
THE DL POLY 4 USER MANUAL

I.T. Todorov & W. Smith

STFC Daresbury Laboratory
Daresbury, Warrington WA4 4AD

Cheshire, England, United Kingdom

Version 5.0.0 – February 2021

©STFC Preface

ABOUT DL POLY 4

DL POLY 4 is a general purpose parallel molecular dynamics simulation package developed at Daresbury
Laboratory by I.T. Todorov & W. Smith. The DL POLY project was developed under the auspices of the
Engineering and Physical Sciences Research Council (EPSRC) for the EPSRC’s Collaborative Computa-
tional Project for the Computer Simulation of Condensed Phases (CCP5), the Computational Chemistry &
Application Performance Engineering Groups (formerly Molecular Simulation & Advanced Research Com-
puting Groups) at Daresbury Laboratory and the Natural Environment Research Council (NERC) for the
NERC’s eScience project Computational Chemistry in the Environment (eMinerals), directed by M.T. Dove.

DL POLY 4 is developed worlwide and distributed under GNU Lesser General Public License version 3.0.

Latest version of DL POLY 4, issues and comments can be made at https://gitlab.com/ccp5/dl-poly

i

https://gitlab.com/ccp5/dl-poly

©STFC Preface

DISCLAIMER

Neither the STFC, EPSRC, NERC, CCP5 nor any of the authors of the DL POLY 4 package or its derivatives
guarantee that the package is free from error. Neither do they accept responsibility for any loss or damage
that results from its use.

ii

©STFC Preface

ACKNOWLEDGEMENTS

DL POLY 4 was developed at Daresbury Laboratory (DL - https://stfc.ukri.org/about-us/where-we-work/daresbury-
laboratory/), the Science & Technology Facilities Council (STFC - http://www.stfc.ac.uk/), UK, with sup-
port from the Engineering and Physical Sciences Research Council (EPSRC - http://www.epsrc.ac.uk/) and
the Natural Environment Research Council (NERC - http://www.nerc.ac.uk/).

Advice, assistance and encouragement in the development of DL POLY 4 has been given by many peo-
ple. We gratefully acknowledge the following:

T.R. Forester, I.J. Bush, M. Leslie, M.F. Guest, R.J. Allan, D. Tildesley, M. Pinches, D. Rapaport, the
UK’s “Materials Chemistry Consortium” under C.R.A. Catlow and the eMinerals project under M.T. Dove.

Manual contributions: Laurence Elisson, Andrey Brukhno, Alin M Elena, Jim Madge, Aidan Chalk, Ivan
Scivetti, Aaron Diver, Oliver Dicks, Alex Buccheri, Yaser Afshar and Jacob Wilkins. This document is

produced with LATEX & hdvipdfm

iii

https://stfc.ukri.org/about-us/where-we-work/daresbury-laboratory/
https://stfc.ukri.org/about-us/where-we-work/daresbury-laboratory/
http://www.stfc.ac.uk/
http://www.epsrc.ac.uk/
http://www.nerc.ac.uk/

©STFC Preface

Manual Notation

In the DL POLY manuals specific fonts are used to convey specific meanings:

1. directories - indicates UNIX file directories

2. routines - indicates subroutines, functions and programs

3. macros - indicates a macro (file of UNIX commands)

4. directive - indicates directives or keywords

5. variables - indicates named variables and parameters

6. FILE - indicates filenames.

iv

Contents

THE DL POLY 4 USER MANUAL a

About DL POLY 4 . i

Disclaimer . ii

Acknowledgements . iii

Manual Notation . iv

Contents v

List of Tables xiv

List of Figures xv

0 Quick Word / INSTALL & RUN 1

1 Introduction 2

1.1 The DL POLY Package . 3

1.2 Functionality . 3

1.2.1 Molecular Systems . 3

1.2.2 Force Field . 4

1.2.3 Boundary Conditions . 4

1.2.4 Java Graphical User Interface . 4

1.2.5 Algorithms . 5

1.2.5.1 Parallel Algorithms . 5

1.2.5.2 Molecular Dynamics Algorithms . 5

1.2.6 DL POLY Classic features incompatible or unavalable in DL POLY 4 5

1.3 Programming Style . 6

1.3.1 Programming Language . 6

1.3.2 Modularisation and Intent . 6

1.3.3 Memory Management . 6

1.3.4 Target Platforms . 7

1.3.5 Internal Documentation . 7

1.3.6 FORTRAN90 Parameters and Arithmetic Precision 7

v

©STFC Contents

1.3.7 Units . 7

1.3.8 Error Messages . 8

1.4 Directory Structure . 8

1.4.1 The source Sub-directory . 9

1.4.2 The build Sub-directory . 9

1.4.3 The cmake Sub-directory . 9

1.4.4 The utils Sub-directory . 9

1.4.5 The execute Sub-directory . 9

1.4.6 The data Sub-directory . 9

1.4.7 The bench Sub-directory . 10

1.4.8 The java Sub-directory . 10

1.4.9 The utility Sub-directory . 10

1.5 Obtaining the Source Code . 10

1.6 OS and Hardware Specific Ports . 10

1.7 Other Information . 10

2 Force Field Interactions 12

2.1 Introduction to the DL POLY 4 Force Field . 13

2.2 The Intramolecular Potential Functions . 14

2.2.1 Bond Potentials . 14

2.2.2 Distance Restraints . 16

2.2.3 Valence Angle Potentials . 17

2.2.4 Angular Restraints . 19

2.2.5 Dihedral Angle Potentials . 20

2.2.6 Improper Dihedral Angle Potentials . 22

2.2.7 Torsional Restraints . 23

2.2.8 Inversion Angle Potentials . 24

2.2.9 The Calcite Four-Body Potential . 26

2.2.10 Inversional Restraints . 27

2.2.11 Tethering Forces . 28

2.3 The Intermolecular Potential Functions . 28

2.3.1 Short Ranged (van der Waals) Potentials . 28

2.3.2 Metal Potentials . 33

2.3.3 Tersoff Potentials . 44

2.3.4 Three-Body Potentials . 47

2.3.5 Four-Body Potentials . 48

2.4 Long Ranged Electrostatic (coulombic) Potentials . 49

2.4.1 Default (Point Charges) Electrostatics . 49

2.4.1.1 Direct Coulomb Sum . 49

vi

©STFC Contents

2.4.1.2 Force-Shifted Coulomb Sum . 50

2.4.1.3 Coulomb Sum with Distance Dependent Dielectric 51

2.4.1.4 Reaction Field . 52

2.4.1.5 Smoothed Particle Mesh Ewald . 53

2.4.2 Multipolar Electrostatics . 56

2.4.2.1 Direct Coulomb Sum . 58

2.4.2.2 Force-Shifted Coulomb Sum . 58

2.4.2.3 Coulomb Sum with Distance Dependent Dielectric 59

2.4.2.4 Reaction Field . 59

2.4.2.5 Smoothed Particle Mesh Ewald . 60

2.5 Polarisation Shell Models . 63

2.5.1 CHARMM Shell Model Self-Induction . 63

2.5.2 Dynamical (Adiabatic Shells) Shell Model . 64

2.5.3 Relaxed (Massless Shells) Model . 65

2.5.4 Breathing Shell Model Extension . 65

2.5.5 Further Notes . 66

2.6 External Fields . 66

2.7 Treatment of Frozen Atoms, Rigid Body and Core-Shell Units 68

2.8 Tabulation and interpolation in the treatment of intermolecular interactions 68

2.9 Free Energy Capabilities via the PLUMED plugin . 69

2.10 Open Knowledgebase of Interatomic Models - OpenKIM . 69

3 Integration Algorithms 71

3.1 Introduction . 72

3.2 Bond Constraints . 74

3.3 Potential of Mean Force (PMF) Constraints and the Evaluation of Free Energy 76

3.4 Thermostats . 77

3.4.1 Evans Thermostat (Gaussian Constraints) . 77

3.4.2 Langevin Thermostat . 78

3.4.3 Andersen Thermostat . 80

3.4.4 Berendsen Thermostat . 81

3.4.5 Nosé-Hoover Thermostat . 81

3.4.6 Gentle Stochastic Thermostat . 83

3.4.7 Dissipative Particle Dynamics Thermostat . 84

3.5 Barostats . 85

3.5.1 Instantaneous pressure and stress . 85

3.5.2 Langevin Barostat . 86

3.5.3 Berendsen Barostat . 90

3.5.4 Nosé-Hoover Barostat . 92

vii

©STFC Contents

3.5.5 Martyna-Tuckerman-Klein Barostat . 96

3.6 Rigid Bodies and Rotational Integration Algorithms . 99

3.6.1 Description of Rigid Body Units . 99

3.6.2 Integration of the Rigid Body Equations of Motion . 101

3.6.3 Thermostats and Barostats coupling to the Rigid Body Equations of Motion 103

4 Coarse Graining Functionality 105

4.1 User-Defined Coarse-Grain Models with Tabulated Force-Fields 106

4.2 Intramolecular Probability Distribution Function (PDF) Analysis 106

4.3 Setting up Tabulated Intramolecular Force-Field Files . 109

5 Two-Temperature Model 111

5.1 Introduction . 112

5.2 Methodology . 112

5.3 Simulation setup . 117

5.4 Implementation . 119

6 Heat Flux 125

6.1 Heat Flux . 126

6.1.1 Introduction . 126

6.1.2 Theory . 126

6.1.3 Implementation . 126

6.1.4 File . 127

7 Exdenting DL POLY 4 to reactive systems: the Empirical Valence Bond method 128

7.1 Framework and motivation . 129

7.2 The EVB method . 129

7.3 Calibrating EVB force fields . 132

7.4 Computational implementation . 133

7.5 Setting EVB calculations . 134

8 Construction and Execution 137

8.1 Constructing DL POLY 4: an Overview . 138

8.1.1 Constructing the Standard Versions . 138

8.1.2 Constructing Non-standard Versions . 138

8.2 Compiling and Running DL POLY 4 . 140

8.2.1 Note on the Interpolation Scheme . 144

8.2.2 Running . 144

8.2.3 Parallel I/O . 145

8.2.4 Restarting . 145

8.2.5 Optimising the Starting Structure . 146

viii

©STFC Contents

8.2.6 Simulation Efficiency and Performance . 148

8.3 A Guide to Preparing Input Files . 149

8.3.1 Inorganic Materials . 149

8.3.2 Macromolecules . 150

8.3.3 Adding Solvent to a Structure . 151

8.3.4 Analysing Results . 151

8.3.5 Choosing Ewald Sum Variables . 152

8.3.5.1 Ewald sum and SPME . 152

8.4 Warning and Error Processing . 153

8.4.1 The DL POLY 4 Internal Warning Facility . 153

8.4.2 The DL POLY 4 Internal Error Facility . 154

9 New Control Format 155

9.1 Introduction . 156

9.1.1 Keywords . 156

9.1.2 Value types . 156

9.1.2.1 Int . 157

9.1.2.2 Floats . 157

9.1.2.3 Vector . 157

9.1.2.4 Bool . 157

9.1.2.5 String . 157

9.1.2.6 Option . 157

9.1.3 Units . 157

9.2 Adding new keywords . 158

9.3 Going from old to new . 159

10 Data Files 165

10.1 The INPUT Files . 166

10.1.1 The CONTROL File . 167

10.1.1.1 The CONTROL File Format . 170

10.1.1.2 The CONTROL File Directives . 170

10.1.1.3 Further Comments on the CONTROL File 178

10.1.2 The CONFIG File . 184

10.1.2.1 The CONFIG File Format . 184

10.1.2.2 Definitions of Variables in the CONFIG File 185

10.1.2.3 Further Comments on the CONFIG File . 186

10.1.3 The FIELD File . 186

10.1.3.1 The FIELD File Format . 188

10.1.3.2 Definitions of Variables in the FIELD File 188

10.1.3.3 External Field . 204

ix

©STFC Contents

10.1.3.4 crd . 206

10.1.3.5 Closing the FIELD File . 206

10.1.4 The MPOLES File . 207

10.1.4.1 The MPOLES File Format . 207

10.1.4.2 Definitions of Variables in the MPOLES File 207

10.1.4.3 Closing the MPOLES File . 209

10.1.5 The REFERENCE File . 209

10.1.6 The REVOLD File . 209

10.1.6.1 Format . 209

10.1.6.2 Further Comments . 210

10.1.7 The TABLE File . 210

10.1.7.1 The TABLE File Format . 211

10.1.7.2 Definitions of Variables . 211

10.1.7.3 Further Comments . 211

10.1.8 The TABEAM File . 212

10.1.8.1 The TABEAM File Format . 212

10.1.8.2 Definitions of Variables . 212

10.1.8.3 Further Comments . 213

10.1.9 The TABBND, TABANG, TABDIH & TABINV Files 213

10.1.9.1 Definitions of Variables . 214

10.1.9.2 Further Comments . 214

10.1.10The DUMP E File . 214

10.1.11The Ce.dat, Ke.dat, De.dat and g.dat Files . 215

10.1.12The HISTORY/HISTROF File . 215

10.1.13The SETEVB File . 216

10.2 The OUTPUT Files . 216

10.2.1 The HISTORY File . 216

10.2.2 The MSDTMP File . 217

10.2.3 The DEFECTS File . 218

10.2.4 The RSDDAT File . 219

10.2.5 The CFGMIN File . 221

10.2.6 The OUTPUT File . 221

10.2.6.1 Header . 221

10.2.6.2 Simulation Control Specifications . 221

10.2.6.3 Force Field Specification . 221

10.2.6.4 System Specification . 221

10.2.6.5 Summary of the Initial Configuration . 221

10.2.6.6 Simulation Progress . 222

10.2.6.7 Sample of Final Configuration . 223

x

©STFC Contents

10.2.6.8 Summary of Statistical Data . 223

10.2.6.9 Radial Distribution Functions . 224

10.2.6.10 Umbrella Sampling Restraint RDF . 224

10.2.6.11 Z-density Profile . 224

10.2.6.12 Velocity Autocorrelation Functions . 224

10.2.7 The HEATFLUX File . 224

10.2.8 The PP CONT File . 225

10.2.9 The REVCON File . 225

10.2.10The REVIVE File . 225

10.2.11The DUMP E File . 225

10.2.12The RDFDAT File . 225

10.2.13The USRDAT File . 226

10.2.14The ZDNDAT File . 226

10.2.15The VAFDAT Files . 227

10.2.16The INTDAT, INTPMF & INTTAB Files . 227

10.2.17The STATIS File . 228

10.2.18The LATS E and LATS I Files . 230

10.2.19The PEAK E and PEAK I Files . 230

10.2.20The POPEVB Files . 231

10.2.21The ICOORD, CCOORD and ADFDAT files . 231

11 The DL POLY 4 Parallelisation and Source Code 232

11.1 Parallelisation . 233

11.1.1 The Domain Decomposition Strategy . 233

11.1.2 Distributing the Intramolecular Bonded Terms . 234

11.1.3 Distributing the Non-bonded Terms . 235

11.1.4 Modifications for the Ewald Sum . 236

11.1.5 Metal Potentials . 236

11.1.6 Tersoff, Three-Body and Four-Body Potentials . 236

11.1.7 Globally Summed Properties . 236

11.1.8 The Parallel (DD tailored) SHAKE and RATTLE Algorithms 237

11.1.9 The Parallel Rigid Body Implementation . 237

11.2 Source Code . 238

11.2.1 Modularisation Principles . 238

11.2.2 File Structure . 241

11.2.3 Module Files . 241

11.2.4 General Files . 241

11.2.5 SERIAL Specific Files . 241

11.2.6 Comments on MPI Handling . 241

xi

©STFC Contents

11.2.7 Comments on setup module . 241

12 Examples 245

12.1 Example Simulations . 246

12.1.1 Example 1: Sodium Chloride . 246

12.1.2 Example 2: DPMC in Water . 246

12.1.3 Example 3: KNaSi2O5 - Potassium/Sodium Disilicate Glass 246

12.1.4 Example 4: Gramicidin A Molecules in Water . 247

12.1.5 Example 5: SiC with Tersoff Potentials . 247

12.1.6 Example 6: Cu3Au alloy with Sutton-Chen (metal) Potentials 247

12.1.7 Example 7: Lipid Bilayer in Water . 247

12.1.8 Examples 8 and 9: MgO with Adiabatic and with Relaxed Shell Models 247

12.1.9 Example 10: Potential of Mean Force on K+ in Water 247

12.1.10Example 11: Cu3Au Alloy with Gupta (metal) Potentials 247

12.1.11Example 12: Cu with EAM (metal) Potential . 247

12.1.12Examples 13 and 14: Al with Analytic and with EAM Tabulated Sutton-Chen (metal)
Potentials . 247

12.1.13Examples 15: NiAl Alloy with EAM (metal) Potentials 248

12.1.14Examples 16: Fe with Finnis-Sincair (metal) Potential 248

12.1.15Examples 17: Ni with EAM (metal) Potential . 248

12.1.16Examples 18 and 19: SPC IceVII Water with CBs and with RBs 248

12.1.17Example 20: NaCl Molecules in SPC Water Represented as CBs+RBs 248

12.1.18Example 21: TIP4P Water: RBs with a Massless Charged Site 248

12.1.19Example 22: Ionic Liquid Dimethylimidazolium Chloride as RBs 248

12.1.20Example 23: Calcite Nano-Particles in TIP3P Water 248

12.1.21Example 24: Iron/Carbon Alloy with 2BEAM (metal) Potentials 248

12.1.22Example 25: Iron/Chromium Alloy with 2BEAM (metal) Potentials 249

12.1.23Examples 26 and 27: Hexane and Methanol Melts, with Full Atomistic and Coarse-
Grained Force-Fields . 249

12.1.24Example 28: Butane in CCl4 Solution with Umbrella Sampling via PLUMED 249

12.1.25Example 29: Iron with tabulated EAM (metal) Potential, TTM and Cascade 249

12.1.26Example 30: Silicon with original Tersoff Potential, TTM and Swift heavy ion irradiation250

12.1.27Example 31: Tungsten with extended Finnis-Sinclair Potential, TTM and laser irra-
diation . 250

12.2 Benchmark Cases . 250

Appendices 250

A DL POLY 4 Dissipative Particle Dynamics 251

A.1 Introduction . 251

A.2 Outline of Method . 251

xii

©STFC Contents

A.3 Equation of state and dynamic properties . 253

A.4 Derivation of Equilibrium . 254

A.5 Summary of Dissipative Particle Dynamics . 254

B DL POLY 4 Periodic Boundary Conditions 255

B.1 Introduction . 255

B.2 No periodic boundary (imcon = 0) . 255

B.3 Cubic periodic boundaries (imcon = 1) . 255

B.4 Orthorhombic periodic boundaries (imcon = 2) . 256

B.5 Parallelepiped periodic boundaries (imcon = 3) . 256

B.6 Slab boundary conditions (imcon = 6) . 257

C DL POLY 4 Macros 258

D DL POLY 4 Error Messages & User Action 262

E DL POLY 4 INSTALL Notes & README Wisdom 316

E.1 INSTALL . 316

E.2 coding style . 319

E.3 contributing . 326

F DL POLY 4 Academic Licence Agreement 332

F.1 The full version . 332

Bibliography 334

Index 341

xiii

List of Tables

7.1 Description for the settings of the SETEVB file . 135

10.2 CONFIG File Key (record 2) . 186

10.3 Periodic Boundary Key (record 2) . 186

10.4 Tethering Potentials . 192

10.5 Chemical Bond Potentials . 193

10.6 Valence Angle Potentials . 194

10.7 Dihedral Angle Potentials . 195

10.8 Inversion Angle Potentials . 196

10.9 Pair Potentials . 198

10.10Metal Potential . 200

10.11Tersoff Potential . 202

10.12Three-body Potentials . 203

10.13Four-body Potentials . 204

10.14External Fields . 205

xiv

List of Figures

2.1 The interatomic bond vector . 14

2.2 The valence angle and associated vectors . 17

2.3 The dihedral angle and associated vectors . 20

2.4 The L and D enantiomers and defining vectors . 23

2.5 The inversion angle and associated vectors . 24

2.6 The vectors of the calcite potential . 26

3.1 The SHAKE (RATTLE VV1) schematics and associated vectors 74

5.1 One-dimensional finite-difference schematic (boundary nodes indicated by dark vertical lines) 113

5.2 Schematic of thermodynamic coupling and processes in 2T-MD model 116

5.3 Schematic of cascade simulation setup . 117

5.4 Simulation setup for swift heavy ion impact. 118

5.5 Simulation setup for laser irradiation. 118

8.1 Typical ccmake output for DL POLY 4 . 142

8.2 Typical cmake-gui output for DL POLY 4 . 143

10.1 DL POLY 4 input (left) and output (right) files . 166

B.1 The cubic MD cell . 256

B.2 The orthorhomic MD cell . 256

B.3 The parallelepiped MD cell . 256

xv

Chapter 0

Quick Word / INSTALL & RUN

For the experienced and quick minded this is a very brief resume of how to INSTALL & RUN
DL POLY 4 (which is no excuse for skipping the Introduction, Chapter 1!). For the rest of
us it sketches out how to start running DL POLY 4 jobs and where one should look to obtain
more detailed information if need be.

If you have followed the procedure for obtaining and downloading the DL POLY 4 package (see Obtain-
ing the Source Code, Section 11), have successfully unpacked it and are ready to compile the source code,
then jump to the INSTALL Notes in the INSTALL file, both in the main distribution directory as well as
in the Appendix E.

If you have compiled successfully then a freshly date-stamped file, named DLPOLY.Z should appear in
the listing of the execute subdirectory (the ’ls -haltr’ command issued on a Linux/Unix-like shell within
execute will place the executable in the last row of the list). If unsuccessful then you should read the
Compiling and Running DL POLY 4 (Section 8.2).

To run the code you first need to place the necessary input files within execute. TEST cases containing
suitable input files, as well as examples of output files, can be obtained at the DL POLY 4 FTP site,
ftp://ftp.dl.ac.uk/ccp5/DL POLY/. Examine the contents of data/README.txt and bench/README.txt for
more information. To run the serial version you simply issue the command DLPOLY.Z within the execute
subdirectory. If you have compiled a parallel version and are running it on a parallel machine, then naturally
you will need to familiarise yourself with the local procedures of how to run jobs on that machine. In
general though, running a parallel job will usually require that you issue a necessary run command (e.g.
mpirun -n 8 DLPOLY.Z) or submit a job script from within execute.

If you need to know more then search the manual and examine sections of interests. You may also wish to
visit DL POLY project web-page http://www.ccp5.ac.uk/DL POLY/ and examine the useful links within
(FAQ, User Forum, etc.).

If you are looking to gain more in depth experience, then regular training workshops are available. To find
about upcoming workshops, subscribe to our mail list by following instructions in Section 1.7.

If you need one-to-one training, wish to collaborate scientifically and/or would like to become a contribu-
tor/developer then get in touch with me, Dr. I.T. Todorov, by emailing to ilian.todorov@stfc.ac.uk.

Best of luck!

1

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/
http://www.ccp5.ac.uk/DL_POLY/
mailto:ilian.todorov@stfc.ac.uk

Chapter 1

Introduction

Scope of Chapter

This chapter describes the concept, design and directory structure of DL POLY 4 and how to obtain a copy
of the source code.

2

©STFC Section 1.2

1.1 The DL POLY Package

DL POLY [1] is a package of subroutines, programs and data files, designed to facilitate molecular dy-
namics simulations of macromolecules, polymers, ionic systems and solutions on a distributed memory
parallel computer. It is available in two forms: DL POLY Classic (written by Bill Smith & Tim Forester,
http://www.ccp5.ac.uk/DL POLY CLASSIC/) and DL POLY 4 (written by Ilian Todorov & Bill Smith) [2,
3]. Both versions were originally written on behalf of CCP5, the UK’s Collaborative Computational Project
on Molecular Simulation, which has been in existence since 1980 ([4], http://www.ccp5.ac.uk/DL POLY/).

The two forms of DL POLY differ primarily in their method of exploiting parallelism. DL POLY Classic
uses a Replicated Data (RD) strategy [5, 6, 7, 8] which works well simulations of up to 30,000 atoms on
up to 100 processors. DL POLY 4 is based on the Domain Decomposition (DD) strategy [2, 3, 9, 10, 5, 6],
and is best suited for large molecular simulations from 103 to 109 atoms on large processor counts. The
two packages are reasonably compatible, so that it is possible to scale up from a DL POLY Classic to a
DL POLY 4 simulation with little effort. It should be apparent from these comments that DL POLY 4 is
not intended as a replacement for DL POLY Classic.

Users are reminded that we are interested in hearing what other features could be usefully incorporated.
We obviously have ideas of our own and CCP5 strongly influences developments, but other input would
be welcome nevertheless. We also request that our users respect the integrity of DL POLY 4 source and
not pass it on to third parties. We require that all users of the package register with us, not least because
we need to keep everyone abreast of new developments and discovered bugs. We have developed various
forms of licence, which we hope will ward off litigation (from both sides), without denying access to genuine
scientific users.

Further information on the DL POLY packages may be obtained from the DL POLY project website -
http://www.ccp5.ac.uk/DL POLY/ .

1.2 Functionality

The following is a list of the features DL POLY 4 supports.

1.2.1 Molecular Systems

DL POLY 4 will simulate the following molecular species:

• Simple atomic systems and mixtures, e.g. Ne, Ar, Kr, etc.

• Simple unpolarisable point ions, e.g. NaCl, KCl, etc.

• Polarisable point ions and molecules, e.g. MgO, H2O, etc.

• Simple rigid molecules e.g. CCl4, SF6, Benzene, etc.

• Rigid molecular ions with point charges e.g. KNO3, (NH4)2SO4, etc.

• Polymers with rigid bonds, e.g. CnH2n+2

• Polymers with flexible and rigid bonds and point charges, e.g. proteins, macromolecules etc.

• Silicate glasses and zeolites

• Simple metals and metal alloys, e.g. Al, Ni, Cu, Cu3Au, etc.

• Covalent systems as hydro-carbons and transition elements, e.g. C, Si, Ge, SiC, SiGe, ets.

3

http://www.ccp5.ac.uk/DL_POLY_CLASSIC/
http://www.ccp5.ac.uk/DL_POLY/
http://www.ccp5.ac.uk/DL_POLY/

©STFC Section 1.2

1.2.2 Force Field

The DL POLY 4 force field includes the following features:

1. All common forms of non-bonded atom-atom (van der Waals) potentials

2. Atom-atom (and site-site) coulombic potentials

3. Metal-metal (local density dependent) potentials [11, 12, 13, 14, 15, 16]

4. Tersoff (local density dependent) potentials (for hydro-carbons) [17]

5. Three-body valence angle and hydrogen bond potentials

6. Four-body inversion potentials

7. Ion core-shell polarasation

8. Tether potentials

9. Chemical bond potentials

10. Valence angle potentials

11. Dihedral angle (and improper dihedral angle) potentials

12. Inversion angle potentials

13. External field potentials.

The parameters describing these potentials may be obtained, for example, from the GROMOS [18], Dreiding
[19] or AMBER [20] forcefield, which share functional forms. It is relatively easy to adapt DL POLY 4 to
user specific force fields.

1.2.3 Boundary Conditions

DL POLY 4 will accommodate the following boundary conditions:

1. None, e.g. isolated molecules in vacuo

2. Cubic periodic boundaries

3. Orthorhombic periodic boundaries

4. Parallelepiped periodic boundaries

5. Slab (x,y periodic, z non-periodic).

These are described in detail in Appendix B. Note that periodic boundary conditions (PBC) 1 and 5 above
require careful consideration to enable efficient load balancing on a parallel computer.

1.2.4 Java Graphical User Interface

The DL POLY 4 Graphical User Interface (GUI) is the same one that also comes with DL POLY Classic,
which is written in the Java®programming language from Sun®Microsystems. A major advantage of this
is the free availability of the Java programming environment from Sun®, and also its portability across
platforms. The compiled GUI may be run without recompiling on any Java®supported machine. The GUI
is an integral component of the DL POLY suites and is available on the same terms (see the GUI manual
[21]).

4

©STFC Section 1.2

1.2.5 Algorithms

1.2.5.1 Parallel Algorithms

DL POLY 4 exclusively employs the Domain Decomposition parallelisation strategy [9, 10, 5, 6] (see Sec-
tion 11.1.1).

1.2.5.2 Molecular Dynamics Algorithms

DL POLY 4 offers a selection of MD integration algorithms based on Velocity Verlet (VV) [22]. These
generate NVE, NVEkin, NVT, NPT and NσT ensembles with a selection of thermostats and barostats.
Parallel versions of the RATTLE [23] and SHAKE [8] algorithms are used for solving bond constraints. The
rotational motion of rigid bodies (RBs) is handled with the “NOSQUISH” algorithm of Miller et al [24].

The following MD algorithms are available:

1. Constant E algorithm

2. Evans constant Ekin algorithm [25]

3. Langevin constant T algorithm [26]

4. Andersen constant T algorithm [27]

5. Berendsen constant T algorithm [28]

6. Nosé-Hoover constant T algorithm [29]

7. Langevin constant T,P algorithm [30]

8. Berendsen constant T,P algorithm [28]

9. Nosé-Hoover constant T,P algorithm [29]

10. Martyna, Tuckerman and Klein (MTK) constant T,P algorithm [31]

11. Langevin constant T,σ algorithm [30]

12. Berendsen constant T,σ algorithm [28]

13. Nosé-Hoover constant T,σ algorithm [29]

14. Martyna, Tuckerman and Klein (MTK) constant T,σ algorithm [31].

1.2.6 DL POLY Classic features incompatible or unavalable in DL POLY 4

• Force field

– Rigid bodies connected with constraint links are not available

– Shell models specification is solely determined by the presence of mass on the shells

– Dihedral potentials with more than three original parameters (see OPLS) have two artificially
added parameters, defining the 1-4 electrostatic and van der Waals scaling factors, which must
be placed at fourth and fifth position respectively, extending the original parameter list split by
them

• Boundary conditions

– Truncated octahedral periodic boundaries (imcon = 4) are not available

5

©STFC Section 1.3

– Rhombic dodecahedral periodic boundaries (imcon = 5) are not available

– Hexagonal prism periodic boundaries (imcon = 7) are not available

• Electrostatics

– Standard Ewald Summation is not available, but is substituted by Smoothed Particle Mesh
Ewald (SPME) summation

– Hautman-Klein Ewald Summation for 3D non-periodic but 2D periodic systems is not available

• Non-standard functionality

– Temperature Accelerated Dynamics

– Hyperdynamics

– Solvation Energies

1.3 Programming Style

The programming style of DL POLY 4 is intended to be as uniform as possible. The following stylistic rules
apply throughout. Potential contributors of code are requested to note the stylistic convention.

1.3.1 Programming Language

DL POLY 4 is written in free format FORTRAN90. In DL POLY 4 we have adopted the convention of
explicit type declaration i.e. we have used

Implicit None

in all subroutines. Thus all variables must be given an explicit type: Integer, Real(Kind = wp), etc.

1.3.2 Modularisation and Intent

DL POLY 4 exploits the full potential of the modularisation concept in FORTRAN90. Variables having in
common description of certain feature or method in DL POLY 4 are grouped in modules. This simplifies
subroutines’ calling sequences and decreases error-proneness in programming as subroutines must define
what they use and from which module. To decrease error-proneness further, arguments that are passed in
calling sequences of functions or subroutines have defined intent, i.e. whether they are to be:

• passed in only (Intent (In)) - the argument is not allowed to be changed by the routine

• passed out only (Intent (Out)) - the “coming in” value of the argument is unimportant

• passed in both directions in and out (Intent (InOut)) - the “coming in” value of the argument is
important and the argument is allowed to be changed.

1.3.3 Memory Management

DL POLY 4 exploits the dynamic array allocation features of FORTRAN90 to assign the necessary array
dimensions.

6

©STFC Section 1.3

1.3.4 Target Platforms

DL POLY 4 is intended for distributed memory parallel computers.

Compilation of DL POLY 4 in parallel mode requires only a FORTRAN90 compiler and Message Passing
Interface (MPI) to handle communications. Compilation of DL POLY 4 in serial mode is also possible and
requires only a FORTRAN90 compiler.

1.3.5 Internal Documentation

All subroutines are supplied with a header block of FORTRAN90 comment (!) records giving:

1. The name of the author and/or modifying author

2. The version number or date of production

3. A brief description of the function of the subroutine

4. A copyright statement.

Elsewhere FORTRAN90 comment cards (!) are used liberally.

1.3.6 FORTRAN90 Parameters and Arithmetic Precision

All global parameters defined by the FORTRAN90 parameter statements are specified in the module file:
setup module, which is included at compilation time in all subroutines requiring the parameters. All
parameters specified in setup module are described by one or more comment cards.

One super-global parameter is defined at compilation time in the kinds f90 module file specifying the
working precision (wp) by kind for real and complex variables and parameters. The default is 64-bit (double)
precision, i.e. Real(wp). Users wishing to compile the code with quadruple precision must ensure that their
architecture and FORTRAN90 compiler can allow that and then change the default in kinds f90. Changing
the precision to anything else that is allowed by the FORTRAN90 compiler and the machine architecture
must also be compliant with the MPI working precision mpi wp as defined in comms module (in such cases
users must correct for that in there).

1.3.7 Units

Internally all DL POLY 4 subroutines and functions assume the use of the following defined molecular units:

• The unit of time (to) is 1× 10−12 seconds (i.e. picoseconds)

• The unit of length (ℓo) is 1× 10−10 metres (i.e. Ångstroms)

• The unit of mass (mo) is 1.6605402× 10−27 kilograms (i.e. Daltons - atomic mass units)

• The unit of charge (qo) is 1.60217733× 10−19 Coulombs (i.e. electrons - units of proton charge)

• The unit of energy (Eo = mo(ℓo/to)
2) is 1.6605402× 10−23 Joules (10 J mol−1)

• The unit of pressure (Po = Eoℓ
−3
o) is 1.6605402× 107 Pascals (163.882576 atmospheres)

• Planck’s constant (h̄) which is 6.350780668× Eoto .

In addition, the following conversion factors are used:

7

©STFC Section 1.4

• The coulombic conversion factor (γo) is:

γo =
1

Eo

[
q2o

4πϵoℓo

]
= 138935.4835 ,

such that:

UMKS = EoγoUInternal ,

where U represents the configuration energy.

• The Boltzmann factor (kB) is 0.831451115 Eo K−1, such that:

T = Ekin/kB

represents the conversion from kinetic energy (in internal units) to temperature (in Kelvin).

Note: In the DL POLY 4 OUTPUT file, the print out of pressure is in units of katms (kilo-atmospheres)
at all times. The unit of energy is either DL POLY units specified above, or in other units specified by the
user at run time (see Section 10.1.3). The default is the DL POLY unit.

Externally, DL POLY 4 accepts information in its own specific formatting as described in Section 10.1.
Irrespective of formatting rules, all values provided to define input entities are read in DL POLY units
(except otherwise specified as in the case of energy units) or their composite mixture representing the
corresponding entity physically, i.e. velocities’ components are in Ångstroms/picosecond.

Exception: It should be noted that when DL POLY 4 is used in a DPD mode (see Section 3.4.7 and
Appendix A) then the meaning of the molecular units is somewhat lost and it is only the interrelationship
between units that is important (which can be exploited by the modeller)! The fundamental units for a DPD
simulation are related those of mass [M], length [L] and energy [E] - all irrespectively of the actually chosen
energy units by the UNITS directive in the FIELD file. Therefore, the DPD unit of time is equivalent
to [L]

√
[M]/[E] while temperature (in the form kBT) is defined as two-thirds of the kinetic energy of the

system’s particles. Similarly, volume is in units of [L]3 and pressure in [E]/[L]3.

1.3.8 Error Messages

All errors detected by DL POLY 4 during run time initiate a call to the subroutine error, which prints
an error message in the standard output file and terminates the program. All terminations of the program
are global (i.e. every node of the parallel computer will be informed of the termination condition and stop
executing).

In addition to terminal error messages, DL POLY 4 will sometimes print warning messages. These indicate
that the code has detected something that is unusual or inconsistent. The detection is non-fatal, but the
user should make sure that the warning does represent a harmless condition.

1.4 Directory Structure

The entire DL POLY 4 package is stored in a UNIX directory structure. The topmost directory is named
dl poly 4.nn, where nn is a generation number. Beneath this directory are several sub-directories named:
manual, source, build, cmake, utils, execute, data, bench, java, and utility.

Briefly, the content of each sub-directory is as follows:

sub-directory contents

manual DL POLY 4 main user manual and DL POLY 4 Java GUI manual

8

©STFC Section 1.4

source primary subroutines for the DL POLY 4 package
build makefiles to assemble and compile DL POLY 4 source
cmake contains files needed for DL POLY 4cmake build system
utils contains a series of scripts needed for testing
execute the DL POLY 4 run-time directory
data example input and output files for DL POLY 4
bench large test cases suitable for benchmarking
java directory of Java and FORTRAN routines for the Java GUI
utility directory of routines donated by DL POLY 4 users.

A more detailed description of each sub-directory follows.

1.4.1 The source Sub-directory

In this sub-directory all the essential source code for DL POLY 4, excluding the utility software is stored.
In keeping with the ‘package’ concept of DL POLY 4, it does not contain any complete programs; these
are assembled at compile time using an appropriate makefile. The subroutines in this sub-directory are
documented in Chapter 11.

1.4.2 The build Sub-directory

This sub-directory contains legacy makefiles for the creation (i.e. compilation and linking) of the DL POLY 4
simulation program. The makefiles supplied select the appropriate subroutines from the source sub-directory
and deposit the executable program in the execute directory. Building DL POLY 4 by using these legacy
makefiles is described in Section ??.

1.4.3 The cmake Sub-directory

This sub-directory contains necessary scripts and information needed for the DL POLY 4 CMake system.
Building DL POLY 4 with cmake is described in Section ??.

1.4.4 The utils Sub-directory

This sub-directory contains a framework of scripts needed by DL POLY 4 developers for testing purposes.
The general user is welcome to look and learn from it. The scripts are the documentation themselves.

1.4.5 The execute Sub-directory

In the supplied version of DL POLY 4, this sub-directory contains only a few macros for copying and storing
data from and to the data sub-directory and for submitting programs for execution (see Appendix C).
However, if the DL POLY 4 program is assembled by using a legacy makefile, the executable will be placed
in this sub-directory and could be used from here. Then output files from a job run in here will also appear
here, so users may find it convenient to use this sub-directory as originally intended. (The experienced user
is not at all required to use DL POLY 4 this way however.)

1.4.6 The data Sub-directory

This sub-directory contains examples of input and output files for testing the released version of DL POLY 4.
The examples of input data are copied into the execute sub-directory when a program is being tested. The test
cases are documented in Chapter 12. Note that these are no longer within the distribution of any DL POLY
version but are made available on-line at the DL POLY FTP - ftp://ftp.dl.ac.uk/ccp5/DL POLY/ .

9

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/

©STFC Section 1.7

1.4.7 The bench Sub-directory

This directory contains examples of input and output data for DL POLY 4 that are suitable for benchmark-
ing DL POLY 4 on large scale computers. These are described in Chapter 12. Note that these are no longer
within the distribution of any DL POLY version but are made available on-line at the DL POLY FTP -
ftp://ftp.dl.ac.uk/ccp5/DL POLY/ .

1.4.8 The java Sub-directory

The DL POLY 4 Java Graphical User Interface (GUI) is based on the Java language developed by Sun. The
Java source code for this GUI is to be found in this sub-directory. The source is complete and sufficient to
create a working GUI, provided the user has installed the Java Development Kit, (1.7 or above) which is
available free from Sun at http://java.sun.com/. The GUI, once compiled, may be executed on any machine
where Java is installed [21].

