
Hail Euler and Farewell: Rotational 
Motion in the Laboratory Frame1.

W. Smith, Computational Science and Engineering Department, 
Daresbury Laboratory, Warrington WA4 4AD, United Kingdom (E-
mail: w.smith@dl.ac.uk)

Abstract

In this paper we consider the treatment of rotational motion in 
molecular dynamics simulation and re-examine the Euler approach. 
It is shown that, for numerical integration, it is not necessary to 
couch the problem in terms of the principal reference frame in 
which the moment of inertia tensor is diagonal. From these 
considerations a new algorithm is developed which is solved entirely 
in the laboratory reference frame and avoids the pitfalls associated 
with applying Euler’s method in numerical simulations.

Introduction

In molecular dynamics the numerical integration schemes for 
integrating the rotational motion of a rigid body (in our case a rigid 
molecule), are conventionally discussed in terms of Euler’s 
rotational equations of motion [1]. In these equations it is assumed 
that, at a given instant, the rotation is described in a frame of 
reference in which the moment of inertia tensor is diagonal. This 
instantaneous frame of reference is known as the principal frame. 
In the principal frame the relationship between the applied torque 
and the rate of change of angular velocity is particularly simple and 
allows a simple numerical integration of the angular velocity. 
However, because the body rotates, it is necessary for the principal 
frame to rotate also, in order to ensure that the moment of inertia 
tensor remains diagonal. 

Thus a numerical solution of Euler’s equations needs to be 
supplemented by a prescription for updating the principal frame as 
the simulation proceeds. While such a prescription can be easily 
obtained [2], it is well known that there are disadvantages to the 
scheme, due to the real possibility of the equations becoming 
indeterminate for certain angles of orientation. This was discussed 
in detail by Evans and Murad [3] some years ago and led to the 
introduction of quaternions, with singularity free equations of 
motion, into the methodology of molecular dynamics. There is 
however another approach, and that is to relinquish the concept of 
the principal frame of reference altogether and tackle the problem 
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directly in the laboratory frame. It turns out that this approach has 
advantages for a numerical integration scheme. Firstly however we 
must re-examine the mathematical treatment of rotational motion 
as it is conventionally presented.

The Equations of Motion for Rigid Molecules

A molecule in the context of this treatment is a rigid assembly of 
point masses (atoms) of mass mi, where i=1,…,n. From this simple 
definition a number of important molecular properties are obtained:

     M=∑
i=1

n

mi (a)       R⃗=M −1∑
i=1

n

mi r⃗i (b)

(1)

     d⃗ i= r⃗i−R⃗ (c)       Iαβ=∑
i=1

n

mi (d i
2δαβ−d i

αd i
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In which M is the molecular mass, R⃗ the centre-of-mass, d⃗ i the 
location of an atom with respect to the centre-of-mass and I  is 
the moment of inertia tensor. 

The velocity and angular momentum associated with these variables 
are: 

V⃗=M −1∑
i=1

n

mi v⃗ i (a )                                

J⃗=∑
i=1

n

mi( d⃗ i× v⃗ i) (b)                            (2)
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Where V⃗ is the molecular (translational) velocity, J⃗ is the angular 
momentum and ω⃗ is the angular velocity, while v⃗ i is the velocity 
of an individual atom in the laboratory frame. (Note the use of the 
Einstein convention regarding tensor indices in equation (2c) here, 
and elsewhere in this paper.)

The dynamics of each molecule are driven by the molecular force 
F⃗ and torque T⃗ :

F⃗=∑
i=1

n

f⃗ i (a )     T⃗=∑
i=1

n

d⃗ i× f⃗ i (b)                    (3)

In which the atomic forces f⃗ i are the vector sums of atom-atom 
forces acting between molecules.



It is important to note that in these definitions, moment of inertia, 
angular momentum, torque and angular velocity are defined with 
respect to the molecular centre-of-mass. It should also be noted 
that all have been defined with respect to the laboratory frame of 
reference, which means any inertial frame that happens to be 
convenient.

