incorrectly formatted, preventing other definitions from

being read.

Action: Check the molecule definitions in the FIELD file to ensure each of them includes the number of molecules

to be used in the simulation, the number of beads per molecule and finishes with the finish directive (which

indicates the end of the molecule definition).

Message 55: insufficient number of beads per node allocated for required CONFIG file

The total number of particles from the CONFIG file for a particular process exceeds the predicted maximum

number of particles per node (maxdim).

Action: This error is unlikely to happen as maxdim is calculated according to the numbers of particles and

processors available, but the user may wish to use the densvar directive in the CONTROL file to increase this

value.

Message 56: non-existent species given in CONFIG file

No valid species can be found for an entry in the CONFIG file: this can happen either when the file is being

scanned to find the start of a particle entry or when the particles are being read (in the latter case, additional

messages will be produced stating which particles have invalid species identifiers).

Action: Check the species definitions in the FIELD file and the i-th particle in the CONFIG file (if given as an

additional message) to ensure that species is defined.

Message 57: out-of-range particle index given in CONFIG file

At least one of the particle indices given in the CONFIG file is out of range compared with the contents of the

FIELD file.

Action: Check the particle numbering in the CONFIG file and the contents of the FIELD file, and adjust where

necessary. If the contents of the CONFIG file match up with the FIELD file, consider using the no index option

in the CONTROL file to ignore the supplied particle numbering.

Message 58: mismatch in species particle counts between FIELD and CONFIG files

The numbers of particles for a given species in the CONFIG file does not match those given in the FIELD file: a

table itemising the total numbers for each species and for all species in both files is given before this message.

Action: Check the CONFIG and FIELD files to ensure the species compositions of both files match up.

Message 59: out-of-range particle index given in export file

At least one of the particle indices given in the export file is out of range compared with the contents of the

FIELD file.

Action: Check the contents of the FIELD file to make sure it matches up with that used when the export file

was created, and adjust where necessary. The export config utility might be useful here to determine the

contents of the export file.

Message 60: out-of-range species type given in export file

At least one of the species types given in the export file is out of range compared with the contents of the

FIELD file.

199

Action: Check the contents of the FIELD file to make sure it matches up with that used when the export file

was created, and adjust where necessary. The export config utility might be useful here to determine the

contents of the export file.

Message 61: out-of-range molecule type given in export file

At least one of the molecule types given in the export file is out of range compared with the contents of the

FIELD file.

Action: Check the contents of the FIELD file to make sure it matches up with that used when the export file

was created, and adjust where necessary. The export config utility might be useful here to determine the

contents of the export file, although the resulting CONFIG file would not directly show which particles belong

to particular molecules.

Message 62: mismatch in species particle counts between FIELD and export files

The numbers of particles for a given species in the export file does not match those given in the FIELD file (with

any cell duplication from the previous simulation taken into account): a table itemising the total numbers for

each species and for all species in both files is given before this message.

Action: Check the export and FIELD files to ensure the species compositions of both files match up. If the

nfold option was used to create for the simulation that created the export file, make sure the relevant values

are specified in the CONTROL file.

Message 65: insufficient number of beads per node allocated for required initialization

The value of maxdim is not large enough to include the unbonded particles assigned to each processor for a new

simulation (without a CONFIG file).

Action: This error is unlikely to happen as maxdim is calculated according to the numbers of particles and

processors available, but the user may wish to use the densvar directive in the CONTROL file to increase this

value.

Message 66: discrepancy in total number of starting beads - i too many/few

The total number of particles assigned to all processors for a new simulation does not match up with the

numbers specified in the FIELD file (taking nfold duplication into account if a CONFIG file is used).

Action: For new simulations without CONFIG files or restarted simulations without frozen bead walls, this error

should never occur and the authors of DL MESO should be contacted if it does. If using a CONFIG file, check

the FIELD file to ensure that the number of particles for each species and numbers of molecules match up with

those in the CONFIG file. If restarting a simulation that used frozen bead walls, remove the directives for frozen

bead walls in the CONTROL and FIELD files and include the number of frozen beads used in the species totals in

the FIELD file.

Message 67: molecule i bigger than domain - cannot insert into system

The maximum extent of molecule i, which is represented as a cuboid, is larger than the defined size of the

system in all three dimensions. This message will only appear for systems with hard surfaces or frozen walls,

and the molecule cannot therefore be inserted into the system without crossing these surfaces or walls.

Action: Either the system size must be increased to accommodate the defined molecule or the molecule needs

to be made smaller to fit inside the system dimensions (which are reduced by the specified positions of hard

surfaces or the thicknesses of frozen walls).

200 APPENDIX E. DL MESO DPD ERROR MESSAGES

Message 68: molecule i bigger than domain in at least one dimension

The maximum extent of molecule i, which is represented as a cuboid, is larger than the defined size of the

system in at least one dimension.

Action: No immediate action is necessary as this is a warning message, but the user may wish to either increase

the system size or reduce the molecule size in future simulations. In the case of systems with hard surfaces or

frozen walls, the molecule size may restrict how it can be randomly inserted into the system volume and it may

take longer to initialize such systems.

Message 71: deport coordinate buffers exceeded

The amount of particle data received during deport is greater than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 72: deport coordinate buffers exceeded for lees-edwards shear

The amount of particle data received during deport with Lees-Edwards shearing is greater than the current

processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 81: import coordinate buffers exceeded

The number of additional particles created during import of particle forces is greater than the current processor

can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 82: import coordinate buffers exceeded for lees-edwards shear

The number of additional particles created during import of particle forces with Lees-Edwards shearing is greater

than the current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 91: export coordinate buffers exceeded

The number of additional particles created during export of particles into boundary halos is greater than the

current processor can accommodate.

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 92: export coordinate buffers exceeded for lees-edwards shear

The number of additional particles created during export of particles into boundary halos with Lees-Edwards

shearing is greater than the current processor can accommodate.

201

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 93: cannot correctly export velocities to boundary halos

Particle velocities (for DPD Velocity Verlet integration) cannot be exported correctly to particles already in the

boundary halos. (This error message can only be invoked when running the serial version of DL MESO.)

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 94: cannot correctly export data to boundary halos for density calculations

Particle data for calculating localised densities (needed for many-body DPD) cannot be exported to the boundary

halos as the number of particles created would be greater than that accounted for in memory. (This error message

can only be invoked when running the serial version of DL MESO.)

Action: This error message suggests non-constant particle densities across the system and poor load-balancing.

The user may wish to use the densvar directive in the CONTROL file to increase the value of maxdim and thus

accommodate larger numbers of particles.

Message 95: cannot correctly export data to boundary halos for density calculations with shear

Particle data for calculating localised densities (needed for many-body DPD) cannot be exported to the boundary

halos with Lees-Edwards shearing as the number of particles created would be greater than that accounted for

in memory. (This error message can only be invoked when running the serial version of DL MESO.)

