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The popular RATTLE algorithm for imposing bond-stretch constraints in molecular dynamics
simulations is generalized here to handle arbitrary holonomic constraints. In particular, RATTLE
expressions are given for the important angle-bend and torsional internal-coordinate constraints.
This general formulation of RATTLE combines the computational advantages of the velocity Verlet
integration algorithm with the flexibility and computational advantages of using general holonomic
constraints.

1 INTRODUCTION

Ryckaert et al. [1] developed the SHAKE algorithm for applying bond-stretch constraints in molec-
ular dynamics (MD) simulations, using the basic Verlet[2] integration algorithm. To avoid the
computational drawbacks[3, 4, 5] of the basic Verlet scheme, Andersen[4] used instead the veloc-
ity Verlet algorithm([5] to impose bond-stretch constraints, and termed the resulting algorithm
RATTLE. Ryckaert[6] later generalized SHAKE to handle arbitrary holonomic constraints. The
possibility of imposing general holonomic constraints in MD simulations provides the ability to
selectively freeze particular degrees of freedom, without having to interfere with others. As a sim-
ple example, to freeze the angle-bend in a triatomic (e.g. water model) using only bond-stretch
constraints requires imposing total rigidity on the molecule by means of triangulation|[7, 8]. How-
ever, freezing the angle-bend can be achieved more directly by imposing a single angle constraint,
without constraining any of the bond-stretches. In addition, arbitrary holonomic constraints can
offer computational advantages over equivalent pure stretch constraints, as discussed later. In Sec-
tion 2, RATTLE is generalized to impose arbitrary holonomic constraints in MD simulations, and
useful RATTLE expressions for angle-bend and torsional internal-coordinate constraints are given
in Section 3.
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2 RATTLE For General Holonomic Constraints

Unlike the basic Verlet scheme[2], the velocity Verlet algorithm[5, 9] involves two stages. First, the
positions are determined by

it + 51) = xit0) + 08100 + 0 () 1)

where f; is the force on particle 7, and then the velocities are computed as

2

Fillo + 6t) = £i(to) + 10 {£i(t0) + Fllo + 50} ©)

In the first stage, the positions at time (¢y + 0t) are calculated from the positions and velocities
at time tg, as given by Eq. (1). With the positions at time (o + dt) available, the forces at time
(to + dt) can be computed, for use in the second stage, to evaluate the velocities at time (¢y + dt)
by means of Eq. (2).

Consider a system of N interacting particles subject to [ general holonomic constraints

or({r(®)}) =0 (k=1,...,]) (3)

where {r(¢)} denotes the coordinates of the subset of ny particles involved in 0. The constrained
coordinates are given[l, 6, 10] by

2 1
rita + 6, (1) =t + 00) — OL S0, (9] 1) (1
v k=1

The unconstrained coordinates r}(ty + dt) are given by means of Eq. (1) as

r}(to + 0t) = ri(to) + [6t]i(t0) + [251:]2

F(to) (5)

7

where F; is the potential energy force on particle . The parameters {7y} are chosen such that
the constrained coordinates at time (tp + 0t) satisfy the constraint equations (within a desired
tolerance), and either the “matrix method” or the SHAKE procedure can be used[1, 6, 10] to
obtain the {7}. The constrained velocities are given by

I
bt + 34, (n) = #(to + ) — L0 3™ [Tianl(to + 30 ()
b k=1
where, using Eq. (2), we have
I
I (to + 0t) = £i(to) + 2[(:] {Fi(to) — > WwlViok](to) + Fi(to + 5t)} (7)
¢ k=1
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The parameters {n} are chosen such that the constrained velocities at time (to + dt) satisfy the
constraint equations, more specifically their time derivatives. Accordingly, differentiating Eq. (3)
with respect to time we get

N

% or ({r(to + 68)}) = Ti(to + 6t) - [Viow] ({r(to + 6t)}) =0 (8)

=1

where 1;(to + dt) is inserted from Eq. (6). Again, either numerical matrix inversion or the SHAKE
procedure can be used to solve the set of [ linear equations Eq. (8) for the {n}. Since solution for
the {7} and {n} by matrix techniques becomes computationally expensive for systems with large
numbers of coupled constraints, we concentrate here on the solution by the SHAKE procedure,
namely RATTLE.