1.4.9 The utility Sub-directory

This sub-directory contains assorted routines donated by DL POLY users. Potential users should note that
these routines are unsupported and come without any guarantee or liability whatsoever. They
should be regarded as potentially useful resources to be hacked into shape as needed by the user. Some of
the various routines in this sub-directory are documented in the DL POLY Classic User Manual. Users who
devise their own utilities are advised to store them in the utility sub-directory.

1.5 Obtaining the Source Code

To obtain a copy of DL POLY 4 it is necessary to have internet connection. Log on to the DL POLY website
- http://www.ccp5.ac.uk/DL POLY/ , and follow the links to the DL POLY 4 registration page, where you
will firstly be shown the DL POLY 4 academic software licence (see Appendix ??), which details the terms
and conditions under which the code will be supplied. By proceeding further with the registration
and download process you are signalling your acceptance of the terms of this licence. Click the
‘Registration’ button to find the registration page, where you will be invited to enter your name, address
and e-mail address. The code is supplied free of charge to academic users, but commercial users will be
required to purchase a software licence.

Once the online registration has been completed, information on downloading the DL POLY 4 source code
will be sent by e-mail, so it is therefore essential to supply a correct e-mail address.

The data and bench subdirectories of DL POLY 4 are not issued in the standard package, but can be
downloaded directly from the FTP site (in the ccp5/DL POLY/DL POLY 4.0/ directory).

Note: Daresbury Laboratory is the sole centre for the distribution of DL POLY 4 and copies obtained
from elsewhere will be regarded as illegal and will not be supported.

1.6 OS and Hardware Specific Ports

Note that no support is offered for these highly specific developments!

1.7 Other Information

The DL POLY website - http://www.ccp5.ac.uk/DL POLY/ , provides additional information in the form
of

10

ftp://ftp.dl.ac.uk/ccp5/DL_POLY/
http://java.sun.com/
http://www.ccp5.ac.uk/DL_POLY/
http://www.ccp5.ac.uk/DL_POLY/

©STFC Section 1.7

1. Access to all documentation (including licences)

2. Frequently asked questions

3. Bug reports

4. Access to the DL Software portal.

Daresbury Laboratory also maintains a DL POLY 4 associated electronic mailing list, dl poly 4 news, to
which all registered DL POLY 4 users are automatically subscribed. It is via this list that error reports
and announcements of new versions are made. If you are a DL POLY 4 user, but not on this list you
may request to be added by sending a mail message to majordomo@dl.ac.uk with the one-line message:
subscribe dl poly 4 news.

The DL Software Portal is a web based centre for all DL POLY users to exchange comments and queries.
You may access the forum through the DL POLY website. A registration (and vetting) process is required
before you can use the forum, but it is open, in principle, to everyone.

11

mailto:majordomo@dl.ac.uk

Chapter 2

Force Field Interactions

Scope of Chapter

This chapter describes the variety of interaction potentials available in DL POLY 4.

12

©STFC Section 2.1

2.1 Introduction to the DL POLY 4 Force Field

The force field is the set of functions needed to define the interactions in a molecular system. These may have
a wide variety of analytical forms, with some basis in chemical physics, which must be parameterised to give
the correct energy and forces. A huge variety of forms is possible and for this reason the DL POLY 4 force
field is designed to be agnostic and adaptable. While it is not supplied with its own force field parameters,
many of the functions familiar to GROMOS [18], Dreiding [19] and AMBER [20] users have been coded
in the package, as well as less familiar forms. In addition DL POLY 4 retains the possibility of the user
defining additional potentials.

In DL POLY 4 the total configuration energy of a molecular system may be written as:

U(r1, r2, . . . , rN) =

Nshel∑
ishel=1

Ushel(ishel, rcore, rshell)

+

Nteth∑
iteth=1

Uteth(iteth, r
t=t
i , rt=0

i)

+

Nbond∑
ibond=1

Ubond(ibond, ra, rb)

+

Nangl∑
iangl=1

Uangl(iangl, ra, rb, rc)

+

Ndihd∑
idihd=1

Udihd(idihd, ra, rb, rc, rd)

+

Ninv∑
iinv=1

Uinv(iinv, ra, rb, rc, rd)

+

N−1∑
i=1

N∑
j>i

U
(metal,vdw,electostatics)
2-body (i, j, |ri − rj |) (2.1)

+
N∑
i=1

N∑
j ̸=i

N∑
k ̸=j

Utersoff (i, j, k, ri, rj , rk)

+
N−2∑
i=1

N−1∑
j>i

N∑
k>j

U3-body(i, j, k, ri, rj , rk)

+

N−3∑
i=1

N−2∑
j>i

N−1∑
k>j

N∑
n>k

U4-body(i, j, k, n, ri, rj , rk, rn)

+
N∑
i=1

Uextn(i, ri, vi) ,

where Ushel, Uteth, Ubond, Uangl, Udihd, Uinv, U
(metal)
2-body , Utersoff , U3-body and U4-body are empirical inter-

action functions representing ion core-shell polarisation, tethered particles, chemical bonds, valence angles,
dihedral (and improper dihedral angles), inversion angles, two-body, Tersoff, three-body and four-body
forces respectively. The first six are regarded by DL POLY 4 as intra-molecular interactions and the next
four as inter-molecular interactions. The final term Uextn represents an external field potential. The po-
sition vectors ra, rb, rc and rd refer to the positions of the atoms specifically involved in a given interac-
tion. (Almost universally, it is the differences in position that determine the interaction.) The numbers
Nshel, Nteth, Nbond, Nangl, Ndihd and Ninv refer to the total numbers of these respective interactions present

13

©STFC Section 2.2

in the simulated system, and the indices ishel, iteth, ibond, iangl, idihd and iinv uniquely specify an individual
interaction of each type. It is important to note that there is no global specification of the intramolecular
interactions in DL POLY 4 - all core-shell units, tethered particles, chemical bonds, valence angles, dihedral
angles and inversion angles must be individually cited. The same applies for bond constraints and PMF
constraints.

The indices i, j (and k, n) appearing in the intermolecular interactions’ (non-bonded) terms indicate the
atoms involved in the interaction. There is normally a very large number of these and they are therefore
specified globally according to the atom types involved rather than indices. In DL POLY 4 it is assumed
that the ”pure” two-body terms arise from short-ranged interactions such as van der Waals interactions
(or alternatively DPD soft interactions, coarse-grained interactions, hard-wall nuclear interactions) and
electrostatic interactions (coulombic, also regarded as long-ranged). Long-ranged forces require special
techniques to evaluate accurately (see Section 2.4). The metal terms are many-body interactions which are
functionally presented in an expansion of many two-body contributions augmented by a function of the local
density, which again is derived from the two-body spatial distribution (and these are, therefore, evaluated
in the two-body routines). In DL POLY 4 the three-body terms are restricted to valence angle and H-bond
forms.

Throughout this chapter the description of the force field assumes the simulated system is described as
an assembly of atoms. This is for convenience only, and readers should understand that DL POLY 4 does
recognize molecular entities, defined through constraint bonds and rigid bodies. In the case of rigid bodies,
the atomic forces are resolved into molecular forces and torques. These matters are discussed in greater
detail in Sections 3.2 and 3.6.

2.2 The Intramolecular Potential Functions

In this section we catalogue and describe the forms of potential function available in DL POLY 4. The
keywords required to select potential forms are given in brackets () before each definition. The derivations
of the atomic forces, virial and stress tensor are also outlined.

2.2.1 Bond Potentials

i

rij

j

Figure 2.1: The interatomic bond vector

The bond potentials describe explicit chemical bonds between specified atoms. They are all functions of the
interatomic distance. Only the coulomb potential makes an exception as it depends on the charges of the
specified atoms. The potential functions available are as follows:

1. Harmonic bond: (harm)

U(rij) =
1

2
k(rij − ro)2 (2.2)

2. Morse potential: (mors)

U(rij) = Eo[{1− exp(−k(rij − ro))}2 − 1] (2.3)

14

©STFC Section 2.2

3. 12-6 potential bond: (12-6)

U(rij) =

(
A

r12ij

)
−

(
B

r6ij

)
(2.4)

4. Lennard-Jones potential: (lj)

U(rij) = 4ϵ

[(
σ

rij

)12

−
(
σ

rij

)6
]

(2.5)

5. Restrained harmonic: (rhrm)

U(rij) =

{
1
2k(rij − ro)

2 : |rij − ro| ≤ rc
1
2kr

2
c + krc(|rij − ro| − rc) : |rij − ro| > rc

(2.6)

6. Quartic potential: (quar)

U(rij) =
k

2
(rij − ro)2 +

k′

3
(rij − ro)3 +

k′′

4
(rij − ro)4 (2.7)

7. Buckingham potential: (buck)

U(rij) = A exp

(
−rij
ρ

)
− C

r6ij
(2.8)

8. Coulomb potential: (coul)

U(rij) = k · UElectrostatics(rij)

(
=

k

4πϵ0ϵ

qiqj
rij

)
, (2.9)

where qℓ is the charge on an atom labelled ℓ. It is worth noting that the Coulomb potential switches
to the particular model of Electrostatics opted in CONTROL.

9. Shifted finitely extendible non-linear elastic (FENE) potential [32, 33, 34]: (fene)

U(rij) =

 −0.5 k R2
o ln

[
1−

(
rij−∆
Ro

)2]
: |rij −∆| < Ro

∞ : |rij −∆| ≥ Ro

(2.10)

The FENE potential is used to maintain the distance between connected beads and to prevent chains
from crossing each other. It is used in combination with the WCA, equation (2.97), potential to create
a potential well for the flexible bonds of a molecule, that maintains the topology of the molecule.
This implementation allows for a radius shift of up to half a Ro (|∆| ≤ 0.5 Ro) with a default of zero
(∆default = 0).

10. MM3 bond stretch potential [35]: (mmst)

U(rij) = k (rij − ro)2
[
1− 2.55 (rij − ro) + (7/12) 2.552 (rij − ro)2

]
(2.11)

11. Tabulated potential: (tab). The potential is defined numerically in TABBND (see Section 4.3 and
Section 10.1.9).

In these formulae rij is the distance between atoms labelled i and j:

rij = |rj − ri|∗ , (2.12)

where rℓ is the position vector of an atom labelled ℓ.

∗ Note: some DL POLY 4 routines may use the convention that rij = ri − rj .

15

©STFC Section 2.2

The force on the atom j arising from a bond potential is obtained using the general formula:

f
j
= − 1

rij

[
∂

∂rij
U(rij)

]
rij . (2.13)

The force f
i
acting on atom i is the negative of this.

The contribution to be added to the atomic virial is given by

W = −rij · f j , (2.14)

with only one such contribution from each bond.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.15)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this way is symmetric.

In DL POLY 4 bond forces are handled by the routine bonds forces (and intra coul called within).

2.2.2 Distance Restraints

In DL POLY 4 distance restraints, in which the separation between two atoms, is maintained around some
preset value r0 is handled as a special case of bond potentials. As a consequence, distance restraints may be
applied only between atoms in the same molecule. Unlike with application of the “pure” bond potentials,
the electrostatic and van der Waals interactions between the pair of atoms are still evaluated when distance
restraints are applied. All the potential forms of the previous section are available as distance restraints,
although they have different key words:

1. Harmonic potential: (-hrm)

2. Morse potential: (-mrs)

3. 12-6 potential bond: (-126)

4. Lennard-Jones potential: (-lj)

5. Restrained harmonic: (-rhm)

6. Quartic potential: (-qur)

7. Buckingham potential: (-bck)

8. Coulomb potential: (-cul)

9. FENE potential: (-fne)

10. MM3 bond stretch potential [35]: (-m3s)

11. Tabulated potential: (-tab). The potential is defined numerically in TABBND (see Section 4.3 and
Section 10.1.9).

In DL POLY 4 distance restraints are handled by the routine bonds forces (and intra coul called
within).

16

©STFC Section 2.2

i

j

θ
rij rik

k

Figure 2.2: The valence angle and associated vectors

2.2.3 Valence Angle Potentials

The valence angle potentials describe the bond bending terms between the specified atoms. They should
not be confused with the three-body potentials described later, which are defined by atom types rather than
indices.

1. Harmonic: (harm)

U(θjik) =
k

2
(θjik − θ0)2 (2.16)

2. Quartic: (quar)

U(θjik) =
k

2
(θjik − θ0)2 +

k′

3
(θjik − θ0)3 +

k′′

4
(θjik − θ0)4 (2.17)

3. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8ij + r8ik)/ρ

8] (2.18)

4. Screened harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)] (2.19)

5. Screened Vessal [36]: (bvs1)

U(θjik) =
k

8(θ0 − π)2
[
(θ0 − π)2 − (θjik − π)2

]2 ×
exp[−(rij/ρ1 + rik/ρ2)] (2.20)

6. Truncated Vessal [37]: (bvs2)

U(θjik) = k (θjik − θ0)2
[
θajik(θjik + θ0 − 2π)2 +

a

2
πa−1(θ0 − π)3

]
exp[−(r8ij + r8ik)/ρ

8] (2.21)

7. Harmonic cosine: (hcos)

U(θjik) =
k

2
(cos(θjik)− cos(θ0))

2 (2.22)

8. Cosine: (cos)
U(θjik) = A [1 + cos(m θjik − δ)] (2.23)

17

©STFC Section 2.2

9. MM3 stretch-bend [35]: (mmsb)

U(θjik) = A (θjik − θ0) (rij − roij) (rik − roik) (2.24)

10. Compass stretch-stretch [38]: (stst)

U(θjik) = A (rij − roij) (rik − roik) (2.25)

11. Compass stretch-bend [38]: (stbe)

U(θjik) = A (θjik − θ0) (rij − roij) (2.26)

12. Compass all terms [38]: (cmps)

U(θjik) = A (rij − roij) (rik − roik) + (θjik − θ0) [B (rij − roij) + C (rik − roik)] (2.27)

13. MM3 angle bend term [35]: (m3ab)

U(θjik) = k (θjik − θ0)2[1 − 1.4 · 10−2(θjik − θ0) + 5.6 · 10−5(θjik − θ0)2

− 7.0 · 10−7(θjik − θ0)3 + 2.2 · 10−8(θjik − θ0)4] (2.28)

14. KKY [39]: (kky)

U(θjik) = 2 fk
√
Kij ·Kik sin2 [(θjik − θ0)]

Kij =
1

exp [gr(rij − ro)] + 1
(2.29)

15. Tabulated potential: (tab). The potential is defined numerically in TABANG (see Section 4.3 and
Section 10.1.9).

In these formulae θjik is the angle between bond vectors rij and rik:

θjik = cos−1

{
rij · rik
rijrik

}
. (2.30)

In DL POLY 4 the most general form for the valence angle potentials can be written as:

U(θjik, rij , rik) = A(θjik) S(rij) S(rik) S(rik) , (2.31)

where A(θ) is a purely angular function and S(r) is a screening or truncation function. All the function
arguments are scalars. With this reduction the force on an atom derived from the valence angle potential is
given by:

fαℓ = − ∂

∂rαℓ
U(θjik, rij , rik, rjk) , (2.32)

with atomic label ℓ being one of i, j, k and α indicating the x, y, z component. The derivative is

− ∂

∂rαℓ
U(θjik, rij , rik, rjk) = −S(rij)S(rik)S(rjk)

∂

∂rαℓ
A(θjik)

−A(θjik)S(rik)S(rjk)(δℓj − δℓi)
rαij
rij

∂

∂rij
S(rij)

−A(θjik)S(rij)S(rjk)(δℓk − δℓi)
rαik
rik

∂

∂rik
S(rik)

−A(θjik)S(rij)S(rik)(δℓk − δℓj)
rαjk
rjk

∂

∂rjk
S(rjk) , (2.33)

18

©STFC Section 2.2

with δab = 1 if a = b and δab = 0 if a ̸= b . In the absence of screening terms S(r), this formula reduces to:

− ∂

∂rαℓ
U(θjik, rij , rik, rjk) = −

∂

∂rαℓ
A(θjik) . (2.34)

The derivative of the angular function is

− ∂

∂rαℓ
A(θjik) =

{
1

sin(θjik)

}
∂

∂θjik
A(θjik)

∂

∂rαℓ

{
rij · rik
rijrik

}
, (2.35)

with

∂

∂rαℓ

{
rij · rik
rijrik

}
= (δℓj − δℓi)

rαik
rijrik

+ (δℓk − δℓi)
rαij
rijrik

−

cos(θjik)

{
(δℓj − δℓi)

rαij
r2ij

+ (δℓk − δℓi)
rαik
r2ik

}
. (2.36)

The atomic forces are then completely specified by the derivatives of the particular functions A(θ) and S(r) .

The contribution to be added to the atomic virial is given by

W = −(rij · f j + rik · fk) . (2.37)

It is worth noting that in the absence of screening terms S(r), the virial is zero [40].

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j + rαikf

β
k (2.38)

and the stress tensor is symmetric.

In DL POLY 4 valence forces are handled by the routine angles forces.

2.2.4 Angular Restraints

In DL POLY 4 angle restraints, in which the angle subtended by a triplet of atoms, is maintained around
some preset value θ0 is handled as a special case of angle potentials. As a consequence angle restraints may
be applied only between atoms in the same molecule. Unlike with application of the “pure” angle potentials,
the electrostatic and van der Waals interactions between the pair of atoms are still evaluated when distance
restraints are applied. All the potential forms of the previous section are available as angular restraints,
although they have different key words:

1. Harmonic: (-hrm)

2. Quartic: (-qur)

3. Truncated harmonic: (-thm)

4. Screened harmonic: (-shm)

5. Screened Vessal [36]: (-bv1)

6. Truncated Vessal [37]: (-bv2)

7. Harmonic cosine: (-hcs)

8. Cosine: (-cos)

9. MM3 stretch-bend [35]: (-msb)

19

©STFC Section 2.2

10. Compass stretch-stretch [38]: (-sts)

11. Compass stretch-bend [38]: (-stb)

12. Compass all terms [38]: (-cmp)

13. MM3 angle bend [35]: (-m3a)

14. KKY [39]: (-kky)

15. Tabulated potential: (-tab). The potential is defined numerically in TABANG (see Section 4.3 and
Section 10.1.9).

In DL POLY 4 angular restraints are handled by the routine angles forces.

2.2.5 Dihedral Angle Potentials

Φ

i

rjk

rij rkn

j k

n

Figure 2.3: The dihedral angle and associated vectors

The dihedral angle potentials describe the interaction arising from torsional forces in molecules. (They are
sometimes referred to as torsion potentials.) They require the specification of four atomic positions. The
potential functions available in DL POLY 4 are as follows:

1. Cosine potential: (cos)

U(ϕijkn) = A [1 + cos(mϕijkn − δ)] (2.39)

2. Harmonic: (harm)

U(ϕijkn) =
k

2
(ϕijkn − ϕ0)2 (2.40)

3. Harmonic cosine: (hcos)

U(ϕijkn) =
k

2
(cos(ϕijkn)− cos(ϕ0))

2 (2.41)

4. Triple cosine: (cos3)

U(ϕ) =
1

2
{A1 (1 + cos(ϕ)) +A2 (1− cos(2ϕ)) +A3 (1 + cos(3ϕ))} (2.42)

5. Ryckaert-Bellemans [41] with fixed constants a-f: (ryck)

U(ϕ) = A { a+ b cos(ϕ) + c cos2(ϕ) + d cos3(ϕ) + e cos4(ϕ) + f cos5(ϕ) } (2.43)

20

©STFC Section 2.2

6. Fluorinated Ryckaert-Bellemans [42] with fixed constants a-h: (rbf)

U(ϕ) = A { a+ b cos(ϕ) + c cos2(ϕ) + d cos3(ϕ) + e cos4(ϕ) + f cos5(ϕ) +

g exp(−h(ϕ− π)2)) } (2.44)

7. OPLS torsion potential: (opls)

U(ϕ) = A0 +
1

2
{A1 (1 + cos(ϕ)) +A2 (1− cos(2ϕ)) +A3 (1 + cos(3ϕ))} (2.45)

8. Tabulated potential: (tab). The potential is defined numerically in TABDIH (see Section 4.3 and
Section 10.1.9).

In these formulae ϕijkn is the dihedral angle defined by

ϕijkn = cos−1{B(rij , rjk, rkn)} , (2.46)

with

B(rij , rjk, rkn) =

{
(rij × rjk) · (rjk × rkn)
|rij × rjk||rjk × rkn|

}
. (2.47)

With this definition, the sign of the dihedral angle is positive if the vector product
(rij × rjk)× (rjk × rkn) is in the same direction as the bond vector rjk and negative if in the opposite
direction.

The force on an atom arising from the dihedral potential is given by

fαℓ = − ∂

∂rαℓ
U(ϕijkn) , (2.48)

with ℓ being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rαℓ
U(ϕijkn) =

{
1

sin(ϕijkn)

}
∂

∂ϕijkn
U(ϕijkn)

∂

∂rαℓ
B(rij , rjk, rkn) . (2.49)

The derivative of the function B(rij , rjk, rkn) is

∂

∂rαℓ
B(rij , rjk, rkn) =

1

|rij × rjk||rjk × rkn|
∂

∂rαℓ
{(rij × rjk) · (rjk × rkn)} −

cos(ϕijkn)

2

{
1

|rij × rjk|2
∂

∂rαℓ
|rij × rjk|2 +

1

|rjk × rkn|2
∂

∂rαℓ
|rjk × rkn|2

}
, (2.50)

with

∂

∂rαℓ
{(rij × rjk) · (rjk × rkn)} = rαij([rjkrjk]α(δℓk − δℓn) + [rjkrkn]α(δℓk − δℓj)) +

rαjk([rijrjk]α(δℓn − δℓk) + [rjkrkn]α(δℓj − δℓi)) +

rαkn([rijrjk]α(δℓk − δℓj) + [rjkrjk]α(δℓi − δℓj)) +

2rαjk[rijrkn]α(δℓj − δℓk) , (2.51)

∂

∂rαℓ
|rij × rjk|2 = 2rαij([rjkrjk]α(δℓj − δℓi) + [rijrjk]α(δℓj − δℓk)) +

2rαjk([rijrij]α(δℓk − δℓj) + [rijrjk]α(δℓi − δℓj)) , (2.52)

21

©STFC Section 2.2

∂

∂rαℓ
|rjk × rkn|2 = 2rαkn([rjkrjk]α(δℓn − δℓk) + [rjkrkn]α(δℓj − δℓk)) +

2rαjk([rknrkn]α(δℓk − δℓj) + [rjkrkn]α(δℓk − δℓn)) . (2.53)

Where we have used the following definition:

[a b]α =
∑
β

(1− δαβ)aβbβ . (2.54)

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i . (2.55)

However, it is possible to show (by tedious algebra using the above formulae, or more elegantly by thermo-
dynamic arguments [40],) that the dihedral makes no contribution to the atomic virial.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijp
β
i + rαjkp

β
jk + rαknp

β
n (2.56)

−
cos(ϕijkn)

2

{
rαijg

β
i + rαjkg

β
k + rαjkh

β
j + rαknh

β
n

}
,

with

pαi = (rαjk[rjkrkn]α − rαkn[rjkrjk]α)/(|rij × rjk||rjk × rkn|)
pαn = (rαjk[rijrjk]α − rαij [rjkrjk]α)/(|rij × rjk||rjk × rkn|)
pαjk = (rαij [rjkrkn]α + rαkn[rijrjk]α − 2rαjk[rijrkn]α)/(|rij × rjk||rjk × rkn|)
gαi = 2(rαij [rjkrjk]α − rαjk[rijrjk]α)/|rij × rjk|2 (2.57)

gαk = 2(rαjk[rijrij]α − rαij [rijrjk]α)/|rij × rjk|2

hαj = 2(rαjk[rknrkn]α − rαkn[rjkrkn]α)/|rjk × rkn|2

hαn = 2(rαkn[rknrkn]α − rαjk[rjkrkn]α)/|rjk × rkn|2 .

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and the matrix is
symmetric.

Lastly, it should be noted that the above description does not take into account the possible inclusion of
distance-dependent 1-4 interactions, as permitted by some force fields. Such interactions are permissible in
DL POLY 4 and are described in the section on pair potentials below. DL POLY 4 also permits scaling of
the 1-4 van der Waals and Coulomb interactions by a numerical factor (see Table 10.7). Note that scaling
is abandoned when the 1-4 members are also 1-3 members in a valence angle intercation (1-4 checks are
performed in dihedrals 14 check routine). 1-4 interactions do, of course, contribute to the atomic virial.

In DL POLY 4 dihedral forces are handled by the routine dihedrals forces (and intra coul and dihe-
drals 14 vdw called within).

2.2.6 Improper Dihedral Angle Potentials

Improper dihedrals are used to restrict the geometry of molecules and as such need not have a simple relation
to conventional chemical bonding. DL POLY 4 makes no distinction between dihedral and improper dihedral
angle functions (both are calculated by the same subroutines) and all the comments made in the preceding
section apply.

An important example of the use of the improper dihedral is to conserve the structure of chiral centres in
molecules modelled by united-atom centres. For example α-amino acids such as alanine (CH3CH(NH2)COOH),

22

©STFC Section 2.2

in which it is common to represent the CH3 and CH groups as single centres. Conservation of the chirality
of the α carbon is achieved by defining a harmonic improper dihedral angle potential with an equilibrium
angle of 35.264o. The angle is defined by vectors r12, r23 and r34, where the atoms 1,2,3 and 4 are shown in
the following figure. The figure defines the D and L enantiomers consistent with the international (IUPAC)
convention. When defining the dihedral, the atom indices are entered in DL POLY 4 in the order 1-2-3-4.

1

2

3

4

C

N

H

α

β

D

1

2

3

4

C

N

H

α

β

L

L = α - N - C - β
1 2 3 4

D = α - C - N - β
1 2 3 4

Figure 2.4: The L and D enantiomers and defining vectors

In DL POLY 4 improper dihedral forces are handled by the routine dihedrals forces.

2.2.7 Torsional Restraints

In DL POLY 4 the torsional restraints, in which the dihedral angle as defined by a quadruplet of atoms, is
maintained around some preset value ϕ0 is handled as a special case of dihedral potential. As a consequence
angle restraints may be applied only between atoms in the same molecule. Unlike with application of the
“pure” dihedral potentials, the electrostatic and van der Waals interactions between the pair of atoms are
still evaluated when distance restraints are applied. All the potential forms of the previous section are
available as torsional restraints, although they have different key words:

1. Cosine potential: (-cos)

2. Harmonic: (-hrm)

3. Harmonic cosine: (-hcs)

4. Triple cosine: (-cs3)

5. Ryckaert-Bellemans [41] with fixed constants a-f: (-rck)

6. Fluorinated Ryckaert-Bellemans [42] with fixed constants a-h: (-rbf)

7. OPLS torsion potential: (-opl)

23

©STFC Section 2.2

8. Tabulated potential: (-tab). The potential is defined numerically in TABDIH (see Section 4.3 and
Section 10.1.9).

In DL POLY 4 torsional restraints are handled by the routine dihedrals forces.

2.2.8 Inversion Angle Potentials

Φ

i

j

k

n

Figure 2.5: The inversion angle and associated vectors

The inversion angle potentials describe the interaction arising from a particular geometry of three atoms
around a central atom. The best known example of this is the arrangement of hydrogen atoms around
nitrogen in ammonia to form a trigonal pyramid. The hydrogens can ‘flip’ like an inverting umbrella to an
alternative structure, which in this case is identical, but in principle causes a change in chirality. The force
restraining the ammonia to one structure can be described as an inversion potential (though it is usually
augmented by valence angle potentials also). The inversion angle is defined in the figure above - note that
the inversion angle potential is a sum of the three possible inversion angle terms. It resembles
a dihedral potential in that it requires the specification of four atomic positions.

The potential functions available in DL POLY 4 are as follows:

1. Harmonic: (harm)

U(ϕijkn) =
k

2
(ϕijkn − ϕ0)2 (2.58)

2. Harmonic cosine: (hcos)

U(ϕijkn) =
k

2
(cos(ϕijkn)− cos(ϕ0))

2 (2.59)

3. Planar potential: (plan)

U(ϕijkn) = A [1− cos(ϕijkn)] (2.60)

4. Extended planar potential: (xpln)

U(ϕijkn) =
k

2
[1− cos(m ϕijkn − ϕ0)] (2.61)

5. Tabulated potential: (tab). The potential is defined numerically in TABINV (see Section 4.3 and
Section 10.1.9).

24

©STFC Section 2.2

In these formulae ϕijkn is the inversion angle defined by

ϕijkn = cos−1

{
rij · wkn

rijwkn

}
, (2.62)

with
wkn = (rij · ûkn)ûkn + (rij · v̂kn)v̂kn (2.63)

and the unit vectors

ûkn = (r̂ik + r̂in)/|r̂ik + r̂in|
v̂kn = (r̂ik − r̂in)/|r̂ik − r̂in| . (2.64)

As usual, rij = rj − ri etc. and the hat r̂ indicates a unit vector in the direction of r. The total inversion
potential requires the calculation of three such angles, the formula being derived from the above using the
cyclic permutation of the indices j → k → n→ j etc.

Equivalently, the angle ϕijkn may be written as

ϕijkn = cos−1

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
. (2.65)

Formally, the force on an atom arising from the inversion potential is given by

fαℓ = − ∂

∂rαℓ
U(ϕijkn) , (2.66)

with ℓ being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rαℓ
U(ϕijkn) =

{
1

sin(ϕijkn)

}
∂

∂ϕijkn
U(ϕijkn)×

∂

∂rαℓ

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
. (2.67)

Following through, the (extremely tedious!) differentiation gives the result:

fαℓ =

{
1

sin(ϕijkn)

}
∂

∂ϕijkn
U(ϕijkn)× (2.68){

−(δℓj − δℓi)
cos(ϕijkn)

r2ij
rαij +

1

rijwkn

[
(δℓj − δℓi){(rij · ûkn)ûαkn + (rij · v̂kn)v̂αkn}

+(δℓk − δℓi)
rij · ûkn
uknrik

{
rαij − (rij · ûkn)ûαkn − (rij · rik − (rij · ûkn)(rik · ûkn))

rαik
r2ik

}
+(δℓk − δℓi)

rij · v̂kn
vknrik

{
rαij − (rij · v̂kn)v̂αkn − (rij · rik − (rij · v̂kn)(rik · v̂kn))

rαik
r2ik

}
+(δℓn − δℓi)

rij · ûkn
uknrin

{
rαij − (rij · ûkn)ûαkn − (rij · rin − (rij · ûkn)(rin · ûkn))

rαin
r2in

}
−(δℓn − δℓi)

rij · v̂kn
vknrin

{
rαij − (rij · v̂kn)v̂αkn − (rij · rin − (rij · v̂kn)(rin · v̂kn))

rαin
r2in

}]}
.

This general formula applies to all atoms ℓ = i, j, k, n. It must be remembered however, that these formulae
apply to just one of the three contributing terms (i.e. one angle ϕ) of the full inversion potential: specifically
the inversion angle pertaining to the out-of-plane vector rij . The contributions arising from the other vectors
rik and rin are obtained by the cyclic permutation of the indices in the manner described above. All these
force contributions must be added to the final atomic forces.

25

©STFC Section 2.2

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i . (2.69)

However, it is possible to show by thermodynamic arguments (cf [40],) or simply from the fact that the sum
of forces on atoms j,k and n is equal and opposite to the force on atom i, that the inversion potential makes
no contribution to the atomic virial.

If the force components fαℓ for atoms ℓ = i, j, k, n are calculated using the above formulae, it is easily seen
that the contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j + rαikf

β
k + rαinf

β
n . (2.70)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and the matrix is
symmetric.

In DL POLY 4 inversion forces are handled by the routine inversions forces.

2.2.9 The Calcite Four-Body Potential

a

b

c

d

u

Figure 2.6: The vectors of the calcite potential

This potential [43, 44] is designed to help maintain the planar structure of the carbonate anion [CO3]
2− in

a similar manner to the planar inversion potential described above. However, it is not an angular potential.
It is dependent on the perpendicular displacement (u) of an atom a from a plane defined by three other
atoms b, c, and d (see Figure 2.6) and has the form:

Uabcd(u) = Au2 +Bu4 , (2.71)

where the displacement u is given by

u =
rab · rbc × rbd
|rbc × rbd|

. (2.72)

Vectors rab,rac and rad define bonds between the central atom a and the peripheral atoms b, c and d. Vectors
rbc and rbd define the plane and are related to the bond vectors by

rbc = rac − rab
rbd = rad − rab . (2.73)

26

©STFC Section 2.2

In what follows it is convenient to define the vector product appearing in both the numerator and denomi-
nator of equation (2.72) as the vector wcd vis.

wcd = rbc × rbd . (2.74)

We also define the quantity γ(u) as

γ(u) = −(2Au+ 4Bu3) . (2.75)

The forces on the individual atoms due to the calcite potential are then given by

f
a

= −γ(u) ŵcd

f
c

= rbd × (rab − uŵcd) γ(u)/wcd

f
d

= −rbc × (rab − uŵcd) γ(u)/wcd (2.76)

f
b

= −(f
a
+ f

c
+ f

d
) ,

where wcd = |wcd| and ŵcd = wcd/wcd. The virial contribution ψabcd(u) is given by

ψabcd(u) = 2Au2 + 4Bu4 (2.77)

and the stress tensor contribution σαβabcd(u) by

σαβabcd(u) =
u γ(u)

w2
cd

wα
cd w

β
cd . (2.78)

In DL POLY 4 the calcite forces are handled by the routine inversions forces, which is a convenient
intramolecular four-body force routine. However, it is manifestly not an inversion potential as such.

2.2.10 Inversional Restraints

In DL POLY 4 the inversional restraints, in which the inversion angle, as defined by a quadruplet of atoms, is
maintained around some preset value ϕ0, is handled as a special case of inversion potential. As a consequence
angle restraints may be applied only between atoms in the same molecule. Unlike with application of the
“pure” dihedral potentials, the electrostatic and van der Waals interactions between the pair of atoms are
still evaluated when distance restraints are applied. All the potential forms of the previous section are
available as torsional restraints, although they have different key words:

1. Harmonic: (-hrm)

2. Harmonic cosine: (-hcs)

3. Planar potential: (-pln)

4. Extended planar potential: (-xpl)

5. Tabulated potential: (-tab). The potential is defined numerically in TABINV (see Section 4.3 and
Section 10.1.9).

In DL POLY 4 inversional restraints are handled by the routine inversions forces.

27

©STFC Section 2.3

2.2.11 Tethering Forces

DL POLY 4 also allows atomic sites to be tethered to a fixed point in space, r⃗0, taken as their position at
the beginning of the simulation (t = 0). This is also known as position restraining. The specification, which
comes as part of the molecular description, requires a tether potential type and the associated interaction
parameters.

Note, firstly, that application of tethering potentials means that the momentum will no longer be a conserved
quantity of the simulation. Secondly, in constant pressure simulations, where the MD cell changes size or
shape, the tethers’ reference positions are scaled with the cell vectors.

The tethering potential functions available in DL POLY 4 are as follows:

1. Harmonic: (harm)

U(rij) =
1

2
k(ri0)

2 (2.79)

2. Restrained harmonic: (rhrm)

U(rij) =

{
1
2k(ri0)

2 : |ri0| ≤ rc
1
2kr

2
c + krc(ri0 − rc) : |ri0| > rc

(2.80)

3. Quartic potential: (quar)

U(rij) =
k

2
(ri0)

2 +
k′

3
(ri0)

3 +
k′′

4
(ri0)

4 (2.81)

as in each case rio is the distance between the atom positions at moment t = t1 and t = 0.

The force on the atom i arising from a tether potential potential is obtained using the general formula:

f
i
= − 1

ri0

[
∂

∂ri0
U(ri0)

]
ri0 . (2.82)

The contribution to be added to the atomic virial is given by

W = ri0 · f i . (2.83)

The contribution to be added to the atomic stress tensor is given by

σαβ = −rαi0f
β
i , (2.84)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this way is symmetric.

In DL POLY 4 tether forces are handled by the routine tethers forces.

2.3 The Intermolecular Potential Functions

In this section we outline the two-body, metal, Tersoff, three-body and four-body potential functions in
DL POLY 4. An important distinction between these and intramolecular (bond) forces in DL POLY 4 is
that they are specified by atom types rather than atom indices.

2.3.1 Short Ranged (van der Waals) Potentials

The short ranged pair forces available in DL POLY 4 are as follows:

28

©STFC Section 2.3

1. 12-6 potential: (12-6)

U(rij) =

(
A

r12ij

)
−

(
B

r6ij

)
(2.85)

2. Lennard-Jones potential: (lj)

U(rij) = 4ϵ

[(
σ

rij

)12

−
(
σ

rij

)6
]

(2.86)

3. Lennard-Jones cohesive potential [45]: (ljc)

U(rij) = 4ϵ

[(
σ

rij

)12

− cij
(
σ

rij

)6
]

(2.87)

This potential has an extra constant to tune the attractive part of the potential serving to describe
the different cohesiveness between different fluids and surfaces in engineering flows models.

4. Lennard Jones, generalised by Frenkel et al. [46]: (ljf)

U(rij) =

 εABαAB

[(
σAB
rij

)2
− 1

] [(
rcAB
rij

)2
− 1

]2
r ≤ rcAB

0 r > rcAB

(2.88)

with

αAB =
1

4

(
rcAB

σAB

)2

 3(
rcAB
σAB

)2
− 1

3

(2.89)

5. n-m potential (aka Mie) [47, 48]: (nm)

U(rij) =
Eo

(n−m)

[
m

(
ro
rij

)n

− n
(
ro
rij

)m]
(2.90)

6. Buckingham potential: (buck)

U(rij) = A exp

(
−rij
ρ

)
− C

r6ij
(2.91)

7. Born-Huggins-Meyer potential: (bhm)

U(rij) = A exp[B(σ − rij)]−
C

r6ij
− D

r8ij
(2.92)

8. Hydrogen-bond (12-10) potential: (hbnd)

U(rij) =

(
A

r12ij

)
−

(
B

r10ij

)
(2.93)

9. Shifted force n-m potential (aka Mie) [47, 48]: (snm)

U(rij) =
αEo

(n−m)

[
mβn

{(
ro
rij

)n

−
(
1

γ

)n}
− nβm

{(
ro
rij

)m

−
(
1

γ

)m}]
+

nmαEo

(n−m)

(
rij − γro
γro

){(
β

γ

)n

−
(
β

γ

)m}
, (2.94)

29

©STFC Section 2.3

with

α =
(n−m)

[nβm(1 + (m/γ −m− 1)/γm)−mβn(1 + (n/γ − n− 1)/γn)]

β = γ

(
γm+1 − 1

γn+1 − 1

) 1
n−m

(2.95)

γ =
rcut
ro

.

This peculiar form has the advantage over the standard shifted n-m potential in that both Eo and r0
(well depth and location of minimum) retain their original values after the shifting process.

10. Morse potential: (mors)
U(rij) = Eo [{1− exp(−k(rij − ro))}2 − 1] (2.96)

11. Shifted Weeks-Chandler-Andersen (WCA) potential [49]: (wca)

U(rij) =

 4ϵ

[(
σ

rij−∆

)12
−
(

σ
rij−∆

)6]
+ ϵ : rij < 2

1
6 σ +∆

0 : rij ≥ 2
1
6 σ +∆

(2.97)

The WCA potential is the Lennard-Jones potential truncated at the position of the minimum and
shifted to eliminate discontinuity (includes the effect of excluded volume). It is usually used in combi-
nation with the FENE, equation (2.10), bond potential. This implementation allows for a radius shift
of up to half a σ (|∆| ≤ 0.5 σ) with a default of zero (∆default = 0).

12. Standard DPD potential: (dpd)

U(rij) =

{
A
2 rc

(
1− rij

rc

)2
: rij < rc

0 : rij ≥ rc
(2.98)

It takes the Groot-Warren [50] form giving a soft and purely repulsive interaction.