Action: This error message suggests non-constant particle densities across the system. The user may wish to

use the densvar directive in the CONTROL file to increase the value of maxdim and thus accommodate larger

numbers of particles.

Message 100: wrong bead total after compression - i too many/few

The total number of particles after the first Velocity Verlet integration stage (including dealing with boundary

conditions etc.) does not equal the specified total number of particles for the system.

Action: This error should never occur! If it does, please contact the authors of DL MESO.

Message 200: bond too long or cannot be found

At least one bond between specified particles is too long (e.g. longer than the maximum specified length for the

potential) or cannot be calculated due to lack of available information for both particles. The bond(s) identified

as overly long or lost is/are printed either in the OUTPUT file or in the standard output (e.g. screen).

Action: If calculating bonds locally, increasing the size of boundary halos may reduce the likelihood of bonds

being ‘broken’. Alternatively, global bond calculations can ensure all data is available at the cost of replication

over all processors. Adjusting the parameters for the bond potential may also help ensure bonds do not get too

long.

Message 201: too many interacting pairs

The number of interacting pairs for non-DPD thermostats (Lowe-Andersen, Peters, Stoyanov-Groot) exceeds

the maximum number calculated from the number of particles in the system, maxpair.

Action: The user may wish to use the densvar directive in the CONTROL file to increase the values of maxdim

and maxpair, thus accommodating larger numbers of interacting pairs.

202 APPENDIX E. DL MESO DPD ERROR MESSAGES

Message 301: incorrect endianness in HISTORY file - cannot append additional data

The endianness used for a pre-existing HISTORY file does not match the endianness currently used for the

calculation: data appended to the end of the file will therefore not be readable.

Action: The endianness used in DL MESO can be swapped by re-compiling with appropriate compiler flags in

the Makefile.

Message 302: incorrect real number size in HISTORY file - cannot append additional data

The number of bytes per real number used in the HISTORY does not match the number of bytes per real number

used by DL MESO: there is a mismatch in real number types.

Action: The kind of real number used in DL MESO can be modified by changing the definition of dp in the

constants module.

Message 303: data corruption in HISTORY file

The beginning of a trajectory frame (the header containing the number of particles and time) in the HISTORY

file cannot be read due to a previous interruption in writing it.

Action: Greater care must be taken to ensure there is enough closing time to complete writing the last trajectory

frame to the HISTORY file at the end of a simulation.

Message 304: HISTORY file missing i frames of trajectories

The HISTORY file ends before the timestep at which the simulation is being restarted.

Action: None immediately required as this message is a warning and does not prevent the simulation from being

restarted, but the user should be aware there will be a gap in the sequence of trajectories in the HISTORY file

when it is visualised or analysed with post-processing utilities.

Messages 1001–1256: allocation/deallocation errors

Allocation or deallocation of arrays for DPD calculations (including reading of input data, transfer buffers for

communications between processors, global arrays for Lowe-Andersen/Peters/Stoyanov-Groot thermostats etc.)

has failed. This may be due to a lack of addressable memory required for the DPD calculations. These messages

identify which allocation/deallocation has failed by module and routine names.

Action: Increase the amount of memory available for running DL MESO DPD by closing any other running

applications, running the simulation on a larger number of processors (to reduce the memory required per

processor to hold particle data), under-populating multicore processors (i.e. using fewer cores per processor

than the maximum available) or upgrading your machine. Alternatively, try running a smaller simulation.

Appendix F

DL MESO Licence Agreement (Academic

Purposes)

1. DEFINITIONS AND INTERPRETATION

1.1 In this Licence Agreement the following expressions have the

meanings set opposite:

Academic Purposes fundamental or basic research or academic

teaching, including any fundamental research

that is funded by any public or charitable

body, but not any purpose that generates

revenue (as opposed to grant income) for the

Licensee or any third party. Any research

that is wholly or partially sponsored by any

profit making organisation or that is carried

out for the benefit of any profit-making

organisation is not an Academic Purpose;

a Derived Work any modification of, or enhancement or

improvement to, any of the DL_MESO Software

and any software or other work developed or

derived from any of the DL_MESO Software;

the DL_MESO Software the release and version of the DL_MESO

Software downloaded by the Licensee from the

DL_MESO Website immediately after the Licensee

agrees to the terms and conditions of this

Licence Agreement;

the DL_MESO Website the website with the URL

http://www.ccp5.ac.uk/DL_MESO,

and any website that from time to time

replaces that website;

a Harmful Element any virus, worm, time bomb, time lock, drop

dead device, trap and access code or anything

else that might disrupt, disable, harm or

impede the operation of any information

203

204 APPENDIX F. DL MESO LICENCE AGREEMENT (ACADEMIC PURPOSES)

system, or that might corrupt, damage, destroy

or render inaccessible any software, data or

file on, or that may allow any unauthorised

person to gain access to, any information

system or any software, data or file on it;

Intellectual Property patents, trade marks, service marks,

registered designs, copyrights, database

rights, design rights, know-how, confidential

information, applications for any of the

above, and any similar right recognised from

time to time in any jurisdiction, together

with all rights of action in relation to the

infringement of any of the above;

the Licence Period the period beginning when the Licensee

agrees to the terms and conditions of this

Licence Agreement and downloads the DL_MESO

Software from the DL_MESO Website and ending

on the termination of this Licence Agreement

under clause 5.2.

2. LICENCE

2.1 UKRI STFC grants the Licensee an indefinite, non-exclusive,

non-transferable, royalty free licence to use, copy, modify, and

enhance the DL_MESO Software during the Licence Period on the

terms and conditions of this Licence Agreement provided that:

2.1.1 the Licensee may not distribute any of the DL_MESO Software

or any Derived Work to any third party, or share their use

with any third party (whether free of charge or otherwise),

and the Licensee may not sub-license the use of any of the

DL_MESO Software to any third party unless, in each case,

that third party has complied with clause 2.3 below;

2.1.2 the Licensee may not use the DL_MESO Software on behalf of,

or for the benefit of, any third party (including, without

limitation, using it to provide bureau, outsourcing or

application services or facilities management services)

party unless that third party has complied with clause 2.3

below; and

2.1.3 the DL_MESO Software and any Derived Work may be used by

the Licensee and its employees and registered students for

Academic Purposes only.

2.2 If the Licensee wishes to use the DL_MESO Software or any Derived

Work in any way except for Academic Purposes, or wishes to

distribute or make the DL_MESO Software or any Derived Work

available to any third party for non-Academic Purposes, it must

205

obtain a commercial licence from UKRI STFC. UKRI STFC may refuse

to grant the Licensee a commercial licence. If UKRI STFC agrees

to grant a commercial licence, that licence will be on such terms

and conditions as UKRI STFC sees fit.