The first of the two stages of the RATTLE formulation for general holonomic constraints,
described here, is identical to the generalized SHAKE scheme[6, 10]. The SHAKE algorithm
consists of an iterative loop inside which the constraints are considered individually and successively.
During an iteration, the algorithm successively selects every constraint and corrects the positions
of the subset of particles involved in that constraint, to satisfy it. Consider a certain iteration and
a particular constraint og. Let {r"ld(to + 5t)} be the subset of ny particle positions involved in
ok, with values including all changes up to this point in the iteration. The new positions of the
particles {r"¢¥(¢y + 6t)} obtained in the current iteration are computed as

[6¢]?
2m;

K (to + 0t) = xf'(to + 0) — ok [Vaow](bo) (=1, 1) 9)
where the starting value of r?4(tq + 6t) is given by Eq. (5). These new positions should satisfy the
constraint equation for oy, leading to

log” ({I‘new(to + (5t)}) = O ({I‘Old(to + 5t)} — {%’)’gew[vak](to)}) =0 (10)

Equation (10) is usually nonlinear in 77", even for a bond-stretch constraint. Taylor expanding
o ({r™™(to + 0t)}) about {r"ld(to + 5t)}, Eq. (10) becomes

o ({4030} - { B0 iwonn }) -

2m
old & [6t]2 new old
or ({r"(to +01)}) =3 5 [Viox(to) - [Viox] ({rto+61)}) +... =0 (11)
i=1 t
where the nonlinear terms are not shown explicitly. For computational efficiency, all terms higher
than first order in Eq. (11) are usually neglected, the iterative process over constraints ensuring
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the resulting solution satisfies Eq. (11). From Eq. (11) one gets

or ({r(to + 01) })
ity (1/2mq)[Viok](to) - [Viok] ({r(to + 6t)})
Exactly as with SHAKE, iterations over the general holonomic constraints continue until all are
satisfied, within some tolerance. When all constraints have been satisfied and the constrained
coordinates at (ty+ dt) are available, the potential energy forces {F(ty + dt)} are computed for use
in the following second stage of the generalized RATTLE.

During an iteration of this second stage, the algorithm again successively selects every constraint
and corrects the velocities of the subset of particles involved in that constraint, to satisfy its time
derivative. Considering again some iteration and a particular constraint oy, the new velocities of
the particles {¥""(¢o + dt)} obtained in the current iteration are given by

ot
{0t +6) = 12900+ ) — LTt 4 80 (= 1) (13)
1

TR =16t~ (12)

where the starting value of %/%(ty + dt) is given by Eq. (7). These new velocities should satisfy the
time derivative of the constraint equation. Accordingly, inserting Eq. (13) into Eq. (8) and solving

the resulting linear equation for ;" gives

>oiky £ (to + 0t) - [Viow] ({r(to + 61)})
ik (1/2mg)[Viok] ({x(to + 6t)}) - [Viow] ({r(to + 6t)})
As with the first stage of RATTLE, iteration over constraints continues until all the constraints
on the velocities have been satisfied within a selected tolerance. The entire RATTLE procedure is
then repeated at the next time MD step.

e = (6t (14)

3 RATTLE With Internal-Coordinate Constraints

The above general formulation of RATTLE is specialized here to angle-bend and torsional con-
straints, with the bond-stretch constraints case reviewed merely for completeness. Consider the
[ general holonomic constraints Eq. (3) as comprising [, bond-stretch constraints, {, bond-angle
constraints, and /; torsional constraints. For bond-stretch constraints Eq. (3) takes the form

or({r}) = [r;(t) 1) —d; =0 (k=1,...,1) (15)

where 7 and j are the two particles involved in the particular constraint o, and d;; is the constant
distance between them. For the first stage of RATTLE, inserting ox({r}) of Eq. (15) into Eq. (9)
yields

1
7V (fo + 6t) = r?ld(to—F(st)_m_j[‘st]Q')’l?ew[rj(to)—ri(to)]

It +0t) = rf(to +0t) - %[575]2773“”[%(1&0) —r;(to)] (16)
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and Eq. (12) reduces to
[5" (ko + 6t) — (ko + 0t)) — d

e = [5t]—22[(1/mi) + (1/my)]lr;(to) — rilto)] - [F(20 + 61) — r9%(tg + 61)] (k=1,...,1)
Tn the second stage Eq. (13) becomes (17)
U (ty 4 6t) = (o + ot) — mij[at]n,@ew fr; (0 + 6t) — 13 (to + 68)]

% (tg + 0t) = f«;?ld(to + 0t) — mii[ét]ngew [ri(to + 0t) —r;(to + 6t)] (18)

and Eq. (14) reduces to
1 [I‘j (to + (St) —I; (t() + (5t)][1.‘JO-ld(t0 + (St) - f'qud(t() + 5t)]
[(1/mq) + (1/my)]lr;(to + 6t) —ri(to + 61)]?