13. 14-7 pair potential [51]: (14-7)

U(rij) = ϵ

(
1.07

(rij/ro) + 0.07

)7(1.12

(rij/ro)7 + 0.12
− 2

)
(2.99)

14. Morse modified [52]: (mstw)

U (rij) = E0 {[1− exp (−k (rij − r0))]2 − 1}+ c

r12ij
(2.100)

15. Rydberg: (ryd)
U (rij) = (a+ brij) exp (−rij/ρ) (2.101)

16. Ziegler-Biersack-Littmark (ZBL): [53] (zbl)

U(rij) =
Z1Z2e

2

4πε0εr

4∑
i=1

bi exp (−cir/a) , (2.102)

where

a =
0.88534 · aB
Z0.23
1 + Z0.23

2

b = [0.18175, 0.50986, 0.28022, 0.02817]

c = [3.1998, 0.94229, 0.40290, 0.20162]

aB = 0.52917721067 Å .

30

©STFC Section 2.3

17. ZBL mixed with Morse, [54]: (zbls)

U (rij) = f (rij)UZBL (rij) + (1− f (rij))Umorse (rij) , (2.103)

with f (r) defined by

f (r) =

{
1− e−(rm−r)/ξ/2 : r < rm
e−(r−rm)/ξ/2 : r ≥ rm .

18. ZBL mixed with Buckingham, [54]: (zblb)

U (rij) = f (rij)UZBL (rij) + (1− f (rij))Ubuckingham (rij) , (2.104)

with f (r) defined by

f (r) =

{
1− e−(rm−r)/ξ/2 : r < rm
e−(r−rm)/ξ/2 : r ≥ rm .

19. Lennard-Jones tapered with Mei-Davenport-Fernando taper (MDF), [55]: (mlj)

U (rij) = f (rij)ULJ (rij) , (2.105)

where

f(r) =

1 : r < ri
(rc−r)3(10r2i−5rcri−15rri+r2c+3rrc+6r2)

(rc−ri)
5 : ri ≤ r ≤ rc

0 : r > rc .

(2.106)

rc is set to rvdw and controled by rvdw.

20. Buckingham tapered with MDF: (mbuc)

U (rij) = f (rij)UBuckingham (rij) (2.107)

See mlj for more details.

21. 12-6 Lennard-Jones tapered with Mei-Davenport-Fernando taper (MDF): (m126)

U (rij) = f (rij)U12−6 (rij) (2.108)

See mlj for more details.

22. Tabulation: (tab). The potential is defined numerically only.

The parameters defining these potentials are supplied to DL POLY 4 at run time (see the description of the
FIELD file in Section 10.1.3). Each atom type in the system is specified by a unique eight-character label
defined by the user. The pair potential is then defined internally by the combination of two atom labels.

It is worth noting that some potentials are implemented in an extended form from their original reference
specification. Often this is done by replacing the r argument by r− ro to define a surface softness/hardness
width/radius.

As well as the numerical parameters defining the potentials, DL POLY 4 should also be provided with a
cutoff radius, rvdw, which sets a range limit on the computation of the interactions. It is worth noting that
some interaction come with a hard-wired cutoff in their parameter sets! Thus any provided cutoff radius,
rvdw, will be reset if it is not equal or larger that the largest of these all. Together with the parameters, the
cutoff is used by the subroutine vdw generate to construct an interpolation array vvdw for the potential

31

©STFC Section 2.3

function over the range 0 to rvdw. A second array gvdw is also calculated, which is related to the potential
via the formula:

G(rij) = −rij
∂

∂rij
U(rij) , (2.109)

and is used in the calculation of the forces. Both arrays are tabulated in units of energy. The use of
interpolation arrays, rather than the explicit formulae, makes the routines for calculating the potential energy
and atomic forces very general, and enables the use of user defined pair potential functions. DL POLY 4 also
allows the user to read in the interpolation arrays directly from a file (implemented in the vdw table read
routine) and the TABLE file (Section 10.1.7). This is particularly useful if the pair potential function has
no simple analytical description (e.g. spline potentials).

The force on an atom j derived from one of these potentials is formally calculated with the standard formula:

f
j
= − 1

rij

[
∂

∂rij
U(rij)

]
rij , (2.110)

where rij = rj − ri . The force on atom i is the negative of this.

The contribution to be added to the atomic virial (for each pair interaction) is

W = −rij · f j . (2.111)

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.112)

where α and β indicate the x, y, z components. The atomic stress tensor derived from the pair forces is
symmetric.

Since the calculation of pair potentials assumes a spherical cutoff (rvdw) it is necessary to apply a long-ranged
correction to the system potential energy and virial. Explicit formulae are needed for each case and are
derived as follows. For two atom types a and b, the correction for the potential energy is calculated via the
integral

Uab
corr = 2π

NaNb

V

∫ ∞

rvdw

gab(r)Uab(r)r
2dr , (2.113)

where Na, Nb are the numbers of atoms of types a and b in the system, V is the system volume and gab(r)
and Uab(r) are the appropriate pair correlation function and pair potential respectively. It is usual to assume
gab(r) = 1 for r > rvdw . DL POLY 4 sometimes makes the additional assumption that the repulsive part
of the short ranged potential is negligible beyond rvdw .

The correction for the system virial is

Wab
corr = −2π

NaNb

V

∫ ∞

rvdw

gab(r)
∂

∂r
Uab(r)r

3dr , (2.114)

where the same approximations are applied.

Note that these formulae are based on the assumption that the system is reasonably isotropic beyond the
cutoff. It is worth noting that the 14-7 pair potential’s corrections to system energy and virial are solved
numerically.

In DL POLY 4 the short ranged forces are calculated by the subroutine vdw forces. The long-ranged
corrections are calculated by routine vdw lrc. The calculation makes use of the Verlet neighbour list (see
above).

32

©STFC Section 2.3

Notes on mixing rules for short-ranged interactions

DL POLY 4 allows a short cut for mixing some of the explicitly specified pair interactions for single species
of the same type so that cross-species interactions are generated if unspecified. This is only possible for the
12-6, lj, dpd, 14-7, wca & ljc types. The mixing is derived from the Lennard-Jones style characteristic
paramteres for energy (ϵ) and distance (σ or r0) terms. The available types of mixing within DL POLY 4
are borrowed from [56]. The rules’ names and formulae are as follows:

1. Lorentz-Berthelot

ϵij =
√
ϵi ϵj ; σij =

σi + σj
2

(2.115)

2. Fender-Halsey

ϵij = 2
ϵi ϵj
ϵi + ϵj

; σij =
σi + σj

2
(2.116)

3. Hogervorst (good hope)

ϵij =
√
ϵi ϵj ; σij =

√
σi σj (2.117)

4. Halgren HHG

ϵij = 4
ϵi ϵj(

ϵ
1/2
i + ϵ

1/2
j

)2 ; σij =
σ3i + σ3j
σ2i + σ2j

(2.118)

5. Waldman-Hagler

ϵij = 2
√
ϵi ϵj

(σi σj)
3

σ6i + σ6j
; σij =

(
σ6i + σ6j

2

) 1
6

(2.119)

6. Tang-Toennies

ϵijσ
6
ij =

√
ϵiσ6i ϵjσ

6
j ; ϵijσ

12
ij =

(
ϵiσ

12
i

)13
+
(
ϵjσ

12
j

)13
2

13

(2.120)

7. Functional

ϵij =
3
√
ϵi ϵj (σi σj)

3

2∑
L=0

[
(σ3

i +σ3
j)

2

4 (σi σi)L

] 6
6−2L

; σij =
1

3

2∑
L=0

(
σ3i + σ3j

)2
4 (σi σi)L

1

6−2L

(2.121)

It is woth noting that the i and j symbols in the equations for mixing denote atom types (species) and the
indices for the same species interaction parameters are contracted to a single species index for simplicity.

2.3.2 Metal Potentials

The metal potentials in DL POLY 4 follow two similar but distinct formalisms. The first of these is the
embedded atom model (EAM) [11, 12] and the second is the Finnis-Sinclair model (FS) [13]. Both are
density dependent potentials derived from density functional theory (DFT) and describe the bonding of
a metal atom ultimately in terms of the local electronic density. They are suitable for calculating the
properties of metals and metal alloys. The extended EAM (EEAM) [57, 58] is a generalisation of the EAM
formalism which can include both EAM and FS type of mixing rules (see below).

It is worth noting that the same formalism applies to the many-body perturbation component of the actinide
oxide potentials as in [59]. Thus their many-body component description is included in this Section.

33

©STFC Section 2.3

For single component metals the two main approaches, FS and EAM, are the same. However, they are
subtly different in the way they are extended to handle alloys (see below). It follows that EAM and FS
class potentials cannot be mixed in a single simulation. Furthermore, even for FS class potentials possessing
different analytical forms there is no agreed procedure for mixing the parameters. Mixing EAM and EEAM
potentials is only possible if the EAM ones are generalised to EEAM form (see below). The user is, therefore,
strongly advised to be consistent in the choice of potential when modelling alloys.

The general form of the EAM and FS types of potentials is [60]

Umetal =
1

2

N∑
i=1

N∑
j ̸=i

Vij(rij) +

N∑
i=1

F (ρi) , (2.122)

where F (ρi) is a functional describing the energy of embedding an atom in the bulk density, ρi, which is
defined as

ρi =

N∑
j=1,j ̸=i

ρij(rij) . (2.123)

It should be noted that the density is determined by the coordination number of the atom defined by pairs
of atoms. This makes the metal potential dependent on the local density (environmental). Vij(rij) is a
pair potential incorporating repulsive electrostatic and overlap interactions. N is the number of interacting
particles in the MD box.

In DL POLY 4 EAM and thus EEAM can be further generalised to include two-band (2B) densities [61, 62],
for s- and d-bands,

F (ρi) = F s(ρsi) + F d(ρdi) , (2.124)

where

ρqi =
N∑

j=1,j ̸=i

ρqij(rij) , q = s, d , (2.125)

instead of just the one, s, as in equations (2.122) and (2.123). These will be referred in the following text
as 2BEAM and 2BEEAM. Mixing 2BEAM and EAM and alternatively 2BEEAM and EEAM potentials
is only possible if the single band ones are generalised to 2B forms. The user is, again, reminded to be
consistent in the choice of potential when modelling alloys.

The types of metal potentials available in DL POLY 4 are as follows:

1. EAM potential: (eam) There are no explicit mathematical expressions for EAM potentials, so this
potential type is read exclusively in the form of interpolation arrays from the TABEAM table file
(as implemented in the metal table read routine - Section 10.1.8.) The rules for combining the
potentials from different metals to handle alloys are different from the FS class of potentials (see
below).

2. EEAM potential (eeam) Similar to EAM above, it is given in the form of interpolation arrays from
the TABEAM file, but the rules for combining the potentials from different metals are different from
both EAM and FS classes (see below).

3. 2BEAM potential (2beam) Similar to EEAM for the s density terms and to EAM for the d ones. It
is and given in the form of interpolation arrays from the TABEAM file, but the rules for combining
the potentials from different metals are different from both EAM, EEAM and FS classes (see below).

4. 2BEEAM potential (2beeam) Similar to EEAM for both s and d density terms. It is and given in the
form of interpolation arrays from the TABEAM file, but the rules for combining the potentials from
different metals are different from both EAM, EEAM, 2BEAM and FS classes (see below).

34

©STFC Section 2.3

5. Finnis-Sinclair potential [13]: (fnsc) Finnis-Sinclair potential is explicitly analytical. It has the fol-
lowing form:

Vij(rij) =

{
(rij − c)2(c0 + c1rij + c2r

2
ij) : rij < c

0 : rij > c

ρij(rij) =

 (rij − d)2 + β
(rij − d)3

d
: rij < d

0 : rij > d
(2.126)

F (ρi) = −A√ρi ,

with parameters: c0, c1, c2, c, A, d, β, both c and d are cutoffs. Since first being proposed a number
of alternative analytical forms have been proposed, some of which are described below. The rules
for combining different metal potentials to model alloys are different from the EAM potentials (see
below).

6. Extended Finnis-Sinclair potential [63]: (exfs) It has the following form:

Vij(rij) =

{
(rij − c)2(c0 + c1rij + c2r

2
ij + c3r

3
ij + c4r

4
ij) : rij < c

0 : rij > c

ρij(rij) =

{
(rij − d)2 +B2(rij − d)4 : rij < d
0 : rij > d

(2.127)

F (ρi) = −A√ρi ,

with parameters: c0, c1, c2, c3, c4, c, A, d, B, both c and d are cutoffs.

7. Sutton-Chen potential [14, 15, 16]: (stch) The Sutton Chen potential is an analytical potential in the
FS class. It has the form:

Vij(rij) = ϵ

(
a

rij

)n

ρij(rij) =

(
a

rij

)m

(2.128)

F (ρi) = −cϵ√ρi ,

with parameters: ϵ, a, n, m, c. Note that the parameter c for the mixed potential in multi-component
allys is irrelevant as outlined in [15]!

8. Gupta potential [64]: (gupt) The Gupta potential is another analytical potential in the FS class. It
has the form:

Vij(rij) = 2A exp

(
−prij − r0

r0

)
ρij(rij) = exp

(
−2qij

rij − r0
r0

)
(2.129)

F (ρi) = −B√ρi ,

with parameters: A, r0, p, B, qij .

9. Many body perturbation component potential [59]: (mbpc) This component is another analytical
potential in the FS class which two body part may be defined by a matching van der Waals potential
in the vdw section of the FIELD file. It has the form:

Vij(rij) = 0

ρij(rij) =

(
a

rmij

)
1

2
[1 + erf (α(rij − ro))] (2.130)

F (ρi) = −ϵ√ρi ,

35

©STFC Section 2.3

with parameters: ϵ, a, m, α and ro.

Note that the parameters α and ro must be the same for all defined potentials of this type. DL POLY 4
will set α = Max(0, αpq) and ro = Max(0, ro pq) for all defined interactions of this type between species
p and q. If after this any is left undefined, i.e. zero, the undefined entities will be set to their defaults:
α = 20 and ro = Min(1.5, 0.2 rcut).

All of these metal potentials can be decomposed into pair contributions and thus fit within the general
tabulation scheme of DL POLY 4, where they are treated as pair interactions (though note that the metal
cutoff, rmet has nothing to do with short ranged cutoff, rvdw). DL POLY 4 calculates this potential in two
stages: the first calculates the local density, ρi, for each atom; and the second calculates the potential energy
and forces. Interpolation arrays, vmet, gmet and fmet (metal generate, metal table read) are used
in both these stages in the same spirit as in the van der Waals interaction calculations.

The total force f tot
k

on an atom k derived from this potential is calculated in the standard way:

f tot
k

= −∇kUmetal . (2.131)

We rewrite the EAM/FS potential, equation (2.122), as

Umetal = U1 + U2

U1 =
1

2

N∑
i=1

N∑
j ̸=i

Vij(rij) (2.132)

U2 =
N∑
i=1

F (ρi) ,

where rij = rj − ri . The force on atom k is the sum of the derivatives of U1 and U2 with respect to rk,
which is recognisable as a sum of pair forces:

−∂U1

∂rk
= −1

2

N∑
i=1

N∑
j ̸=i

∂Vij(rij)

∂rij

∂rij
∂rk

=
N∑

j=1,j ̸=k

∂Vkj(rkj)

∂rkj

rkj

rkj

−∂U2

∂rk
= −

N∑
i=1

∂F

∂ρi

N∑
j ̸=i

∂ρij(rij)

∂rij

∂rij
∂rk

(2.133)

= −
N∑

i=1,i ̸=k

∂F

∂ρi

∂ρik(rik)

∂rik

∂rik
∂rk
−

N∑
j=1,j ̸=k

∂F

∂ρk

∂ρkj(rkj)

∂rkj

∂rkj
∂rk

=
N∑

j=1,j ̸=k

(
∂F

∂ρk
+
∂F

∂ρj

)
∂ρkj(rkj)

∂rkj

rkj

rkj
.

1. EAM force
The same as shown above. However, it is worth noting that the generation of the force arrays from
tabulated data (implemented in the metal table derivatives routine) is done using a five point
interpolation procedure.

2. EEAM force
Information the same as that for EAM.

3. 2BEAM force
Information the same as that for EAM. However, as there is a second embedding contribution from
the extra band complexity: U2 = U s

2 + Ud
2 !

36

©STFC Section 2.3

4. 2BEEAM force
Information the same as that for EAM. However, as there is a second embedding contribution from
the extra band complexity: U2 = U s

2 + Ud
2 !

5. Finnis-Sinclair force

−∂U1

∂rk
=

N∑
j=1,j ̸=k

{
2(rkj − c)(c0 + c1rkj + c2r

2
kj) + (rkj − c)2(c1 + 2c2rkj)

} rkj
rkj

−∂U2

∂rk
= −

N∑
j=1,j ̸=k

A

2

(
1
√
ρk

+
1
√
ρj

){
2(rkj − d) + 3β

(rkj − d)2

d

}
rkj

rkj
. (2.134)

6. Extended Finnis-Sinclair force

−∂U1

∂rk
=

N∑
j=1,j ̸=k

{
2(rkj − c)(c0 + c1rkj + c2r

2
kj + c3r

3
kj + c4r

4
kj)+

(rkj − c)2(c1 + 2c2rkj + 3c3r
2
kj + 4c4r

3
kj)
} rkj
rkj

(2.135)

−∂U2

∂rk
= −

N∑
j=1,j ̸=k

A

2

(
1
√
ρk

+
1
√
ρj

){
2(rkj − d) + 4B2(rkj − d)3

} rkj
rkj

.

7. Sutton-Chen force

−∂U1

∂rk
= −

N∑
j=1,j ̸=k

nϵ

(
a

rkj

)n rkj

rkj

−∂U2

∂rk
=

N∑
j=1,j ̸=k

mcϵ

2

(
1
√
ρk

+
1
√
ρj

)(
a

rkj

)m rkj

rkj
. (2.136)

8. Gupta force

−∂U1

∂rk
= −

N∑
j=1,j≠k

2Ap

r0
exp

(
−p

rkj − r0
r0

)
rkj

rkj

−∂U2

∂rk
=

N∑
j=1,j ̸=k

Bqkj
r0

(
1
√
ρk

+
1
√
ρj

)
exp

(
−2qkj

rkj − r0
r0

)
rkj

rkj
. (2.137)

9. Many body perturbation component potential force

−∂U1

∂rk
= 0

−∂U2

∂rk
=

N∑
j=1,j ̸=k

mϵ

2

(
1
√
ρk

+
1
√
ρj

)
a

rmkj

rkj

rkj
. (2.138)

With the metal forces thus defined the contribution to be added to the atomic virial from each atom pair is
then

W = −rij · f j , (2.139)

37

©STFC Section 2.3

which equates to:

Ψ = 3V
∂U

∂V

Ψ =
3

2
V

N∑
i=1

N∑
j ̸=i

∂Vij(rij)

∂rij

∂rij
∂V

+ 3V
N∑
i=1

∂F (ρi)

∂ρi

∂ρi
∂V

= Ψ1 +Ψ2

∂rij
∂V

=
∂V 1/3sij
∂V

=
1

3
V −2/3sij =

rij
3V

Ψ1 =
1

2

N∑
i=1

N∑
j ̸=i

∂Vij(rij)

∂rij
rij (2.140)

∂ρi
∂V

=
∂

∂V

N∑
j=1,j ̸=i

ρij(rij) =

N∑
j=1,j ̸=i

∂ρij(rij)

∂rij

∂rij
∂V

=
1

3V

N∑
j=1,j ̸=i

∂ρij(rij)

∂rij
rij

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

(
∂F (ρi)

∂ρi
+
∂F (ρj)

∂ρj

)
∂ρij(rij)

∂rij
rij .

1. EAM virial
The same as above.

2. EEAM virial
The same as above.

3. 2BEAM virial
The same as above but with a second embedding contribution from the extra band complexity: Ψ2 =
Ψs

2 +Ψd
2 !

4. 2BEEAM virial
The same as above but with a second embedding contribution from the extra band complexity: Ψ2 =
Ψs

2 +Ψd
2 !

5. Finnis-Sinclair virial

Ψ1 =
1

2

N∑
i=1

N∑
j ̸=i

{
2(rij − c)(c0 + c1rij + c2r

2
ij) + (rij − c)2(c1 + 2c2rij)

}
rij

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

A

2

(
1
√
ρk

+
1
√
ρj

){
2(rij − d) + 3β

(rij − d)2

d

}
rija . (2.141)

6. Extended Finnis-Sinclair virial

Ψ1 =
1

2

N∑
i=1

N∑
j ̸=i

{
2(rij − c)(c0 + c1rij + c2r

2
ij + c3r

3
ij + c4r

4
ij)+

(rij − c)2(c1 + 2c2rij + 3c3r
2
ij + 4c4riji

3)
}
rij (2.142)

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

A

2

(
1
√
ρk

+
1
√
ρj

){
2(rij − d) + 4B2(rij − d)3

}
rija .

7. Sutton-Chen virial

Ψ1 = −1

2

N∑
i=1

N∑
j ̸=i

nϵ

(
a

rij

)n

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

mcϵ

2

(
∂F (ρi)

∂ρi
+
∂F (ρj)

∂ρj

)(
a

rij

)m

. (2.143)

38

©STFC Section 2.3

8. Gupta virial

Ψ1 = −
N∑
i=1

N∑
j ̸=i

Ap

r0
exp

(
−prij − r0

r0

)
rij

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

Bqij
r0

(
1
√
ρk

+
1
√
ρj

)
exp

(
−2qij

rij − r0
r0

)
rij . (2.144)

9. Many body perturbation component virial

Ψ1 = 0

Ψ2 =
1

2

N∑
i=1

N∑
j ̸=i

mϵ

2

(
∂F (ρi)

∂ρi
+
∂F (ρj)

∂ρj

)
a

rmij
. (2.145)

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.146)

where α and β indicate the x, y, z components. The atomic stress tensor is symmetric.

The long-ranged correction for the DL POLY 4 metal potential is in two parts. Firstly, by analogy with the
short ranged potentials, the correction to the local density is

ρi =
∞∑

j=1,j ̸=i

ρij(rij)

ρi =

rij<rmet∑
j=1,j ̸=i

ρij(rij) +

rij≥rmet∑
j=1,j ̸=i

ρij(rij) = ρoi + δρi (2.147)

δρi = 4πρ̄

∫ ∞

rmet

ρij(r)dr ,

where ρoi is the uncorrected local density and ρ̄ is the mean particle density. Evaluating the integral part of
the above equation yields:

1. EAM density correction
No long-ranged corrections apply beyond rmet.

2. EEAM density correction
No long-ranged corrections apply beyond rmet.

3. 2BEAM density correction
No long-ranged corrections apply beyond rmet.

4. 2BEAM density correction
No long-ranged corrections apply beyond rmet.

5. Finnis-Sinclair density correction
No long-ranged corrections apply beyond cutoffs c and d.

6. Extended Finnis-Sinclair density correction
No long-ranged corrections apply beyond cutoffs c and d.

7. Sutton-Chen density correction

δρi =
4πρ̄a3

(m− 3)

(
a

rmet

)m−3

. (2.148)

39

©STFC Section 2.3

8. Gupta density correction

δρi =
2πρ̄r0
qij

[
r2met + 2rmet

(
r0
qij

)
+ 2

(
r0
qij

)2
]
exp

(
−2qij

rmet − r0
r0

)
. (2.149)

9. Many body perturbation component density correction

δρi =
4πρ̄

(m− 3)

a

rm−3
met

. (2.150)

The density correction is applied immediately after the local density is calculated. The pair term correction
is obtained by analogy with the short ranged potentials and is

U1 =
1

2

N∑
i=1

∞∑
j ̸=i

Vij(rij)

U1 =
1

2

N∑
i=1

rij<rmet∑
j ̸=i

Vij(rij) +
1

2

N∑
i=1

rij≥rmet∑
j ̸=i

Vij(rij) = Uo
1 + δU1

δU1 = 2πNρ̄

∫ ∞

rmet

Vij(r)r
2dr

U2 =
N∑
i=1

F (ρ0i + δρi) (2.151)

U2 =

N∑
i=1

F (ρ0i) +

N∑
i=1

∂F (ρi)0
∂ρi

δρi = U0
2 + δU2

δU2 = 4πρ̄
N∑
i=1

∂F (ρi)0
∂ρi

∫ ∞

rmet

ρij(r)r
2dr .

Note: that δU2 is not required if ρi has already been corrected. Evaluating the integral part of the above
equations yields:

1. EAM energy correction
No long-ranged corrections apply beyond rmet.

2. EEAM energy correction
No long-ranged corrections apply beyond rmet.

3. 2BEAM energy correction
No long-ranged corrections apply beyond rmet.

4. 2BEEAM energy correction
No long-ranged corrections apply beyond rmet.

5. Finnis-Sinclair energy correction
No long-ranged corrections apply beyond cutoffs c and d.

6. Extended Finnis-Sinclair energy correction
No long-ranged corrections apply beyond cutoffs c and d.

7. Sutton-Chen energy correction

δU1 =
2πNρ̄ϵa3

(n− 3)

(
a

rmet

)n−3

δU2 = − 4πρ̄a3

(m− 3)

(
a

rmet

)m−3
〈
Ncϵ

2
√
ρ0i

〉
. (2.152)

40

©STFC Section 2.3

8. Gupta energy correction

δU1 =
4πNρ̄Ar0

p

[
r2met + 2rmet

(
r0
p

)
+ 2

(
r0
p

)2
]
×

exp

(
−prmet − r0

r0

)
δU2 = −2πρ̄r0

qij

[
r2met + 2rmet

(
r0
qij

)
+ 2

(
r0
qij

)2
]
× (2.153)

exp

(
−2qij

rmet − r0
r0

)〈
NB

2
√
ρ0i

〉
.

9. Many body perturbation component energy correction

δU1 = 0

δU2 = − 4πρ̄

(m− 3)

a

rm−3
met

〈
Nϵ

2
√
ρ0i

〉
. (2.154)

To estimate the virial correction we assume the corrected local densities are constants (i.e. independent of
distance - at least beyond the range rmet). This allows the virial correction to be computed by the methods
used in the short ranged potentials:

Ψ1 =
1

2

N∑
i=1

∞∑
j ̸=i

∂Vij(rij)

∂rij
rij

Ψ1 =
1

2

N∑
i=1

rij<rmet∑
j ̸=i

∂Vij(rij)

∂rij
rij +

1

2

N∑
i=1

rij≥rmet∑
j ̸=i

∂Vij(rij)

∂rij
rij = Ψ0

1 + δΨ1

δΨ1 = 2πNρ̄

∫ ∞

rmet

∂Vij(r)

∂rij
r3dr

Ψ2 =

N∑
i=1

∂F (ρi)

∂ρi

∞∑
j ̸=i

∂ρij(rij)

∂rij
rij (2.155)

Ψ2 =
N∑
i=1

∂F (ρi)

∂ρi

rij<rmet∑
j ̸=i

∂ρij(rij)

∂rij
rij +

N∑
i=1

∂F (ρi)

∂ρi

rij≥rmet∑
j ̸=i

∂ρij(rij)

∂rij
rij = Ψ0

2 + δΨ2

δΨ2 = 4πρ̄

N∑
i=1

∂F (ρi)

∂ρi

∫ ∞

rmet

∂ρij(r)

∂r
r3dr .

Evaluating the integral part of the above equations yields:

1. EAM virial correction
No long-ranged corrections apply beyond rmet.

2. EEAM virial correction
No long-ranged corrections apply beyond rmet.

3. 2BEAM virial correction
No long-ranged corrections apply beyond rmet.

4. 2BEEAM virial correction
No long-ranged corrections apply beyond rmet.

41

©STFC Section 2.3

5. Finnis-Sinclair virial correction
No long-ranged corrections apply beyond cutoffs c and d.

6. Extended Finnis-Sinclair virial correction
No long-ranged corrections apply beyond cutoffs c and d.

7. Sutton-Chen virial correction

δΨ1 = −n2πNρ̄ϵa
3

(n− 3)

(
a

rmet

)n−3

δΨ2 = m
4πρ̄a3

(m− 3)

(
a

rmet

)m−3
〈
Ncϵ

2
√
ρ0i

〉
. (2.156)

8. Gupta virial correction

δΨ1 = − p

r0

4πNρ̄Ar0
p

[
r3met + 3r2met

(
r0
p

)
+ 6rmet

(
r0
p

)2

+ 6

(
r0
p

)3
]
×

exp

(
−prmet − r0

r0

)
δΨ2 =

qij
r0

2πρ̄r0
qij

[
r3met + 3r2met

(
r0
qij

)
+ 6rmet

(
r0
qij

)2

+ 6

(
r0
qij

)3
]
× (2.157)

exp

(
−2qij

rmet − r0
r0

)〈
NB

2
√
ρ0i

〉
.

9. Many body perturbation component virial correction

δΨ1 = 0

δΨ2 = m
4πρ̄

(m− 3)

a

rm−3
met

〈
Nϵ

2
√
ρ0i

〉
. (2.158)

In the energy and virial corrections we have used the approximation:

N∑
i

ρ
−1/2
i =

N

< ρ
1/2
i >

, (2.159)

where < ρ
1/2
i > is regarded as a constant of the system.

In DL POLY 4 the metal forces are handled by the routine metal forces. The local density is calculated by
the routinesmetal ld collect eam, metal ld collect fst, metal ld compute, metal ld set halo
and metal ld export. The long-ranged corrections are calculated by metal lrc. Reading and generation
of EAM table data from TABEAM is handled by metal table read and metal table derivatives.

Notes on the Treatment of Alloys

The distinction to be made between EAM and FS potentials with regard to alloys concerns the mixing rules
for unlike interactions. Starting with equations (2.122) and (2.123), it is clear that we require mixing rules
for terms Vij(rij) and ρij(rij) when atoms i and j are of different kinds. Thus two different metals A and B
we can distinguish 4 possible variants of each:

V AA
ij (rij), V

BB
ij (rij), V

AB
ij (rij), V

BA
ij (rij)

42

©STFC Section 2.3

and
ρAA
ij (rij), ρ

BB
ij (rij), ρ

AB
ij (rij), ρ

BA
ij (rij) .

These forms recognise that the contribution of a type A atom to the potential of a type B atom may be
different from the contribution of a type B atom to the potential of a type A atom. In both EAM [65] and
FS [15] cases it turns out that

V BA
ij (rij) = V BA

ij (rij) , (2.160)

though the mixing rules are different in each case (beware!). This has the following implications to densities
of mixtures for different potential frameworks:

• EAM case - it is required that [65]:

ρAB
ij (rij) = ρBB

ij (rij)

ρBA
ij (rij) = ρAA

ij (rij) , (2.161)

which means that an atom of type A contributes the same density to the environment of an atom of
type B as it does to an atom of type A, and vice versa.

• EEAM case - all densities can be different [57, 58]:

ρAA
ij (rij) ̸= ρBB

ij (rij) ̸= ρAB
ij (rij) ̸= ρBA

ij (rij) ! (2.162)

• 2BEAM case - similarly to the EAM case it is required that:

ρdij
AB

(rij) = ρdij
BB

(rij)

ρdij
BA

(rij) = ρdij
AA

(rij) , (2.163)

for the d-band densities, whereas for the s-band ones:

ρsij
BA(rij) = ρsij

AB(rij) , (2.164)

which means that an atom of type A contributes the same s density to the environment of an atom of
type B as an atom of type B to an environment of an atom of type A. However, in general:

ρsij
AA(rij) ̸= ρsij

BB(rij) ̸= ρsij
AB(rij) . (2.165)

• 2BEEAM case - similarly to the EEAM case all s and d densities can be different:

ρsij
AA(rij) ̸= ρsij

BB(rij) ̸= ρsij
AB(rij) ̸= ρsij

BA(rij)

ρdij
AA

(rij) ̸= ρdij
BB

(rij) ̸= ρdij
AB

(rij) ̸= ρdij
BA

(rij) . (2.166)

• FS case - here a different rule applies [15]:

ρAB
ij (rij) = (ρAA

ij (rij) ρ
BB
ij (rij))

1/2 (2.167)

so that atoms of type A and B contribute the same densities to each other, but not to atoms of the
same type.

The above rules have the following consequences to the specifications of these potentials in the DL POLY 4
FIELD file for an alloy composed of n different metal atom types both the EAM types and FS types of
potentials require the specification of n(n+ 1)/2 pair functions V AB

ij (rij). However, the its only the simple

EAM type together with all the FS types that require only n density functions ρAA
ij (rij), whereas the EEAM

class requires all the cross functions ρAB
ij (rij) possible or n2 in total! In addition to the n(n + 1)/2 pair

functions and n or n2 density functions both the EAM and EEAM potentials require further specification of

43

©STFC Section 2.3

n functional forms of the density dependence (i.e. the embedding function F (ρi) in equation (2.122)). The
matter is further complicated when the 2BEAM type of potential is used with the extra specification of n
embedding functions and n(n+ 1)/2 density functions for the s-band. Similarly, in the 2BEEAM an extra
n embedding functions and n2 density functions for the s-band are required.

It is worth noting that in the 2BEAM and 2BEEAM the s-band contribution is usually only for the alloy
component, so that local concentrations of a single element revert to the standard EAM or EEAM! In such
case, the densities functions must be zeroed in the DL POLY 4 TABEAM file.

For EAM, EEAM, 2BEAM and 2BEEAM potentials all the functions are supplied in tabular form via the
table file TABEAM (see section 10.1.8) to which DL POLY 4 is redirected by the FIELD file data. The FS
potentials are defined via the necessary parameters in the FIELD file.

2.3.3 Tersoff Potentials

The Tersoff [17] potential is is a bond-order potential, developed to be used in multi-component covalent
systems by an effective coupling of two-body and higher many-body correlations into one model. The central
idea is that in real systems, the strength of each bond depends on the local environment, i.e. an atom with
many neighbors forms weaker bonds than an atom with few neighbors. Effectively, it is a pair potential
the strength of which depends on the environment. At the present there are two versions of this potential
available in DL POLY 4: ters and kihs. In these particular implementations ters has 11 atomic and 2
bi-atomic parameters whereas kihs [66] has 16 atomic parameters. The energy is modelled as a sum of
pair-like interactions, where the coefficient of the attractive term in the pair-like potential (which plays the
role of a bond order) depends on the local environment giving a many-body potential.

The form of the Tersoff potential is: (ters)

Uij = fC(rij) [fR(rij)− γij fA(rij)] , (2.168)

where fR and fA are the repulsive and attractive pair potential respectively:

fR(rij) = Aij exp(−aij rij) , fA(rij) = Bij exp(−bij rij) (2.169)

and fC is a smooth cutoff function with parameters R and S so chosen that to include the first-neighbor
shell:

• ters:

fC(rij) =

1 : rij < Rij

1
2 + 1

2 cos
[
π

rij−Rij

Sij−Rij

]
: Rij < rij < Sij

0 : rij > Sij

(2.170)

• kihs - here fC is modified to a have continuous second-order differential:

fC(rij) =

1 : rij < Rij

1
2 + 9

16 cos
[
π

rij−Rij

Sij−Rij

]
− 1

16 cos
[
3π

rij−Rij

Sij−Rij

]
: Rij < rij < Sij

0 : rij > Sij .

(2.171)

γij expresses a dependence that can accentuate or diminish the attractive force relative to the repulsive
force, according to the local environment, such that:

• ters:

γij = χij (1 + βi
ηi Lηiij)

− 1
2ηi

Lij =
∑
k ̸=i,j

fC(rik) ωik g(θijk) (2.172)

g(θijk) = 1 +
c2i
d2i
− c2i
d2i + (hi − cos θijk)2

44

©STFC Section 2.3

• kihs:

γij = (1 + Lηiij)
−δi

Lij =
∑
k ̸=i,j

fC(rik) g(θijk)

ωik︷ ︸︸ ︷
exp

[
αi(rij − rik)βi

]
g(θijk) = c1i + go(θijk) ga(θijk) (2.173)

go(θijk) =
c2i (hi − cos θijk)

2

c3i + (hi − cos θijk)2

ga(θijk) = 1 + c4i exp
[
−c5i (hi − cos θijk)

2
]
,

where the term Lij defines the effective coordination number of atom i i.e. the number of nearest neighbors,
taking into account the relative distance of the two neighbors, i and k, rij − rik, and the bond angle, θijk,
between them with respect to the central atom i. The function g(θ) has a minimum for hi = cos(θijk), the
parameter di in ters and c3i in kihs determines how sharp the dependence on angle is, whereas the rest
express the strength of the angular effect. Further mixed parameters are defined as:

aij = (ai + aj)/2 , bij = (bi + bj)/2

Aij = (AiAj)
1/2 , Bij = (BiBj)

1/2 (2.174)

Rij = (RiRj)
1/2 , Sij = (SiSj)

1/2 .

Singly subscripted parameters, such as ai and ηi, depend only on the type of atom.

For ters the chemistry between different atom types is locked in the two sets bi-atomic parameters χij and
ωij :

χii = 1 , χij = χji

ωii = 1 , ωij = ωji , (2.175)

which define only one independent parameter each per pair of atom types. The χ parameter is used to
strengthen or weaken the heteropolar bonds, relative to the value obtained by simple interpolation. The ω
parameter is used to permit greater flexibility when dealing with more drastically different types of atoms.

The force on an atom ℓ derived from this potential is formally calculated with the formula:

fαℓ = − ∂

∂rαℓ
Etersoff =

1

2

∑
i

∑
j ̸=i

− ∂

∂rαℓ
Uij , (2.176)

with atomic label ℓ being one of i, j, k and α indicating the x, y, z component. The derivative after the
summation is worked out as

− ∂Uij

∂rαℓ
= − ∂

∂rαℓ
fC(rij)fR(rij) + γij

∂

∂rαℓ
fC(rij)fA(rij) + fC(rij)fA(rij)

∂

∂rαℓ
γij , (2.177)

with the contributions from the first two terms being:

− ∂

∂rαℓ
fC(rij)fR(rij) = −

{
fC(rij)

∂

∂rij
fR(rij) + fR(rij)

∂

∂rij
fC(rij)

}
×{

δjℓ
rαiℓ
riℓ
− δiℓ

rαℓj
rℓj

}
(2.178)

γij
∂

∂rαℓ
fC(rij)fA(rij) = γij

{
fC(rij)

∂

∂rij
fA(rij) + fA(rij)

∂

∂rij
fC(rij)

}
×{

δjℓ
rαiℓ
riℓ
− δiℓ

rαℓj
rℓj

}
, (2.179)

and from the third (angular) term:

45

©STFC Section 2.3

• ters:

fC(rij)fA(rij)
∂

∂rαℓ
γij = fC(rij)fA(rij) χij ×(

−1

2

)(
1 + βi

ηi Lηiij
)− 1

2ηi
−1
βi

ηi Lηi−1
ij

∂

∂rαℓ
Lij , (2.180)

where
∂

∂rαℓ
Lij =

∂

∂rαℓ

∑
k ̸=i,j

ωik fC(rik) g(θijk) .

The angular term can have three different contributions depending on the index of the particle par-
ticipating in the interaction:

ℓ = i :
∂

∂rαi
Lij =

∑
k ̸=i,j

ωik

[
g(θijk)

∂

∂rαi
fC(rik) + fC(rik)

∂

∂rαi
g(θijk)

]
ℓ = j :

∂

∂rαj
Lij =

∑
k ̸=i,j

ωik fC(rik)
∂

∂rαj
g(θijk) (2.181)

ℓ ̸= i, j :
∂

∂rαℓ
Lij = ωiℓ

[
g(θijℓ)

∂

∂rαℓ
fC(riℓ) + fC(riℓ)

∂

∂rαℓ
g(θijℓ)

]
,

• kihs:

fC(rij)fA(rij)
∂

∂rαℓ
γij = fC(rij)fA(rij) ×

(−δi ηi)
(
1 + Lηiij

)−δi−1
Lηi−1
ij

∂

∂rαℓ
Lij , (2.182)

where
∂

∂rαℓ
Lij =

∂

∂rαℓ

∑
k ̸=i,j

ωik(rij , rik) fC(rik) g(θijk) .