2.3 If the Licensee wishes to carry out any collaboration for

Academic Purposes with any third party and that third party needs

to use the DL_MESO Software in connection with that

collaboration, or if the Licensee wishes to make the DL_MESO

Software available online to any third party for Academic

Purposes, the Licensee must direct that third party to the

DL_MESO Website. That third party may use the DL_MESO Software

and any Derived Work (whether obtained from UKRI STFC or from the

Licensee) only if it has completed the registration process on

the DL_MESO Website and agreed to the terms and conditions of the

Licence Agreement for the use of the DL_MESO Software for

Academic Purposes that then appear on the DL_MESO Website.

2.4 This Licence Agreement allows the Licensee to use only the

release or version of the DL_MESO Software downloaded by the

Licensee from the DL_MESO Website immediately after the Licensee

agrees to the terms and conditions of this Licence Agreement; the

Licensee must acquire a new licence for any future release or

version of the DL_MESO Software that it wishes to use.

2.5 The Licensee will not tamper with, or remove, any copyright or

other proprietary notice or any disclaimer that appears on or in

any part of the DL_MESO Software, and will reproduce the same in

all copies of any of the DL_MESO Software and in all Derived

Works.

3. WARRANTIES AND LIABILITY

3.1 The DL_MESO Software is provided for Academic Purposes free of

charge. Therefore UKRI STFC gives no warranty and makes no

representation in relation to the DL_MESO Software or any

assistance or advice that UKRI STFC may give in connection with

the DL_MESO Software. The Licensee will indemnify UKRI STFC

against any and all claims arising as a result of the Licensee

having made any of the DL_MESO Software or any Derived Work

available to any third party.

3.2 Before using any of the DL_MESO Software, the Licensee will check

that the DL_MESO Software does not contain any Harmful Element.

UKRI STFC does not warrant that the DL_MESO Software will run

without interruption or be error free, or be free from any

Harmful Element. UKRI STFC is not obliged to provide any support

or error correction service, assistance or advice in relation to

the DL_MESO Software, but the Licensee may access any error

corrections and online assistance that UKRI STFC chooses to make

available on the DL_MESO Website from time to time. If UKRI STFC

206 APPENDIX F. DL MESO LICENCE AGREEMENT (ACADEMIC PURPOSES)

does provide that sort of service, assistance or advice, subject

to clause 3.7, UKRI STFC will not be liable for any loss or

damage suffered by the Licensee as a result.

3.3 UKRI STFC will not be liable to the Licensee to the extent that

any loss or damage is caused: by the Licensee’s failure to

implement, or the Licensee’s delay in implementing, any correction

or advice in relation to the DL_MESO Software that UKRI STFC has

made available on the DL_MESO Website; or by the Licensee’s

failure to acquire a licence of and to implement any new release

or version of the DL_MESO Software that would have remedied or

mitigated the effects of any error, defect, bug or deficiency in

the DL_MESO Software.

3.4 The Licensee acknowledges that proper use of the DL_MESO Software

and any Derived Work is dependent on the Licensee, its employees

and students exercising proper skill and care in inputting data

and interpreting the output provided by the DL_MESO Software or

that Derived Work. UKRI STFC will not be liable for the

consequences of decisions taken by the Licensee or any other

person on the basis of that output. UKRI STFC does not accept

any responsibility for any use which may be made by the Licensee

of that output, nor for any reliance which may be placed on that

output, nor for advice or information given in connection with

that output.

3.5 Subject to clause 3.7, UKRI STFC’s liability or any breach of

this Licence Agreement, any negligence or arising in any other

way out of the subject matter of this Licence Agreement or the

use of the DL_MESO Software, will not extend to any incidental or

consequential damages or losses, or any loss of profits, loss of

revenue, loss of data, loss of contracts or opportunity, whether

direct or indirect, even if the Licensee has advised UKRI STFC of

the possibility of those losses arising or if they were or are

within UKRI STFC’s contemplation.

3.6 Subject to clause 3.7, the aggregate liability of UKRI STFC for

any and all breaches of this Licence Agreement, any negligence or

arising in any other way out of the subject matter of this

Licence Agreement or the use of the DL_MESO Software will not

exceed in total £5000.

3.7 Nothing in this Licence Agreement limits or excludes UKRI STFC’s

liability for death or personal injury caused by its negligence

or for any fraud, or for any sort of liability that, by law,

cannot be limited or excluded.

3.8 The express undertakings and given by UKRI STFC in this Licence

Agreement and the terms of this Licence Agreement are in lieu of

all warranties, conditions, terms, undertakings and obligations

on the part of UKRI STFC, whether express or implied by statute,

207

common law, custom, trade usage, course of dealing or in any

other way. All of these are excluded to the fullest extent

permitted by law.

4. INTELLECTUAL PROPERTY RIGHTS AND ACKNOWLEDGEMENTS

4.1 Nothing in this Licence Agreement assigns or transfers any

Intellectual Property Rights in any of the DL_MESO Software.

Those rights are reserved to UKRI STFC.

4.2 The Licensee will ensure that, if any of its employees or

students publishes any article or other material resulting from,

or relating to, a project or work undertaken with the assistance

of any part of the DL_MESO Software, that publication will

contain the following acknowledgement:

"DL_MESO is a mesoscale simulation package written by R. Qin,

W. Smith and M. A. Seaton and has been obtained from UKRI

STFC’s Daresbury Laboratory via the website

http://www.ccp5.ac.uk/DL_MESO"

and cite the following reference:

"M.A. Seaton, R.L. Anderson, S. Metz & W. Smith, ‘Mol. Sim.’,

39 (10), 796-821 (2013)".

5. TERMINATION

5.1 This Licence Agreement will take effect and the Licence Period

will start when the Licensee has agreed to the terms and

conditions of this Licence Agreement and downloaded the DL_MESO

Software from the DL_MESO Website.

5.2 This Licence Agreement will terminate immediately and

automatically if:

5.2.1 the Licensee is in breach of this Licence Agreement; or

5.2.2 the Licensee becomes insolvent, or if an order is made or a

resolution is passed for its winding up (except voluntarily

for the purpose of solvent amalgamation or reconstruction),

or if an administrator, administrative receiver or receiver

is appointed over the whole or any part of its assets, or

if it makes any arrangement with its creditors.

5.3 The Licensee’s right to use the DL_MESO Software will cease

immediately on the termination of this Licence Agreement, and the

Licensee will destroy all copies of the DL_MESO Software that it

or any of its employees or students then holds.

5.4 Clauses 1, 2.2, 3, 4, 5.3, 5.4, 5.5 and 6 will survive the expiry

208 APPENDIX F. DL MESO LICENCE AGREEMENT (ACADEMIC PURPOSES)

of the Licence Period and the termination of this Licence

Agreement, and will continue indefinitely.

5.5 UKRI STFC may stop providing any assistance or advice in relation

to, or any corrections, new releases or versions of the DL_MESO,

and may stop updating or publishing the DL_MESO Website at any

time.