The equations of motion for each molecule (again in the laboratory 
frame) are well known:

d
dt
V⃗=M −1 F⃗ (a)        d

dt
J⃗=T⃗ (b)            (4)

The first of these is the standard Newtonian equation for 
translational motion, while the second embodies the rotational 
motion of the molecule. Following Euler this equation may be cast 
into the principal frame where it takes the familiar form know as 
Euler’s equations [1] but here we take an alternative approach. 
Equation (4b) can be expanded into:

T⃗=
d
dt

( Iαβ
ω

β)=Iαβ
ω̇

β
+ İαβ

ω
β                             (5)

Where the time derivative of the moment of inertia tensor can be 
obtained from equation (1d) as:

İαβ
=−∑

i=1

n

mi ( ḋ i
αd i

β
+d i

α ḋ i
β )                                 (6)

We now recognise that

˙⃗d i=ω⃗× d⃗ i        or      ḋ i
α
=ϵαβγω

βd i
γ                     (7)

in which the Levi-Civita tensor ϵαβ γ is 1 for an even permutation of 
indices, -1 for a odd permutation and zero if any index is repeated. 
Substitution of (7) into (6) provides the following result:

İ αβ=ϵαλ μω
λ Iμβ

+ϵβρσω
ρ I σα                           (8)

If equation (5) is rearranged we obtain:

   ˙⃗ω= I−1(T⃗− İ ω⃗)                                     (9)

Equation (9) forms the basis for an integration of the angular 
velocity. We may therefore outline a possible numerical scheme for 
integrating the equations of motion for rigid molecules:



Scheme 1:

1. At time step t n {M , R⃗n , V⃗ n , d⃗ i
n , I n , J⃗ n , F⃗ n , T⃗ n} are known.

2. For each molecule:

3. Update: V⃗ n+1 /2
←V⃗ n

+
Δ t
2M

F⃗ n .

4. Update: J⃗ n+1/2
← J⃗ n+

Δ t
2
T⃗ n .

5. Update: R⃗n+1
← R⃗n+Δ t V⃗ n+1 /2.

6. Calculate: ω⃗
n
=( I n)−1 J⃗ n .

7. Calculate: İ≡ İαβ
=ϵαλ μω

λ Iμβ
+ϵβρσω

ρ I σα .

8. Calculate ˙⃗ωn=( I n)−1(T⃗ n− İ n ω⃗n) .

9. Update: ω⃗
n+1 /2

←ω⃗
n
+Δ t ˙⃗ωn.

10. Update: d⃗ i
n+1

← d⃗ i
n
+Δ t ω⃗n+1/2

× d⃗ i
n , ∀ d⃗ i

n .

11. Calculate: F⃗ n+1 and T⃗ n+1 using R⃗n+1 and {d⃗ i
n+1

}.

12. Update: V⃗ n+1
←V⃗ n+1/2

+
Δ t
2M

F⃗ n+1 .

13. Update: J⃗ n+1
← J⃗ n+1/2

+
Δ t
2
T⃗ n+1.

14. End For

Scheme 1 is based on the velocity Verlet algorithm [2]. The scheme 
is remarkably simple, but experienced molecular dynamicists will 
notice a serious weakness at step 10. This step is meant to compute 
the change in the orientation of the vector d⃗ i as a result of the 
rotation generated by vector ω⃗

n+1 /2. However in this form it does 
not conserve the normalisation of d⃗ i and consequently cannot 
maintain the structural integrity of the molecule during the rotation. 
Fortunately the geometric interpretation of this operation affords a 
reliable alternative prescription.

In Figure 1 we provide a geometric interpretation of the action of an 
angular velocity vector ω⃗ on a typical displacement vector d⃗ .
Under this operation the tip of vector d⃗ traces out an arc of the 
circle shown. The plane of the circle is perpendicular to the vector
ω⃗ . The radius of the circle is represented by the vector u⃗ which is 

given by:



Figure 1

u⃗=d⃗−w⃗                                           (9)

where

w⃗=( ω⃗⋅d⃗ω
2 )ω⃗                                       (10)

is the projection of d⃗ in the direction of ω⃗ . From equation (7) we 
also have the velocity vector v⃗ defined as 

v⃗=ω⃗×d⃗ .                                         (11)

Taking u⃗ , v⃗ and w⃗ together we have a set of mutually orthogonal 
vectors.

In a time step Δ t , the vector u⃗ is turned through an angle ϕ  in 
the plane of the circle to become vector u⃗ ' .  The angle ϕ is given 
by

ϕ=Δ tω=Δ t( vu)                                   (12)

where ω , u and v are the magnitudes of vectors ω⃗ , u⃗ and v⃗
respectively. It is easy to show that

u⃗ '=cos(ϕ) u⃗+Δ t
sin (ϕ)

ϕ v⃗                           (13)

and from this we can obtain vector d⃗ ' , which is given by



d⃗ '=w⃗+ u⃗ ' .                                      (14)

Vector d⃗ ' is the updated position of vector d⃗ after the time step 
has been completed. This is the required result. 

A scheme for replacing step 10  of Scheme 1 is presented below. 