It is worth noting that the derivative of ωik:

∂

∂rαℓ
ωik = αi βi (rij − rik)βi−1 ωik

{
(δℓj − δℓi)

rαij
rij
− (δℓk − δℓi)

rαik
rik

}
, (2.183)

now has three different contributions depending on the index of the particle participating in the
interaction! Hence the angular term’s derivative is more elaborate to express than the one in the ters
case.

The derivative of g(θijk) is worked out in the following manner:

∂

∂rαℓ
g(θijk) =

∂g(θijk)

∂θijk

−1
sin θijk

∂

∂rαℓ

{
rij · rik
rij rik

}
, (2.184)

where

∂g(θijk)

∂θijk
=

2 c2i (hi − cos θijk) sin θijk
[d2i + (hi − cos θijk)2]2

(2.185)

∂

∂rαℓ

{
rij · rik
rijrik

}
= (δℓj − δℓi)

rαik
rijrik

+ (δℓk − δℓi)
rαij
rijrik

−

cos(θjik)

{
(δℓj − δℓi)

rαij
r2ij

+ (δℓk − δℓi)
rαik
r2ik

}
. (2.186)

46

©STFC Section 2.3

The contribution to be added to the atomic virial can be derived as

W = 3V
∂Etersoff

∂V
=

3 V

2

∑
i

∑
j ̸=i

∂Uij

∂V
=
∑
i

ri · fi (2.187)

=
1

2

∑
i

∑
j ̸=i

−
(
rij · fij + rik · fik

)
=

1

2

∑
i

∑
j ̸=i

(
∂Uij

∂rij
· rij +

∂Uik

∂rik
· rik

)
• ters:

W =
1

2

∑
i

∑
j ̸=i

{[
∂

∂rij
fC(rij)fR(rij)− γij

∂

∂rij
fC(rij)fA(rij)

]
rij −(

−1

2

)
fC(rij)fA(rij) χij

(
1 + βi

ηi Lηiij
)− 1

2ηi
−1
βi

ηi Lηi−1
ij × (2.188)

∑
k ̸=i,j

ωik g(θijk)

[
∂

∂rik
fC(rik)

]
rik

 ,

• hiks:

W =
1

2

∑
i

∑
j ̸=i

{[
∂

∂rij
fC(rij)fR(rij)− γij

∂

∂rij
fC(rij)fA(rij)

]
rij −

(−δi ηi) fC(rij)fA(rij) χij

(
1 + Lηiij

)−δi−1
Lηi−1
ij × (2.189)

∑
k ̸=i,j

ωik

[
rik g(θijk)

∂

∂rik
fC(rik) + αi βi (rij − rik)βifC(rik)

] .

The contribution to be added to the atomic stress tensor is given by

σαβ = −rαi f
β
i , (2.190)

where α and β indicate the x, y, z components. The stress tensor is symmetric.

Interpolation arrays, vter and gter (set up in tersoff generate) - similar to those in van der Waals
interactions (Section 2.3.1), are used in the calculation of the Tersoff forces, virial and stress.

The Tersoff potentials are very short ranged, typically of order 3 Å. This property, plus the fact that Tersoff
potentials (two- and three-body contributions) scale as N3, where N is the number of particles, makes it
essential that these terms are calculated by the link-cell method [67].

DL POLY 4 applies no long-ranged corrections to the Tersoff potentials. In DL POLY 4 Tersoff forces are
handled by the routine tersoff forces.

2.3.4 Three-Body Potentials

The three-body potentials in DL POLY 4 are mostly valence angle forms. (They are primarily included
to permit simulation of amorphous materials e.g. silicate glasses.) However, these have been extended to
include the Dreiding [19] hydrogen bond. The potential forms available are as follows:

1. Harmonic: (harm)

U(θjik) =
k

2
(θjik − θ0)2 (2.191)

2. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8ij + r8ik)/ρ

8] (2.192)

47

©STFC Section 2.3

3. Screened Harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)] (2.193)

4. Screened Vessal [36]: (bvs1)

U(θjik) =
k

8(θ0 − π)2
{[

(θ0 − π)2 − (θjik − π)2
]2}×

exp[−(rij/ρ1 + rik/ρ2)] (2.194)

5. Truncated Vessal [37]: (bvs2)

U(θjik) = k
[
θajik(θjik − θ0)2(θjik + θ0 − 2π)2 −

a

2
πa−1(θjik − θ0)2(π − θ0)3

]
exp[−(r8ij + r8ik)/ρ

8] (2.195)

6. Dreiding hydrogen bond [19]: (hbnd)

U(θjik) = Dhb cos4(θjik) [5(Rhb/rjk)
12 − 6(Rhb/rjk)

10] (2.196)

Note that for the hydrogen bond, the hydrogen atom must be the central atom. Several of these functions
are identical to those appearing in the intra-molecular valence angle descriptions above. There are significant
differences in implementation however, arising from the fact that the three-body potentials are regarded as
inter-molecular. Firstly, the atoms involved are defined by atom types, not specific indices. Secondly, there
are no excluded atoms arising from the three-body terms. (The inclusion of other potentials, for example
pair potentials, may in fact be essential to maintain the structure of the system.)

The three-body potentials are very short ranged, typically of order 3 Å. This property, plus the fact that
three-body potentials scale as N4, where N is the number of particles, makes it essential that these terms
are calculated by the link-cell method [67].

The calculation of the forces, virial and stress tensor as described in the section valence angle potentials
above.

DL POLY 4 applies no long-ranged corrections to the three-body potentials. The three-body forces are
calculated by the routine three body forces.

2.3.5 Four-Body Potentials

The four-body potentials in DL POLY 4 are entirely inversion angle forms, primarily included to permit sim-
ulation of amorphous materials (particularly borate glasses). The potential forms available in DL POLY 4
are as follows:

1. Harmonic: (harm)

U(ϕijkn) =
k

2
(ϕijkn − ϕ0)2 (2.197)

2. Harmonic cosine: (hcos)

U(ϕijkn) =
k

2
(cos(ϕijkn)− cos(ϕ0))

2 (2.198)

3. Planar potential: (plan)

U(ϕijkn) = A [1− cos(ϕijkn)] (2.199)

48

©STFC Section 2.4

These functions are identical to those appearing in the intra-molecular inversion angle descriptions above.
There are significant differences in implementation however, arising from the fact that the four-body po-
tentials are regarded as inter-molecular. Firstly, the atoms involved are defined by atom types, not specific
indices. Secondly, there are no excluded atoms arising from the four-body terms. (The inclusion of other
potentials, for example pair potentials, may in fact be essential to maintain the structure of the system.)

The four-body potentials are very short ranged, typically of order 3 Å. This property, plus the fact that
four-body potentials scale as N4, where N is the number of particles, makes it essential that these terms
are calculated by the link-cell method [67].

The calculation of the forces, virial and stress tensor described in the section on inversion angle potentials
above.

DL POLY 4 applies no long-ranged corrections to the four body potentials. The four-body forces are
calculated by the routine four body forces.

2.4 Long Ranged Electrostatic (coulombic) Potentials

DL POLY 4 incorporates several techniques for dealing with long-ranged electrostatic potentials∗. These
are as follows:

1. Direct Coulomb sum

2. Force-shifted Coulomb sum

3. Coulomb sum with distance dependent dielectric

4. Reaction field

5. Smoothed Particle Mesh Ewald (SPME)

All of these can be used in conjunction with the shell model technique used to account for ions polarisation.

The SPME technique is restricted to periodic systems only. (Users must exercise care when using pseudo-
periodic boundary conditions.) The other techniques can be used with either periodic or non-periodic
systems safely, although in the case of the direct Coulomb sum there are likely to be problems with conver-
gence.

DL POLY 4 will correctly handle the electrostatics of both molecular and atomic species. However, it is
assumed that the system is electrically neutral. A warning message is printed if the system is found to be
charged, but otherwise the simulation proceeds as normal.

Note that DL POLY 4 does not use the basic Ewald method, which is an option in DL POLY Classic, on
account of it being too slow for large scale systems. The SPME method is the standard Ewald method in
DL POLY 4.

2.4.1 Default (Point Charges) Electrostatics

2.4.1.1 Direct Coulomb Sum

Use of the direct Coulomb sum is sometimes necessary for accurate simulation of isolated (non-periodic)
systems. It is not recommended for periodic systems.

∗ Unlike the other elements of the force field, the electrostatic forces are NOT specified in the input FIELD file, but by setting
appropriate directives in the CONTROL file. See Section 10.1.1.

49

©STFC Section 2.4

The interaction potential for two charged ions is

U(rij) =
1

4πϵ0ϵ

qiqj
rij

, (2.200)

with qℓ the charge on an atom labelled ℓ, and rij the magnitude of the separation vector rij = rj − ri .
The force on an atom j derived from this force is

f
j
=

1

4πϵ0ϵ

qiqj
r3ij

rij , (2.201)

with the force on atom i the negative of this.

The contribution to the atomic virial is

W = − 1

4πϵ0ϵ

qiqj
rij

, (2.202)

which is simply the negative of the potential term.

The contribution to be added to the atomic stress tensor is

σαβ = rαijf
β
j , (2.203)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 these forces are handled by the subroutine coul cp forces.

2.4.1.2 Force-Shifted Coulomb Sum

This form of the Coulomb sum has the advantage that it drastically reduces the range of electrostatic
interactions, without giving rise to a violent step in the potential energy at the cutoff. Its main use is for
preliminary preparation of systems and it is not recommended for realistic models.

The form of the simple truncated and shifted potential function is

U(rij) =
qiqj
4πϵ0ϵ

{
1

rij
− 1

rcut

}
, (2.204)

with qℓ the charge on an atom labelled ℓ, rcut the cutoff radius and rij the magnitude of the separation
vector rij = rj − ri .
A further refinement of this approach is to truncate the 1/r potential at rcut and add a linear term to the
potential in order to make both the energy and the force zero at the cutoff. This removes the heating effects
that arise from the discontinuity in the forces at the cutoff in the simple truncated and shifted potential
(the formula above). (The physics of this potential, however, is little better. It is only recommended for
very crude structure optimizations.)

The force-shifted potential is thus

U(rij) =
qiqj
4πϵ0ϵ

[{
1

rij
+

1

r2cut
rij

}
−
{

1

rcut
+

1

r2cut
rcut

}]
=

qiqj
4πϵ0ϵ

[
1

rij
+

rij
r2cut
− 2

rcut

]
, (2.205)

with the force on an atom j given by

f
j
=

qiqj
4πϵ0ϵ

[
1

r3ij
− 1

rijr2cut

]
rij , (2.206)

with the force on atom i the negative of this.

50

©STFC Section 2.4

The force-shifted Coulomb potential can be elegantly extended to emulate long-range ordering by including
distance depending damping function erfc(α rij) (identical to that seen in the real-space portion of the
Ewald sum) and thus mirror the effective charge screening [68] as shown below

U(rij) =
qiqj
4πϵ0ϵ

[{
erfc(α rij)

rij
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rij

}
−{

erfc(α rcut)

rcut
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rcut

}]
, (2.207)

with the force on an atom j given by

f
j
=

qiqj
4πϵ0ϵ

[(
erfc(α rij)

r2ij
+

2α√
π

exp(−α2 r2ij)

rij

)
−(

erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)]
rij
rij

, (2.208)

with the force on atom i the negative of this.

It is worth noting that, as discussed in [68] and references therein, this is only an approximation of the
Ewald sum and its accuracy and effectiveness become better when the cutoff is large (> 10 preferably 12
Å).

The contribution to the atomic virial is
W = −rij · f j , (2.209)

which is not the negative of the potential term in this case.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.210)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 these forces are handled by the routine coul fscp forces.

2.4.1.3 Coulomb Sum with Distance Dependent Dielectric

This potential attempts to address the difficulties of applying the direct Coulomb sum, without the brutal
truncation of the previous case. It hinges on the assumption that the electrostatic forces are effectively
‘screened’ in real systems - an effect which is approximated by introducing a dielectric term that increases
with distance.

The interatomic potential for two charged ions is

U(rij) =
1

4πϵ0ϵ(rij)

qiqj
rij

, (2.211)

with qℓ the charge on an atom labelled ℓ, and rij the magnitude of the separation vector rij = rj − ri . ϵ(r)
is the distance dependent dielectric function. In DL POLY 4 it is assumed that this function has the form

ϵ(r) = ϵ r , (2.212)

where ϵ is a constant. Inclusion of this term effectively accelerates the rate of convergence of the Coulomb
sum.

The force on an atom j derived from this potential is

f
j
=

1

2πϵ0ϵ

qiqj
r4ij

rij , (2.213)

51

©STFC Section 2.4

with the force on atom i the negative of this.

The contribution to the atomic virial is

W = −rij · f j , (2.214)

which is −2 times the potential term.

The contribution to be added to the atomic stress tensor is given by

σαβ = rαijf
β
j , (2.215)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 these forces are handled by the routine coul dddp forces.

2.4.1.4 Reaction Field

In the reaction field method it is assumed that any given molecule is surrounded by a spherical cavity of finite
radius within which the electrostatic interactions are calculated explicitly. Outside the cavity the system is
treated as a dielectric continuum. The occurrence of any net dipole within the cavity induces a polarisation
in the dielectric, which in turn interacts with the given molecule. The model allows the replacement of the
infinite Coulomb sum by a finite sum plus the reaction field.

The reaction field model coded into DL POLY 4 is the implementation of Neumann based on charge-charge
interactions [69]. In this model, the total coulombic potential is given by

Uc =
1

4πϵ0ϵ

∑
j<n

qjqn

[
1

rnj
+
B0r

2
nj

2R3
c

]
, (2.216)

where the second term on the right is the reaction field correction to the explicit sum, with Rc the radius
of the cavity. The constant B0 is defined as

B0 =
2(ϵ1 − 1)

(2ϵ1 + 1)
, (2.217)

with ϵ1 the dielectric constant outside the cavity. The effective pair potential is therefore

U(rij) =
1

4πϵ0ϵ
qiqj

[
1

rij
+
B0r

2
ij

2R3
c

]
. (2.218)

This expression unfortunately leads to large fluctuations in the system coulombic energy, due to the large
‘step’ in the function at the cavity boundary. In DL POLY 4 this is countered by subtracting the value of
the potential at the cavity boundary from each pair contribution. The term subtracted is

1

4πϵ0ϵ

qiqj
Rc

[
1 +

B0

2

]
. (2.219)

The effective pair force on an atom j arising from another atom n within the cavity is given by

f
j
=

qiqj
4πϵ0ϵ

[
1

r3ij
− B0

R3
c

]
rij . (2.220)

In DL POLY 4 the reaction field is optionally extended to emulate long-range ordering in a force-shifted
manner by countering the reaction term and using a distance depending damping function erfc(α rij)

52

©STFC Section 2.4

(identical to that seen in the real-space portion of the Ewald sum) and thus mirror the effective charge
screening [68]:

U(rij) =
qiqj
4πϵ0ϵ

[{
erfc(α rij)

rij
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rij

}
− (2.221){

erfc(α rcut)

rcut
+

(
erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
rcut

}
+
B0(r

2
ij − r2cut)
2r3cut

]
,

with the force on an atom j given by

f
j
=

qiqj
4πϵ0ϵ

[(
erfc(α rij)

r2ij
+

2α√
π

exp(−α2 r2ij)

rij

)
− (2.222)(

erfc(α rcut)

r2cut
+

2α√
π

exp(−α2 r2cut)

rcut

)
− B0rij

r3cut

]
rij
rij

,

with the force on atom i the negative of this.

It is worth noting that, as discussed in [68] and references therein, this is only an approximation of the
Ewald sum and its accuracy and effectiveness become better when the cutoff is large (> 10 preferably 12
Å).

The contribution of each effective pair interaction to the atomic virial is

W = −rij · f j (2.223)

and the contribution to the atomic stress tensor is

σαβ = rαijf
β
j , (2.224)

where α, β are x, y, z components. The atomic stress tensor is symmetric.

In DL POLY 4 the reaction field is handled by the subroutine coul rfp forces.

2.4.1.5 Smoothed Particle Mesh Ewald

The Ewald sum [22] is the best technique for calculating electrostatic interactions in a periodic (or pseudo-
periodic) system.

The basic model for a neutral periodic system is a system of charged point ions mutually interacting via
the Coulomb potential. The Ewald method makes two amendments to this simple model. Firstly, each ion
is effectively neutralised (at long-ranged) by the superposition of a spherical Gaussian cloud of opposite
charge centred on the ion. The combined assembly of point ions and Gaussian charges becomes the Real
Space part of the Ewald sum, which is now short ranged and treatable by the methods described above
(Chapter 2)∗. The second modification is to superimpose a second set of Gaussian charges, this time with
the same charges as the original point ions and again centred on the point ions (so nullifying the effect of
the first set of Gaussians). The potential due to these Gaussians is obtained from Poisson’s equation and is
solved as a Fourier series in Reciprocal Space. The complete Ewald sum requires an additional correction,
known as the self energy correction, which arises from a Gaussian acting on its own site, and is constant.
Ewald’s method, therefore, replaces a potentially infinite sum in real space by two finite sums: one in real
space and one in reciprocal space; and the self energy correction.

For molecular systems, as opposed to systems comprised simply of point ions, additional modifications
ewald excl forces are necessary to correct for the excluded (intra-molecular) coulombic interactions. In

∗ Strictly speaking, the real space sum ranges over all periodic images of the simulation cell, but in the DL POLY 4 imple-
mentation, the parameters are chosen to restrict the sum to the simulation cell and its nearest neighbours, i.e. the minimum
images of the cell contents.

53

©STFC Section 2.4

the real space sum these are simply omitted. In reciprocal space however, the effects of individual Gaussian
charges cannot easily be extracted, and the correction is made in real space. It amounts to removing terms
corresponding to the potential energy of an ion ℓ due to the Gaussian charge on a neighbouring charge m
(or vice versa). This correction appears in the term noting a summation over molecules in the full Ewald
formula below.

The same considerations and modifications ewald frzn forces are taken into account for frozen atoms,
which mutual coulombic interaction must also be excluded. This correction appears in the term noting a
summation over F ∗ (all frozen-frozen pairs in the MD cell) in the full Ewald formula below.

Note the distinction between the error function erf and the more usual complementary error function erfc
found in the real space sums below.

The total electrostatic energy is given by the following formula:

Uc =
1

2Voϵ0ϵ

∞∑
k ̸=0

exp(−k2/4α2)

k2

∣∣∣∣∣∣
N∑
j

qj exp(−ik · rj)

∣∣∣∣∣∣
2

− 1

4πϵ0ϵ

α√
π

N∑
j

q2j +

1

4πϵ0ϵ

N∗∑
n<j

qjqn
rnj

erfc(αrnj)−
1

4πϵ0ϵ

∑
molecules

M∗∑
ℓ≤m

qℓqm

{
δℓm

α√
π
+

erf(αrℓm)

r1−δℓm
ℓm

}
− (2.225)

1

4πϵ0ϵ

F ∗∑
ℓ≤m

qℓqm

{
δℓm

α√
π
+

erf(αrℓm)

r1−δℓm
ℓm

}
− 1

4πϵ0ϵ

π

2Voα2

N∑
j

qj

2

,

where N is the number of ions in the system and N∗ the same number discounting any excluded (in-
tramolecular and frozen) interactions. M∗ represents the number of excluded atoms in a given molecule. F ∗

represents the number of frozen atoms in the MD cell. Vo is the simulation cell volume and k is a reciprocal
lattice vector defined by

k = ℓu+mv + nw , (2.226)

where ℓ,m, n are integers and u, v, w are the reciprocal space basis vectors. Both Vo and u, v, w are derived
from the vectors (a, b, c) defining the simulation cell. Thus

Vo = |a · b× c| (2.227)

and

u = 2π
b× c
a · b× c

v = 2π
c× a
a · b× c

(2.228)

w = 2π
a× b
a · b× c

.

With these definitions, the Ewald formula above is applicable to general periodic systems. The last term in
the Ewald formula above is the Fuchs correction [70] for electrically non-neutral MD cells which prevents
the build-up of a charged background and the introduction of extra pressure due to it.

In practice the convergence of the Ewald sum is controlled by three variables: the real space cutoff rcut;
the convergence parameter α and the largest reciprocal space vector kmax used in the reciprocal space
sum. These are discussed more fully in Section 8.3.5. DL POLY 4 can provide estimates if requested (see
CONTROL file description 10.1.1).

As its name implies the Smoothed Particle Mesh Ewald (SPME) method is a modification of the standard
Ewald method. DL POLY 4 implements the SPME method of Essmann et al. [71]. Formally, this method
is capable of treating van der Waals forces also, but in DL POLY 4 it is confined to electrostatic forces
only. The main difference from the standard Ewald method is in its treatment of the reciprocal space

54

©STFC Section 2.4

terms. By means of an interpolation procedure involving (complex) B-splines, the sum in reciprocal space
is represented on a three dimensional rectangular grid. In this form the Fast Fourier Transform (FFT) may
be used to perform the primary mathematical operation, which is a 3D convolution. The efficiency of these
procedures greatly reduces the cost of the reciprocal space sum when the range of k vectors is large. The
method (briefly) is as follows (for full details see [71]):

1. Interpolation of the exp(−i k · rj) terms (given here for one dimension):

exp(2πi ujk/L) ≈ b(k)
∞∑

ℓ=−∞
Mn(uj − ℓ) exp(2πi kℓ/K) , (2.229)

in which k is the integer index of the k vector in a principal direction, K is the total number of grid
points in the same direction and uj is the fractional coordinate of ion j scaled by a factor K (i.e.
uj = Ksxj) . Note that the definition of the B-splines implies a dependence on the integer K, which
limits the formally infinite sum over ℓ. The coefficients Mn(u) are B-splines of order n and the factor
b(k) is a constant computable from the formula:

b(k) = exp(2πi (n− 1)k/K)

[
n−2∑
ℓ=0

Mn(ℓ+ 1) exp(2πi kℓ/K)

]−1

. (2.230)

2. Approximation of the structure factor S(k):

S(k) ≈ b1(k1) b2(k2) b3(k3) Q†(k1, k2, k3) , (2.231)

where Q†(k1, k2, k3) is the discrete Fourier transform of the charge array Q(ℓ1, ℓ2, ℓ3) defined as

Q(ℓ1, ℓ2, ℓ3) =
N∑
j=1

qj
∑

n1,n2,n3

Mn(u1j − ℓ1 − n1L1) × Mn(u2j − ℓ2 − n2L2) ×

Mn(u3j − ℓ3 − n3L3) , (2.232)

in which the sums over n1,2,3 etc are required to capture contributions from all relevant periodic cell
images (which in practice means the nearest images).

3. Approximating the reciprocal space energy Urecip:

Urecip =
1

2Voϵ0ϵ

∑
k1,k2,k3

G†(k1, k2, k3) Q(k1, k2, k3) , (2.233)

where G† is the discrete Fourier transform of the function

G(k1, k2, k3) =
exp(−k2/4α2)

k2
B(k1, k2, k3) (Q

†(k1, k2, k3))
∗ , (2.234)

in which (Q†(k1, k2, k3))
∗ is the complex conjugate of Q†(k1, k2, k3) and

B(k1, k2, k3) = |b1(k1)|2 |b2(k2)|2 |b3(k3)|2 . (2.235)

The function G(k1, k2, k3) is thus a relatively simple product of the Gaussian screening term appear-
ing in the conventional Ewald sum, the function B(k1, k2, k3) and the discrete Fourier transform of
Q(k1, k2, k3).

4. Calculating the atomic forces, which are given formally by:

fαj = −∂Urecip

∂rαj
= − 1

Voϵ0ϵ

∑
k1,k2,k3

G†(k1, k2, k3)
∂Q(k1, k2, k3)

∂rαj
. (2.236)

55

©STFC Section 2.4

Fortunately, due to the recursive properties of the B-splines, these formulae are easily evaluated.

The virial and the stress tensor are calculated in the same manner as for the conventional Ewald sum.

The DL POLY 4 subroutines required to calculate the SPME contributions are:

1. spme container containing

(a) bspgen, which calculates the B-splines

(b) bspcoe, which calculates B-spline coefficients

(c) spl cexp, which calculates the FFT and B-spline complex exponentials

2. parallel fft and gpfa module (native DL POLY 4 subroutines that respect the domain decom-
position concept) which calculate the 3D complex fast Fourier transforms

3. ewald spme forces, which calculates the reciprocal space contributions (uncorrected)

4. ewald real forces, which calculates the real space contributions (corrected)

5. ewald excl forces, which calculates the reciprocal space corrections due to the coulombic exclusions
in intramolecular interactions

6. ewald frzn forces, which calculates the reciprocal space corrections due to the exclusion interac-
tions between frozen atoms

7. two body forces, in which all of the above subroutines are called sequentially and also the Fuchs
correction [70] for electrically non-neutral MD cells is applied if needed.

2.4.2 Multipolar Electrostatics

DL POLY 4 offers advanced potential energy calculations through multipolar electrostatics. This is an
extension to the point-charge model where the charge density of chemical species are described by higher
order point multipoles. The generic algorithms in DL POLY 4 are designed to allow for arbitrary order [72]
multipoles but for practical reasons the functionality is limited to hexadecapoles only.

Multipoles

Define the multipolar operator, L̂i as

L̂i = (qi + pi · ∇i +Qi : ∇i∇i +Oi
...∇i∇i∇i +Hi :: ∇i∇i∇i∇i + . . .) , (2.237)

where qi, pi, Qi, Oi, and Hi are the point charge, dipole, quadrupole, octupole, and hexadecapole tensors,
respectively of atom i, ∇i refers to the three-dimensional gradient with respect to the position of atom i
and the “dot” products stand for tensor contraction. By defining a unidimensional vector of independent
(non-degenerate) multipole moments,Mi, for atom i, the corresponding multipolar operator to an arbitrary
order p can be written in a more compact form as

L̂i =

p∑
||s||=0

Ms
i∂

s
i =

p∑
s3=0

p−s3∑
s2=0

p−s3−s2∑
s1=0

Ms1s2s3
j ∂s3zi ∂

s2
yi ∂

s1
xi

. (2.238)

Here, s = (s1, s2, s3) is the triplet that runs over all independent multipoles, ||s|| = s1+s2+s3,Ms
i =M

s1s2s3
i

and ∂si = ∂s3zi ∂
s2
yi ∂

s1
xi

is the multidimensional derivative with respect to the position ⟨xi, yi, zi⟩ of atom i with
orders s1, s2 and s3 in the x, y and z directions respectively. Individual components of M contain the
sum of all degenerate original multipole components. As an example, the octupole M111, is a sum of all
six degenerate original octupole components formed from the permutation of the triplet {x, y, z} . If the

56

©STFC Section 2.4

original octupole vector with degnerate components is labelled as O′, then
M111 = O′

xyz + O′
xzy + O′

yxz + O′
yzx + O′

zxy + O′
zyx = 6 O′

xyz . For pair potentials it is often convenient to
redefine the multipolar operator for atom j in terms of the derivatives with respect to the position of atom
i to arrive at

L̂ji =

p∑
||s||=0

Ms
j∂

s
j =

p∑
||s||=0

(−1)||s||Ms
j∂

s
i =

p∑
s3=0

p−s3∑
s2=0

p−s3−s2∑
s1=0

(−1)s1+s2+s3Ms1s2s3
j ∂s3zi ∂

s2
yi ∂

s1
xi

. (2.239)

Application to Pair Potentials

In DL POLY 4 forN point-multipoles interacting via a pair potential function ψ, the multipolar electrostatic
potential at position ri is computed as

ϕ(ri) =
N∑
j ̸=i

L̂jiψ(rji) =
N∑
j ̸=i

p∑
s=0

(−1)||s||Ms
j∂

s
iψ(rij) , (2.240)

the electrostatic field at ri is

E(rij) = −∇iϕ(rij) = −
N∑
j ̸=i

p∑
s=0

(−1)||s||Ms
j

 ∂s+e1
i

∂s+e2
i

∂s+e3
i

ψ(rij) , (2.241)

where e1 = ⟨1, 0, 0⟩, e2 = ⟨0, 1, 0⟩, and e3 = ⟨0, 0, 1⟩ and the torque [73] on particle i in the α-direction, τi,α,
is obtained as

τi,α =

p∑
s=0

Ms
i,α∂

s
i ϕ(rij) =

p∑
s=0

Ms
i,α

N∑
j ̸=i

p∑
k=0

(−1)||k||Mk
j ∂

s+k
i ψ(rij) , (2.242)

where Mi,α is the infinitesimal counter-clockwise rotation of multipole vector Mi about the α-axis. The
total electrostatic potential energy is given by

U =
N∑
i<j

L̂iL̂jiψ(rij) =
N∑
i<j

p∑
s=0

(−1)||s||Ms
j

p∑
k=0

Mk
i ∂

s+k
i ψ(rij) , (2.243)

where s+ k = (s1 + k1, s2 + k2, s3 + k3) and the force on atom i is

fi = −∇i

N∑
j ̸=i

L̂iL̂jiψ(rij) = −
N∑
j ̸=i

p∑
s=0

(−1)||s||Ms
j

p∑
k=0

Mk
i

 ∂s+k+e1
i

∂s+k+e2
i

∂s+k+e3
i

ψ(rij) . (2.244)

To implement equations (2.240)-(2.244) for the variety of potentials in DL POLY 4 a number of recurrence
relations are used to compute the multi-dimensional derivatives of the kernels corresponding to the potentials.
These kernels are

θ(|x|) = 1

|x|ν
, Ω(|x|) = 1

2
exp(−α2|x|2), ψ(|x|) =

√
π

2

erfc(α|x|)
|x|

, and Γ(|x̄|) =
√
π

2

erf(α|x|)
|x|

;

(2.245)
with

as(ν) =
∂||s||θ(|x|)
∂s1x1∂

s2
x2∂

s3
x3

, bs =
∂||s||Ω(|x|)
∂s1x1∂

s2
x2∂

s3
x3

, cs =
∂||s||ψ(|x|)
∂s1x1∂

s2
x2∂

s3
x3

, and ds =
∂||s||Γ(|x̄|)
∂s1x1∂

s2
x2∂

s3
x3

. (2.246)

The recurrence relations used in DL POLY 4 are

as(ν) =
1

|x|2

{(
2− ν
||s||

− 2

) 3∑
i=1

sixias−ei +

(
2− ν
||s||

− 1

) 3∑
i=1

si(si − 1)as−2ei

}
, (2.247)

57

©STFC Section 2.4

bs =
−2α2

||s||

3∑
i=1

[sixibs−ei + si(si − 1)bs−2ei] , (2.248)

cs =
1

|x|2

{(
1

||s||
− 2

) 3∑
i=1

sixics−ei +

(
1

||s||
− 1

) 3∑
i=1

si(si − 1)cs−2ei +
1

α
bs

}
, (2.249)

and

ds =
1

|x|2

{(
1

||s||
− 2

) 3∑
i=1

sixids−ei +

(
1

||s||
− 1

) 3∑
i=1

si(si − 1)ds−2ei −
1

α
bs

}
. (2.250)

2.4.2.1 Direct Coulomb Sum

For two interacting ions i and j, the potential energy is given as

U(rij) =
1

4πϵ0ϵ
L̂iL̂ji

[
1

rij

]
, (2.251)

and the relevant kernel is ψ(rij) =
1
rij

. The derivatives for this kernel are obtained by using equation (2.247)

with ν = 1 . Thus,
∂siψ(rij) = as(1) . (2.252)

In DL POLY 4 the multipolar direct Coulomb sum is handled by the routine coul cp mforces.

2.4.2.2 Force-Shifted Coulomb Sum

DL POLY 4 employs two forms of the force-shifted Coulomb sum. In the first form, the potential energy
due to two interacting ions i and j is

U(rij) =
1

4πϵ0ϵ
L̂iL̂ji

[
1

rij
+

rij
r2cut
− 2

rcut

]
, (2.253)

where rcut is the cutoff radius. The kernel is ψ(rij) =
1
rij

+
rij
r2cut
− 2

rcut
. The last term, 2

rcut
, is a constant

which has a zero derivative, hence the derivatives of the kernel are obtained as a sum of the derivatives of
the first term and second terms. Thus,

∂siψ(rij) = as(1) +
as(−1)
r2cut

. (2.254)

The potential energy due to two point-multipoles i and j interacting via the second form of the force-shifted
Coulomb sum is

U(rij) =
1

4πϵ0ϵ
L̂iL̂ji

[{
erfc(α · rij)

rij
+

(
erfc(α · rcut)

r2cut
+

2α√
π

exp(−α2r2cut)

rcut

)
rij

}
−{

erfc(α · rcut)
rcut

+

(
erfc(α · rcut)

r2cut
+

2α√
π

exp(−α2r2cut)

rcut

)
rcut

}]
. (2.255)

The kernel, ψ(rij) is the terms in the square bracket but the only terms which contribute to the derivatives
are the first and second terms which are functions of rij . The derivative of the first term is obtained from
equations (2.249) and the derivative for rij in the second term is given by ds(−1) . Thus,

Ds
iψ(rij) =

2√
π
cs +

(
erfc(α · rcut)

r2cut
+

2α√
π

exp(−α2r2cut)

rcut

)
· as(−1) . (2.256)

In DL POLY 4 the multipolar force-shifted Coulomb sum is handled by the routine coul fscp mforces

58

©STFC Section 2.4

2.4.2.3 Coulomb Sum with Distance Dependent Dielectric

The potential energy between two interacting ions i and j is

U(rij) =
1

4πϵ0ϵ
L̂iL̂ji

[
1

r2ij

]
, (2.257)

and the kernel is ψ(rij) =
1
r2ij

. The derivatives for this kernel are obtained by using equation (2.247) with

ν = 2 . Hence,

∂siψ(rij) = as(2) . (2.258)

In DL POLY 4 the multipolar Coulomb sum with distance dependent dielectric is handled by the routine
coul dddp mforces.

2.4.2.4 Reaction Field

DL POLY 4 provides two forms of a multipolar reaction field potential. In the first form, the effective pair
potential energy due to two interacting point multipoles i and j is given as

U(rij) =
1

4πϵ0ϵ
L̂iL̂ji

[
1

rij
+
B0r

2
ij

2R3
c

− 1− B0

2

]
, (2.259)

where

B0 =
2(ϵ1 − 1)

(2ϵ1 + 1)
, (2.260)

Rc is the radius of the spherical cavity and ϵ1 is the dielectric constant outside the cavity. Again the kernel
ψ(rij) is the terms in the square bracket and only the first and second terms contribute to its derivatives. The
derivatives of the first and second terms are given by equation (2.247) with ν = 1 and ν = −2 respectively.
Thus,

∂siψ(rij) = as(1) +
B0

2R3
c

· as(−2) . (2.261)

The second form of the reaction field method is similar to that of the force-shifted Coulomb sum. The
potential energy due to interacting ions i and j is

U(rij) =
1

4πϵ0ϵ
L̂iL̂ji

[{
erfc(α · rij)

rij
+

(
erfc(α · rcut)

r2cut
+

2α√
π

exp(−α2r2cut)

rcut

)
rij

}
− (2.262){

erfc(α · rcut)
rcut

+

(
erfc(α · rcut)

r2cut
+

2α√
π

exp(−α2r2cut)

rcut

)
rcut

}
− B0r

2
cut

2r3cut
+
B0r

2
ij

2r3cut

]
.

The kernel, ψ(rij) is the terms in the square bracket and the only terms which contribute to the derivatives
are the first, second and last terms which are functions of rij . The derivative of the first term is obtained
from equation (2.249) and the derivative for rij in the second term is given by as(−1) and the derivative for
r2ij in the last term is given by ds(−2) . Thus,

Ds
iψ(rij) =

2√
π
cs +

(
erfc(α · rcut)

r2cut
+

2α√
π

exp(−α2r2cut)

rcut

)
· as(−1) +

B0

2r3cut
· as(−2) . (2.263)

In DL POLY 4 the multipolar reaction field is handled by the routine coul rfp mforces.

59

©STFC Section 2.4

2.4.2.5 Smoothed Particle Mesh Ewald

DL POLY 4 provides two different smooth particle Mesh Ewald implementations for multipolar electro-
statics. The first implementation is for systems with charges, dipoles and quadrupoles and does not use
recurrence relations. The second implementation, which uses recurrence relations, is more general and allows
for specification of an arbitrary order up to hexadecapoles.

When the multipolar form of SPME is employed, the total electrostatic energy for a system on N point ions
is given as

Uc = Udir + Urec − Uexcl − Ufrzn − Uself , (2.264)

where

Udir =

N∗∑
i<j

′∑
n

L̂iL̂ji

erfc(α · |rij + n|)
4πϵ0ϵ|rij + n|

, (2.265)

Uexcl =
1

4πϵ0ϵ

∑
(i,j)∈M∗

L̂iL̂ji

erf(α · rij)
rij

, (2.266)

Ufrzn =
1

4πϵ0ϵ

∑
(i,j)∈F ∗

L̂iL̂ji

erf(α · rij)
rij

, (2.267)

Uself =
1

8πϵ0ϵ
lim

|ri|→0

N∑
i=1

L̂iL̂i
erf(α · |ri|)
|ri|

, (2.268)

and

Urec =
1

2Voϵ0ϵ

∑
k ̸=0

exp(−k2/4α2)

k2
|S(k)|2 , (2.269)

with

S(k) =

N∑
i=1

L̂iexp(ık · ri) . (2.270)

In the expressions above, M∗ is the set of all excluded interactions due to intramolecular bonds in the
simulation cell, F ∗ the set of frozen-frozen interactions in the simulation cell, N∗ = N −M∗−F ∗, Vo is the
volume of the simulation cell and S(k) is the structure factor.

Real Space Sum

The relevant kernel for the real space from equation (2.265) is ψ(rij) =
erfc(α|rij + n|)
|rij + n|

. DL POLY 4 uses

the recurrence giving in equation (2.249) to generate the multidimensional derivatives of the kernel. Thus,
the derivatives of the kernel are computed as

Ds
iψ(rij) =

2√
π
cs . (2.271)

In DL POLY 4 the routine ewald real mforces d computes the real space interactions explicitly for sim-
ulations with multipoles of order 2 without using the recurrence relation. The routine ewald real mforces
handles the general version of up to order 4 using recurrence relations.

60

©STFC Section 2.4

Excluded Sum

The relevant kernel for the real space from equation (2.266) is ψ(rij) =
erf(α · rij)

rij
. DL POLY 4 uses the

recurrence giving in equation (2.250) to generate the multidimensional derivatives of the kernel. Thus, the
derivatives of the kernel are computed as

Ds
iψ(rij) =

2√
π
ds . (2.272)

In DL POLY 4 the routine ewald excl mforces d computes the reciprocal space corrections due to the
exclusions between intramolecularly related atoms explicitly for simulations with multipoles of order 2
without using the recurrence relation. The routine ewald excl mforces handles the general version of
up to order 4 using recurrence relations.

Frozen Sum

The relevant kernel for the real space from equation (2.267) is ψ(rij) =
erf(α · rij)

rij
. DL POLY 4 uses the

recurrence giving in equation (2.250) to generate the multidimensional derivatives of the kernel. Thus, the
derivatives of the kernel are computed as

Ds
iψ(rij) =

2√
π
ds . (2.273)

In DL POLY 4 the routine ewald frzn mforces computes computes the reciprocal space corrections due
to the exclusions between frozen atoms generically for simulations with multipoles up to order 4 using
recurrence relations.