6. GENERAL

6.1 Headings: The headings in this Licence Agreement are for ease of

reference only; they do not affect its construction or

interpretation.

6.2 Assignment etc: The Licensee may not assign or transfer this

Licence Agreement as a whole, or any of its rights or obligations

under it, without first obtaining the written consent of UKRI

STFC.

6.3 Illegal/unenforceable provisions: If the whole or any part of any

provision of this Licence Agreement is void or unenforceable in

any jurisdiction, the other provisions of this Licence Agreement,

and the rest of the void or unenforceable provision, will

continue in force in that jurisdiction, and the validity and

enforceability of that provision in any other jurisdiction will

not be affected.

6.4 Waiver of rights: If UKRI STFC fails to enforce, or delays in

enforcing, an obligation of the Licensee, or fails to exercise,

or delays in exercising, a right under this Licence Agreement,

that failure or delay will not affect its right to enforce that

obligation or constitute a waiver of that right. Any waiver by

UKRI STFC of any provision of this Licence Agreement will not,

unless expressly stated to the contrary, constitute a waiver of

that provision on a future occasion.

6.5 Entire agreement: This Licence Agreement constitutes the entire

agreement between the parties relating to its subject matter.

The Licensee acknowledges that it has not entered into this

Licence Agreement on the basis of any warranty, representation,

statement, agreement or undertaking except those expressly set

out in this Licence Agreement. The Licensee waives any claim for

breach of, or any right to rescind this Licence Agreement in

respect of, any representation which is not an express provision

of this Licence Agreement. However, this clause does not exclude

any liability which UKRI STFC may have to the Licensee (or any

right which the Licensee may have to rescind this Licence

Agreement) in respect of any fraudulent misrepresentation or

fraudulent concealment before the signing of this Licence

Agreement.

209

6.6 Amendments: No variation of, or amendment to, this Licence

Agreement will be effective unless it is made in writing and

signed by each party’s representative.

6.7 Third parties: No one who is not a party to this Licence

Agreement has any right to prevent the amendment of this Licence

Agreement or its termination, and no one except a party to this

Licence Agreement may enforce any benefit conferred by this

Licence Agreement, unless this Licence Agreement expressly

provides otherwise.

6.8 Governing law: This Licence Agreement is governed by, and is to

be construed in accordance with, English law. The English Courts

will have exclusive jurisdiction to deal with any dispute which

has arisen or may arise out of or in connection with this Licence

Agreement, except that UKRI STFC may bring proceedings against

the Licensee or for an injunction in any jurisdiction.

Bibliography

[1] Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. Journal of

Chemical Physics, 72(4):2384–2393, 1980.

[2] Richard L. Anderson, David J. Bray, Annalaura Del Regno, Michael A. Seaton, Andrea S. Ferrante, and

Patrick B. Warren. Micelle formation in alkyl sulfate surfactants using dissipative particle dynamics.

Journal of Chemical Theory and Computation, 14(5):2633–2643, 2018. PMID: 29570296.

[3] Santosh Ansumali and Iliya V. Karlin. Kinetic boundary conditions in the lattice Boltzmann method.

Physical Review E, 66:026311, August 2002.

[4] Abdel Monim Mohamed Ali Mohamed Hassan Artoli. Mesoscopic computational haemodynamics. PhD

thesis, University of Amsterdam, October 2003.

[5] Pietro Asinari. Generalized local equilibrium in the cascaded lattice Boltzmann method. Physical Review

E, 78:016701, July 2008.

[6] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular

dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8):3684–3690, 1984.

[7] P. L. Bhatnagar, E. R. Gross, and M. Krook. A model for collision processes in gases. I. Small amplitude

processes in charged and neutral one-component systems. Physical Review, 94(3):511–525, May 1954.

[8] Eugene C. Bingham. Fluidity and plasticity. McGraw-Hill, first edition, 1922.

[9] J. Boyd, J. Buick, and S. Green. A second-order accurate lattice Boltzmann non-Newtonian flow model.

Journal of Physics A: Mathematical and General, 39(46):14241, 2006.

[10] A. J. Briant, P. Papatzacos, and J. M. Yeomans. Lattice Boltzmann simulations of contact line motion in

a liquid-gas system. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 360(1792):485–495, 2002.

[11] I. J. Bush, I. T. Todorov, and W. Smith. A DAFT DL POLY distributed memory adaptation of the

smoothed particle mesh Ewald method. Computer Physics Communications, 175(5):323–329, September

2006.

[12] R. Byron Bird and Pierre J. Carreau. A nonlinear viscoelastic model for polymer solutions and melts–I.

Chemical Engineering Science, 23(5):427–434, 1968.

[13] Norman F. Carnahan and Kenneth E. Starling. Intermolecular repulsions and the equation of state for

fluids. AIChE Journal, 18(6):1184–1189, 1972.

[14] Pierre J. Carreau, Ian F. MacDonald, and R. Byron Bird. A nonlinear viscoelastic model for polymer

solutions and melts–II. Chemical Engineering Science, 23(8):901–911, 1968.

[15] Mauricio Carrillo-Tripp, Humberto Saint-Martin, and Iván Ortega-Blake. A comparative study of the

hydration of Na+ and K+ with refined polarizable model potentials. Journal of Chemical Physics,

118(15):7062–7073, 2003.

211

212 BIBLIOGRAPHY

[16] N. Casson. Flow equation for pigment oil suspensions of the printing ink type. In C. C. Mill, editor,

Rheology of disperse systems, pages 84–102. Pergamon Press, 1959.

[17] Zhenhua Chai, Baochang Shi, Zhaoli Guo, and Fumei Rong. Multiple-relaxation-time lattice Boltzmann

model for generalized Newtonian fluid flows. Journal of Non-Newtonian Fluid Mechanics, 166(5):332–342,

2011.

[18] Cheng Chang, Chih-Hao Liu, and Chao-An Lin. Boundary conditions for lattice Boltzmann simulations

with complex geometry flows. Computers & Mathematics with Applications, 58(5):940–949, 2009. Meso-

scopic Methods in Engineering and Science.

[19] A. Chatterjee. Modification to Lees-Edwards periodic boundary condition for dissipative particle dynamics

simulation with high dissipation rates. Molecular Simulation, 33(15):1233–1236, 2007.

[20] Shiyi Chen and Gary D. Doolen. Lattice Boltzmann method for fluid flows. Annual Review of Fluid

Mechanics, 30(1):329–364, 1998.

[21] Daniele Coslovich, Jean-Pierre Hansen, and Gerhard Kahl. Ultrasoft primitive model of polyionic solu-

tions: Structure, aggregation, and dynamics. Journal of Chemical Physics, 134(24):244514, 2011.

[22] Paul J. Dellar. Bulk and shear viscosities in lattice Boltzmann equations. Physical Review E, 64(3):031203,

August 2001.