Because the constrained coordinates at (top + dt), from the first stage, satisfy (within a given
tolerance) the constraint Eq. (15), Eq. (19) can be rewritten as

et = [6t]” (k=1,...,1) (19)

_y [rj(to + 68) — ri(to + 01)] [0 (to + 0t) — B9 (20 + )]
[(1/mi) + (1/my)] dZ;

We have recovered in Egs. (16), (17), (18), and (20) the usual RATTLE expressions[4]. For
bond-angle constraints Eq. (3) takes the form

or({r}) = dapc({r}) — e =0 (k=1,...,1,) (21)

where a, b and c¢ are the three particles involved in the particular constraint oy, ¢epc = arccos(Lqp -
) is the angle at b formed by the (abc) triplet of particles, ¥45 = rap/|Tasl, Tap = ra — Tp, and
Qgpe 1s the constant angle-bend value. For the first stage of the generalized RATTLE, inserting the
constraint o ({r}) of Eq. (21) into Eq. (9) gives

[o¢]?

Y (to + 6t) = r{"(to + 6t) — 5 Yk [Vidasel(to) (0= a,b,¢) (22)

M = [01]

(k=1,...,0)  (20)

and Eq. (12) reduces to

¢abc ({rOld (tO + 6t)}) — Qgbe
>k (1/2mi)[Vidane) (to) - [Vidane) ({24 (to + 6t)})

For the second stage, Eq. (13) becomes

e = (54

B8 (tg 4 0t) = 2ty + 6t) — %ngew[vi%bc]({r(to +4t)) (i=a,b,c) (24)

(3
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and Eq. (14) reduces to

new _ [(5t] 1 Zz 1 zOld(tO + 5t) [V ¢abc] ({I'(t() + 5t)})
71 (1/2mq) {[Vipave] ({x(to + 50)})}?
Note that the expressions for V;dgp. in Egs. (22)-(25) are immediately available from the Wilson

vectors[11] for the angle-bend internal coordinate. Finally, for torsional constraints Eq. (3) takes
the form

(k=1,...,0) (25)

or({r}) = Tabed({r}) = Babea =0 (K =1,...,1;) (26)

where a, b, ¢, and d are the four particles involved in the particular constraint oy, and

(f'ab X IA'cb) i (f'bc X f'dc)
SiN Pgpe SN Ppeq

Tabed = arCCOS

(27)

is the dihedral angle formed by the (abed) quadruplet of particles with constraint value Bgpcq. For
the first stage of the generalized RATTLE, inserting o ({r}) of Eq. (26) into Eq. (9) yields

2
v (to + 6t) = r{(to + 6t) — [fi Vi [Vitabea) (to) (i = a,b,¢,d) (28)

mg

and Eq. (12) reduces to

Tabed ({ ol (g + ét)}) — Babed
(1/2mz)[v 7—abcd]( ) [V Tabcd]({rdd(to + (5t)})

In the second stage, Eq. (13) becomes

61

18 (ty 4 0t) = 29ty + 6t) — o
3

R ViTape) ({r(to + 6t)) (i = a,b,c,d) (30)

and Eq. (14) reduces to

nl'rczew [Jt] 1 Zz 1 zom(to + 5t) [ViTabc] ({I‘(to + 5t)})
ik (1/2ms) {[Vitanel ({x(to + 6t) 1)}

Again, the expressions for V;745.q¢ in Egs. (28)-(31) are available from the Wilson vectors[11] for
the torsional internal coordinate.

(k=1,....1) (31)

CONCLUSION

A formulation of RATTLE for imposing general holonomic constraints in MD simulations was de-
scribed, and expressions for angle-bend and torsional constraints were given. In MD simulations of
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systems involving constraints, the computation of the constraint forces typically takes far less CPU
time than the computation of the forces deriving from the potential energy of the system. As larger
systems with constraints are considered, or molecular models involving larger sets of constraints
are simulated, the computation of constraint forces becomes increasingly CPU intensive[12, 13] and
can parallel in computational cost[14, 15] the evaluation of the potential energy forces. To deal
with this problem, various approaches[15, 10] have been developed for improving the efficiency of
computing the constraint forces in MD simulations. One suggested strategy calls for the use of
equivalent alternative constraints. A case in point is the substantial improvement in efficiency that
results when angle-bend constraints are used[10] in place of the slowly converging triangulation
procedure|[7, 8] for imposing angle constraints. The formulation of RATTLE for general holonomic
constraints, given in this article, combines these computational advantages of arbitrary forms of
holonomic constraints with those of the velocity Verlet algorithm.
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