Self-Interaction

DL POLY 4 computes Uself directly for interactions involving multipoles up to order 4 using the series rep-

resentation of the kernel ψ(rij) =
erf(α · ri)

ri
. The self interaction is computed in ewald real mforces d

for simulations with multipoles of maximum order 2. For simulations of arbitrary order, the self-interaction
is computed in the reciprocal space.

Reciprocal Space Sum

The key idea of SPME is in approximating the structure factor, in a uniform grid, with K1 × K2 × K3

dimensions, that fills the simulation cell. Define the fractional coordinates of an ion i as
⟨si1 , si2 , si3⟩ = ⟨a∗1 · ri,a∗2 · ri,a∗3 · ri⟩, uαi = Kα · sαi and Mn is a B-spline of order n then the approximation
of the structure factor is given as

S(k) ≈ b1(k1)b2(k2)b3(k3)QF (k1, k2, k3) , (2.274)

where k = ⟨k1, k2, k3⟩ is a reciprocal space vector,

bi(ki) = exp(2πı(n− 1)ki/Ki)

[
n−2∑
l=0

Mn(l + 1)exp(2πıkl/Ki)

]−1

, (2.275)

Q is the multipolar array defined on the uniform grid and QF its discrete Fourier transform. At position
(l1, l2, l3) on the grid, the multipolar array is defined by

Q(l1, l2, l3) =

N∑
i=1

L̂i

∑
n1,n2,n3

Mn(u1i − l1 − n1K1)×Mn(u2i − l2 − n2K2)×Mn(u3i − l3 − n3K3) , (2.276)

61

©STFC Section 2.4

where, uαi− lα−nαKα are evaluation points of the B-spline on the grid that spans the fundamental cell and
the periodic images. Then from equation (2.238) and considering only the fundamental cell, the multipolar
array can be written explicitly as

Q(l1, l2, l3) =

N∑
i=1

p∑
s3=0

p−s3∑
s2=0

p−s3−s2∑
s1=0

Ms1s2s3
i ∂s3zi ∂

s2
yi ∂

s1
xi
{Mn(u1i − l1)Mn(u2i − l2)Mn(u3i − l3)} . (2.277)

To compute the arbitrary order multidimensional derivatives of the product of three b-splines in equa-
tion (2.277), DL POLY 4 uses the closed form formula:

∂s3zi ∂
s2
yi ∂

s1
xi
{Mn(u1i − l1)Mn(u2i − l2)Mn(u3i − l3)} =

s3∑
k3=0

(K1a
∗
13)

k3

(
s3
k3

) s2∑
k2=0

(K1a
∗
12)

k2

(
s2
k2

) s1∑
k1=0

(K1a
∗
11)

k1

(
s1
k1

)
∂||k||u1i

Mn(u1i − l1)× (2.278)

s3−k3∑
j3=0

(K2a
∗
23)

j3 (K3a
∗
33)

s3−k3−j3

(
s3 − k3
j3

) s2−k2∑
j2=0

(K2a
∗
22)

j2 (K3a
∗
32)

s2−k2−j2

(
s2 − k2
j2

)
×

s1−k1∑
j1=0

(K2a
∗
21)

j1 (K3a
∗
31)

s1−k1−j1

(
s1 − k1
j1

)
∂||j||u2i

Mn(u2i − l2)∂||s−k−j||
u3i

Mn(u3i − l3) ,

where a∗1 = ⟨a∗11, a∗12, a∗13⟩, a∗2 = ⟨a∗21, a∗22, a∗23⟩, and a∗3 = ⟨a∗31, a∗32, a∗33⟩ are the reciprocal space basis vectors
andK1, K2, andK3, the maximum number of grid points in the fundamental cell in the x, y, and z directions
respectively. For an orthogonal box, where

a∗12 = a∗13 = a∗21 = a∗23 = a∗31 = a∗32 = 0 , (2.279)

DL POLY 4 uses the simplification of equation (2.279) to

∂s3zi ∂
s2
yi ∂

s1
xi
{Mn(u1i − l1)Mn(u2i − l2)Mn(u3i − l3)} = (2.280)

(K1a
∗
11)

s1 (K2a
∗
22)

s2 (K3a
∗
33)

s3 ∂s1u1i
Mn(u1i − l1)∂s2u2i

Mn(u2i − l2)∂s3u3i
Mn(u3i − l3) .

The formulas in equations (2.279) and (2.280) require derivatives of a b-spline. To compute an arbitrary pth
order derivative of a b-spline of order n, Mn, at an arbitrary grid point j, DL POLY 4 uses the closed form
formula

dp

dup
Mn(uj) =

min{j−1,p}∑
t=max{0,j−k}

(
p

t

)
(−1)tMk(uj − t) . (2.281)

In DL POLY 4 the stress tensor due to the reciprocal space, for an arbitrary pth order multipolar electrostatic
interaction is computed by the formula

V σrecαβ =
1

2Voϵ0ϵ

∑
k ̸=0

exp(−k2/4η2)
k2

{
|S(k)|2

[
δαβ − 2

(
k2/4η2 + 1

k2

)
kαkβ

]
+ 2S(k)Sβ

i (−k)
kα
kβ

}
, (2.282)

where
J ℓ
i (k) =Mℓ

i∂
ℓ
i e

ık·ri , (2.283)

Sβ
i (−k) =

p∑
ℓ=0

ℓβ

N∑
i=1

J ℓ
i (−k) , (2.284)

and ℓ = (ℓ1, ℓ2, ℓ3) .

In DL POLY 4 the routine ewald spme mforces d computes the reciprocal space interactions explicitly
for simulations with multipoles of maximum order 2. The routine ewald spme mforces handles the
general version with multipoles up to order 4.

The DL POLY 4 subroutines required to calculate the contributions from the reciprocal space, in addition
to the routines used for the point charges, are:

62

©STFC Section 2.5

1. bspgen mpoles, in spme container evaluates equation (2.279) or (2.280) to compute the B-splines.

2. limit erfr deriv in mpoles container which computes the limit of the derivatives of the kernel
for the self-interaction term. limit erfr deriv is called in ewald spme mforces.

2.5 Polarisation Shell Models

An atom or ion is polarisable if it develops a dipole moment when placed in an electric field. It is commonly
expressed by the equation

1

4πϵ0ϵ
µ = αE , (2.285)

where µ is the induced dipole and E is the electric field. The constant α is the polarisability.

In the static shell model, also called core-shell model or known as the Drude model or Druder oscillator
[74, 75], a polarisable atom is represented by a massive core (often called a nucleus) and a “massless” shell
(also known as a Druder particle), connected by a harmonic spring, hereafter called the core-shell unit. The
core and shell carry different electric charges, the sum of which equals the charge on the original rigid-ion
atom. There is no electrostatic interaction (i.e. self-interaction) between the core and shell of the same
atom. Non-coulombic interactions arise from the shell alone.

The core-shell interaction is described by a harmonic spring potential of the form:

Uspring(rij) =
1

2
k2r

2
ij , (2.286)

However, sometimes an anharmonic spring is used, described by a quartic form:

Uspring(rij) =
1

2
k2r

2
ij +

1

4!
k4r

4
ij . (2.287)

Normally, in practice, k2 is much larger than k4.

The effect of an external electric field, E is to separate the core and shell by a distance

d = qsE/k2 , (2.288)

giving rise to a polarisation dipole
µ = qsd . (2.289)

The condition of static equilibrium then gives the polarisability as:

α =
1

4πϵ0ϵ
q2s/k2 , (2.290)

where qs is the shell charge and k2 is the force constant of the harmonic spring.

The calculation of the forces, virial and stress tensor in this model is based on that for a diatomic molecule
with charged atoms. The part coming from the spring potential is similar in spirit as for chemical bonds,
equations (2.13-2.15), while the electrostatics is as described in the above section. The relationship between
the kinetic energy and the temperature is different however, as the core-shell unit is permitted only three
translational degrees of freedom, and the degrees of freedom corresponding to rotation and vibration of the
unit are discounted as if the kinetic energy of these is regarded as zero (equation 3.7).

2.5.1 CHARMM Shell Model Self-Induction

The CHARMM model for self-induced polarisablility relies on the Druder formalism as described above.
However, the CHARMM core-shell model interactions, conventions and controls have further specificity [76]
that is worth outlining in DL POLY 4 terms.

63

https://www.charmm.org/

©STFC Section 2.5

To enable the CHARMM core-shell model in DL POLY 4, the user, at the very least, needs to specify
atomic polarisabilities (and, optionally, the respective Thole dumping factors) for all cores in the MPOLES
file (see Section 10.1.4), make sure that reading MPOLES is triggered by using the multipolar order n
directive in the FIELD file (see Section 10.1.3), and use the polarisability CHARMM thole f directive in
CONTROL (see Section 10.1.1). Note that if no Thole dumping factors are specified in MPOLES as well
as no global Thole dumping factor is (optional) provided with the above directive in CONTROL, then a
default one of 1.3 is assumed for all inducible particles! Also, if no Thole dumping factors are specified
in MPOLES and a zero global Thole dumping factor is (optional) provided in CONTROL that will also
invalidate the use of CHARMM scaled electrostatics in the simulation although the option will help with
checking, verifying and setting CHARMM related defaults for shell charges, core-shell spring force constants
and atomic polarisations!

Equation (2.290) governs the relation between the force constant, k2 (positive), the shell charge qs, and
the atomic polarisability, α (positive). Thus if one is missing, undefined or zero, it can be recovered from
the rest in DL POLY 4. CHARMM only allows for qs to be recovered. Note that in DL POLY 4 if
any qs is recovered, it has an opposite sign to that of its corresponding qc! In the special case when all
Druders’ force constants, k2, are undefined or zero (in FIELD), DL POLY 4 will resort to using the value of
1000 kcal mol−1Å−2 for all core-shell units, as per CHARMM recommendations in [76]. In all other cases
if two (or more) of these three quantities are undefined or zero DL POLY 4 will terminate execution in a
controlled manner, indicating the exact nature of the problem.

CHARMM postulates a scaled intra-molecular self-induction between 1-2 and 1-3 intra-molecular neighbours.
Thus cross core-shell coulombic interactions within conventional bonded interactions are not fully excluded
(dipole-dipole only, no charge-dipole). They are scaled (see below) for all possible 1-2 (chemical bonds or
constraints) and 1-2-3 (chemical bond angles) qualifying neighbours. For example, let 1-2-3-4 define a torsion
angle, then all 1-2-3 and 2-3-4 core-shell cross-interaction are considered. Note that this is not the case for
the 1-4 one, which is excluded in this scenario but it could still be scaled via torsion 1-4 coulombic scaling!.
In DL POLY 4’s CHARMM context, also, then all possible coulombic cross-interactions are considered in
the case of an inversion angle interaction. It is worth stressing that in DL POLY 4 will further exclude
(disregard as non-contributing) any core-core bonded interactions if they are frozen or mapped onto a RB!

Let’s demonstrate this for a conventional bond angle unit, 1-2-3, with only members 1 and 2 being polarisable
(having a core and a shell). So, the only CHARMM scaled intra-molecular coulombic interactions for this
scenario will be the four pairs 1core-2core, 1core-2shell, 1shell-2core and 1shell-2shell (dipole-dipole interactions
only, the charge-dipole interactions are not considered!). In the case when members 1 and 3 are frozen or
in a RB configuration then the pair 1core-2core will be disregarded from that list.

The CHARMM, self-induced intra-molecular (dipole-dipole) interactions are scaled by a factor of

S(rij) = 1−
[
1 +

1

2

ai + aj

(αiαj)1/6
rij

]
exp

(
− ai + aj

(αiαj)1/6
rij

)
, (2.291)

where rij is the distance between atoms i and j, αi and αj are the respective atomic polarisabilities, and
ai and aj are the respective atomic (Thole) damping constants. This equation is equivalent to a smeared
charge distribution described by

ρ =
a3

8π
exp

(
− a

(αiαj)1/6
rij

)
, (2.292)

with a = ai + aj , as originally proposed by Thole [77].

2.5.2 Dynamical (Adiabatic Shells) Shell Model

The dynamical shell model is a method of incorporating polarisability into a molecular dynamics simulation.
The method used in DL POLY 4 is that devised by Fincham et al [78] and is known as the adiabatic shell
model.

64

©STFC Section 2.5

In the adiabatic method, a fraction of the atomic mass is assigned to the shell to permit a dynamical
description. The fraction of mass, x, is chosen to ensure that the natural frequency of vibration νcore−shell

of the harmonic spring (which depends on the reduced mass, i.e.

νcore−shell =
1

2π

[
k2

x(1− x)m

]1/2
, (2.293)

with m the rigid ion atomic mass) is well above the frequency of vibration of the whole atom in the bulk
system. Dynamically, the core-shell unit resembles a diatomic molecule with a harmonic bond, however,
the high vibrational frequency of the bond prevents effective exchange of kinetic energy between the core-
shell unit and the remaining system. Therefore, from an initial condition in which the core-shell units have
negligible internal vibrational energy, the units will remain close to this condition throughout the simulation.
This is essential if the core-shell unit is to maintain a net polarisation. (In practice, there is a slow leakage
of kinetic energy into the core-shell units, but this should should not amount to more than a few percent of
the total kinetic energy. To determine safe shell masses in practice, first a rigid ion simulation is performed
in order to gather the velocity autocorrelation functions, VAF, of the ions of interest to polarise. Each VAF
is then Fast Fourier transformed to find their highest frequency of interaction, νrigid−ion. It is, then, a safe
choice to assign a shell mass, x m, so that νcore−shell ≥ 3 νrigid−ion. The user must make sure to assign
the correct mass, (1− x) m, to the core!)

2.5.3 Relaxed (Massless Shells) Model

The relaxed shell model is presented in [79], where shells have no mass and as such their motion is not
governed by the usual Newtonian equation, whereas their cores’ motion is. Because of that, shells respond
instantaneously to the motion of the cores: for any set of core positions, the positions of the shells are such
that the force on every shell is zero. The energy is thus a minimum with respect to the shell positions.
This represents the physical fact that the system is always in the ground state with respect to the electronic
degrees of freedom.

Relaxation of the shells is carried out at each time step and involves a search in the multidimensional space
of shell configurations. The search in DL POLY 4 is based on the powerful conjugate-gradients technique
[80] in an adaptation as shown in [79]. Each time step a few iterations (10÷30) are needed to achieve
convergence to zero net force.

2.5.4 Breathing Shell Model Extension

While for low-symmetry structures, the conventional, dipolar rigid shell model (RSM) is sufficient to absorb
most of the effects of partial covalency/ionic polarisation, for some high-symmetry systems, a breathing shell
model (BSM) [81] is used as a refinement to represent the contribution of higher-order charge deformations
(of oxide species). This is done by the inclusion of non-central ion interaction to account for a finite ion
shell radius, roi , which is allowed to deform isotropically under its environment. However, all short-range
repulsion potentials, i.e. vdw, a BSM ion interacts by with its environment, must act upon the radius of
the ion, U = U(ri − roi), rather than the nuclear position, U = U(ri)! A further constraining potential is
then added to represent the self-energy of the ion’s breathing shell. This most commonly uses the same
shape as the one of the harmonic bond, see Section 2.2.1:

U(rij) =
1

2
k(rBSM

ij − roij)2 , (2.294)

where i and j are the intramolecular index of the ion’s core and shell respectively. Hence, to employ the
BSM, the user needs to specify an extra bonded interaction for each BSM’ed core-shell pair in the relevant
bonds sections in the FIELD file for all molecules that contain BSM ions. It is worth noting that the BSM
energy and virial are thus part of the bonds’ energy and virial and their calculation as part of the bonds
forces routine bonds forces.

65

©STFC Section 2.6

The most significant consequence of the introduction of the BSM is that, by coupling the repulsive interac-
tions via common shell radii, it creates a many-body effect that is able to reproduce the Cauchy violation
(C44 ̸= C12) for rock salt structured materials.

2.5.5 Further Notes

In DL POLY 4 the core-shell forces of the rigid shell model are handled by the routine core shell forces.
In case of the adiabatic shell model the kinetic energy is calculated by core shell kinetic and temperature
scaling applied by routine core shell quench. In case of the relaxed shell model shell are relaxed to zero
force by core shell relaxed.

Note that DL POLY 4 determines which shell model to use by scanning shell weights provided the FIELD
file (see Section 10.1.3). If all shells have zero weight the DL POLY 4 will choose the relaxed shell model.
If no shell has zero weight then DL POLY 4 will choose the dynamical one. In case when some shells are
massless and some are not DL POLY 4 will terminate execution controllably and provide information about
the error and possible possible choices of action in the OUTPUT file (see Section 10.2.6).

Note that all DL POLY 4’s shell models can be used in conjunction with the methods for long-ranged
forces described above. This also includes uses in the context of multipolar electrostatics where self-induced
polarisation is often a crucial part of polarisable force-field models such as CHARMM, AMBER, AMOEBA.
Currently, there are the following restrictions within DL POLY 4:

• shell particles are restricted to only bear a charge.

• shell particles cannot be frozen, part of a rigid body formation, constraint bonded, PMF constrained
or tethered.

• shell particles cannot have shells.

• a core and shell unit cannot be in a relation via an angle, dihedral or inversion type of interaction.
However, they can be in a bond type of interactions (see the BSM section above).

It is worth noting that bonded interactions such as chemical bonds, angles, dihedrals and inversions can be
defined over any possible mixture of core and shell members of different core-shell units! For example, in
the solid state materials community it is common to define bonds and angles over the shells as the shells
represent the electronic clouds between which the bonding occurs. However, this is right the opposite in
the liquid, organic and bio-chemical communities, where all bonding is between the nuclei (cores) and the
shells are only there to account purely for the polarisability. As DL POLY 4 allows for too much flexibility
in the space of possible model definitions, it is strongly advised that the modeller must exercise great care
to define the correct force-field model representation within DL POLY 4 input files!

2.6 External Fields

In addition to the molecular force field, DL POLY 4 allows the use of an external force field. Examples of
fields available include:

1. Electric field: (elec)
Fi = Fi + qi · E (2.295)

2. Oscillating shear: (oshr)
F x = A cos(2nπ · z/Lz) (2.296)

3. Continuous shear: (shrx)

vx =
1

2
A
|z|
z

: |z| > z0 (2.297)

66

©STFC Section 2.6

4. Gravitational field: (grav)
Fi = Fi +mi ·G (2.298)

5. Magnetic field: (magn)
Fi = Fi + qi · (vi ×H) (2.299)

6. Containing sphere: (sphr)
F = A (R0 − r)−n : r > Rcut (2.300)

7. Repulsive wall: (zbnd)
F z = A (zo − z) : f · z > f · zo , (2.301)

where f = +/− 1 with default of 1.

8. X-Piston: (xpis)

F x =
mk∑j
k=imk

P ·Area(⊥ X-direction) : ∀ k = i, .., j . (2.302)

9. Harmonic restraint zone in z-direction: (zres)

F z =

{
A (zcom − zmax) : zcom > zmax

A (zmin − zcom) : zcom < zmin ,
(2.303)

where zcom is the chosen molecule centre of mass.

10. Harmonic restraint zone in z-direction − (push out): (zrs−)

F z =

{
A (z − zmax) : z ≥ (zmax + zmin)/2
A (zmin − z) : z < (zmax + zmin)/2

(2.304)

11. Harmonic restraint zone in z-direction + (pull in): (zrs+)

F z =

{
A (z − zmax) : z > zmax

A (zmin − z) : z < zmin
(2.305)

12. Oscillating electric field: (osel)
Fi = Fi + qi · E · sin(2πωt) , (2.306)

where t is the simulated time.

13. Umbrella sampling (harmonic restraint) [82, 83]: (ushr)

UAB =
k

2
(RAB −R0)

2 , (2.307)

is an umbrella sampling harmonic restraint between the centres of masses of two molecules (non-
overlapping clusters of particles), A and B, with a force constant, k, and an equilibrium distance,
R0.

It is recommended that the use of an external field should be accompanied by a thermostat (this does not
apply to examples 6 and 7, since these are conservative fields). The “Oscillating shear” and “X-piston”
fields may only be used with orthorhombic cell geometry (imcon=1,2) and “Continuous shear” field with
slab cell geometry (imcon=6).

In the case of the “X-piston” field it is strongly advised that the number of piston particles is chosen to
be very small in comparison with the rest of the system (< 5%) and that the piston contains its own set
of whole molecules (i.e. there are no molecules partially mapped on the piston), which do not include any

67

©STFC Section 2.9

core-shell, CB, PMF or RB units! The field releases the system’s centre of mass to move unconstrained and
gain momentum. This makes any temperature control options control the full kinetic energy of the system
and thus the only ensemble valid under this conditions and possible within DL POLY 4 at the present is
the micro-canonical (NVE)!

The user is advised to be careful with the parameters’ units! For more insight, do examine Table 10.14 and
the example at equation (10.9) in Section 10.1.3.

In DL POLY 4 external field forces are handled by the routines external field apply and
external field correct.

2.7 Treatment of Frozen Atoms, Rigid Body and Core-Shell Units

Frozen atoms, core-shell units and rigid body units are treated in a manner similar to that of the intra-
molecular interactions due to their “by site” definition.

DL POLY 4 allows for atoms to be completely immobilized (i.e. “frozen” at a fixed point in the MD cell).
This is achieved by setting all forces and velocities associated with that atom to zero during each MD
timestep. Frozen atoms are signalled by assigning an atom a non-zero value for the freeze parameter in the
FIELD file. DL POLY 4 does not calculate contributions to the virial or the stress tensor arising from the
constraints required to freeze atomic positions. Neither does it calculate contributions from intra- and inter-
molecular interactions between frozen atoms. As with the tethering potential, the reference position of a
frozen site is scaled with the cell vectors in constant pressure simulations. In the case of frozen rigid bodies,
their “centre of mass” is scaled with the cell vectors in constant pressure simulations and the positions of
their constituent sites are then moved accordingly.

In DL POLY 4 the frozen atom option is handled by the subroutine freeze atoms.

The rigid body dynamics (see Section 3.6) is resolved by solving the Eulerian equations of rotational motion.
However, their statics includes calculation of the individual contributions of each RB’s centre of mass stress
and virial due to the action of the resolved forces on sites/atoms constituting it. These contribute towards
the total system stress and pressure.

As seen in Section 2.5 core-shell units are dealt with (i) kinetically by the adiabatic shell model or (ii)
statically by the dynamic shell model. Both contribute to the total system stress (pressure) but in different
manner. The former does it via the kinetic stress (energy) and atomic stress (potential energy) due to
the core-shell spring. The latter via atomic stress (potential energy) due to the shells move to minimised
configuration.

2.8 Tabulation and interpolation in the treatment of intermolecular in-
teractions

By default DL POLY 4 tabulates in memory most of the intermolecular interactions keeping values of the
potential and the negative of its first derivative times the distance (or virial) over an equidistant grid. This
is done for reasons of speed as due to the large variety of potential forms, some could be quite expensive
to evaluate if run unoptimised. The memory tabulation could be overridden for non-tabulated interactions
upon user specified options such as metal direct for metal interactions and vdw direct for van der Waals
interactions.

When energy and force are calculated for tabulated interactions a 3-point interpolation scheme of our own
is used to interpolate the value for the requested distance.

A 5-point interpolation is used for finding the numerical derivatives of (2B)(E)EAM type potentials which
are supplied in TABEAM by the user. For this a Lagrange formula is used, which can be found in any
textbook on numerical methods.

68

©STFC Section 2.10

2.9 Free Energy Capabilities via the PLUMED plugin

DL POLY 4 supports a native integration with PLUMED - http://www.plumed.org/. PLUMED is an open
source library for free energy calculations in molecular systems which works together with some of the most
popular molecular dynamics engines. Free energy calculations can be performed as a function of many
order parameters with a particular focus on biological problems, using state of the art methods such as
metadynamics, umbrella sampling [82, 83] and Jarzynski-equation based steered MD. The software, written
in C++, can be easily interfaced with both FORTRAN and C/C++ codes.

Using PLUMED can be as simple as adding the keyword plumed in your CONTROL file. By default the
input file for PLUMED is called PLUMED and shall be placed in the same place as your other DL POLY 4
input files. Once DL POLY 4 runs by default OUTPUT.PLUMED will be generated in addition to the
normal PLUMED and DL POLY 4 output files. The default names of the files can be changed by using
input and log parameters with the plumed keyword (see Section 10.1.1).

Note that this feature should be considered as young rather than mature, so please report any bugs and
provide feedback regarding its improvements.

Note that to use the PLUMED functionality within DL POLY 4 one must further ensure that DL POLY 4
is cross-compiled with it.

2.10 Open Knowledgebase of Interatomic Models - OpenKIM

DL POLY 4 force-field allows for model interactions specification by using an OpenKIM model -
https://openkim.org/. A KIM model contains all necessary (non-bonded) interactions and their parameters
for a specific model within a designated container. Thus a KIM model can be used as a force-field container
when made available to DL POLY 4 at run time (see the description of the FIELD file in Section 10.1.3)
upon a specification within FIELD together with a matching molecular description for the model system,
also specified in FIELD. Due to the history of the OpenKIM initiative and the constraints of the logic of the
DL POLY 4 FIELD file the designated place for a KIM model specification is in the non-bonded interactions
section ??.

Employing OpenKIM interatomic models (IMs) provides DL POLY 4 users with multiple benefits, including:

Reliability

• All content archived in OpenKIM is reviewed by the KIM Editor for quality.

• IMs in OpenKIM are archived with full provenance control. Each is associated with a maintainer
responsible for the integrity of the content. All changes are tracked and recorded.

• IMs in OpenKIM are exhaustively tested using KIM Tests that compute a host of material properties,
and KIM Verification Checks that provide the user with information on various aspects of the IM
behavior and coding correctness. This information is displayed on the IMs page accessible through
the OpenKIM browse interface.

Reproducibility

• Each IM in OpenKIM is issued a unique identifier (KIM ID), which includes a version number (last
three digits). Any changes that can result in different numerical values lead to a version increment in
the KIM ID. This makes it possible to reproduce simulations since the specific version of a specific IM
used can be retrieved using its KIM ID.

69

http://www.plumed.org/
https://openkim.org/

©STFC Section 2.10

• OpenKIM is a member organization of DataCite and issues digital object identifiers (DOIs) to all IMs
archived in OpenKIM. This makes it possible to cite the IM code used in a simulation in a publications
to give credit to the developers and further facilitate reproducibility.

Currently, DL POLY 4 supports one type of IM archived in OpenKIM, which is called a KIM Portable Model
(PM). A KIM PM is an independent computer implementation of an IM written in one of the languages
supported by KIM (C, C++, Fortran) that conforms to the KIM Application Programming Interface (KIM
API) Portable Model Interface (PMI) standard. A KIM PM will work seamlessly with any simulation code
that supports the KIM API/PMI standard (including DL POLY 4; see complete list of supported codes).

OpenKIM IMs are uniquely identified by a KIM ID. The extended KIM ID consists of a human-readable
prefix identifying the type of IM, authors, publication year, and supported species, separated by two under-
scores from the KIM ID itself, which begins with an IM code (MO for a KIM Portable Model) followed by
a unique 12-digit code and a 3-digit version identifier
(e.g. SNAP ChenDengTran 2017 Mo MO 698578166685 000).

Each OpenKIM IM has a dedicated “Model Page” on OpenKIM providing all the information on the
IM including a title, description, authorship and citation information, test and verification check results,
visualizations of results, a wiki with documentation and user comments, and access to raw files, and other
information. The URL for the Model Page is constructed from the extended KIM ID of the IM
as https://openkim.org/id/extended KIM ID.

For example, for the spectral neighbor analysis potential (SNAP) listed above the Model Page is located at:
https://openkim.org/id/SNAP ChenDengTran 2017 Mo MO 698578166685 000.

See the current list of KIM PMs archived in OpenKIM. This list is sorted by species and can be filtered to
display only IMs for certain species combinations. You can also see Obtaining KIM Models to learn how to
install a pre-build binary of the OpenKIM repository of models.

Note that it is also possible to locally install IMs not archived in OpenKIM, in which case their names do
not have to conform to the KIM ID format.

To download, build, and install the KIM library on your system, see the detailed instructions .

Note that to use OpenKIM functionality within DL POLY 4 one must further ensure that DL POLY 4 is
compiled with OpenKIM support (see building.md).

Citation of OpenKIM IMs

When publishing results obtained using OpenKIM IMs researchers are requested to cite the OpenKIM
project (Tadmor), KIM API (Elliott), and the specific IM codes used in the simulations, in addition to the
relevant scientific references for the IM. The citation format for an IM is displayed on its page on OpenKIM
along with the corresponding BibTex file, and is automatically added to the DL POLY 4 log.cite file.

Citing the IM software (KIM infrastructure and specific PM or SM codes) used in the simulation gives credit
to the researchers who developed them and enables open source efforts like OpenKIM to function.

70

https://openkim.org/projects-using-kim/
https://openkim.org/id/SNAP_ChenDengTran_2017_Mo__MO_698578166685_000
https://openkim.org/browse/models/by-species
https://openkim.org/doc/usage/obtaining-models/
https://openkim.org/doc/usage/obtaining-models/
https://link.springer.com/article/10.1007%2Fs11837-011-0102-6
https://doi.org/10.25950/FF8F563A
https://openkim.org/

Chapter 3

Integration Algorithms

Scope of Chapter

This chapter describes the integration algorithms coded into DL POLY 4.

71

©STFC Section 3.1

3.1 Introduction

As a default the DL POLY 4 integration algorithms are based on the Velocity Verlet (VV) scheme, which
is both simple and time reversible [22]. It generates trajectories in the microcanonical (NVE) ensemble in
which the total energy (kinetic plus potential) is conserved. If this property drifts or fluctuates excessively
in the course of a simulation it indicates that the timestep is too large or the potential cutoffs too small
(relative r.m.s. fluctuations in the total energy of 10−5 are typical with this algorithm).

The VV algorithm has two stages (VV1 and VV2). At the first stage it requires values of position (r),
velocity (v) and force (f) at time t. The first stage is to advance the velocities to t+(1/2)∆t by integration
of the force and then to advance the positions to a full step t+∆t using the new half-step velocities:

1. VV1:

v(t+
1

2
∆t)← v(t) +

∆t

2

f(t)

m
, (3.1)

where m is the mass of a site and ∆t is the timestep

r(t+∆t)← r(t) + ∆t v(t+
1

2
∆t) (3.2)

2. FF:
Between the first and the second stage a recalculation of the force at time t+∆t is required since the
positions have changed

f(t+∆t)← f(t) (3.3)

3. VV2:
In the second stage the half-step velocities are advanced to to a full step using the new force

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.4)

The instantaneous kinetic energy, for example, can then be obtained from the atomic velocities as

Ekin(t) =
1

2

N∑
1

miv
2
i (t) , (3.5)

and assuming the system has no net momentum the instantaneous temperature is

T (t) = 2

kBf
Ekin(t) , (3.6)

where i labels particles (that can be free atoms or rigid bodies), N the number of particles (free atoms and
rigid bodies) in the system, kB the Boltzmann’s constant and f the number of degrees of freedom in the
system.

f = 3N − 3Nfrozen − 3Nshells −Nconstraints − 3− p . (3.7)

Here Nfrozen indicates the number of frozen atoms in the system, Nshells number of core-shell units and
Nconstraints number of bond and PMF constraints. Three degrees of freedom are subtracted for the centre
of mass zero net momentum (which we impose) and p is zero for periodic or three for non-periodic systems,
where it accounts for fixing angular momentum about origin (which we impose).

In the case of rigid bodies (see Section 3.6) the first part of equation (3.7)

f ′ = 3N − 3Nfrozen (3.8)

splits into

f ′ =
(
3N FP − 3NFP

frozen

)
+
(
3NRB(tra) − 3NRB(tra)

frozen

)
+
(
3NRB(rot) − 3NRB(rot)

frozen

)
(3.9)

72

©STFC Section 3.1

or

f ′ = fFP + fRB(tra) + fRB(rot) . (3.10)

Here FP stands for a free particle, i.e. a particle not participating in the constitution of a rigid body, and
RB for a rigid body. In general a rigid body has 3 translational (tra) degrees of freedom, corresponding
to its centre of mass being allowed to move in the 3 general direction of space, and 3 rotational (rot),
corresponding to the RB being allowed to rotate around the 3 general axis in space. It is not far removed to
see that for a not fully frozen rigid body one must assign 0 translational degrees of freedom but depending
on the ”frozenness” of the RB one may assign 1 rotational degrees of freedom when all the frozen sites are
in line (i.e. rotation around one axis only) or 3 when just one site is frozen.

The routine nve 0 vv implement the Verlet algorithm in velocity verlet for free particles and calculate
the instantaneous temperature. Whereas the routines nve 1 vv implements the same for systems also
containing rigid bodies. The conserved quantity is the total energy of the system

HNVE = U + Ekin , (3.11)

where U is the potential energy of the system and Ekin the kinetic energy at time t.

The full selection of integration algorithms within DL POLY 4 is as follows:

nve 0 vv Constant E algorithm
nve 1 vv The same as the above but also incorporating RB integration
dpd thermostat Constant T algorithm (DPD [84])
nvt e0 vv Constant Ekin algorithm (Evans [25])
nvt e1 vv The same as the above but also incorporating RB integration
nvt l0 vv Constant T algorithm (Langevin [26])
nvt l1 vv The same as the above but also incorporating RB integration
nvt l2 vv Constant T algorithmensemble!Inhomogeneous Langevin NVT) (inhomogeneous Langevin [85])
nvt a0 vv Constant T algorithm (Andersen [27])
nvt a1 vv The same as the above but also incorporating RB integration
nvt b0 vv Constant T algorithm (Berendsen [28])
nvt b1 vv The same as the above but also incorporating RB integration
nvt h0 vv Constant T algorithm (Hoover [29])
nvt h1 vv The same as the above but also incorporating RB integration
nvt g0 vv Constant T algorithm (GST [86])
nvt g1 vv The same as the above but also incorporating RB integration
npt l0 vv Constant T,P algorithm (Langevin [30])
npt l1 vv The same as the above but also incorporating RB integration
npt b0 vv Constant T,P algorithm (Berendsen [28])
npt b1 vv The same as the above but also incorporating RB integration
npt h0 vv Constant T,P algorithm (Hoover [29])
npt h1 vv The same as the above but also incorporating RB integration
npt m0 vv Constant T,P algorithm (Martyna-Tuckerman-Klein [31])
npt m1 vv The same as the above but also incorporating RB integration
npt l0 vv Constant T,σ algorithm (Langevin [30])

npt l1 vv The same as the above but also incorporating RB integration
nst b0 vv Constant T,σ algorithm (Berendsen [28])

nst b1 vv The same as the above but also incorporating RB integration
nst h0 vv Constant T,σ algorithm (Hoover [29])

nst h1 vv The same as the above but also incorporating RB integration
nst m0 vv Constant T,σ algorithm (Martyna-Tuckerman-Klein [31])

nst m0 vv The same as the above but also incorporating RB integration

73

©STFC Section 3.2

It is worth noting that the last four ensembles are also optionally available in an extended from to constant
normal pressure and constant surface area, NPnAT, or constant surface tension, NPnγT [87].

3.2 Bond Constraints

The SHAKE algorithm for bond constraints was devised by Ryckaert et al. [88] and is widely used in
molecular simulation. It is a two stage algorithm based on the leapfrog Verlet integration scheme [22]. In
the first stage the LFV algorithm calculates the motion of the atoms in the system assuming a complete
absence of the rigid bond forces. The positions of the atoms at the end of this stage do not conserve
the distance constraint required by the rigid bond and a correction is necessary. In the second stage the
deviation in the length of a given rigid bond is used retrospectively to compute the constraint force needed
to conserve the bondlength. It is relatively simple to show that the constraint force has the form:

Gij ≈
1

2

µij
∆t2

(d2ij − d′2ij)
doij · d′ij

doij , (3.12)

where: µij is the reduced mass of the two atoms connected by the bond; doij and d′ij are the original and
intermediate bond vectors; dij is the constrained bondlength; and ∆t is the Verlet integration time step. It
should be noted that this formula is an approximation only.

i

j
dij

o

dij

i

j

j’

i’

Gji

Gij

d’ij

Figure 3.1: The SHAKE (RATTLE VV1) schematics and associated vectors. The algorithm calculates the
constraint force Gij = −Gji that conserves the bondlength dij between atoms i and j, following the initial
movement to positions i′ and j′ under the unconstrained forces F i and F j and velocities vi and vj .

The RATTLE algorithm was devised by Andersen [23] and it is the SHAKE algorithm used with Velocity
Verlet integration scheme. It consists of two parts RATTLE VV1 and RATTLE VV2 applied respectively
in stages one and two of Velocity Verlet algorithm. RATTLE VV1 is similar to the SHAKE algorithm as
described above and handles the bond length constraint. However, due to the difference in the velocity
update between VV (VV1) and LFV schemes, the constraint force generated to conserve the bondlength in
RATTLE VV1 has the form as in (3.12) but missing the factor of a half:

Gij ≈
µij
∆t2

(d2ij − d′2ij)
doij · d′ij

doij . (3.13)

74

©STFC Section 3.2

The constraint force in RATTLE VV2 imposes a new condition of rigidity on constraint bonded atom
velocities. RATTLE VV2 is also a two stage algorithm. In the first stage, the VV2 algorithm calculates
the velocities of the atoms in the system assuming a complete absence of the rigid bond forces (since forces
have just been recalculated afresh after VV1). The relative velocity of atom i with respect to atom j (or
vice versa) constituting the rigid bond ij may not be perpendicular to the bond - i.e. may have a non-zero
component along the bond. However, by the stricter definition of rigidity this is is required to be zero as it
will otherwise lead to a change in the rigid bond length during the consequent timestepping. In the second
stage the deviation from zero of the scalar product dij · (vj − vi) is used retrospectively to compute the
constraint force needed to keep the bond rigid over the length of the timestep ∆t. It is relatively simple to
show that the constraint force has the form:

Bij ≈
µij
∆t

dij · (vj − vi)
d2ij

dij . (3.14)

The velocity corrections can therefore be written as

vcorri = ∆t
Bij

mi
=
µij
mi

dij · (vj − vi)
d2ij

dij . (3.15)

For a system of simple diatomic molecules, computation of the constraint force will, in principle, allow
the correct atomic positions to be calculated in one pass. However, in the general polyatomic case this
correction is merely an interim adjustment, not only because the above formula is approximate, but the
successive correction of other bonds in a molecule has the effect of perturbing previously corrected bonds.
Either part of the RATTLE algorithm is therefore iterative, with the correction cycle being repeated for all
bonds until: each has converged to the correct length, within a given tolerance for RATTLE VV1 (SHAKE)
and the relative bond velocities are perpendicular to their respective bonds within a given tolerance for
RATTLE VV2 (RATTLE). The tolerance may be of the order 10−4 Å to 10−8 Å depending on the precision
desired.

The SHAKE procedure may be summarised as follows:

1. All atoms in the system are moved using the LFV algorithm, assuming an absence of rigid bonds
(constraint forces). (This is stage 1 of the SHAKE algorithm.)

2. The deviation in each bondlength is used to calculate the corresponding constraint force, equa-
tion (3.12), that (retrospectively) ‘corrects’ the bond length.

3. After the correction, equation (3.12), has been applied to all bonds, every bondlength is checked. If
the largest deviation found exceeds the desired tolerance, the correction calculation is repeated.

4. Steps 2 and 3 are repeated until all bondlengths satisfy the convergence criterion (this iteration con-
stitutes stage 2 of the SHAKE algorithm).

The RATTLE procedures may be summarised as follows:

1. RATTLE stage 1:

(a) All atoms in the system are moved using the VV algorithm, assuming an absence of rigid bonds
(constraint forces). (This is stage 1 of the RATTLE VV1 algorithm.)