[23] Dominique d’Humières, Irina Ginzburg, Manfred Krafczyk, Pierre Lallemand, and Li-Shi Luo. Multiple-

relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal

Society of London A, 360(1792):437–451, 2002.

[24] U. D’Ortona, D. Salin, Marek Cieplak, Renata B. Rybka, and Jayanth R. Banavar. Two-color nonlinear

Boltzmann cellular automata: Surface tension and wetting. Physical Review E, 51(4):3718–3728, April

1995.

[25] Michael M. Dupin, Ian Halliday, and Chris M. Care. Simulation of a microfluidic flow-focusing device.

Physical Review E, 73(5):055701, 2006.

[26] A. Dupuis and J. M. Yeomans. Modeling droplets on superhydrophobic surfaces: equilibrium states and

transitions. Langmuir, 21(6):2624–2629, 2005. PMID: 15752062.

[27] Pep Español. Hydrodynamics from dissipative particle dynamics. Physical Review E, 52(2):1734–1742,

August 1995.

[28] Ulrich Essmann, Lalith Perera, Max L. Berkowitz, Tom Darden, Hsing Lee, and Lee G. Pedersen. A

smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19):8577–8593, 1995.

[29] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik,

369(3):253–287, 1921.

[30] Linlin Fei, Kai H. Luo, and Qing Li. Three-dimensional cascaded lattice Boltzmann method: improved

implementation and consistent forcing scheme. Physical Review E, 97:053309, May 2018.

[31] Linlin Fei and Kai Hong Luo. Consistent forcing scheme in the cascaded lattice Boltzmann method.

Physical Review E, 96:053307, November 2017.

[32] Linlin Fei, Kai Hong Luo, Chuandong Lin, and Qing Li. Modeling incompressible thermal flows using

a central-moments-based lattice Boltzmann method. International Journal of Heat and Mass Transfer,

120:624–634, 2018.

[33] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of the

Institute of Electrical and Electronics Engineers (IEEE), 93(2):216–231, January 2005.

BIBLIOGRAPHY 213

[34] A. A. Gavrilov, A. V. Chertovich, and E. Yu. Kramarenko. Dissipative particle dynamics for systems

with high density of charges: Implementation of electrostatic interactions. Journal of Chemical Physics,

145(17):174101, 2016.

[35] Martin Geier, Andreas Greiner, and Jan G. Korvink. Cascaded digital lattice Boltzmann automata for

high Reynolds number flow. Physical Review E, 73:066705, June 2006.

[36] A. Ghoufi and P. Malfreyt. Mesoscale modeling of the water liquid-vapor interface: A surface tension

calculation. Physical Review E, 83:051601, May 2011.

[37] J. B. Gibson, K. Chen, and S. Chynoweth. The equilibrium of a velocity-Verlet type algorithm for DPD

with finite time steps. International Journal of Modern Physics C, 10(1):241–261, February 1999.

[38] Irina Ginzburg, Frederik Verhaeghe, and Dominique d’Humières. Study of simple hydrodynamic solutions

with the two-relaxation-times lattice Boltzmann scheme. Communications in Computational Physics,

3(3):519–581, March 2008.

[39] Irina Ginzburg, Frederik Verhaeghe, and Dominique d’Humières. Two-relaxation-time lattice Boltzmann

scheme: About parametrization, velocity, pressure and mixed boundary conditions. Communications in

Computational Physics, 3(2):427–478, February 2008.

[40] Shuai Gong and Ping Cheng. Numerical investigation of droplet motion and coalescence by an improved

lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 53(0):93–104,

2012.

[41] Minerva González-Melchor, Estela Mayoral, Maŕıa Eugenia Velázquez, and José Alejandre. Electro-

static interactions in dissipative particle dynamics using the Ewald sums. Journal of Chemical Physics,

125(22):224107, 2006.

[42] R. D. Groot. Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes

and anionic surfactants. Journal of Chemical Physics, 118(24):11265–11277, 2003.

[43] Robert D. Groot and Patrick B. Warren. Dissipative particle dynamics: Bridging the gap between

atomistic and mesoscopic simulation. Journal of Chemical Physics, 107(11):4423–4435, 1997.

[44] Andrew J. Gunstensen, Daniel H. Rothman, Stéphane Zaleski, and Gianluigi Zanetti. Lattice Boltzmann

model of immiscible fluids. Physical Review A, 43(8):4320–4327, April 1991.

[45] Zhaoli Guo, Baochang Shi, and Chuguang Zheng. A coupled lattice BGK model for the Boussinesq

equations. International Journal for Numerical Methods in Fluids, 39(4):325–342, 2002.

[46] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the forcing term in the lattice

Boltzmann method. Physical Review E, 65(4):046308, April 2002.

[47] I. Halliday, A. P. Hollis, and C. M. Care. Lattice Boltzmann algorithm for continuum multicomponent

flow. Physical Review E, 76(2):026708, 2007.

[48] I. Halliday, R. Law, C. M. Care, and A. Hollis. Improved simulation of drop dynamics in a shear flow at

low Reynolds and capillary number. Physical Review E, 73(5):056708, 2006.

[49] Xiaoyi He and Li-Shi Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation.

Journal of Statistical Physics, 88(3–4):927–944, 1997.

[50] Xinoyi He, Xiaowen Shan, and Gary D. Doolen. Discrete Boltzmann equation model for nonideal gases.

Physical Review E, 57(1):R13–R16, January 1998.

[51] Winslow H. Herschel and Ronald Bulkley. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-

Zeitschrift, 39(4):291–300, 8 1926.

214 BIBLIOGRAPHY

[52] F. J. Higuera and J. Jiménez. Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters),

9(7):663–668, 1989.

[53] R. W. Hockney and J. W. Eastwood. Computer simulation using particles. McGraw-Hill International,

1981.

[54] D. J. Holdych, D. Rovas, J. G. Georgiadis, and R. O. Buckius. An improved hydrodynamics formulation for

multiphase flow Lattice-Boltzmann models. International Journal of Modern Physics C, 9(8):1393–1404,

1998.

[55] Kainan Hu, Jianping Meng, Hongwu Zhang, Xiao-Jun Gu, David R. Emerson, and Yonghao Zhang. A

comparative study of boundary conditions for lattice Boltzmann simulations of high Reynolds number

flows. Computers & Fluids, 156:1–8, 2017.

[56] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD: Visual molecular dynamics. Journal of

Molecular Graphics, 14(1):33–38, 1996.

[57] M. K. Ikeda, P. R. Rao, and L. A. Schaefer. A thermal multicomponent lattice Boltzmann model.

Computers & Fluids, 101:250–262, 2014.

[58] Takaji Inamuro, Masato Yoshino, Hiroshi Inoue, Riki Mizuno, and Fumimaru Ogino. A lattice Boltzmann

method for a binary miscible fluid mixture and its application to a heat-transfer problem. Journal of

Computational Physics, 179(1):201–215, 2002.