Scheme 2:

1. Calculate: ϕ=Δ tωn+1/2.

2. For each atom i in molecule:

3. Calculate: w⃗=( ω⃗
n+1 /2

⋅d⃗ i
n

∣ω⃗
n+1/2

∣
2 )ω⃗n+1/ 2

4. Calculate: u⃗=d⃗ i
n
−w⃗

5. Calculate: v⃗=ω⃗
n+1/2

×d⃗ i
n .

6. Update: d⃗ i
n+1

← w⃗+cos(ϕ) u⃗+Δ t
sin (ϕ)

ϕ v⃗ .

7. End For 

There is one further improvement that can be made. Step 6 of 
Scheme 2 contains the ratio sin(ϕ)/ϕ , which tends to 1 as ϕ→0.
To ensure this occurs cleanly, when ϕ is small (ϕ<10−2

) the ratio 
should be replaced by the expansion

sin (ϕ)
ϕ =1−

ϕ
2

6 (1−
ϕ

2

20(1−
ϕ

2

42)) ,                       (15)

which has an error better than 3 parts in 10−22 and is accurate 
enough to preserve the length of d⃗ i

n+1 as it rotates.

Application

The proposed algorithm has been implemented in Fortran [4] and 
run on a set of model systems (all of which are defined in Lennard-
Jones reduced units, and all pair interactions with ε=1 and σ=1
shifted to zero force at the cut off):

1. Case 1: 27 tetrahedral clusters of Lennard-Jones sites, with 
intramolecular site-site distance 1.2642, site masses 

0.5, 1.5, 0.75, 1.25 , cluster density ρ
∗
=0.175, temperature 

T ∗
=1.5 and time step Δ t=0.001.

2. Case 2: pseudo-ammonia; 27 molecules, with H atoms at 3 
vertices of a tetrahedron and the N atom at the tetrahedron 



centre. Site masses 1.0 (N), 0.1 (H), N-H distance 0.7404,  
molecular density ρ

∗
=0.2,  temperature T∗

=1.0 and time 
step Δ t=0.001.

3. Case 3: pseudo-water; 27 molecules, with H atoms at 2 
vertices of a tetrahedron and the O atom at the tetrahedron 
centre, plus an additional L-J site bisecting O-H bonds at 
distance 0.1644 from oxygen, O-H bond length .7119, site 
masses 1.0 (O), 0.1 (H), 0.0 (additional site),molecular 
density ρ

∗
=0.225, temperature T∗

=1.25  and time step
Δ t=0.001.

4. Case 4: As Case 1, with time step Δ t=0.0005.
5. Case 5: As Case 2, with time step Δ t=0.0005.
6. Case 6: As Case 3, with time step Δ t=0.0005.

In each case a simulation of 1 million time steps was conducted, 
with the first 10,000 time steps reserved for equilibration. The 
average energy and drift over 990,000 time steps was obtained.
The results are presented in Table 1.

Case <Energy> Total Drift Drift per t
1 −1.7269×102 1.43×10−3 1.45×10−9

2 −2.8175×102 1.13×10−1 1.14×10−7

3 −4.5250×102 2.08 2.11×10−6

4 −1.7521×102 7.33×10−4 7.41×10−10

5 −2.9530×102 5.86×10−3 5.92×10−9

6 −4.5611×102 1.74×10−1 1.76×10−7

Table 1

The total drift presented in Table 1 was obtained from the slope of 
the Energy versus Time plot fitted by least squares and multiplied 
by 990,000Δ t.  

Cases 1, 2 and 3 represent molecular structures with decreasing 
moments of  inertia, so it is anticipated that the algorithm will show 
greater drift progressing from 1 to 3. This is clearly seen in Table 1, 
The drift in Cases 1 and 2 is arguably negligible, but the result for 
Case 3 would not normally be acceptable. The particularly poor 
result obtained reflects, no doubt, the very low moment of inertia of 
this molecule. Nevertheless, reducing the time step by half (Case 
6), improves the result significantly. The equivalent reduction in 
time step applied in Case 4 and Case 5 reduces the drift here also. 
For many applications the results obtained with the shorter time 
step would be quite acceptable.

Conclusion



The main conclusion to be drawn form this note is that casting the 
rotational equations of motion into a principal frame of reference is 
unnecessary if a numerical integration scheme is required. Solving 
the motion in the laboratory frame does not require recourse to 
quaternions as there are no difficulties with particular molecular 
orientations; the equations are singularity free. Finally, to this 
author at least, the method has an appealing directness that leans 
more on physical than mathematical intuition, which will be an 
advantage for others also.
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