(b) The deviation in each bondlength is used to calculate the corresponding constraint force, equa-
tion (3.13), that (retrospectively) ‘corrects’ the bond length.

(c) After the correction, equation (3.13), has been applied to all bonds, every bondlength is checked.
If the largest deviation found exceeds the desired tolerance, the correction calculation is repeated.

(d) Steps (b) and (c) are repeated until all bondlengths satisfy the convergence criterion (this iteration
constitutes stage 2 of the RATTLE VV1 algorithm).

75

©STFC Section 3.3

2. Forces calculated afresh.

3. RATTLE stage 2:

(a) All atom velocities are updated to a full step, assuming an absence of rigid bonds. (This is stage
1 of the RATTLE VV2 algorithm.)

(b) The deviation of dij · (vj−di) in each bond is used to calculate the corresponding constraint force
that (retrospectively) ‘corrects’ the bond velocities.

(c) After the correction, equation (3.14), has been applied to all bonds, every bond velocity is checked
against the above condition. If the largest deviation found exceeds the desired tolerance, the
correction calculation is repeated.

(d) Steps (b) and (c) are repeated until all bonds satisfy the convergence criterion (this iteration
constitutes stage 2 of the RATTLE VV2 algorithm).

The parallel version of the RATTLE algorithm, as implemented in DL POLY 4, is derived from the
RD SHAKE algorithm [8] although its implementation in the Domain Decomposition framework requires no
global merging operations and is consequently significantly more efficient. The routine constraints shake
is called to apply corrections to the atomic positions and the routine constraints rattle to apply cor-
rections to the atomic velocities of constrained particles.

It should be noted that the fully converged constraint forces Gij make a contribution to the system virial
and the stress tensor.

The contribution to be added to the atomic virial (for each constrained bond) is

W = −dij ·Gij . (3.16)

The contribution to be added to the atomic stress tensor (for each constrained bond) is given by

σαβ = dαijG
β
ij , (3.17)

where α and β indicate the x, y, z components. The atomic stress tensor derived from the pair forces is
symmetric.

3.3 Potential of Mean Force (PMF) Constraints and the Evaluation of
Free Energy

A generalization of bond constraints can be made to constrain a system to some point along a reaction
coordinate. A simple example of such a reaction coordinate would be the distance between two ions in
solution. If a number of simulations are conducted with the system constrained to different points along
the reaction coordinate then the mean constraint force may be plotted as a function of reaction coordinate
and the function integrated to obtain the free energy for the overall process [89]. The PMF constraint force,
virial and contributions to the stress tensor are obtained in a manner analogous to that for a bond constraint
(see previous section). The only difference is that the constraint is now applied between the centres of two
groups which need not be atoms alone. DL POLY 4 reports the PMF constraint virial, WPMF , for each
simulation. Users can convert this to the PMF constraint force from

GPMF =
WPMF

dPMF
, (3.18)

where is dPMF the constraint distance between the two groups used to define the reaction coordinate.

The routines pmf shake and pmf rattle are called to apply corrections to the atomic positions and
respectively the atomic velocities of all particles constituting PMF units.

76

©STFC Section 3.4

In presence of both bond constraints and PMF constraints. The constraint procedures, i.e. SHAKE or
RATTLE, for both types of constraints are applied iteratively in order bonds-PMFs until convergence of
WPMF reached. The number of iteration cycles is limited by the same limit as for the bond constraints’
procedures (SHAKE/RATTLE).

3.4 Thermostats

The system may be coupled to a heat bath to ensure that the average system temperature is maintained
close to the requested temperature, Text. When this is done the equations of motion are modified and
the system no longer samples the microcanonical ensemble. Instead trajectories in the canonical (NVT)
ensemble, or something close to it are generated. DL POLY 4 comes with seven different thermostats:
Evans (Gaussian constraints) [25], Langevin (both standard [26, 90] and inhomogeneous [85] variants),
Andersen [27], Berendsen [28], Nosé-Hoover (N-H) [29] and the gentle stochastic thermostat (GST) [86, 91]
as well as Dissipative Particle Dynamics (DPD) method [92, 93, 50, 84]. Of these, only the Langevin, N-H,
GST and DPD algorithms generate true trajectories in the canonical (NVT) ensemble. The rest will produce
properties that typically differ from canonical averages by O(1/N) [22] (where N is the number of particles
in the system), as the Evans algorithm generates trajectories in the (NVEkin) ensemble.

3.4.1 Evans Thermostat (Gaussian Constraints)

Kinetic temperature can be made a constant of the equations of motion by imposing an additional constraint
on the system. If one writes the equations of motion as:

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t) v(t) , (3.19)

the kinetic temperature constraint χ can be found as follows:

d

dt
T ∝ d

dt

(
1

2

∑
i

miv
2
i

)
=
∑
i

mivi ·
d

dt
vi = 0

∑
i

mivi(t) ·
{
f
i
(t)

mi
− χ(t) vi(t)

}
= 0 (3.20)

χ(t) =

∑
i vi(t) · f i(t)∑
imiv2i (t)

,

where T is the instantaneous temperature defined in equation (3.6).

The VV implementation of the Evans algorithm is straight forward. The conventional VV1 and VV2 steps
are carried out as before the start of VV1 and after the end of VV2 there is an application of thermal
constraining. This involves the calculation of χ(t) before the VV1 stage and χ(t+∆t) after the VV2 stage
with consecutive thermalisation on the unthermostated velocities for half a timestep at each stage in the
following manner:

1. Thermostat VV1

χ(t) ←
∑

i vi(t) · f i(t)
2 Ekin(t)

v(t) ← v(t) exp

(
−χ(t)∆t

2

)
. (3.21)

77

©STFC Section 3.4

2. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.22)

3. RATTLE VV1

4. FF:
f(t+∆t)← f(t) (3.23)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

[
f(t+∆t)

m

]
(3.24)

6. RATTLE VV2

7. Thermostat VV2

χ(t+∆t) ←
∑

i vi(t+∆t) · f
i
(t+∆t)

2 Ekin(t+∆t)

v(t+∆t) ← v(t+∆t) exp

(
−χ(t+∆t)

∆t

2

)
. (3.25)

The algorithm is self-consistent and requires no iterations.

The conserved quantity by these algorithms is the system kinetic energy.

The VV flavour of the Gaussian constraints algorithm is implemented in the DL POLY 4 routines nvt e0 vv.
The routine nvt e1 vv implement the same but also incorporate RB dynamics.

3.4.2 Langevin Thermostat

The Langevin thermostat works by coupling every particle to a viscous background and a stochastic heath
bath (Brownian dynamics) such that

dri(t)

dt
= vi(t)

dvi(t)

dt
=

f
i
(t) +Ri(t)

mi
− χ vi(t) , (3.26)

where χ is the user defined constant (positive, in units of ps−1) specifying the thermostat friction parameter
and R(t) is stochastic force with zero mean that satisfies the fluctuation- dissipation theorem:〈

Rα
i (t) R

β
j (t

′)
〉
= 2 χ mi kBT δij δαβ δ(t− t′) , (3.27)

where superscripts denote Cartesian indices, subscripts particle indices, kB is the Boltzmann constant, T
the target temperature and mi the particle’s mass. The Stokes-Einstein relation for the diffusion coefficient
can then be used to show that the average value of Ri(t) over a time step (in thermal equilibrium) should be
a random deviate drawn from a Gaussian distribution of zero mean and unit variance, Gauss(0, 1), scaled

by
√

2 χ mi kBT
∆t .

The effect of this algorithm is thermostat the system on a local scale. Particles that are too “cold” are
given more energy by the noise term and particles that are too “hot” are slowed down by the friction.
Numerical instabilities, which usually arise from inaccurate calculation of a local collision-like process, are
thus efficiently kept under control and cannot propagate.

78

©STFC Section 3.4

The generation of random forces is implemented in the routine langevin forces.

An inhomogeneous variant of the Langevin thermostat [85] allows χ to vary according to atomic velocity:
it can be increased from χep to χep + χes when the atomic speed is higher than a cut-off value. When using
this thermostat as part of the two-temperature model (TTM), χep represents the required friction parameter
for electron-phonon coupling and χes gives the increase due to electronic stopping. TTM simulations also

require the random deviate to be scaled by
√

2 χep mi kBTe

∆t , where Te is the local electronic temperature for
the atom.

The VV implementation of the algorithm is tailored in a Langevin Impulse (LI) manner [90]:

1. VV1:

v(t+ ϵ) ← v(t) +
∆t

2

f(t)

m

v(t+
1

2
∆t− ϵ) ← exp(−χ ∆t) v(t+ ϵ) +

√
2 χ m kBT

m
Z1(χ,∆t) (3.28)

r(t+∆t) ← r(t) +
1− exp(−χ ∆t)

χ
v(t+ ϵ) +

√
2 χ m kBT

χ m
Z2(χ,∆t) ,

where Z1(χ,∆t) and Z2(χ,∆t) are joint Gaussian random variables of zero mean, sampling from a
bivariate Gaussian distribution [90]:[

Z1

Z2

]
=

[
σ
1/2
2 0

(σ1 − σ2)σ−1/2
2 (∆t− σ21σ

−1
2)1/2

] [
R1

R2

]
(3.29)

with

σk =
1− exp(−k χ ∆t)

k χ
, k = 1, 2 (3.30)

and Rk vectors of independent standard Gaussian random numbers of zero mean and unit variance,
Gauss(0, 1), - easily related to the Langevin random forces as defined in equation (3.27).

2. RATTLE VV1

3. FF:
f(t+∆t)← f(t) (3.31)

4. VV2:

v(t+∆t)← v(t+
1

2
∆t− ϵ) + ∆t

2

f(t+∆t)

m
(3.32)

5. RATTLE VV2 .

The algorithm is self-consistent and requires no iterations. It is worth noting that the integration is condi-
tional upon the Cholesky factorisation which is impossible when ∆t < σ21/σ2 . That is why a safety check
is put in place which when failed iteratively increases the integration timestep to a safe value with respect
to the above condition.

Note that by the nature of the ensemble the centre of mass will not be stationary although the ensemble
average warrants its proximity to the its original position, i.e. the COM momentum accumulation ensemble
average will tend towards zero. By default this accumulation is removed and thus the correct application
of stochastic dynamics the user is advised to use in the no vom option in the CONTROL file (see Sec-
tion 10.1.1). If the option is not applied then the dynamics will lead to peculiar thermalisation of different
atomic species to mass- and system size-dependent temperatures.

The VV flavour of the Langevin thermostat is implemented in the DL POLY 4 routines nvt l0 vv. The
routines nvt l1 vv implements the same but also incorporate RB dynamics. The inhomogeneous Langevin
thermostat is implemented in the DL POLY 4 routine nvt l2 vv no RB dynamics are currently available
for this form of Langevin thermostat.

79

©STFC Section 3.4

3.4.3 Andersen Thermostat

This thermostat assumes the idea that the system, or some subset of the system, has an instantaneous inter-
action with some fictional particles and exchanges energy. Practically, this interaction amounts to replacing
the momentum of some atoms with a new momentum drawn from the correct Boltzmann distribution at the
desired temperature. The strength of the thermostat can be adjusted by setting the average time interval
over which the interactions occur, and by setting the magnitude of the interaction. The collisions are best
described as a random (Poisson) process so that the probability that a collision occurs in a time step ∆t is

Pcollision(t) = 1− exp

(
−∆t

τT

)
, (3.33)

where τT is the thermostat relaxation time. The hardest collision is to completely reset the momentum of
the Poisson selected atoms in the system, with a new one selected from the Boltzmann distribution

F (vi) =

√(
mi

2πkBText

)3

exp

(
− mi v

2
i

2kBText

)
=

√
kBText
2mi

Gauss(0, 1) . (3.34)

where subscripts denote particle indices, kB is the Boltzmann constant, Text the target temperature and
mi the particle’s mass. The thermostat can be made softer by mixing the new momentum vnewi drawn from
F (vi) with the old momentum voldi

vi = α voldi +
√
1− α2 vnewi , (3.35)

where α (0 ≤ α ≤ 1) is the softness of the thermostat. In practice, a uniform distribution random number,
uni(i), is generated for each particle in the system, which is compared to the collision probability. If

uni(i) ≤ 1− exp
(
−∆t

τT

)
the particle momentum is changed as described above.

The VV implementation of the Andersen algorithm is as follows:

1. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.36)

2. RATTLE VV1

3. FF:
f(t+∆t)← f(t) (3.37)

4. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

[
f(t+∆t)

m

]
(3.38)

5. RATTLE VV2

6. Thermostat: Note that the MD cell centre of mass momentum must not change!

If

(
uni(i) ≤ 1− exp

(
−∆t

τT

))
Then

vnewi (t+∆t) ←
√
kBT

2mi
Gauss(0, 1) (3.39)

vi(t+∆t) ← α vi(t+∆t) +
√

1− α2 vnewi (t+∆t)

End If .

The algorithm is self-consistent and requires no iterations.

The VV flavour of the Andersen thermostat is implemented in the DL POLY 4 routine nvt a0 vv. The
routine nvt a1 vv implements the same but also incorporate RB dynamics.

80

©STFC Section 3.4

3.4.4 Berendsen Thermostat

In the Berendsen algorithm the instantaneous temperature is pushed towards the desired temperature Text
by scaling the velocities at each step by

χ(t) =

[
1 +

∆t

τT

(
σ

Ekin(t)
− 1

)]1/2
, (3.40)

where

σ =
f

2
kB Text (3.41)

is the target thermostat energy (depending on the external temperature and the system total degrees of
freedom, f - equation (3.7)) and τT a specified time constant for temperature fluctuations (normally in the
range [0.5, 2] ps).

The VV implementation of the Berendsen algorithm is straight forward. A conventional VV1 and VV2
(thermally unconstrained) steps are carried out. At the end of VV2 velocities are scaled by a factor of χ in
the following manner

1. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.42)

2. RATTLE VV1

3. FF:
f(t+∆t)← f(t) (3.43)

4. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.44)

5. RATTLE VV2

6. Thermostat:

χ(t+∆t) ←
[
1 +

∆t

τT

(
σ

Ekin(t+∆t)
− 1

)]1/2
v(t+∆t) ← v(t+∆t) χ . (3.45)

Note that the MD cell’s centre of mass momentum is removed at the end of the integration algorithms.

The Berendsen algorithms conserve total momentum but not energy.

The VV flavour of the Berendsen thermostat is implemented in the DL POLY 4 routine nvt b0 vv. The
routine nvt b1 vv implements the same but also incorporate RB dynamics.

3.4.5 Nosé-Hoover Thermostat

In the Nosé-Hoover algorithm [29] Newton’s equations of motion are modified to read:

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t) v(t) (3.46)

81

©STFC Section 3.4

The friction coefficient, χ, is controlled by the first order differential equation

dχ(t)

dt
=

2Ekin(t)− 2σ

qmass
(3.47)

where σ is the target thermostat energy, equation (3.41), and

qmass = 2 σ τ2T (3.48)

is the thermostat mass, which depends on a specified time constant τT (for temperature fluctuations normally
in the range [0.5, 2] ps).

The VV implementation of the Nosé-Hoover algorithm takes place in a symplectic manner as follows:

1. Thermostat: Note Ekin(t) changes inside

χ(t+
1

4
∆t) ← χ(t) +

∆t

4

2Ekin(t)− 2σ

qmass

v(t) ← v(t) exp

(
−χ(t+ 1

4
∆t)

∆t

2

)
(3.49)

χ(t+
1

2
∆t) ← χ(t+

1

4
∆t) +

∆t

4

2Ekin(t)− 2σ

qmass

(3.50)

2. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.51)

3. RATTLE VV1

4. FF:
f(t+∆t)← f(t) (3.52)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.53)

6. RATTLE VV2

7. Thermostat: Note Ekin(t+∆t) changes inside

χ(t+
3

4
∆t) ← χ(t+

1

2
∆t) +

∆t

4

2Ekin(t+∆t)− 2σ

qmass

v(t+∆t) ← v(t+∆t) exp

(
−χ(t+ 3

4
∆t)

∆t

2

)
(3.54)

χ(t+∆t) ← χ(t+
3

4
∆t) +

∆t

4

2Ekin(t+∆t)− 2σ

qmass
.

The algorithm is self-consistent and requires no iterations.

The conserved quantity is derived from the extended Hamiltonian for the system which, to within a constant,
is the Helmholtz free energy:

HNVT = HNVE +
qmass χ(t)

2

2
+ f kB Text

∫ t

o
χ(s)ds , (3.55)

where f is the system’s degrees of freedom - equation (3.7).

The VV flavour of the Nosé-Hoover thermostat is implemented in the DL POLY 4 routine nvt h0 vv. The
routine nvt h1 vv implements the same but also incorporate RB dynamics.

82

©STFC Section 3.4

3.4.6 Gentle Stochastic Thermostat

The Gentle Stochastic Thermostat [86, 91] is an extension of the Nosé-Hoover algorithm [29]

dr(t)

dt
= v(t)

dv(t)

dt
=

f(t)

m
− χ(t) v(t) (3.56)

in which the thermostat friction, χ, has its own Brownian dynamics:

dχ(t)

dt
=

2Ekin(t)− 2σ

qmass
− γ χ(t) +

√
2 γ kB Text qmass

qmass

dω(t)

dt
, (3.57)

governed by the Langevin friction γ (positive, in units of ps−1), where ω(t) is the standard Brownian motion
(Wiener process - Gauss(0,1)), σ is the target thermostat energy, as in equation (3.41).

qmass = 2 σ τ2T (3.58)

is the thermostat mass, which depends on a specified time constant τT (for temperature fluctuations normally
in the range [0.5, 2] ps).

It is worth noting that equation (3.57) similar to the Ornstein-Uhlenbeck equation:

dχ

dt
= −ασ

2

2
χ+ σ

dω

dt
, (3.59)

which for a given realization of the Wiener process ω(t) has an exact solution:

χn+1 = e−ϵt

(
χn + σ

√
e2 ϵt − 1

2ϵ
∆ω

)
, (3.60)

where ϵ = ασ2/2 and ∆ω ∼ N (0, 1). The VV implementation of the Gentle Stochastic Thermostat algorithm
takes place in a symplectic manner as follows:

1. Thermostat: Note Ekin(t) changes inside and Rg1,2(t), drawn from Gauss(0, 1), are independent

χ(t+
1

4
∆t) ← χ(t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg1(t)

+
∆t

4

2Ekin(t)− 2σ

qmass

v(t) ← v(t) exp

(
−χ(t+ 1

4
∆t)

∆t

2

)
(3.61)

χ(t+
1

2
∆t) ← χ(t+

1

4
∆t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg2(t+

1

4
∆t)

+
∆t

4

2Ekin(t)− 2σ

qmass

2. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← r(t) + ∆t v(t+
1

2
∆t) (3.62)

3. RATTLE VV1

83

©STFC Section 3.4

4. FF:

f(t+∆t)← f(t) (3.63)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.64)

6. RATTLE VV2

7. Thermostat: Note Ekin(t+∆t) changes inside and Rg3,4(t), drawn from Gauss(0, 1), are independent

χ(t+
3

4
∆t) ← χ(t+

1

2
∆t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg3(t+

2

4
∆t)

+
∆t

4

2Ekin(t)− 2σ

qmass

v(t+∆t) ← v(t+∆t) exp

(
−χ(t+ 3

4
∆t)

∆t

2

)
(3.65)

χ(t+∆t) ← χ(t+
3

4
∆t) exp

[
−γ ∆t

4

]
+

√
kB Text
qmass

(
1− exp2

[
−γ ∆t

4

])
Rg4(t+

3

4
∆t)

+
∆t

4

2Ekin(t)− 2σ

qmass

The algorithm is self-consistent and requires no iterations.

The conserved quantity is derived from the extended Hamiltonian for the system which, to within a constant,
is the Helmholtz free energy:

HNVT = HNVE +
qmass χ(t)

2

2
+ f kB Text

∫ t

o
χ(s)ds , (3.66)

where f is the system’s degrees of freedom - equation (3.7).

The VV flavour of the Gentle Stochastic Thermostat is implemented in the DL POLY 4 routine nvt g0 vv.
The routine nvt g1 vv implements the same but also incorporate RB dynamics.

3.4.7 Dissipative Particle Dynamics Thermostat

An elegant way to integrate the DPD equations of motions, as shown in Appendix A, is introduced by
Shardlow [84]. By applying ideas commonly used in solving differential equations to the case of integrating
the equations of motion in DPD, the integration process is factorised by splitting the conservative forces
calculation from that of the dissipative and random terms. In this way the conservative part can be solved
using traditional molecular dynamics methods, while the fluctuation-dissipation part is solved separately as
a stochastic differential (Langevin) equation. There are two Shardlow integrators, called S1 (dpds1) and
S2 (dpds2), based on splitting the equations of motion up to first and second order, respectively, using
Suzuki-Trotter(Strang) expansion of the Liouville evolution operator and thus warranting the integrators’
symplectic.

84

©STFC Section 3.5

To describe the two integrators we define the algorithmic sequence

S(∆t) =

For all pairs of particles for which rij < rc :

(1) : vi ← vi − 1
2mi

{
γijw

2
(rij)

(vij · eij)eij∆t+
√
2γijkBTw(rij)ζijeij

√
∆t
}

(2) : vj ← vj +
1

2mi

{
γijw

2
(rij)

(vij · eij)eij∆t−
√
2γijkBTw(rij)ζijeij

√
∆t
}

(3) : vi ← vi +
1

2mi

{√
2γijkBTw(rij)ζijeij

√
∆t− γijw

2(rij)∆t
1+γijw2(rij)∆t

×[
(vij · eij)eij +

√
2γijkBTw(rij)ζijeij

√
∆t
]}

(4) : vj ← vj − 1
2mi

{√
2γijkBTw(rij)ζijeij

√
∆t+

γijw
2(rij)∆t

1+γijw2(rij)∆t
×[

(vij · eij)eij +
√

2γijkBTw(rij)ζijeij
√
∆t
]}

(3.67)

as the Shardlow operator, where ζij is the random number with zero mean and unit variance, unique for
every unique pair {ij} in the system, and w(rij) = wC(rij) is the DPD conservative force switching function
in equation (A.4), γij is the drag coefficient between the types of particles i and j, vij = vj − vi is the inter-
particle relative velocity and eij = rij/rij is the inter-particle unit vector. kB and T are the Boltzmann
constant and the system target temperature.

If we define the velocity Verlet micro-canonical (NVE) ensemble sequence as NVE(t+∆t) then Shardlow’s
first (S1) and second (S2) order splittings can be written algorithmically as the following sequential operators
applications:

S1 :: S(∆t)→ NVE(t+∆t)

S2 :: S(∆t/2)→ NVE(t+∆t)→ S(∆t/2) . (3.68)

The application of these DPD thermostats are implemented in the DL POLY 4 routine dpd thermostat
and which only applies as a perturbation around the NVE integrator incorporating both particle and RB
dynamics.

3.5 Barostats

The size and shape of the simulation cell may be dynamically adjusted by coupling the system to a barostat
in order to obtain a desired average pressure (Pext) and/or isotropic stress tensor (σ). DL POLY 4 has
four such algorithms: the Langevin type barostat [30], the Berendsen barostat [28], the Nosé-Hoover type
barostat [29] and the Martyna-Tuckerman-Klein (MTK) barsotat [31]. Only the Berendsen barostat does
not have defined conserved quantity.

Note that the MD cell’s centre of mass momentum is removed at the end of the integration algorithms with
barostats.

3.5.1 Instantaneous pressure and stress

The instantaneous pressure in a system,

P(t) = [2Ekin(t)−Watomic(t)−Wconstrain(t−∆t)−WPMF(t−∆t)]

3V (t)
, (3.69)

is a function of the system volume, kinetic energy and virial, W.
Note that when bond constraints or/and PMF constraints are present in the system P will not converge to
the exact value of Pext during equilibration in NPT and NσT simulations. This is due to iterative nature
of the constrained motion, in which the virials Wconstrain and WPMF are calculated retrospectively to the
forcefield virial Watomic.

85

©STFC Section 3.5

The instantaneous stress tensor in a system,

σ(t) = σ
kin

(t) + σ
atomic

(t) + σ
constrain

(t−∆t) + σ
PMF

(t−∆t) , (3.70)

is a sum of the forcefield, σ
atomic

, constrain, σ
constrains

, and PMF, σ
PMF

, stresses.

Note that when bond constraints or/and PMF constraints are present in the system, the quantity
Tr[σ]
3V

will not converge to the exact value of Pext during equilibration in NPT and NσT simulations. This is
due to iterative nature of the constrained motion in which the constraint and PMF stresses are calculated
retrospectively to the forcefield stress.

3.5.2 Langevin Barostat

DL POLY 4 implements a Langevin barostat [30] for isotropic and anisotropic cell fluctuations.

Cell size variations

For isotropic fluctuations the equations of motion are:

d

dt
r(t) = v(t) + η(t) r(t)

d

dt
v(t) =

f(t) +R(t)

m
−
[
χ+

(
1 +

3

f

)
η(t)

]
v(t)

d

dt
η(t) = 3V (t)

P(t)− Pext

pmass
+ 3

2Ekin(t)

f

1

pmass
− χp η(t) +

Rp

pmass
(3.71)

pmass =
(f + 3) kB Text

(2π χp)2

d

dt
H(t) = η(t) H(t)

d

dt
V (t) = [3η(t)] V (t) ,

where χ and χp are the user defined constants (positive, in units of ps−1), specifying the thermostat and
barostat friction parameters, R(t) is the Langevin stochastic force (see equation (3.27)), P the instantaneous
pressure (equation (3.69)) and Rp is the stochastic (Langevin) pressure variable〈

Rp(t) Rp(t
′)
〉
= 2 χp pmass kBT δ(t− t′) , (3.72)

which is drawn from Gaussian distribution of zero mean and unit variance, Gauss(0, 1), scaled by //√
2 χp pmass kBT

∆t . kB is the Boltzmann constant, T the target temperature and pmass the barostat mass. H
is the cell matrix whose columns are the three cell vectors a, b, c.

The conserved quantity these generate is:

HNPT = HNVE +
pmass η(t)

2

2
+ PextV (t) . (3.73)

The VV implementation of the Langevin algorithm only requires iterations if bond or PMF constraints
are present (4 until satisfactory convergence of the constraint forces is achieved). These are with re-
spect to the pressure (i.e. η(t)) in the first part, VV1+RATTLE VV1. The second part is conventional,
VV2+RATTLE VV2, as at the end the velocities are scaled by a factor of χ.

1. Thermostat: Note Ekin(t) changes inside

v(t)← exp

(
−χ ∆t

4

)
v(t) (3.74)

86

©STFC Section 3.5

2. Barostat: Note Ekin(t) and P(t) have changed and change inside

η(t) ← exp

(
−χp

∆t

8

)
η(t)

η(t+
1

4
∆t) ← η(t) +

∆t

4

[
3V (t)

P(t)− Pext

pmass
+

3
2Ekin(t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+

1

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

4
∆t)

v(t) ← exp

[
−
(
1 +

3

f

)
η(t+

1

4
∆t)

∆t

2

]
v(t) (3.75)

η(t+
1

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

4
∆t)

η(t+
1

2
∆t) ← η(t+

1

4
∆t) +

∆t

4

[
3V (t)

P(t)− Pext

pmass
+

3
2Ekin(t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+

1

2
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

2
∆t)

3. Thermostat: Note Ekin(t) has changed and changes inside

v(t)← exp

(
−χ ∆t

4

)
v(t) (3.76)

4. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t) +R(t)

m

H(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
H(t)

V (t+∆t) ← exp

[
3η(t+

1

2
∆t) ∆t

]
V (t) (3.77)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
r(t) + ∆t v(t+

1

2
∆t)

5. RATTLE VV1

6. FF:

f(t+∆t) ← f(t)

R(t+∆t) ← R(t) (3.78)

Rp(t+∆t) ← Rp(t)

7. VV2:

v(t+∆t) ← v(t+
∆t

2
) +

∆t

2

f(t) +R(t)

m
(3.79)

8. RATTLE VV2

87

©STFC Section 3.5

9. Thermostat: Note Ekin(t+∆t) has changed and changes inside

v(t+∆t)← exp

(
−χ ∆t

4

)
v(t+∆t) (3.80)

10. Barostat: Note Ekin(t+∆t) and P(t+∆t) have changed and change inside

η(t+
1

2
∆t) ← exp

(
−χp

∆t

8

)
η(t+

1

2
∆t)

η(t+
3

4
∆t) ← η(t+

1

2
∆t) +

∆t

4

[
3V (t+∆t)

P(t+∆t)− Pext

pmass
+

3
2Ekin(t+∆t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+

3

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

3

4
∆t)

v(t+∆t) ← exp

[
−
(
1 +

3

f

)
η(t+

3

4
∆t)

∆t

2

]
v(t+∆t) (3.81)

η(t+
3

4
∆t) ← exp

(
−χp

∆t

8

)
η(t+

3

4
∆t)

η(t+∆t) ← η(t+
3

4
∆t) +

∆t

4

[
3V (t+∆t)

P(t+∆t)− Pext

pmass
+

3
2Ekin(t+∆t)

f

1

pmass
+
Rp(t)

pmass

]
η(t+∆t) ← exp

(
−χp

∆t

8

)
η(t+∆t)

11. Thermostat: Note Ekin(t+∆t) has changed and changes inside

v(t+∆t)← exp

(
−χ ∆t

4

)
v(t+∆t) , (3.82)

The VV flavour of the langevin barostat (and Nosé-Hoover thermostat) is implemented in the DL POLY 4
routine npt l0 vv. The routine npt l1 vv implements the same but also incorporate RB dynamics.

Cell size and shape variations

The isotropic algorithms may be extended to allowing the cell shape to vary by defining η as a tensor, η

and extending the Langevin pressure variable Rp to a stochastic (Langevin) tensor Rp:

〈
Rp,i(t) Rp,j(t

′)
〉
= 2 χp pmass kBT δij δ(t− t′) , (3.83)

which is drawn from Gaussian distribution of zero mean and unit variance, Gauss(0, 1), scaled by√
2 χp pmass kBT

∆t . kB is the Boltzmann constant, T the target temperature and pmass the barostat mass.
Note that Rp has to be symmetric and only 6 independent components must be generated each timestep.

The equations of motion are written in the same fashion as is in the isotropic algorithm with slight modifi-

88

©STFC Section 3.5

cations (as now the equations with η are extended to matrix forms)

d

dt
r(t) = v(t) + η(t) · r(t)

d

dt
v(t) =

f(t) +R(t)

m
−

χ 1+ η(t) +
Tr
[
η(t)

]
f

1

 · v(t)
d

dt
η(t) =

σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass
− χpη(t) +

Rp

pmass
(3.84)

pmass =
(f + 3)

3

kB Text
(2π χP)2

d

dt
H(t) = η(t) ·H(t)

d

dt
V (t) = Tr[η(t)] V (t) .

where σ is the stress tensor (equation (3.70)) and 1 is the identity matrix.

The conserved quantity these generate is:

HNσT = HNVE +
pmass Tr[η · ηT]

2
+ PextV (t) . (3.85)

the VV algorithmic equations are, therefore, written in the same fashion as in the isotropic case with slight
modifications. For the VV couched algorithm these are of the following sort

η(t) ← exp

(
−χp

∆t

8

)
η(t)

η(t+
1

4
∆t) ← η(t) +

∆t

4

[
σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass
+

Rp(t)

pmass

]
(3.86)

v(t) ← exp

[
−
(
η(t+

1

4
∆t) +

1

f
Tr

[
η(t+

1

4
∆t)

])
∆t

2

]
· v(t)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
· r(t) + ∆t v(t+

1

2
∆t)

This ensemble is optionally extending to constant normal pressure and constant surface area, NPnAT [87],
by semi-isotropic constraining of the barostat equation of motion to:

d

dt
ηαβ(t) =

{
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f pmass
− χpηzz(t) +

Rp,zz(t)
pmass

: (α = β) = z

0 ; ηαβ(0) = 0 : (α, β) ̸= z .
(3.87)

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface tension,
NPnγT [87], by semi-isotropic constraining of the barostat equation of motion to:

d

dt
ηαβ(t) =

σαα(t)−[Pext−γext/hz(t)] V (t)

pmass
+ 2Ekin(t)

f pmass
− χpηαα(t) +

Rp,αα(t)
pmass

: (α = β) = x, y

:
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f
1

pmass
− χpηzz(t) +

Rp,zz(t)
pmass

: (α = β) = z

0 ; ηαβ(0) = 0 : (α ̸= β) = x, y, z

, (3.88)

where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous hight of
the MD box (or MD box volume over area). The instnatneous surface tension is defined as

γα(t) = −hz(t) [σαα(t)− Pext] . (3.89)

89

©STFC Section 3.5

The case γext = 0 generates the NPT anisotropic ensemble for the orthorhombic cell (imcon=2 in CONFIG,
see Appendix B). This can be considered as an ”orthorhombic” constraint on the NσT ensemble. The
constraint can be strengthened further, to a ”semi-orthorhombic” one, by imposing that the MD cell change
isotropically in the (x, y) plane which leads to the following modification in the NPnγT set of equatons

d

dt
ηαα(t) =

[σxx(t) + σyy(t)] /2− [Pext − γext/hz(t)] V (t)

pmass
+

2 Ekin(t)

f pmass
− (3.90)

− χpηαα(t) +
Rp,xx(t) +Rp,yy(t)

2 pmass
: (α = β) = x, y .

The VV flavour of the non-isotropic Langevin barostat (and Nosé-Hoover thermostat) is implemented in
the DL POLY 4 routine nst l0 vv. The routine nst l1 vv implements the same but also incorporate RB
dynamics.

3.5.3 Berendsen Barostat

With the Berendsen barostat the system is made to obey the equation of motion at the beginning of each
step

dP(t)
dt

=
Pext − P(t)

τP
, (3.91)

where P is the instantaneous pressure (equation (3.69)) and τP is the barostat relaxation time constant.

Cell size variations

In the isotropic implementation, at each step the MD cell volume is scaled by a factor η, and the coordinates
and cell vectors by η1/3,

η(t) = 1− β∆t

τP
(Pext − P(t)) (3.92)

where β is the isothermal compressibility of the system. In practice β is a specified constant which
DL POLY 4 takes to be the isothermal compressibility of liquid water. The exact value is not critical
to the algorithm as it relies on the ratio τP /β. τP is a specified time constant for pressure fluctuations,
supplied by the user.

It is worth noting that the barostat and the thermostat are independent and fully separable.

The VV implementation of the Berendsen algorithm only requires iterations if bond or PMF constraints
are present (13 until satisfactory convergence of the constraint forces is achieved). These are with re-
spect to the pressure (i.e. η(t)) in the first part, VV1+RATTLE VV1. The second part is conventional,
VV2+RATTLE VV2, as at the end the velocities are scaled by a factor of χ.

1. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

r(t+∆t) ← η(t)1/3 r(t) + ∆t v(t+
1

2
∆t) (3.93)

H(t+∆t) ← η(t)1/3 H(t)

V (t+∆t) ← η(t) V (t)

2. RATTLE VV1

3. Barostat:

η(t) = 1− β∆t

τP
(Pext − P(t)) (3.94)

90

©STFC Section 3.5

4. FF:
f(t+∆t)← f(t) (3.95)

5. VV2:

v(t+∆t)← v(t+
1

2
∆t) +

∆t

2

f(t+∆t)

m
(3.96)

6. RATTLE VV2

7. Thermostat:

χ(t+∆t) ←
[
1 +

∆t

τT

(
σ

Ekin(t+∆t)
− 1

)]1/2
v(t+∆t) ← v(t+∆t) χ . (3.97)

where H is the cell matrix whose columns are the three cell vectors a, b, c.

The Berendsen algorithms conserve total momentum but not energy.

The VV flavour of the Berendsen barostat (and thermostat) is implemented in the DL POLY 4 routine
npt b0 vv. The routines npt b1 vv implements the same but also incorporate RB dynamics.

Cell size and shape variations

The extension of the isotropic algorithm to anisotropic cell variations is straightforward. A tensor η is

defined as

η(t) = 1− β∆t

τP
(Pext 1− σ(t)/V (t)) , (3.98)

where where σ is the stress tensor (equation (3.70)) and 1 is the identity matrix. Then new cell vectors and
volume are given by

H(t+∆t) ← η(t) ·H(t)

V (t+∆t) ← Tr[η(t)] V (t) . (3.99)

and the velocity updates as

VV1 : r(t+∆t) ← η(t) · r(t) + ∆t v(t+
1

2
∆t)

This ensemble is optionally extending to constant normal pressure and constant surface area, NPnAT [87],
by semi-isotropic constraining of the barostat equation of motion to:

ηαδ(t) =

1− β∆t

τP
[Pext − σzz(t)/V (t)] : (α = δ) = z

1 : (α = δ) = x, y
0 : (α ̸= δ) .

(3.100)

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface tension,
NPnγT [87], by semi-isotropic constraining of the barostat equation of motion to:

ηαδ(t) =

1− β∆t

τP
[Pext − γext V (t)/hz(t)− σαα(t)/V (t)] : (α = δ) = x, y

:

1− β∆t
τP

[Pext − σzz(t)/V (t)] : (α = δ) = z

0 : (α ̸= δ) ,

(3.101)

where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous hight
of the MD box (or MD box volume over area). One defines the instantaneous surface tension as given

91

©STFC Section 3.5

in equation (3.89). The case γext = 0 generates the NPT anisotropic ensemble for the orthorhombic cell
(imcon=2 in CONFIG, see Appendix B). This can be considered as an ”orthorhombic” constraint on the
NσT ensemble. The constraint can be strengthened further, to a ”semi-orthorhombic” one, by imposing
that the MD cell change isotropically in the (x, y) plane which leads to the following change in the equations
above

ηαα(t) = 1− β∆t

τP

[
Pext − γext

V (t)

hz(t)
− σxx(t) + σyy(t)

2 V (t)

]
: (α = δ) = x, y . (3.102)

The VV flavour of the non-isotropic Berendsen barostat (and thermostat) is implemented in the DL POLY 4
routine nst b0 vv. The routine nst b1 vv implements the same but also incorporate RB dynamics.

3.5.4 Nosé-Hoover Barostat

DL POLY 4 uses the Melchionna modification of the Nosé-Hoover algorithm [94] in which the equations of
motion involve a Nosé-Hoover thermostat and a barostat in the same spirit. Additionally, as shown in [95],
a modification allowing for coupling between the thermostat and barostat is also introduced.

Cell size variation

For isotropic fluctuations the equations of motion are:

d

dt
r(t) = v(t) + η(t) (r(t)−R0(t))

d

dt
v(t) =

f(t)

m
− [χ(t) + η(t)] v(t)

d

dt
χ(t) =

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

qmass = 2 σ τ2T (3.103)

d

dt
η(t) = 3V (t)

P(t)− Pext

pmass
− χ(t)η(t)

pmass = (f + 3) kB Text τ
2
P

d

dt
H(t) = η(t) H(t)

d

dt
V (t) = [3η(t)] V (t) ,

where η is the barostat friction coefficient, R0(t) the system centre of mass at time t, qmass the ther-
mostat mass, τT a specified time constant for temperature fluctuations, σ the target thermostat energy
(equation (3.41)), pmass the barostat mass, τP a specified time constant for pressure fluctuations, P the
instantaneous pressure (equation (3.69)) and V the system volume. H is the cell matrix whose columns are
the three cell vectors a, b, c.

The conserved quantity is, to within a constant, the Gibbs free energy of the system:

HNPT = HNVE +
qmass χ(t)

2

2
+
pmass η(t)

2

2
+ PextV (t) + (f + 1) kB Text

∫ t

o
χ(s)ds , (3.104)

where f is the system’s degrees of freedom - equation (3.7).