[59] Takaji Inamuro, Masato Yoshino, and Fumimaru Ogino. A non-slip boundary condition for lattice Boltz-

mann simulations. Physics of Fluids, 7(12):2928–2930, 1995.

[60] Ask F. Jakobsen. Constant-pressure and constant-surface tension simulations in dissipative particle dy-

namics. Journal of Chemical Physics, 122(12):124901, 2005.

[61] Erik Johansson. Simulating fluid flow and heat transfer using dissipative particle dynamics. Project

report, Department of Energy Sciences, Faculty of Engineering, Lund University, Department of Energy

Sciences, Faculty of Engineering, Lund University, Box 118, 22100 Lund, Sweden, 2012.

[62] J. E. Jones. On the determination of molecular fields. II. From the equation of state of a gas. Proceedings

of the Royal Society of London Series A, 106(738):463–477, October 1924.

[63] Simon Jury, Peter Bladon, Mike Cates, Sujata Krishna, Maarten Hagen, Noel Ruddock, and Patrick

Warren. Simulation of amphiphilic mesophases using dissipative particle dynamics. Physical Chemistry

Chemical Physics, 1(9):2051–2056, 1999.

[64] J. M. V. A. Koelman and P. J. Hoogerbrugge. Dynamic simulations of hard-sphere suspensions under

steady shear. EPL (Europhysics Letters), 21(3):363–368, 1993.

[65] A. L. Kupershtokh and D. A. Medvedev. Lattice boltzmann equation method in electrohydrodynamic

problems. Journal of Electrostatics, 64(7–9):581–585, 2006. Fifth International Electrohydrodynamics

(EHD) Workshop and Fourth Conference of the Société Française d’Electrostatique (SFE).

[66] A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov. On equations of state in a lattice Boltzmann

method. Computers & Mathematics with Applications, 58(5):965–974, 2009. Mesoscopic Methods in

Engineering and Science.

[67] A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, and J. J. Derksen. Three-dimensional binary-liquid

lattice Boltzmann simulation of microchannels with rectangular cross sections. Chemical Engineering

Journal, 178:306–316, 2011.

[68] Pierre Lallemand and Li-Shi Luo. Theory of the lattice Boltzmann method: Dispersion, dissipation,

isotropy, Galilean invariance, and stability. Physical Review E, 61(6):6546–6562, June 2000.

BIBLIOGRAPHY 215

[69] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and Andreas Michler. Straight velocity

boundaries in the lattice Boltzmann method. Physical Review E, 77(5):056703, May 2008.

[70] Taehun Lee and Ching-Long Lin. A stable discretization of the lattice Boltzmann equation for simulation

of incompressible two-phase flows at high density ratio. Journal of Computational Physics, 206(1):16–47,

June 2005.

[71] A. W. Lees and S. F. Edwards. The computer study of transport processes under extreme conditions.

Journal of Physics C, 5(15):1921–1928, 1972.

[72] Benedict Leimkuhler and Xiaocheng Shang. Pairwise adaptive thermostats for improved accuracy and

stability in dissipative particle dynamics. Journal of Computational Physics, 324:174–193, November 2016.

[73] M. Leslie and N. J. Gillan. The energy and elastic dipole tensor of defects in ionic crystals calculated by

the supercell method. Journal of Physics C, 18(5):973, 1985.

[74] Q. Li, K. H. Luo, and X. J. Li. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase

flows. Physical Review E, 86:016709, July 2012.

[75] Qing Li, K. H. Luo, Q. J. Kang, and Q. Chen. Contact angles in the pseudopotential lattice Boltzmann

modeling of wetting. Physical Review E, 90:053301, November 2014.

[76] Martin Ĺısal, John K. Brennan, and Josep Bonet Avalos. Dissipative particle dynamics at isothermal,

isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms. Journal of

Chemical Physics, 135(20):204105, 2011.

[77] S. V. Lishchuk, C. M. Care, and I. Halliday. Lattice Boltzmann algorithm for surface tension with greatly

reduced microcurrents. Physical Review E, 67(3):036701, March 2003.

[78] Qin Lou, Zhaoli Guo, and Baochang Shi. Evaluation of outflow boundary conditions for two-phase lattice

Boltzmann equation. Physical Review E, 87:063301, June 2013.

[79] C. P. Lowe. An alternative approach to dissipative particle dynamics. EPL (Europhysics Letters),

47(2):145–151, July 1999.

[80] Daniel Lycett-Brown and Kai H. Luo. Multiphase cascaded lattice Boltzmann method. Computers &

Mathematics with Applications, 67(2):350–362, 2014. Mesoscopic Methods for Engineering and Science

(Proceedings of ICMMES-2012, Taipei, Taiwan, 23–27 July 2012).

[81] Daniel Lycett-Brown, Kai H. Luo, Ronghou Liu, and Pengmei Lv. Binary droplet collision simulations

by a multiphase cascaded lattice Boltzmann method. Physics of Fluids, 26(2):023303, 2014.

[82] John F. Marko and Eric D. Siggia. Stretching DNA. Macromolecules, 28(26):8759–8770, 1995.

[83] C. A. Marsh, G. Backx, and M. H. Ernst. Static and dynamic properties of dissipative particle dynamics.

Physical Review E, 56(2):1676–1691, August 1997.

[84] Nicos S. Martys and Hudong Chen. Simulation of multicomponent fluids in complex three-dimensional

geometries by the lattice Boltzmann method. Physical Review E, 53(1):743–750, January 1996.

[85] Keijo Mattila, Jari Hyväluoma, Tuomo Rossi, Mats Aspnäs, and Jan Westerholm. An efficient swap algo-

rithm for the lattice Boltzmann method. Computer Physics Communications, 176(3):200–210, February

2007.

[86] Philip M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical

Review, 34(1):57–64, July 1929.

[87] David R. Noble, Shiyi Chen, John G. Georgiadis, and Richard O. Buckius. A consistent hydrodynamic

boundary condition for the lattice Boltzmann method. Physics of Fluids, 7(1):203–209, 1995.

216 BIBLIOGRAPHY

[88] Rafik Ouared and Bastien Chopard. Lattice Boltzmann simulations of blood flow: non-Newtonian rheology

and clotting processes. Journal of Statistical Physics, 121:209–221, 2005.

[89] I. Pagonabarraga and D. Frenkel. Dissipative particle dynamics for interacting systems. Journal of

Chemical Physics, 115(11):5015–5026, 2001.

[90] Tasos C. Papanastasiou. Flows of materials with yield. Journal of Rheology, 31(5):385–404, 1987.

[91] Ding-Yu Peng and Donald B. Robinson. A new two-constant equation of state. Industrial & Engineering

Chemistry Fundamentals, 15(1):59–64, 1976.

[92] E. A. J. F. Peters. Elimination of time step effects in DPD. EPL (Europhysics Letters), 66(3):311–317,

May 2004.