The VV implementation of the Nosé-Hoover algorithm only requires iterations if bond or PMF constraints
are present (5 until satisfactory convergence of the constraint forces is achieved). These are with re-
spect to the pressure (i.e. η(t)) in the first part, VV1+RATTLE VV1. The second part is conventional,
VV2+RATTLE VV2, as at the end the velocities are scaled by a factor of χ.

92

©STFC Section 3.5

1. Thermostat: Note Ekin(t) changes inside

χ(t+
1

8
∆t) ← χ(t) +

∆t

8

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

v(t) ← exp

(
−χ(t+ 1

8
∆t)

∆t

4

)
v(t) (3.105)

χ(t+
1

4
∆t) ← χ(t+

1

8
∆t) +

∆t

8

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

2. Barostat: Note Ekin(t) and P(t) have changed and change inside

η(t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t)

η(t+
1

4
∆t) ← η(t) +

∆t

4

3 [P(t)− Pext]V (t)

pmass

η(t+
1

4
∆t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t+

1

4
∆t)

v(t) ← exp

[
−η(t+ 1

4
∆t)

∆t

2

]
v(t) (3.106)

η(t+
1

4
∆t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t+

1

4
∆t)

η(t+
1

2
∆t) ← η(t+

1

4
∆t) +

∆t

4

3 [P(t)− Pext]V (t)

pmass

η(t+
1

2
∆t) ← exp

(
−χ(t+ 1

4
∆t)

∆t

8

)
η(t+

1

2
∆t)

3. Thermostat: Note Ekin(t) has changed and changes inside

χ(t+
3

8
∆t) ← χ(t+

1

4
∆t) +

∆t

8

2Ekin(t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

v(t) ← exp

(
−χ(t+ 3

8
∆t)

∆t

4

)
v(t) (3.107)

χ(t+
1

2
∆t) ← χ(t+

3

8
∆t) +

∆t

8

2Ekin(t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

4. VV1:

v(t+
1

2
∆t) ← v(t) +

∆t

2

f(t)

m

H(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
H(t)

V (t+∆t) ← exp

[
3η(t+

1

2
∆t) ∆t

]
V (t) (3.108)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
(r(t)−R0(t)) + ∆t v(t+

1

2
∆t) +R0(t)

5. RATTLE VV1

6. FF:

f(t+∆t)← f(t) (3.109)

93

©STFC Section 3.5

7. VV2:

v(t+∆t) ← v(t+
∆t

2
) +

∆t

2

f(t)

m
(3.110)

8. RATTLE VV2

9. Thermostat: Note Ekin(t+∆t) has changed and changes inside

χ(t+
5

8
∆t) ← χ(t+

1

2
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

v(t+∆t) ← exp

(
−χ(t+ 5

8
∆t)

∆t

4

)
v(t+∆t) (3.111)

χ(t+
3

4
∆t) ← χ(t+

5

8
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+
1
2∆t)

2 − 2σ − kB Text

qmass

10. Barostat: Note Ekin(t+∆t) and P(t+∆t) have changed and change inside

η(t+
1

2
∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+

1

2
∆t)

η(t+
3

4
∆t) ← η(t+

1

2
∆t) +

∆t

4

3 [P(t+∆t)− Pext]V (t+∆t)

pmass

η(t+
3

4
∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+

3

4
∆t)

v(t+∆t) ← exp

[
−η(t+ 3

4
∆t)

∆t

2

]
v(t+∆t) (3.112)

η(t+
3

4
∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+

3

4
∆t)

η(t+∆t) ← η(t+
3

4
∆t) +

∆t

4

3 [P(t+∆t)− Pext]V (t+∆t)

pmass

η(t+∆t) ← exp

(
−χ(t+ 3

4
∆t)

∆t

8

)
η(t+∆t)

11. Thermostat: Note Ekin(t+∆t) has changed and changes inside

χ(t+
7

8
∆t) ← χ(t+

3

4
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+∆t)2 − 2σ − kB Text
qmass

v(t+∆t) ← exp

(
−χ(t+ 7

8
∆t)

∆t

4

)
v(t+∆t) (3.113)

χ(t+∆t) ← χ(t+
7

8
∆t) +

∆t

8

2Ekin(t+∆t) + pmass η(t+∆t)2 − 2σ − kB Text
qmass

v(t+∆t) ← v(t+∆t)− V 0(t+∆t) ,

where V 0(t+∆t) is the c.o.m. velocity at timestep t+∆t and H is the cell matrix whose columns are the
three cell vectors a, b, c.

The VV flavour of the Nosé-Hoover barostat (and thermostat) is implemented in the DL POLY 4 routine
npt h0 vv. The routine npt h1 vv implements the same but also incorporate RB dynamics.

Cell size and shape variation

94

©STFC Section 3.5

The isotropic algorithmscmay be extended to allowing the cell shape to vary by defining η as a tensor, η. The

equations of motion are written in the same fashion as is in the isotropic algorithm with slight modifications
(as now the equations with η are extended to matrix forms)

d

dt
r(t) = v(t) + η(t) · (r(t)−R0(t))

d

dt
v(t) =

f(t)

m
−
[
χ(t) 1+ η(t)

]
· v(t)

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 32 kB Text

qmass

qmass = 2 σ τ2T (3.114)

d

dt
η(t) =

σ(t)− Pext V (t) 1

pmass
− χ(t)η(t)

pmass =
(f + 3)

3
kB Text τ

2
P

d

dt
H(t) = η(t) ·H(t)

d

dt
V (t) = Tr[η(t)] V (t) ,

where σ is the stress tensor (equation (3.70)) and 1 is the identity matrix. The VV algorithmic equations
are, therefore, written in the same fashion as above with slight modifications in (i) the equations for the
thermostat and barostat frictions, and (ii) the equations for the system volume and cell parameters. The
modifications in (i) for the VV couched algorithm are of the following sort

χ(t+
1

8
∆t) ← χ(t) +

∆t

8

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 32 kB Text

qmass

v(t) ← exp

[
−η(t+ 1

4
∆t)

∆t

2

]
· v(t) (3.115)

η(t+
1

4
∆t) ← η(t) +

∆t

4

σ(t)− Pext V (t) 1

pmass
,

The modifications in (ii) couched algorithms

H(t+∆t) ← exp

(
η(t+

1

2
∆t) ∆t

)
·H(t)

V (t+∆t) ← exp

(
Tr

[
η(t+

1

2
∆t)

]
∆t

)
V (t) . (3.116)

It is worth noting DL POLY 4 uses Taylor expansion truncated to the quadratic term to approximate
exponentials of tensorial terms.

The conserved quantity is, to within a constant, the Gibbs free energy of the system:

HNσT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 32) kB Text

∫ t

o
χ(s)ds , (3.117)

where f is the system’s degrees of freedom - equation (3.7).

This ensemble is optionally extending to constant normal pressure and constant surface area, NPnAT [87], by
semi-isotropic constraining of the barostat equation of motion and slight amending the thermostat equation

95

©STFC Section 3.5

of motion and the conserved quantity to:

d

dt
ηαβ(t) =

{
σzz(t)−Pext V (t)

pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α, β) ̸= z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − kB Text

qmass
(3.118)

HNPnAT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 1) kB Text

∫ t

o
χ(s)ds .

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface tension,
NPnγT [87], by semi-isotropic constraining of the barostat equation of motion and slight amending the
thermostat equation of motion and the conserved quantity to:

d

dt
ηαβ(t) =

σαα(t)−[Pext−γext/hz(t)] V (t)

pmass
− χ(t)ηαα(t) : (α = β) = x, y

:
σzz(t)−Pext V (t)

pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α ̸= β) = x, y, z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 3 kB Text

qmass
(3.119)

HNPnγT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 3) kB Text

∫ t

o
χ(s)ds .

where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous hight
of the MD box (or MD box volume over area). One defines the instantaneous surface tension as given
in equation (3.89). The case γext = 0 generates the NPT anisotropic ensemble for the orthorhombic cell
(imcon=2 in CONFIG, see Appendix B). This can be considered as an ”orthorhombic” constraint on the
NσT ensemble. The constraint can be strengthened further, to a ”semi-orthorhombic” one, by imposing that
the MD cell change isotropically in the (x, y) plane which leads to the following changes in the equations
above

d

dt
ηαα(t) =

[σxx(t) + σyy(t)] /2− [Pext − γext/hz(t)] V (t)

pmass
− χ(t)ηαα(t) : (α = β) = x, y

(3.120)

HNPnγ=0T = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 2) kB Text

∫ t

o
χ(s)ds .

The VV flavour of the non-isotropic Nosé-Hoover barostat (and thermostat) is implemented in the DL POLY 4
routine nst h0 vv. The routine nst h1 vv implements the same but also incorporate RB dynamics.

3.5.5 Martyna-Tuckerman-Klein Barostat

DL POLY 4 includes the Martyna-Tuckerman-Klein (MTK) interpretation of the VV flavoured Nosé-Hoover
algorithms [31] for isotropic and anisotropic cell fluctuations in which the equations of motion are only
slightly augmented with respect to those for the coupled Nosé-Hoover thermostat and barostat. Compare

96

©STFC Section 3.5

the isotropic cell changes case, equations (3.103), to

d

dt
r(t) = v(t) + η(t) r(t)

d

dt
v(t) =

f(t)

m
−
[
χ(t) +

(
1 +

3

f

)
η(t)

]
v(t)

d

dt
χ(t) =

2Ekin(t) + pmass η(t)
2 − 2σ − kB Text

qmass

qmass = 2 σ τ2T (3.121)

d

dt
η(t) = 3V (t)

P(t)− Pext

pmass
+ 3

2Ekin(t)

f

1

pmass
− χ(t)η(t)

pmass = (f + 3) kB Text τ
2
P

d

dt
H(t) = η(t) H(t)

d

dt
V (t) = [3η(t)] V (t) ,

and the anisotropic cell change case, equations (3.114), to

d

dt
r(t) = v(t) + η(t) · r(t)

d

dt
v(t) =

f(t)

m
−

χ(t) 1+ η(t) +
Tr
[
η(t)

]
f

1

 · v(t)
d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 32 kB Text

qmass

qmass = 2 σ τ2T (3.122)

d

dt
η(t) =

σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass
− χ(t)η(t)

pmass =
(f + 3)

3
kB Text τ

2
P

d

dt
H(t) = η(t) ·H(t)

d

dt
V (t) = Tr[η(t)] V (t) .

The changes include one extra dependence to the velocity and barostat equations and removal of the centre
of mass variable R0(t) dependence in the position equation.

The modifications in for the VV couched algorithms are of the following sort

η(t+
1

4
∆t) ← η(t) +

∆t

4

[
3V (t)

P(t)− Pext

pmass
+ 3

2Ekin(t)

f

1

pmass

]
v(t) ← exp

[
−
(
1 +

3

f

)
η(t+

1

4
∆t)

∆t

2

]
v(t) (3.123)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
r(t) + ∆t v(t+

1

2
∆t)

97

©STFC Section 3.5

for the isotropic cell fluctuations case and

η(t+
1

4
∆t) ← η(t) +

∆t

4

[
σ(t)− Pext V (t) 1

pmass
+

2Ekin(t)

f

1

pmass

]
v(t) ← exp

[
−
(
η(t+

1

4
∆t) +

1

f
Tr

[
η(t+

1

4
∆t)

])
∆t

2

]
· v(t) (3.124)

r(t+∆t) ← exp

[
η(t+

1

2
∆t) ∆t

]
· r(t) + ∆t v(t+

1

2
∆t)

for the anisotropic cell fluctuations case.

This ensemble is optionally extending to constant normal pressure and constant surface area, NPnAT [87], by
semi-isotropic constraining of the barostat equation of motion and slight amending the thermostat equation
of motion and the conserved quantity to:

d

dt
ηαβ(t) =

{
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α, β) ̸= z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − kB Text

qmass
(3.125)

HNPnAT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 1) kB Text

∫ t

o
χ(s)ds .

Similarly, this ensemble is optionally extending to constant normal pressure and constant surface tension,
NPnγT [87], by semi-isotropic constraining of the barostat equation of motion and slight amending the
thermostat equation of motion and the conserved quantity to:

d

dt
ηαβ(t) =

σαα(t)−[Pext−γext/hz(t)] V (t)

pmass
+ 2Ekin(t)

f
1

pmass
− χ(t)ηαα(t) : (α = β) = x, y

:
σzz(t)−Pext V (t)

pmass
+ 2Ekin(t)

f pmass
− χ(t)ηzz(t) : (α = β) = z

0 ; ηαβ(0) = 0 : (α ̸= β) = x, y, z

d

dt
χ(t) =

2Ekin(t) + pmass Tr[η(t) · η(t)T]− 2σ − 3 kB Text

qmass
(3.126)

HNPnγT = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 3) kB Text

∫ t

o
χ(s)ds ,

where γext is the user defined external surface tension and hz(t) = V (t)/Axy(t) is the instantaneous hight
of the MD box (or MD box volume over area). One defines the instantaneous surface tension as given
in equation (3.89). The case γext = 0 generates the NPT anisotropic ensemble for the orthorhombic cell
(imcon=2 in CONFIG, see Appendix B). This can be considered as an ”orthorhombic” constraint on the
NσT ensemble. The constraint can be strengthened further, to a ”semi-orthorhombic” one, by imposing that
the MD cell change isotropically in the (x, y) plane which leads to the following changes in the equations
above

d

dt
ηαα(t) =

[σxx(t) + σyy(t)] /2− [Pext − γext/hz(t)] V (t)

pmass
+

2 Ekin(t)

f pmass
− χ(t)ηαα(t) :

: (α = β) = x, y (3.127)

HNPnγ=0T = HNVE +
qmass χ(t)

2

2
+
pmass Tr[η · ηT]

2
+ PextV (t) + (f + 2) kB Text

∫ t

o
χ(s)ds .

Although the Martyna-Tuckerman-Klein equations of motion have same conserved quantities as the Nosé-
Hoover’s ones they are proven to generate ensembles that conserve the phase space volume and thus have

98

©STFC Section 3.6

well defined conserved quantities even in presence of forces external to the system [95], which is not the case
for Nosé-Hoover NPT and NσT ensembles.

The NPT and NσT versions of the MTK ensemble are implemented in the DL POLY 4 routines npt m0 vv
and nst m0 vv. The corresponding routines incorporating RB dynamics are npt m1 vv, and nst m1 vv.

3.6 Rigid Bodies and Rotational Integration Algorithms

3.6.1 Description of Rigid Body Units

A rigid body unit is a collection of point entities whose local geometry is time invariant. One way to enforce
this in a simulation is to impose a sufficient number of bond constraints between the atoms in the unit.
However, in many cases this may be either problematic or impossible. Examples in which it is impossible
to specify sufficient bond constraints are

1. linear molecules with more than 2 atoms (e.g. CO2)

2. planar molecules with more than three atoms (e.g. benzene).

Even when the structure can be defined by bond constraints the network of bonds produced may be prob-
lematic. Normally, they make the iterative SHAKE/RATTLE procedure slow, particularly if a ring of
constraints is involved (as occurs when one defines water as a constrained triangle). It is also possible,
inadvertently, to over constrain a molecule (e.g. by defining a methane tetrahedron to have 10 rather than
9 bond constraints) in which case the SHAKE/RATTLE procedure will become unstable. In addition,
massless sites (e.g. charge sites) cannot be included in a simple constraint approach making modelling with
potentials such as TIP4P water impossible.

All these problems may be circumvented by defining rigid body units, the dynamics of which may be
described in terms of the translational motion of the centre of mass (COM) and rotation about the COM.
To do this we need to define the appropriate variables describing the position, orientation and inertia of a
rigid body, and the rigid body equations of motion∗.

The mass of a rigid unit M is the sum of the atomic masses in that unit:

M =

Nsites∑
j=1

mj , (3.128)

where mj is the mass of an atom and the sum includes all sites (Nsites) in the body. The position of the
rigid unit is defined as the location of its centre of mass R:

R =
1

M

Nsites∑
j=1

mjrj , (3.129)

where rj is the position vector of atom j. The rigid body translational velocity V is defined by:

V =
1

M

Nsites∑
j=1

mjvj (3.130)

and its angular momentum J can then be defined by the expression:

J =

Nsites∑
j=1

mj

(
dj ×

[
vj − V

])
, (3.131)

∗ An alternative approach is to define “basic” and “secondary” particles. The basic particles are the minimum number needed
to define a local body axis system. The remaining particle positions are expressed in terms of the COM and the basic
particles. Ordinary bond constraints can then be applied to the basic particles provided the forces and torques arising from
the secondary particles are transferred to the basic particles in a physically meaningful way.

99

©STFC Section 3.6

where vj is the velocity of atom j and dj is the displacement vector of the atom j from the COM, is given
by:

dj = rj −R . (3.132)

The net translational force F acting on the rigid body unit is the vector sum of the forces acting on the
atoms of the body:

F =

Nsites∑
j=1

f
j

(3.133)

and the torque vector τ acting on the body in the universal frame of reference is given by:

τ =

Nsites∑
j=1

dj × f j , (3.134)

where f
j
is the force on a rigid unit site.

A rigid body also has associated with it a rotational inertia matrix I, whose components are given by:

Iαβ =

Nsites∑
j=1

mj(d
2
jδαβ − dαj r

β
j) , (3.135)

and COM stress and virial respectively written down as:

σαβ =

Nsites∑
j=1

dαj f
β
j

W = −
Nsites∑
j=1

dj · f j , (3.136)

where dj is the displacement vector of the atom j from the COM, and is given by:

dj = rj −R . (3.137)

The rigid body angular velocity ω is the right dot product of the inverse of the moment inertia, I, and the
angular momentum, J ,:

ω = I−1 · J . (3.138)

It is common practice in the treatment of rigid body motion to define the position R of the body in a
universal frame of reference (the so called laboratory or inertial frame), but to describe the moment of
inertia tensor in a frame of reference that is localised in the rigid body and changes as the rigid body
rotates. Thus the local body frame is taken to be that in which the rotational inertia tensor Î is diagonal
and the components satisfy Ixx ≥ Iyy ≥ Izz. In this local frame (the so called Principal Frame) the inertia
tensor is therefore constant.

The orientation of the local body frame with respect to the space fixed frame is described via a four
dimensional unit vector, the quaternion:

q = [q0, q1, q2, q3]
T , (3.139)

and the rotational matrix R to transform from the local body frame to the space fixed frame is the unitary
matrix:

R =

q20 + q21 − q22 − q23 2 (q1 q2 − q0 q3) 2 (q1 q3 + q0 q2)
2 (q1 q2 + q0 q3) q20 − q21 + q22 − q23 2 (q2 q3 − q0 q1)
2 (q1 q3 − q0 q2) 2 (q2 q3 + q0 q1) q20 − q21 − q22 + q23

 (3.140)

so that if d̂j is the position of an atom in the local body frame (with respect to its COM), its position in
the universal frame (w.r.t. its COM) is given by:

dj = R · d̂j . (3.141)

With these variables defined we can now consider the equations of motion for the rigid body unit.

100

©STFC Section 3.6

3.6.2 Integration of the Rigid Body Equations of Motion

The equations of translational motion of a rigid body are the same as those describing the motion of a single
atom, except that the force is the total force acting on the rigid body i.e. F in equation (3.133) and the
mass is the total mass of the rigid body unit i.e. M in equation (3.128). These equations can be integrated
by the standard Verlet VV algorithm described in the previous sections. Thus we need only consider the
rotational motion here.

The rotational equation of motion for a rigid body relates the torque to the change in angular momentum:

τ =
d

dt
J =

d

dt

(
I · ω

)
. (3.142)

In a thermostat it can be written as:

J̇ i = τ i − ωi × J i +
χ

qmass
J i , (3.143)

where i is the index of the rigid body, χ and qmass are the thermostat friction coefficient and mass∗. In the
local frame of the rigid body and without the thermostat term, these simplify to the Euler’s equations

˙̂ωx =
τ̂x

Îxx
+ (Îyy − Îzz) ω̂y ω̂z

˙̂ωy =
τ̂y

Îyy
+ (Îzz − Îxx) ω̂z ω̂z (3.144)

˙̂ωz =
τ̂z

Îzz
+ (Îxx − Îyy) ω̂x ω̂y .

The vectors τ̂ and ω̂ are the torque and angular velocity acting on the body transformed to the local body
frame. Integration of ω̂ is complicated by the fact that as the rigid body rotates, so does the local reference
frame. So it is necessary to integrate equations (3.144) simultaneously with an integration of the quaternions
describing the orientation of the rigid body. The equation describing this is:

q̇0
q̇1
q̇2
q̇3

 =
1

2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

0
ω̂x

ω̂y

ω̂z

 . (3.145)

Rotational motion in DL POLY 4 is handled by two different methods. For the LFV implementation, the
Fincham Implicit Quaternion Algorithm (FIQA) is used [96]. The VV implementation uses the NOSQUISH
algorithm of Miller et al. [24]. The implementation NOSQUSH is coded in no squish both contained within
quaternion container.

The LFV implementation begins by integrating the angular velocity equation in the local frame:

ω̂(t+
∆t

2
) = ω̂(t− ∆t

2
) + ∆t Î

−1 · ˙̂ω(t) . (3.146)

The new quaternions are found using the FIQA algorithm. In this algorithm the new quaternions are found
by solving the implicit equation:

q(t+∆t) = q(t) +
∆t

2

(
Q [q(t)] · ŵ(t) +Q [q(t+∆t)] · ŵ(t+∆t)

)
, (3.147)

∗ It is worth noting that in DL POLY 4 all degrees of freedom, translational (both the free particles’ ones and the RBs’ COMs
ones) and rotational, are considered equal and thus treated in the same manner in all available thermostats!

101

©STFC Section 3.6

where ŵ = [0, ω̂]T and Q[q] is:

Q =
1

2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 . (3.148)

The above equation is solved iteratively with

q(t+∆t) = q(t) + ∆t Q[q(t)] · ŵ(t) (3.149)

as the first guess. Typically, no more than 3 or 4 iterations are needed for convergence. At each step the
normalisation constraint:

∥q(t+∆t)∥ = 1 (3.150)

is imposed.

While all the above is enough to build LFV implementations, the VV implementations, based on the
NOSQUISH algorithm of Miller et al. [24], also require treatment of the quaternion momenta as defined by:

p0
p1
p2
p3

 = 2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

0

Îxx ω̂x

Îyy ω̂y

Îzz ω̂z

 , (3.151)

and quaternion torques as defined by:
Υ0

Υ1

Υ2

Υ3

 = 2

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

0
τ̂x
τ̂y
τ̂z

 . (3.152)

It should be noted that vectors p and Υ are 4-component vectors. The quaternion momenta are first updated
a half-step using the formula:

p(t+
∆t

2
)← p(t) +

∆t

2
Υ(t) . (3.153)

Next a sequence of operations is applied to the quaternions and the quaternion momenta in the order:

eiL3(δt/2) eiL2(δt/2) eiL1(δt) eiL2(δt/2) eiL3(δt/2) , (3.154)

which preserves the symplecticness of the operations (see reference [31]). Note that δt is some submultiple
of ∆t. (In DL POLY 4 the default is ∆t = 10δt.) The operators themselves are of the following kind:

eiL(δt) q = cos(ζkδt) q + sin(ζkδt) Pk q

eiL(δt) p = cos(ζkδt) p+ sin(ζkδt) Pk p , (3.155)

where Pk is a permutation operator with k = 0, . . . , 3 with the following properties:

P0 q = { q0, q1, q2, q3}
P1 q = {−q1, q0, q3,−q2} (3.156)

P2 q = {−q2,−q3, q0, q1}
P3 q = {−q3, q2,−q1, q0} ,

and the angular velocity ζk is defined as:

ζk =
1

4Ik
pTPk q . (3.157)

102

©STFC Section 3.6

Equations (3.154-3.156) represent the heart of the NOSQUISH algorithm and are repeatedly applied (10
times in DL POLY 4). The final result is the quaternion updated to the full timestep value i.e. q(t+∆t).
These equations form part of the first stage of the VV algorithm (VV1).

In the second stage of the VV algorithm (VV2), new torques are used to update the quaternion momenta
to a full timestep:

p(t+∆t)← p(t+
∆t

2
) +

∆t

2
Υ(t+∆t) . (3.158)

3.6.3 Thermostats and Barostats coupling to the Rigid Body Equations of Motion

In the presence of rigid bodies in the atomic system the system’s instantaneous pressure, equation (3.69):

P(t) = [2Ekin(t)−Watomic(t)−WCOM(t)−Wconstrain(t−∆t)−WPMF(t−∆t)]

3V (t)
(3.159)

and stress, equation (3.70):

σ(t) = σ
kin

(t) + σ
atomic

(t) + σ
COM

(t) + σ
constrain

(t−∆t) + σ
PMF

(t−∆t) (3.160)

are augmented to include the RBs’ COM virial and stress contributions. Note that the kinetic energy and
stress in the above also include the contributions of the RBs’ COMs kinetic energy and stress!

In DL POLY 4 all degrees of freedom, translational and rotational, are considered equal and thus treated
in the same manner in all available thermostats. Similarly, in the same spirit of equi-partitioning, all
translational degrees of freedom, the free particles’ ones and the RBs’ COMs ones are considered equal and
thus treated in the same manner in all available barostats. Based on these considerations, it is straightforward
to couple the rigid body equations of motion to a thermostat and/or barostat. The thermostat is coupled to
both the translational and rotational degrees of freedom and thus the translational and rotational velocities
(momenta) are thermostated in the same operational manner as the purely atomic ones. The barostat,
however, is coupled only to the translational degrees of freedom and does not contribute to the rotational
motion of the RBs, thus only the RBs’ COMs positions and momenta are subjected to the same barostat
driven algorithmic operations as those of the free particles’ positions and momenta. Therefore, if we notion
the change of the system’s degrees of freedom as:

f → F = f + fRB(tra) + fRB(rot) (3.161)

then all equations of motion defining the ensembles as described in this chapter are subject to the following
notional changes in order to include the RB contributions:

σ(f) → σ(F) = σ(f + fRB(tra) + fRB(rot))

H(f) → H(F) = H(f + fRB(tra) + fRB(rot))

pmass(f) → pmass(F − fRB(rot)) = pmass(f + fRB(tra)) (3.162)

η(f) → η(F − fRB(rot)) = η(f + fRB(tra))

η(f) → η(F − fRB(rot)) = η(f + fRB(tra)) ,

where f refers to the degrees of freedom in the system (see equation (3.7)), σ is the system target energy (see
equation (3.41)), H is the conserved quantity of the ensemble (if there is such defined), Ekin (!includes RB
COM kinetic energy too) and Erot are respectively the kinetic and rotational energies of the system, pmass

is the barostat mass, and η and η are the barostat friction coefficient or matrix of coefficients respectively.

There are two slight technicalities with the Evans and Andersen ensembles that are worth mentioning.

Since both the translational and rotational velocities contribute towards temperature, equation (3.20), show-
ing the derivation of the thermostat friction in the Evans ensemble by imposing a Gaussian constraint on

103

©STFC Section 3.6

the system’s instantaneous temperature, changes to:

d

dt
T = 0 ∝ d

dt

1

2

FP∑
i

miv
2
i +

1

2

RB∑
j

MjV
2
j +

1

2

RB∑
j

ω̂T
j · Îj · ω̂j

 = 0

FP∑
i

vi(t) · f i(t) +
RB∑
j

V j(t) · F j(t) +
RB∑
j

ω̂j(t) · τ̂(t)

−
χ(t)

FP∑
i

miv
2
i (t) +

RB∑
j

MjV
2
j (t) +

RB∑
j

ω̂T
j (t) · Îj · ω̂j(t)

 = 0 (3.163)

χ(t) =

{∑FP
i vi(t) · f i(t) +

∑RB
j V j(t) · F j(t) +

∑RB
j ω̂j(t) · τ̂(t)

}
2 [Ekin(t) + Erot(t)]

,

where where T is the instantaneous temperature defined in equation (3.6) and Ekin in the final expression
contains both the kinetic contribution form the free particles and the RBs’ COMs.

In the case of the Andersen ensemble, if a Poisson selected particle constitutes a RB then the whole RB is
Poisson selected. Poisson selected RBs’ translational and angular velocities together with Poisson selected
FPs’ velocities sample the same Gaussian distribution isokinetically (Boltzmann distribution), where the
isokineticity to target temperature is dependent upon the total of the Poisson selected FPs’ and RBs’ degrees
of freedom.

104

Chapter 4

Coarse Graining Functionality

Scope of Chapter

This chapter describes the coarse-graining functionality available in DL POLY 4.

105

©STFC Section 4.2

4.1 User-Defined Coarse-Grain Models with Tabulated Force-Fields

One can use DL POLY 4 for preparing and running simulations of (numerically) coarse-grained (CG) models
by using tabulated effective force-fields (FF) derived from either (i) potentials of mean force (PMF); or (ii)
iteratively optimised CG models.

In outline, systematic coarse-graining (SCG) of an atomistic system implies the application of a geometrical
projection, or “mapping”, of the original system onto a considerably reduced set of degrees of freedom (DoF),
whence referred to as a “coarse-grained” model. The procedure is to recover the average configurational
(often termed “physical”) and topological (often termed “chemical”) force-field related properties of the
original full-atom (FA) model. Integrating out degrees of freedom ultimately leads to loss of information.
However, if this is done selectively and consistently, the intrinsic information pertaining to the dominating
interactions within the FA system (that govern its behaviour towards phenomena of interest) and the
most important thermodynamic properties are retained. Then the greatly reduced phase-space of the CG
model system allows for efficient access to much longer length and time scales for investigating microscopic
phenomena using of the well-established classical MD machinery. The reduced DoF mapping leads to the
generation of an effective CG FF in terms of the effective interaction potentials and forces between the CG
particles, which are often tabulated numerically.

The initial coarse-grain mapping of the original FA trajectory can be done with the aid of DL CGMAP
tool – http://www.ccp5.ac.uk/software/. After the CG mapped trajectory has been obtained, the relevant
distribution analysis and the Boltzmann Inversion procedure (producing tabulated PMF:s) can be performed
by using DL POLY 4 in “replay history” mode, with the corresponding directives in CONTROL file. For
further iterative optimisation of the CG model the user is advised to use DL POLY 4 as simulation engine
within the framework of VOTCA package – http://www.votca.org/, which provides a handful of various
systematic coarse-graining methodologies. For more details the user should refer to the manuals of these
tools.

This section describes how to use DL POLY 4 for two SCG tasks:

• Post-simulation analysis of the intramolecular (bonded and angular) mean-force interactions, based
on the calculation of the corresponding intramolecular distributions.

• Preparation and use of the tabulated intramolecular potentials.

Note: Although these steps are also applicable to atomistic systems, which can be useful for benchmarking
purposes, below we shall assume that the CG mapping has been done and the following data files have been
generated for the CG mapped model system: CONTROL, FIELD, CONFIG, and, alternatively, HISTORY.

4.2 Intramolecular Probability Distribution Function (PDF) Analysis

Albeit the distribution analysis can be performed on the fly, in the course of a simulation run, for CG
purposes it has to be done on an existing CG mapped trajectory, by invoking the replay history and
analysis directives, see Section 10.1.1. To trigger the PDF collection and subsequent output of PMF:s for
any of the following intramolecular interactions: bonds, angles, dihedrals and/or inversions, the CONTROL
file must contain any combination of the options demonstrated in the example below. Note that such
analyses will only be carried out if the desired intramolecular types of interactions are defined within FIELD!

TITLE: EXAMPLE OF DL_POLY_4 PDF ANALYSIS DIRECTIVES SNIPPET

DIRECTIVES TO INVOKE INTRAMOLECULAR PDF ANALYSIS BY TYPE

analyse bonds sample every 100 nbins 250 rmax 5.0

analyse angles sample every 100 nbins 360 # [0 : pi]

analyse dihedrals sample every 100 nbins 720 # [-pi: pi]

106

http://www.ccp5.ac.uk/software/
http://www.votca.org/

©STFC Section 4.2

analyse inversions sample every 100 nbins 360 # [0 : pi]

DIRECTIVES TO INVOKE INTRAMOLECULAR PDF ANALYSIS FOR ALL TYPES

analyse all sample every 100 nbins 1000 rmax 5.0

DIRECTIVES TO INVOKE PRINTING FOR ANY DEFINED

INTER-(RDF->VDW) & INTRA-(bonded) MOLECULAR PDF ANALYSIS

print analysis

The analyse directive acts in a similar manner to that of the rdf directive outlining (i) the frequency of
sampling (in steps/frames) and (ii) the number of bins over the cutoff interval of the specified interaction.
It is only for bonded pairs that this cutoff needs specifying, whereas for angles the possible ranges are known
a priory by definition. If no cutoff is supplied for bonds, then it defaults to 2 Å. It is worth noting that, for

the sake of accuracy, the number of bins per PDF must be larger than or equal to Nmin = Nint
(
PDF cutoff

∆max

)
,

where the max bin size, ∆max, is defined internally for each type of PDF (see setup module.f90). Otherwise,
it will default to max(Nmin, Ntab), where Ntab is the number of bins on the grid defined in the corresponding
tabulated force-field data file (TAB*), if it is provided, otherwise Ntab = 0. In particular, for bonds ∆max

is 0.01 Å and for angles it is 0.2π/180, i.e. 0.2 degree.

If analyse all option is used in conjunction with any specific directive, then it triggers the analysis on
all PDFs while enforcing on the individually targeted PDF(s) the following parameters: (i) its sampling
interval (frames) – only if it is smaller than, and (ii) its grid number – only if it is larger than those specified
for the targeted PDFs. In the case of bonds it will also enforce the grid range rmax – only if it is larger than
that specified in the analyse bonds directive. Hence, the analyse all directive allows to quickly override
and/or unify the sampling frequencies and max grid numbers for all PDFs, provided its parameters improve
on the accuracy of the collected data (compared to the specifications for the individually targeted PDF:s).

While the statistics are always collected and stored for the future use in the (binary) REVIVE file for all
targeted PDF:s (see Section 10.2.10), using the print analysis directive will instruct DL POLY 4 to addi-
tionally print the data in the OUTPUT and *DAT files, the latter containing each type of PDF:s separately
(the asterisk stands for one of the following: BND, ANG, DIH, or INV). As a result, apart from OUTPUT,
three data files will be created for each of the targeted distribution types: BNDDAT, BNDPMF & BNDTAB
– for bonds, ANGDAT, ANGPMF & ANGTAB – for angles, DIHDAT, DIHPMF & DIHTAB – for dihedrals,
and INVDAT, INVPMF & INVTAB – for inversions; the *PMF and *TAB files containing tabulated data
for the respective potential of mean force and force/virial (*TAB files bearing the data from *PMF files but
resampled onto a finer grid; see the last paragraph in this section).

Partial examples of the *DAT files for bonds and angles are given below.

[user@host]$ more BNDDAT

TITLE: Hexane FA OPLSAA -> CG mapped with 3 beads (A-B-A)

BONDS: Probability Density Functions (PDF) := histogram(bin)/hist_sum(bins)/dr_bin

bins, cutoff, frames, types: 250 5.000 2285 1

#

r(Angstroms) PDF_norm(r) PDF_norm(r)/dVol(r) @ dr_bin = 0.02000

#

type, index, instances: A B 1 2000

0.01000 0.000000E+00 0.000000E+00

0.03000 0.000000E+00 0.000000E+00

0.05000 0.000000E+00 0.000000E+00

...

4.95000 0.000000E+00 0.000000E+00

4.97000 0.000000E+00 0.000000E+00

4.99000 0.000000E+00 0.000000E+00

107

©STFC Section 4.2

[user@host]$ more ANGDAT

TITLE: Hexane FA OPLSAA -> CG mapped with 3 beads (A-B-A)

ANGLES: Probability Density Functions (PDF) := histogram(bin)/hist_sum(bins)/dTheta_bin

bins, cutoff, frames, types: 360 180 2285 1

#

Theta(degrees) PDF_norm(Theta) PDF_norm(Theta)/sin(Theta) @ dTheta_bin = 0.50000

#

type, index, instances: A B A 1 1000

0.25000 0.000000E+00 0.000000E+00

0.75000 0.000000E+00 0.000000E+00

1.25000 0.000000E+00 0.000000E+00

...

178.75000 1.380569E-02 6.328564E-01

179.25000 8.368490E-03 6.393238E-01

179.75000 2.901532E-03 6.649842E-01

One can see that all the header lines are commented out due to starting with the hash symbol, #. Nonethe-
less, the header contains some useful information. The title is, as usual, placed in the first line, which is
followed by an explanatory line with the definition of a normalised PDF. The third line provides the four
most important descriptors: the number of bins on the histogram grid, the cutoff interval (absolute value of
the span) over which the distributions are sampled, the number of frames (samples) used, and the number of
unique unit types analysed (where “unit” is one of the following: bonds, angles, dihedrals or inversions). The
last explanatory line in the header, found in between two empty commented-out lines, defines the meaning
of the columns and, at the end, the grid bin size.

The PDF histograms within a *DAT file are separated by uncommented empty lines, which makes it possible
to directly import and plot all the data as separate lines in [Xm]Grace 2D plotter. For clarity, the data of
each histogram are preceded by a commented-out line specifying the type, index and number of instances of
the analysed interaction unit (the latter being counted over the entire system).

In all *DAT files the first column bears the bin-centered abscissa values (distance or angle), the second column
is the distribution histogram normalized to unity, i.e. its integral equals 1, whereas the third column, if any,
contains the PDF data corrected for the volumetric (entropic) degeneracy of the grid points. Thus, it is the
data of the last column found that are used for calculating PMF ∼ − ln(PDF).

The OUTPUT file will contain copies of the first and second columns of all collected PDF:s, but normalised
so that the figures in the second column sum up to 1, which can be checked by examining the third column
as it bears the running sum of a PDF histogram.

In addition to the PDF:s, DL POLY 4 also calculates the respective PMF:s and pairwise force dependencies
(virial for bonds), which are stored in the *PMF and, upon resampling onto a bin-edge grid, *TAB files.
It is important to note that, unlike the *PMF files containing the bare − ln(PDF) data (converted to
the requested energy units) on the same grid as the PDF histograms, the force-field data in *TAB files are
resampled onto max(Nmin, Ntab) grid points located at the bin edges (as expected by DL POLY 4 when
reading the potential and force tables), where Ntab is the grid number for the respective intramolecular unit
type read-in from its TAB* file, if provided (otherwise Ntab = 0). Thus, the *TAB files obey the DL POLY 4
format for numerically defined intramolecular force-field tables (TAB*, see below) and, hence, can be directly
used as such upon renaming: BNDTAB → TABBND, ANGTAB → TABANG, DIHTAB → TABDIH and
INVTAB→ TABINV. The user is, however, strongly advised to check the quality of the obtained
tabulated force-fields before using those as input for a CG simulation. Albeit DL POLY 4 uses
a simple smoothing algorithm for noise-reduction in PMF:s and implements capping of the forces in the
regions of zero-valued PDF:s, in undersampled regions the PDF and PMF data are likely to suffer from
inaccuracy and increased noise which, most often, require extra attention and re-fitting manually.

108

©STFC Section 4.3

The general format of the above discussed files is shown in Section 10.2.16

4.3 Setting up Tabulated Intramolecular Force-Field Files

For a user-defined, e.g. coarse-grained, model system the effective potentials must be provided in a tabulated
form. For non-bonded short-range (VdW) interactions the TABLE file must be prepared as described in
Section 10.1.7. However, the tabulated data format for intramolecular interactions (bonds, bending angles,
dihedral and inversion angles in a polymer) differs from that of the TABLE file and assumes three columns:
abscissa (distance in Å or angle in degrees), and two ordinates: potential and force data (virial for distance
dependent interactions – e.g. bonds, and force for angle dependent interactions – e.g. angles). Shown below
are examples of TABBND and TABANG files, corresponding to the above PDF examples. Note that the
PMF and force data have been resampled onto a finer grid with points located at bin edges.