[93] B. Piaud, M.J. Clifton, S. Blanco, and R. Fournier. Lattice Boltzmann method for colloidal dispersions

with phase change. Progress in Computational Fluid Dynamics, 8(1–4):129–137, 2008.

[94] C. M. Pooley and K. Furtado. Eliminating spurious velocities in the free-energy lattice Boltzmann method.

Physical Review E, 77:046702, Apr 2008.

[95] C. M. Pooley, H. Kusumaatmaja, and J. M. Yeomans. Contact line dynamics in binary lattice Boltzmann

simulations. Physical Review E, 78:056709, Nov 2008.

[96] Kannan N. Premnath and John Abraham. Three-dimensional multi-relaxation time (MRT) lattice-

Boltzmann models for multiphase flow. Journal of Computational Physics, 224(2):539–559, 2007.

[97] P. Prinsen, P. B. Warren, and M. A. J. Michels. Mesoscale simulations of surfactant dissolution and

mesophase formation. Physical Review Letters, 89(14):148302, September 2002.

[98] Y. H. Qian, S. Succi, and S. A. Orszag. Recent advances in lattice boltzmann computing. In Dietrich

Stauffer, editor, Annual Reviews of Computational Physics III, chapter 6, pages 195–242. World Scientific,

October 1995.

[99] P. Raiskinmäki, A Koponen, J. Merikoski, and J. Timonen. Spreading dynamics of three-dimensional

droplets by the lattice-Boltzmann method. Computational Materials Science, 18(1):7–12, 2000.

[100] P. Raiskinmäki, A. Shakib-Manesh, A. Jäsberg, A. Koponen, J. Merikoski, and J. Timonen. Lattice-

Boltzmann simulation of capillary rise dynamics. Journal of Statistical Physics, 107(1–2):143–158, 2002.

[101] Otto. Redlich and J. N. S. Kwong. On the thermodynamics of solutions. V. An equation of state. Fugacities

of gaseous solutions. Chemical Reviews, 44(1):233–244, 1949.

[102] M. Revenga, I. Zúñiga, and P. Español. Boundary conditions in dissipative particle dynamics. Com-

puter Physics Communications, 121–122:309–311, 1999. Proceedings of the Europhysics Conference on

Computational Physics CCP 1998.

[103] A. G. Schlijper, P. J. Hoogerbrugge, and C. W. Manke. Computer simulation of dilute polymer solutions

with the dissipative particle dynamics method. Journal of Rheology, 39(3):567–579, 1995.

[104] M. A. Seaton, I. Halliday, and A. J. Masters. Application of the multicomponent lattice Boltzmann

simulation method to oil/water dispersions. Journal of Physics A, 44(10):105502, March 2011.

[105] Takeshi Seta, Roberto Rojas, Kosuke Hayashi, and Akio Tomiyama. Implicit-correction-based immersed

boundary-lattice Boltzmann method with two relaxation times. Physical Review E, 89:023307, February

2014.

[106] Xiaowen Shan. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann

models. Physical Review E, 73(4):047701, 2006.

BIBLIOGRAPHY 217

[107] Xiaowen Shan. Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Physical

Review E, 77(6):066702, June 2008.

[108] Xiaowen Shan and Hudong Chen. Lattice Boltzmann model for simulating flows with multiple phases and

components. Physical Review E, 47(3):1815–1819, March 1993.

[109] Xiaowen Shan and Hudong Chen. Simulation of nonideal gases and liquid-gas phase transitions by the

lattice Boltzmann equation. Physical Review E, 49(4):2941–2948, April 1994.

[110] Tony Shardlow. Splitting for dissipative particle dynamics. SIAM Journal on Scientific Computing,

24(4):1267–1282, 2003.

[111] Julian C. Shillcock and Reinhard Lipowsky. Equilibrium structure and lateral stress distribution of

amphiphilic bilayers from dissipative particle dynamics simulations. Journal of Chemical Physics,

117(10):5048–5061, 2002.

[112] Richard C. Singleton. An algorithm for computing the mixed radix fast Fourier transform. IEEE Trans-

actions on Audio and Electroacoustics, 17(2):93–103, July 1969.

[113] W. Smith. Coping with the pressure! How to calculate the virial. CCP5 Information Quarterly, 26:43–51,

September 1987.

[114] W. Smith. Molecular dynamics on hypercube parallel computers. Computer Physics Communications,

62(2-3):229–248, March 1991.

[115] W. Smith. A replicated data molecular dynamics strategy for the parallel Ewald sum. Computer Physics

Communications, 67(3):392–406, January 1992.

[116] W. Smith. Calculating the pressure. CCP5 Information Quarterly, 39:14–20, October 1993.

[117] W. Smith, T. R. Forester, and I.T. Todorov. The DL POLY Classic user manual. STFC, STFC Daresbury

Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom, version 1.0 edition, December

2010.

[118] Giorgio Soave. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engi-

neering Science, 27(6):1197–1203, 1972.

[119] T. J. Spencer, I. Halliday, and C. M. Care. Lattice Boltzmann equation method for multiple immiscible

continuum fluids. Physical Review E, 82(6):066701, December 2010.

[120] Timothy J. Spencer, Ian Halliday, and Chris M. Care. A local lattice Boltzmann method for multiple

immiscible fluids and dense suspensions of drops. Philosophical Transactions of the Royal Society of

London A, 369(1944):2255–2263, 2011.

[121] Simeon D. Stoyanov and Robert D. Groot. From molecular dynamics to hydrodynamics: A novel Galilean

invariant thermostat. Journal of Chemical Physics, 122(11):114112, 2005.

[122] Alexander Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the open

visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012, dec

2009.

[123] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford,

2001.

[124] K. Suga, Y. Kuwata, K. Takashima, and R. Chikasue. A D3Q27 multiple-relaxation-time lattice Boltzmann

method for turbulent flows. Computers & Mathematics with Applications, 69(6):518–529, 2015.

[125] Michael R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulations of

liquid-gas and binary fluid systems. Physical Review E, 54(5):5041–5052, November 1996.

218 BIBLIOGRAPHY

[126] Michael R. Swift, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulation of nonideal fluids.

Physical Review Letters, 75(5):830–833, July 1995.

[127] Ketzasmin A. Terrón-Mej́ıa, Roberto López-Rendón, and Armando Gama Goicochea. Electrostatics in

dissipative particle dynamics using Ewald sums with point charges. Journal of Physics: Condensed Matter,

28(42):425101, 2016.

[128] B. D. Todd, Denis J. Evans, and Peter J. Daivis. Pressure tensor for inhomogeneous fluids. Physical

Review E, 52:1627–1638, August 1995.

[129] I. T. Todorov and W. Smith. The DL POLY 4 user manual. STFC, STFC Daresbury Laboratory,

Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom, version 4.01.0 edition, October 2010.

[130] S. Y. Trofimov, E. L. F. Nies, and M. A. J. Michels. Thermodynamic consistency in dissipative particle

dynamics simulations of strongly nonideal liquids and liquid mixtures. Journal of Chemical Physics,

117(20):9383–9394, 2002.

[131] Loup Verlet. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones

molecules. Physical Review, 159(1):98–103, July 1967.

[132] P. B. Warren. Vapor-liquid coexistence in many-body dissipative particle dynamics. Physical Review E,

68(6):066702, December 2003.

[133] P. B. Warren, P. Prinsen, and M. A. J. Michels. The physics of surfactant dissolution. Philosophical

Transactions of the Royal Society of London A, 361(1805):665–676, 2003.

[134] Patrick B. Warren. No-go theorem in many-body dissipative particle dynamics. Physical Review E,

87:045303, April 2013.

[135] Patrick B. Warren and Andrey Vlasov. Screening properties of four mesoscale smoothed charge models,

with application to dissipative particle dynamics. Journal of Chemical Physics, 140(8):084904, 2014.

[136] Patrick B. Warren, Andrey Vlasov, Lucian Anton, and Andrew J. Masters. Screening properties of

Gaussian electrolyte models, with application to dissipative particle dynamics. Journal of Chemical

Physics, 138(20):204907, 2013.

[137] John D. Weeks, David Chandler, and Hans C. Andersen. Role of repulsive forces in determining the

equilibrium structure of simple liquids. Journal of Chemical Physics, 54(12):5237–5247, 1971.

[138] Dean R. Wheeler, Norman G. Fuller, and Richard L. Rowley. Non-equilibrium molecular dynamics simu-

lation of the shear viscosity of liquid methanol: adaptation of the Ewald sum to Lees-Edwards boundary

conditions. Molecular Physics, 92(1):55–62, 1997.

[139] B. Widom. Some topics in the theory of fluids. Journal of Chemical Physics, 39(11):2808–2812, 1963.

[140] B. Widom. Potential-distribution theory and the statistical mechanics of fluids. Journal of Physical

Chemistry, 86(6):869–872, 1982.

[141] Satoru Yamamoto, Yutaka Maruyama, and Shi-aki Hyodo. Dissipative particle dynamics study of spon-

taneous vesicle formation of amphiphilic molecules. Journal of Chemical Physics, 116(13):5842–5849,

2002.

[142] Kenji Yasuda. Investigation of the analogies between viscometric and linear viscoelastic properties of

polystyrene fluids. PhD thesis, Massachusetts Institute of Technology, 1979.

[143] In-Chul Yeh and Max L. Berkowitz. Ewald summation for systems with slab geometry. Journal of

Chemical Physics, 111(7):3155–3162, 1999.

BIBLIOGRAPHY 219

[144] M. Yoshino and T. Inamuro. Lattice Boltzmann simulations for flow and heat/mass transfer problems in

a three-dimensional porous structure. International Journal for Numerical Methods in Fluids, 43(2):183–

198, 2003.

[145] Peng Yuan and Laura Schaefer. Equations of state in a lattice Boltzmann model. Physics of Fluids,

18(4):042101, 2006.

[146] Raoyang Zhang and Hudong Chen. Lattice Boltzmann method for simulations of liquid-vapor thermal

flows. Physical Review E, 67(6):066711, June 2003.

[147] You-Liang Zhu, Hong Liu, Zhan-Wei Li, Hu-Jun Qian, Giuseppe Milano, and Zhong-Yuan Lu. GALAM-

OST: GPU-accelerated large-scale molecular simulation toolkit. Journal of Computational Chemistry,

34(25):2197–2211, 2013.

[148] Qisu Zou and Xiaoyi He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK

model. Physics of Fluids, 9(6):1591–1598, June 1997.

	Contents
	DL_MESO General Information
	Description
	Functionality
	Requirements
	The DL_MESO Directory Structure
	Disclaimer
	Copyright
	Authors
	Suggestions and Bug Reports

	Quickstart guide to compile and run DL_MESO
	Obtaining DL_MESO
	DL_MESO_LBE
	DL_MESO_DPD
	Utilities
	Further information

	The DL_MESO GUI
	Getting Started with the DL_MESO GUI
	Lattice Boltzmann and the DL_MESO GUI
	Dissipative Particle Dynamics and the DL_MESO GUI
	Compiling and running DL_MESO
	Notes

	Lattice Boltzmann Equation (LBE)
	The Lattice Boltzmann Equation: Basic Theory
	Introduction
	Basic Definitions
	Derivation of Equilibrium
	Structural Relaxation and Macroscopic Equations
	Mesoscale Interaction
	Summary of Lattice Boltzmann Equation

	DL_MESO_LBE Features
	Collision and Propagation Algorithms
	Boundary conditions
	Mesoscale interactions
	Diffusion and heat transfer
	Compressible and incompressible fluids

	DL_MESO_LBE Input and Output Files
	Input files
	Output files

	DL_MESO LBE Examples
	2D_Pressure
	2D_Shear
	2D_CylinderFlow
	2D_KarmanVortex
	2D_KarmanVortexOutflow
	2D_LidCavity
	2D_RayleighBenard
	2D_DropShear
	2D_PhaseSeparation
	2D_PowerLaw
	3D_PhaseSeparation
	3D_Shear
	3D_RayleighBenard
	3D_DropShear

	Dissipative Particle Dynamics (DPD)
	Dissipative Particle Dynamics: Basic Theory
	Introduction
	Outline of Method
	Equation of state and dynamic properties
	Derivation of Equilibrium
	Summary of Dissipative Particle Dynamics

	DL_MESO_DPD Features
	Domain decomposition and linked-list cell calculations
	Thermostats and integration algorithms
	Barostats
	Particle-particle interactions
	Long-ranged Electrostatic (Coulombic) Potentials
	Bond interactions between particles
	Frozen bead walls
	Surface interactions

	DL_MESO_DPD Input and Output Files
	Input files
	Output files

	DL_MESO DPD Examples
	Mixture_Small
	Mixture_Large
	PhaseSeparation
	Aggregate
	Polyelectrolyte
	AmphiphileMesophases
	VesicleFormation
	LipidBilayer
	AlkylSulphate
	FloryHuggins
	PoiseuilleFlow
	ShearFlow
	VapourLiquid
	SurfaceDrop

	Changes to input files from previous versions of DL_MESO
	DL_MESO_LBE
	DL_MESO_DPD

	Manual compiliation and running of DL_MESO
	DL_MESO_LBE
	DL_MESO_DPD

	DL_MESO Utilities
	DL_MESO_LBE
	DL_MESO_DPD

	Lattice schemes
	D2Q9
	D3Q15
	D3Q19
	D3Q27

	DL_MESO_DPD Error Messages
	DL_MESO Licence Agreement (Academic Purposes)
	Bibliography