[user@host]$ more TABBND

TITLE: Hexane FA OPLSAA -> CG mapped with 3 beads (A-B-A)

5.0 500

A B

1.00000e-02 -9.0906600e+02 1.3954000e+00

2.00000e-02 -9.1046200e+02 2.7908000e+00

3.00000e-02 -9.1185700e+02 4.1862000e+00

...

[user@host]$ more TABANG

TITLE: Hexane FA OPLSAA -> CG mapped with 3 beads (A-B-A)

1000

A B A

1.80000e-01 8.8720627e+01 6.9119576e-01

3.60000e-01 8.8596227e+01 6.9119227e-01

5.40000e-01 8.8471827e+01 6.9118704e-01

...

The input tables for bonds, angles, dihedrals and inversions are named TABBND, TABANG, TABDIH
and TABINV, correspondingly. The format of these files is fixed in terms of the line, or record, order. In
particular, the initial two header lines must contain a title and a record with the grid specification, and each
of the following blocks of tabulated data must be preceded by an empty line and a one-line descriptor record
containing the (white-space delimited) names of the atoms making up the given intermolecular interaction
unit (same as a unit type in *DAT files). These descriptor lines can be commented out or not, i.e. having
as the first symbol would not affect the reading operation, but it would ease importing of the data for
plotting and manipulating in [Xm]Grace software.

In all TAB* files the number of grid points (bins) must be specified on the second line (commented-out
or not). For angles (TABANG, TABDIH, TABINV) no other information needs to be provided as their
ranges are pre-determined: 0 < Θ in TABANG & TABINV ≤ 180 and −180 < Θ in TABDIH ≤ 180. In
the TABBND file, however, the “bond cutoff”, rmax (Å), must be precede the grid number.

Note that all potential and force data are to be provided in the same energy units as specified by the user
in the FIELD file (see Section 10.1.3) with distances in Å and angles in degrees. All the data related to
angles are internally transformed and handled by DL POLY 4 with angles measured in radians.

Finally, in order to instruct DL POLY 4 to use tabulated intramolecular force-fields read from the TAB*
files the user has to specify in the FIELD file the keyword tab or -tab for each intramolecular interaction
thereby chosen for tabulation (similarly to how it is described in Section 10.1.3). The dash symbol (-) in

109

©STFC Section 4.3

front of the keyword tab is only valid for bonds and angles, and is interpreted in the same manner as in
Table 10.5 and Table 10.6.

Note that VOTCA package is also capable of collecting both intra- and inter-molecular stats and producing
correct TAB* files, provided the FIELD and HISTORY files exist (albeit VOTCA saves the distributions in
a format different from *DAT files).

Below we summarise the sequence of operations the user has to follow in order to perform the CG distribution
analysis and prepare the TAB* files for a newly coarse-grained system.

• Perform CG mapping of the original FA system with the aid of DL CGMAP or VOTCA (in the case
of using VOTCA follow its manual; the remainder of the list describes using DL POLY 4 only);

• Move the data files for the newly CG-mapped system (FIELD CG, CONFIG CG, HISTORY CG)
into a separate directory under the standard names (FIELD, CONFIG, HISTORY) and create the
corresponding CONTROL file containing the analysis and replay history directives.

• As no TAB* files are yet available for the CG system at this stage, one can either (i) create the initial
TAB* files padded with zeros, or (ii) use a FIELD file with fictitious records for all the interactions
to be tabulated, with the interaction keywords and parameters chosen arbitrarily in accord with
Table 10.5, Table 10.6, Table 10.7 and Table 10.8. Note that DL CGMAP (as well as VOTCA)
creates FIELD CG files that already contain interaction descriptors with the tab keyword(s) in place,
so if the route (ii) is chosen, the user needs to replace those records with the fictitious ones (it is
advisory to store the initial FIELD CG for the future use, when the actual TAB* files are ready).

• Run DL POLY 4 with the replay history, rdf and/or analysis options invoked in the CONTROL
file, which will result in creation of the targeted inter- and intra-molecular PDF data files (RDFDAT,
BNDDAT, ANGDAT, DIHDAT, INVDAT) and the respective PMF files as described above. Note
that only and only when the rdf and analysis options are both active then the VDWPMF and
VDWTAB files (derived from RDF:s) will be produced, along with RDFDAT. They are structured
in the same manner and format as their intramolecular counterparts. The user can then convert the
VDWTAB file into a correctly formatted TABLE file by using the utility called pmf2tab.f (subject
to compilation; found in DL POLY 4 directory utility) as follows.

[user@host]$ pmf2tab.exe < VDWTAB

• Check the data for accuracy and amend the tabulated force-fields. Redo the analysis on coarser/finer
grid(s), if necessary.

• When satisfied with the created TAB* files, run a DL POLY 4 simulation for the prepared CG (or
simply user-defined) model system.

110

Chapter 5

Two-Temperature Model

Scope of Chapter

This chapter describes the two-temperature model functionality available in DL POLY 4.

111

©STFC Section 5.2

5.1 Introduction

Traditionally, the modelling of radiation damage has been confined to cases in which the radiation (i.e. a
projectile) collides elastically with the nuclei of the target material. Collisions of this type are said to be
dominated by nuclear stopping (energy transfer from the projectile to the nuclei). However, there are a
broad range of scenarios (high energy collision cascades, swift heavy ion irradiation, and laser excitation) in
which a significant portion (high energy collision cascades) or all (lasers and swift heavy ions) of the energy
is transferred to the electrons in the target material. These cases, in which electronic stopping cannot be
neglected, are impossible to account for using traditional molecular dynamics simulations (which assume
equilibrium conditions between the target nuclei and electrons). This chapter describes the implementa-
tion of a hybrid continuum-atomistic implementation within DL POLY 4 that incorporates these electronic
excitations.

The model is based on the traditional two-temperature model (TTM) [97]. This model splits the nuclei
and electrons into two separate but interacting subsystems, each evolving according to a modified version
of Fourier’s heat equation. The continuum implementation of the nuclei (assumed to be in a lattice) in this
form of the model is unable to track individual atomistic trajectories, thus information on superheating,
recrystallisation, and pressure waves is lost. These limitations were overcome by Duffy and Rutherford [85,
98], by replacing the continuum representation of the nuclei with an MD cell (the details of which will
be described in this chapter). This hybrid continuum-atomistic model, a combination of TTM and MD
known as the two-temperature molecular dynamics (2T-MD) model, has been successfully used to model
high energy cascades in iron [99], ultrafast laser irradiation of gold nanofilms [100], and swift heavy ion
irradiation of silicon [101].

5.2 Methodology

Electronic subsystem

The electronic temperature is treated as a continuum system, and evolves according to Fourier’s law of heat
conduction:

Ce(Te)
∂Te
∂t
−∇.[κe∇Te] = −Gep(Te − Ta) +GsT

′
a +A(r, t), (5.1)

where Ce(Te) is the electronic volumetric heat capacity (equal to the product of specific heat capacity and
density), κe is the electronic thermal conductivity, Gep(Te) the electron-phonon coupling, Gs the electronic
stopping term (which is significant for atomistic/ionic temperatures T ′

a greater than a velocity cutoff, as
defined later), and A(r, t) the temporal and spatial dependent source term. This equation describes how
energy evolves in the electronic system as follows: energy is dumped into the electronic system via the
source term (for swift heavy ions and laser excitation), A(r, t), the electronic volume-specific heat determines
the electronic temperature (Te) rise due to this deposition, the thermal conductivity describes how energy
dissipates throughout the electronic subsystem, and the electron-phonon coupling determines energy transfer
from the electrons to the MD cell (and is proportional to the temperature difference between Te and the
atomistic temperature, Ta). Equation (5.1) can be equated to the more general heat diffusion equation,

∂T

∂t
− α∇2T =

q̇

C
, (5.2)

T is temperature, t is time, q̇ is a heat source or sink, C is heat capacity, and α is thermal diffusivity. This
partial differential equation is solved using Euler’s method, which is a space-centred, forward-in-time integra-
tion algorithm. For a temperature Tn

i (at time step n and grid point i), the forward-in-time implementation
can be Taylor-expanded and rearranged to:(

∂T

∂t

)
i

=
Tn+1
i − Tn

i

∆t
− ∆t

2

(
∂2T

∂t2

)
i

− ∆t2

6

(
∂3T

∂t3

)
i

− · · · ≈
Tn+1
i − Tn

i

∆t
, (5.3)

112

©STFC Section 5.2

for equally-spaced timesteps ∆t, and leads to a truncation error O(∆t). The one-dimensional space-centred
integration is (

∂T

∂x

)
n

=
Tn
i+1 − Tn

i−1

∆x
− ∆x2

6

(
∂3T

∂x3

)
i

− ... ≈
Tn
i+1 − Tn

i−1

∆x
(5.4)

for equally spaced grid lengths ∆x, and leads to a truncation error of O(∆x2). The second derivative can
be calculated as follows:(

∂2T

∂x2

)
n

=

[
∂

∂x

∂T

∂x

]
n

= lim
∆x→0

(
forward difference - backwards difference

∆x

)
≈

Tn
i+1−Tn

i

∆x − Tn
i −Tn

i−1

∆x

∆x

=
Tn
i+1 − 2Tn

i + Tn
i−1

∆x2
(5.5)

Inserting these numerical solutions into Equation (5.2), the one-dimensional heat diffusion equation can be
expressed via a finite-difference scheme as

Tn+1
i − Tn

i

∆t
− α

(
Tn
i+1 − 2Tn

i + Tn
i−1

∆x2

)
=

q̇

C
. (5.6)

Rearranging for Tn+1
i gives

Tn+1
i = Tn

i +∆t

[
α

(
Tn
i+1 − 2Tn

i + Tn
i−1

∆x2

)
+
q̇

C

]
, (5.7)

which is also known as the one-dimensional explicit finite-difference solution to Fourier’s law of heat con-
duction. This scheme is illustrated in Figure 5.1: it is explicit as the temperature at time n + 1 explicitly
depends on the temperature at time n, and is evidently forward-in-time and space-centred.

space

time

∆t

∆x

T
n

i

T
n

i−1 T
n

i+1

T
n+1

i

Figure 5.1: One-dimensional finite-difference schematic (boundary nodes indicated by dark vertical lines)

113

©STFC Section 5.2

The timestep and lattice spacing, ∆t and ∆x respectively, must be chosen carefully to ensure the stability
of this algorithm, and this is provided by defining the Fourier mesh number, F , as

F = α
∆t

∆x2
(5.8)

This can be thought of as the ratio of timestep to the time it takes to equilibrate a region of length ∆x. In
this one-dimensional case, the value of F must satisfy 0 < F < 1

2 , or else the algorithm becomes unstable
and oscillates wildly.

In three-dimensions, if ∆x = ∆y = ∆z, the finite-difference solution becomes

Tn+1
i,j,k = Tn

i,j,k +∆t

[
α

(
Tn
i+1,j,k + Tn

i−1,j,k + Tn
i,j+1,k + Tn

i,j−1,k + Tn
i,j,k+1 + Tn

i−1,j,k−1 − 6Tn
i,j,k

∆x2

)
+
q̇

C

]
= Tn

i,j,k + F [Tn
i+1,j,k + Tn

i−1,j,k + Tn
i,j+1,k + Tn

i,j−1,k + Tn
i,j,k+1 + Tn

i−1,j,k−1 − 6Tn
i,j,k] + ∆t

q̇

C
, (5.9)

with a new stability criteria of 0 < F < 1
6 . Thus, the size of the timestep must satisfy ∆t < ∆x2

6α . Equation
(5.9) applies under the assumption that the thermal diffusivity α is a constant value, i.e. ∇.[α∇T] = α∇2T ,
but the more general (and hence more complicated) case, where α can vary spatially, takes the form

Tn+1
i,j,k =

∆t

∆x2

(
κ
[
1
2(T

n
i+1,j,k + Tn

i,j,k)
]

C(Tn
i,j,k)

(Tn
i+1,j,k − Tn

i,j,k) +
κ
[
1
2(T

n
i−1,j,k + Tn

i,j,k)
]

C(Tn
i,j,k)

(Tn
i−1,j,k − Tn

i,j,k)

)

+
∆t

∆y2

(
κ
[
1
2(T

n
i,j+1,k + Tn

i,j,k)
]

C(Tn
i,j,k)

(Tn
i,j+1,k − Tn

i,j,k) +
κ
[
1
2(T

n
i,j−1,k + Tn

i,j,k)
]

C(Tn
i,j,k)

(Tn
i,j−1,k − Tn

i,j,k)

)

+
∆t

∆z2

(
κ
[
1
2(T

n
i,j,k+1 + Tn

i,j,k)
]

C(Tn
i,j,k)

(Tn
i,j,k+1 − Tn

i,j,k) +
κ
[
1
2(T

n
i,j,k−1 + Tn

i,j,k)
]

C(Tn
i,j,k)

(Tn
i,j,k−1 − Tn

i,j,k)

)

+ ∆t
˙qni,j,k

Cn
i,j,k

. (5.10)

Here the electronic thermal conductivity has an explicit spatial dependence. To simplify this relationship,
κ can be assumed to be constant locally, and is taken to be the average value between the current and
neighbouring cells. An adaptive timestep is also utilised, so at each timestep a fraction of the ’worst case
scenario’ for the Fourier mesh number, F , is chosen, ensuring the stability of the electronic subsystem.

Various boundary condition choices are available for the edge cells in Figure 5.1, which surround the simu-
lation in all three dimensions. These are:

• Dirichlet Boundary Conditions: Also known as infinite-flux boundary conditions, the edge cell is fixed
at a finite temperature, T = T0, where T0 is the target (system) emperature. Dirichlet BCs are usually
chosen for cascade simulations.

• Neumann Boundary Conditions: Also known as zero-flux boundary conditions, the temperature of the
edge cell is taken to be the value of its corresponding neighbour, thus dT

dx = 0 in this region.

• Robin Boundary Conditions: Also known as partial or variable flux boundary conditions, the temper-
ature of the edge cell is taken to be a fixed proportion of the neighbouring cell’s temperature. Thus
dT
dx = −k(T − T0), where k is the fraction of the neighbouring temperature that is ’targeted’.

The electronic energy contained in a voxel representing an electronic temperature grid point can be calculated
by integrating the volumetric heat capacity between a datum temperature (e.g. system temperature) and
the local electronic temperature, i.e.

Ej
e =

∫ T j
e

T0

CedT. (5.11)

114

©STFC Section 5.2

A quantity of electronic energy can be added to a voxel by setting the local electronic temperature to a new
value, such that the integral of volumetric heat capacity between the original and new temperatures gives
the required energy.

The atomic temperatures Ta and T ′
a can be calculated from kinetic energies of atoms in each voxel, i.e. for

cell j:

T j
a =

∑
p∈x⃗j mpv

2
p

3kBN
(5.12)

T ′j
a =

∑
p∈x⃗j ,|vp|>vcut

mpv
2
p

3kBN ′ (5.13)

where vcut is the cut-off velocity beyond which electronic stopping is significant, N is the total number of
atoms in the voxel and N ′ is the number of atoms in the voxel with velocities greater than vcut. To account
for centre-of-mass drift, the atomic velocities vp should be corrected by the voxel’s velocity, calculated by

vjcom =
∑

p∈x⃗j
mpvp∑

p∈x⃗j
mp

.

If there are too few (or no) atoms in a voxel, it is considered to be inactive as no definable ionic tempera-
tures can be calculated. Equation (5.10) does not have to be applied to inactive voxels (setting electronic
temperatures to the datum value T0 and source terms to zero), while temperature gradient terms involving
inactive voxels in the same equation can be omitted for their neighbours.

MD system

The principal idea is to modify the MD equations of motion according to Langevin dynamics, which describes
the movement of particles in a viscous medium. This viscous medium will represent the electronic subsystem,
and the modified equation of motion takes the form

dvp(t)

dt
=
f
p
(t) +Rp(t)

mp
− χp vp(t), (5.14)

where mp and v⃗p are the mass and velocity of atom p at time t, f
p
is the deterministic force on atom p due to

the interatomic potential, Rp(t) is a stochastic force with random magnitude and orientation and mpχpvp(t)
is the frictional force due to the electrons. These last two terms in Equation (5.14) are the Langevin
modifications to Newton’s second law, which allow energy to be lost and gained by the MD system.

The stochastic force Rp(t) returns energy from the electrons to the ions and is formulated as Rp(t) =√
ΓA⃗p(t), where A⃗p(t) is a three-dimensional vector with components randomly distributed in [−1, 1], and

Γ is the stochastic friction coefficient. Rp(t) must satisfy two important time-averaged conditions:

⟨Rp(t)⟩ = 0, (5.15)

⟨Rp(t) ·Rq(t
′)⟩ ∝ δpqδ(t− t′) (5.16)

The first condition states that over a significant period of time, Rp(t) must not behave as a net source or
sink. Equation (5.16) is known as the fluctuation-dissipation theorem, which describes how the drag felt
by a particle as it moves through a viscous medium can give rise to Brownian motion. In the standard
homogeneous Langevin thermostat, every atom in the MD simulation is thermostatted to a target temper-
ature. The inhomogeneous case allows for each atom to be thermostatted to the electronic temperature of
the corresponding continuum electronic cell. This leads to the stochastic friction term

Γ =
6mpχ

j
epkBT

j
e

∆t
, (5.17)

where χj
ep is the electron-phonon friction of the jth electronic finite-element cell, T j

e is the electronic temper-
ature of the corresponding cell, kB is the Boltzmann constant, and ∆t is the timestep. The electron-phonon

115

©STFC Section 5.2

friction term is thus calculated at each point in the finite electronic temperature grid:

χep =
Gep∆V

3kBN
, (5.18)

where ∆V is the volume of the cell (∆x∆y∆z), Gep is the electron-phonon coupling constant of the material,
and N is the number of atoms in the cell.

The friction term in Equation (5.14) is made up of two forms of energy loss: the previous discussed electron-
phonon friction, and electronic stopping, which is inelastic electron scattering of ballistic atoms. The total
electron friction coefficient χp for atom p is given by

χp =

{
χep + χes : |vp| > vcut
χep : |vp| ≤ vcut

, (5.19)

where χes is the electronic stopping friction, vp is the velocity of atom p, and vcut is the cut-off velocity for
which electronic stopping becomes significant. The electronic stopping friction term can be calculated in a
similar fashion to the electron-phonon term:

χes =
Gs∆V

3kBN ′ (5.20)

where N ′ is the number of atoms in the cell with velocities greater than vcut. Note that this term is set to
zero when N ′ = 0.

From Equations (5.14), (5.18) and (5.20), the differences between the contributions from electron-phonon
coupling and electronic stopping are evident. Electron-phonon coupling allows energy to flow to and from
the lattice (depending on the temperature gradient between ions and electrons), whereas electronic stopping
acts solely as an energy loss mechanism for the lattice. Figure 5.2 illustrates these processes for swift heavy

Figure 5.2: Schematic of thermodynamic coupling and processes in 2T-MD model

ion simulations, and highlights how the MD cell is now thermostatted to a heat bath. The lattice will reach
local equilibrium with the electron gas, which is thermostatted to the heat bath, thus eventually driving
both subsystems to the chosen ambient temperature. Energy can only be removed from the system via
the electron gas; this is justified due to how slow lattice heat diffusion is in comparison to electronic heat
diffusion.

116

©STFC Section 5.3

It is possible to use the inhomogeneous Langevin thermostat (Equation (5.14)) on its own without coupling
it to the electronic temperature grid, but still enhancing the total Langevin friction term for atoms with
velocities greater than a cut-off value[102]. In this case, the stochastic friction coefficient Γ is modified to use
the system temperature T0 instead of a local electronic temperature and to take advantage of the enhanced
friction coefficient when electronic stopping applies, i.e.

Γ =
6mpχpkBT0

∆t
. (5.21)

5.3 Simulation setup

There are three distinct types of irradiation that can be simulated using the TTM (2T-MD) implementation
in DL POLY 4: swift heavy ions, laser excitation, and high-energy cascades. These are conducted by
splitting the MD cell into discrete coarse-grained lattice ionic temperature (CIT) voxels, and discretising the
electronic system into coarse-grained electronic temperature (CET) voxels. Energy can thus be exchanged
between the voxels and subsequently passed to or from the atoms within each respective CIT. The volume of
each CIT voxel must contain a sufficient number of atoms so that thermal fluctuations of ions are negligible
and an ionic temperature can be defined: a good general choice is a cube of length 10 Å in each direction.
There is more flexibility in choosing the number of CET voxels, as long as an integer number of these overlap
with the CIT grid: to simplify the connections between the CET and CIT grids, equal-sized voxels for both
systems will be assumed from here on.

Cascades

Figure 5.3: Schematic of cascade simulation setup

High-energy cascades require no initial energy deposition into the electronic system (i.e. dE
dx = 0): instead,

an ion is initialised with a very high velocity. The electronic temperature (CET) voxels extend further than
the ionic temperature (CIT) voxels in all directions, with open (Dirichlet) or semi-open (Robin) boundary
conditions in all dimensions to represent thermal electronic conduction into the bulk, allowing the electronic
temperature to converge towards the initial system temperature T0. (Figure 5.3 gives an example schematic
of this simulation setup.) Stochastic boundary conditions can be applied in the ionic system to dampen the
shock wave generated by the displacement spike.

Swift heavy ions

Swift heavy ion systems can be modelled using an initial Gaussian spatial energy deposition into the elec-
tronic system (i.e. dE

dx > 0) with either Gaussian or exponentially decaying temporal distribution in electronic
temperature. The size of the electronic temperature (CET) grid in the z-direction is set equal to the size
of the ionic temperature (CIT) grid in the same dimension, while the CET voxels are extended over the
corresponding CIT voxels in the x- and y-directions. Boundary conditions can be set with no energy flux

117

©STFC Section 5.3

Figure 5.4: Simulation setup for swift heavy ion impact.

in the z-direction and open or semi-open boundary conditions in x- and y-directions. (Figure 5.4 gives a
schematic of this simulation setup.) Stochastic boundary conditions can be applied to the lattice system in
lateral directions only to represent non-negligible phononic thermal conductivity in semiconductors into the
builk. Similarly, while electronic thermal conduction in the lateral directions is allowed, conduction parallel
to impact is not. This reflects the fact that the simulation represents a small cross-section of the evolution
of a micron-sized track.

Laser excitation

Figure 5.5: Simulation setup for laser irradiation.

Laser excitation systems can be modelled with an initial homogeneous spatial energy deposition into the
electronic system (either in all three directions or in x- and y-directions with exponential decay in the z-
direction) with either Gaussian or exponentially decaying temporal distribution in electronic temperature.
(The energy deposition can be specified for the fully homogeneous case either by setting dE

dx > 0 or by giving
values for the absorbed fluence and penetration depth from the laser.) The size of the electronic temperature

118

©STFC Section 5.4

(CET) grid is set to the same size as the ionic temperature (CIT) grid, with zero-flux (Neumann) boundary
conditions in all directions. This setup (shown in Figure 5.5) represents a homogeneous laser excitation with
the simulated part as a small section of a larger photoexcited sample.

It is possible in such simulations for voxels to become empty due to displacement of atoms from the laser
source. These voxels are omitted from electronic heat diffusion calculations, setting their electronic tem-
peratures to the background value T0 and their source terms to zero. Their associated spatial gradients in
Equation (5.10) are also omitted for neighbouring voxels.

5.4 Implementation

TTM with MD (2T-MD) has been implemented in DL POLY 4 to take advantage of the domain decom-
position scheme used by the code, by dividing up the coarse-grained ionic (CIT) and electronic (CET)
temperature voxels as evenly as possible among the processors based on location. This avoids the need
for each processor to hold copies of the entire CIT and CET grids and provides good to excellent parallel
scalability for larger scale problems.

Coarse-grained ionic temperature (CIT) voxels are divided among processors with overlapping voxels be-
tween two or more processors assigned to the first processor in each direction. A boundary halo of voxels is
also included to allow communication of contributions to voxel momenta, kinetic energies and atom coun-
ters between processors for calculations of ionic temperatures. Since ionic temperatures are only needed for
finite-difference calculations of Equation (5.1), some of these communications only need to be applied in one
direction for each dimension.

The coarse-grained electronic temperature (CET) grid is considered as integer multiples of the ionic tem-
perature grid, with equal numbers in both directions of each dimension. While this may provide more CET
voxels than requested by the user, the application of boundary conditions in the correct places means that
the finite-difference calculations can be carried out in superfluous voxels without affecting the result. The
centre of the CET grid is located at the same place as the CIT grid, matching the two up precisely: the
electron-phonon, electronic stopping and energy deposition source terms are only applied in these CET
voxels. Communications of electronic temperature can be carried out both within each ‘copy’ of the ionic
temperature grid and between them: these need to be applied for each iteration (timestep) of the finite-
difference solver.

Communications to and from boundary halos for both CIT and CET grids make use of MPI derived data
types, which allow for single MPI send and receive calls for grid values without needing to pack and unpack
data. This is the same communication technique used in DL MESO for its lattice Boltzmann equation
code[103] and has been shown to give near-perfect parallel scaling to thousands of processors.

Functionality and directives

All directives in the CONTROL file beginning with ttm will switch on the two-temperature model (2T-
MD) as described above. If no other information is provided, DL POLY 4 will use default values for certain
required properties, but some information must be provided: if this information is unavailable, DL POLY 4
will terminate. The list of TTM directives is given as part of Section 10.1.1.2: more details about these
directives are given below.

The inhomogeneous Langevin thermostat can be activated using the directive ensemble nvt ttm or
ensemble nvt inhomo in the CONTROL file, specifying the electron-phonon friction term (χep, in ps−1),
electronic stopping friction term (χes, in ps−1) and the cutoff atomic velocity for electronic stopping (vcut,
in Å ps−1). This thermostat is required for 2T-MD calculations but can also be used independently: this
CONTROL file directive therefore does not automatically switch on the two-temperature model, but the
thermostat will be selected automatically if TTM is otherwise switched on. Default values for χep, χes and
vcut will be used in this case if they have not been specified, although if a standard NVT Langevin ensemble

119

©STFC Section 5.4

has been selected, its thermostat friction term χ will be used for χep.

By default, the inhomogeneous Langevin thermostat will be applied only to particle thermal velocities, i.e.
velocities that have been corrected to remove the centre-of-mass flow calculated from its coarse-grained
ionic temperature (CIT) voxel. This can be overridden either by the directive ttm thvelz to only correct
the z-direction velocity component and use total velocity components in the x- and y-directions, or by the
directive ttm nothvel to omit all velocity corrections and use total particle velocities. A warning message
will also be printed if the no vom option is not used, as removal of total centre-of-mass motion may affect
the dynamics of systems with electronic stopping effects.

The number of coarse-grained electronic temperature (CET) voxels is specified in the CONTROL file with
the directive ttm ncet: by default, a grid of 50 × 50 × 50 will be used if this information is not supplied
by the user. The number of coarse-grained ionic temperature (CIT) voxels in the z-direction is specified in
CONTROL using the directive ttm ncit: the default number is 10, and the number of voxels in x- and
y-directions will be determined automatically based on system size. The number of CET voxels must be at
least the same as CIT or larger: too few CET voxels will cause DL POLY 4 to terminate.

The volumetric heat capacity Ce can be obtained for TTM calculations in four different forms with their
corresponding CONTROL file directives:

• A temperature-independent constant value (ttm ceconst)

Ce = C0ρ

• A linear function of temperature up to a maximum at the Fermi temperature Tf (ttm celin)

Ce(T) = C0ρmax (T/Tf , 1)

• A hyperbolic tangent function of temperature (ttm cetanh)

Ce(T) = Aρ tanh
(
10−4BT

)
• A tabulated function of temperature supplied in a Ce.dat file (ttm cetab).

Note that the values given for the first three options are specific heat capacities (C0 and A given in kB per
atom), which are converted to volumetric heat capacities by multiplying by the atomic density ρ = N

∆V .
The atomic density is assumed to be constant throughout the system, and this value can be set in one of
three ways: (1) a value can be calculated from the provided configuration at the start (assuming all ionic
temperature cells are active), (2) the user can specifiy a value using the ttm atomdens directive in the
CONTROL file, or (3) after energy deposition to the electronic temperature grid, the value can be calculated
dynamically from active CITs when using the ttm dyndens directive. In the latter case, the system or
user-specified atomic density is used during energy deposition. Tabulated volumetric heat capacities are
given in the Ce.dat file as J m−3 K−1, which are converted to kB Å−3. If no heat capacity information
is supplied, DL POLY 4 will assume a constant volumetric heat capacity of 1 kB per atom by default. In
all cases, the electronic energy of a given voxel can be determined from the product of cell volume and
the integral of the volumetric heat capacity between the system temperature T0 and its current electronic
temperature Te.

If the system is metallic (specified by the CONTROL directive ttm metal), a thermal conductivity needs to
be supplied: no default value is provided by DL POLY 4. Four options are available with their corresponding
CONTROL file directives:

• An infinitely large value (ttm keinf)

Ke =∞

120

©STFC Section 5.4

• A temperature-independent constant value (ttm keconst)

Ke = K0

• A Drude-model (linear) function of temperature (ttm kedrude)

Ke(T) = K0
T

T0

• A tabulated function of temperature supplied in a Ke.dat file (ttm ketab).

All values (constants or tabulated) are supplied in W m−1 K−1. In the case of infinitely large conductivity,
all heat diffusion in the electronic subsystem is instantaneous and all active CET voxels without source
terms will be at the same mean electronic temperature. The Drude model uses the electronic temperature
for a given voxel, while the tabulated function will use either the ionic temperature for overlapping cells or
the system temperature for CET voxels beyond the CIT system.

If the system is non-metallic (specified by ttm nonmetal in CONTROL), a thermal diffusivity needs to be
supplied: no default value is provided by DL POLY 4. Three options are available with their corresponding
CONTROL file directives:

• A temperature-independent constant value (ttm deconst or ttm diff)

De = D0

• A reciprocal function of temperature up to the Fermi temperature Tf (ttm derecip)

De(T) = D0
T0

min (T, Tf)

• A tabulated function of temperature supplied in a De.dat file (ttm detab).

All values (constant and tabulated) are supplied in m2 s−1 and subsequently converted to Å2 ps−1.

The electron-phonon coupling friction term χep can either be held at the constant value given in ensemble
nvt ttm, or it can be dynamically varied according to electronic temperature. The CONTROL file directive
ttm varg can be used to specify that the electron-phonon coupling constant Gep is supplied in tabulated
form from a g.dat file, with values of Gep given in W m−3 K−1 and converted to χep values (using Equation
(5.18) with the mean value for the number of atoms per voxel, N = ρ∆V) in ps−1. Two variants of dynamic
coupling are available: homogeneous coupling uses the mean electronic temperature to calculate a system-
wide value of chiep, while heterogeneous coupling uses local values of electronic temperature (based on values
in CET voxels) to calculate chiep for each atom.

Boundary conditions to the electronic temperature system are applied using the ttm bcs directive in the
CONTROL file. Along with the Dirichlet, Neumann and Robin boundary conditions described earlier in this
chapter, periodic boundary conditions can also be applied. Combinations of Dirichlet or Robin boundary
conditions in x- and y-directions with Neumann boundary conditions in the z-direction are also available.
These boundary conditions have no direct connection to any boundary conditions used for the MD system:
conditions for the latter should be chosen carefully by the user to give the desired effects.

An energy deposition (A(r, t)) can be applied using one of two CONTROL file directives:

• ttm dedx: specifies the electron stopping power of a projectile entering the electronic system (dEdx in
eV/nm);

• ttm laser: specifies the absorbed fluence (F in mJ cm−2) and penetration depth (lp in nm) of a laser.

121

©STFC Section 5.4

The energy deposition can be split into spatial and temporal parts, i.e. A(r, t) = f(r, z)g(t)∆V . Depositions
can be applied spatially in one of three ways:

• ttm sflat: specifies a homogeneous distribution in x-, y- and z-directions

f(r) =
dE

dV
=
dE

dx

1

LxLy

where Lx and Ly are the MD system dimensions in x- and y-directions;

• ttm sgauss: specifies a Gaussian distribution in x- and y-directions from the centre of the system,
i.e.

f(r) =
dE

dx

1

2πσ2
e−

r2

2σ2

with standard deviation σ, extending up to a cut-off distance (given in multiples of σ);

• ttm laser F lp zdep: specifies a homogeneous distribution in x- and y-directions with exponential
decay in the z-direction (from the centre of the system)

f(r, z) =
F

lp
exp

(
−|z|
lp

)
using the penetration depth lp as the exponential scaling factor.

In the first two cases, spatial depositions are homogeneous in the z-direction. Unless the zdep option is
invoked, laser depositions are homogeneous in all three directions (similar to the ttm sflat case), with the
ratio of absorbed fluence to penetration depth equal to dE

dV . The deposition can be applied temporally in
one of four ways:

• ttm delta: specifies a Dirac delta function in time

g(t) = δ(t− t0)

which is approximated as an energy injection during a single diffusion timestep;

• ttm pulse: specifies a square pulse function in time

g(t) =

{
1
τ , t− t0 < τ
0, t < t0 and t− t0 ≥ τ

over a period τ ;

• ttm gauss: specifies a Gaussian function in time

g(t) =
1

σ
√
2π
e
−
(

t−t0
σ

)2

over a period of a multiple of standard deviations σ;

• ttm nexp: specifies a decaying exponential function in time

g(t) = e−
t−t0
τ

over a period of a multiple of τ .

122

©STFC Section 5.4

The exponential function is scaled to ensure the correct total energy (within a tolerance of ±1%) is deposited
to the electronic system. Energy depositions are achieved by determining the required increases in electronic
temperature to add the required energy to the CET voxel.

To calculate ionic temperatures in CIT voxels, a minimum number of atoms is required: this can be specified
by the CONTROL file directive ttm amin, although a default value of 1 is used if this is not supplied by
the user. Any CIT voxel that includes this number of atoms will be considered as active and an ionic
temperature can be calculated from the mean kinetic energy of atoms in the voxel (after centre-of-mass
motion is removed). If the voxel does not contain enough atoms, it is considered inactive: no electron-
phonon coupling is applied to the corresponding electronic temperature cell, although thermal diffusion
is still applied as normal. All voxels within the CIT grid are checked at each MD timestep and can be
reactivated once the minimum number of atoms can be found. If the ttm dyndens option is also specified,
the average cell density (number of atoms per unit volume) will be recalculated after energy deposition by
only considering active CIT voxels: note that the system-based or user-specified atomic density will be used
before and during energy deposition.

If the ttm redist option is in use, any recently deactivated voxels have their electronic energy transferred to
neighbouring active voxels by increasing their electronic temperatures: these are used for localised Dirich-
let (constant temperature) boundary conditions during thermal diffusion in the single MD timestep. The
corresponding electronic temperature cell is also deactivated: its electronic temperature is set to the system
temperature and the voxel is excluded from thermal diffusion calculations by setting the electronic tem-
perature gradient between itself and any neighbours to zero. This option requires at least one electronic
temperature cell beyond the ionic system in each direction to ensure electronic energy from deactivated cells
is not lost: if this condition does not hold, the energy transfer option is switched off.

To equilibrate the electronic system prior to any energy deposition, the CONTROL file directive ttm offset
can be used to allow the electronic and ionic systems to settle: this switches off the electron-phonon terms
in both electronic heat diffusion calculations and the inhomogeneous Langevin thermostat, only applying
electronic stopping effects. The ttm oneway directive restricts electron-phonon coupling to coarse-grained
ionic temperature (CIT) voxels and their atoms when the electronic temperature is higher than the ionic
temperature: both the electron-phonon coupling term in the thermal diffusion equation and the inhomoge-
neous Langevin thermostat are switched off if this condition is not met.

The CONTROL file directives ttm stats and ttm traj switches on outputs of statistical information and
limited temperature trajectory snapshots of the two-temperature model simulation. Ionic temperatures
(minimum, maximum, mean and sum) are supplied at user-defined intervals in the file PEAK I, while
electronic temperatures and energies are supplied in the PEAK E file. Ionic and electronic temperature
profiles along the y-direction at the centre of the xz plane are given in the LATS I and LATS E respectively
at user-defined intervals.

Overview of program structure

The following modules, both modified and added, incorporate the two-temperature molecular dynamics
model in DL POLY 4:

• dl poly.f90: modified to initialise ttm module.f90;

• read control.f90: modified to include the additional control directives required to activate and
parameterise 2T-MD;

• ttm module.f90: deal with initial array allocation, locations of electronic temperature voxel bound-
aries etc.;

• ttm track module.f90: deal with initial energy deposition to the electronic temperature grid;

• ttm utils.f90: contains functions to calculate properties for heat diffusion calculations, boundary
conditions etc.;

123

©STFC Section 5.4

• ttm table scan.f90: scans for any-temperature dependent electronic parameter data files;

• ttm table scan.f90: reads in tabulated parameters for the electronic system;

• ttm system init.f90: reads in any electronic temperature files (DUMP E) to allow simulation
restart;

• w md lfv.f90 and w md vv.f90: modified to calculate ionic lattice and electronic cell temperatures
and call the new inhomogeneous Langevin thermostat (nvt l2 lfv.f90 and nvt l2 vv.f90);

• ttm ion temperatures.f90: calculates local ion lattice temperatures from average kinetic energies
of atoms in coarse-grained ionic temperature (CIT) cells and electronic stopping terms (determining
energy transferred from ions to electrons);

• ttm thermal diffusion.f90: calculates local electronic temperatures by solving the heat diffusion
equation using a finite-difference solver, including source and sink terms representing energy exchange
with the MD cell;

• w integrate lfv.f90 and w integrate vv.f90: modified to call the new inhomogeneous Langevin
thermostat (nvt l2 lfv.f90 and nvt l2 vv.f90);

• nvt l2 lfv.f90 and nvt l2 vv.f90: new inhomogeneous Langevin thermostat (both leap-frog and
velocity Verlet variants);

• langevin forces.f90: modified to allow scaling of Langevin random forces by local electronic tem-
perature instead of system temperature;

• ttm system revive.f90: writes file with electronic temperatures (DUMP E) to allow the MD system
with TTM to be restarted.

124

Chapter 6

Heat Flux

Scope of Chapter

This chapter describes the heat flux functionality available in DL POLY 4.

125

©STFC Section 6.1

6.1 Heat Flux

6.1.1 Introduction

It is possible to use DL POLY 4 to calculate the heat flux of a material with two-body interactions in an
MD simulation. The heat flux can subsequently be used as a means to calculate the thermal conductivity
of a material via the Green-Kubo relation. Currently, the heat flux is only viable for two-body interactions,
but valid for any two-body interactions.

To enable the calculation of heat flux add the heat flux keyword into the CONTROL file.

6.1.2 Theory

The heat flux for two-body interactions is defined as:

J =
1

V

[
N∑
i

eivi −
N∑
i

S
i
vi

]
(6.1)

where J is the heat flux, V is the volume of the cell, N is the number of particles, e is the energy, v is the
velocity, S is the stress. All subscript i refer to the particle.

The thermal conductivity can then be as an auto-correlation of the heat flux over a run:

κ =
V

kBT 2

∞∫
0

⟨J(0)J(t)⟩ dt (6.2)

where κ is the thermal conductivity, V is the volume of the cell, kB is the Boltzmann constant, J is the
heatflux.

6.1.3 Implementation

For the purposes of calculating per-particle SPME interactions, the long-range electrostatics forces and
energies are calculated differently for the heat flux case. From the SPME equations, we can calculate a per
particle contribution via:

ΩABC =
∑
j

ωABC
j

ωABC
j =

1

2πV

∞∑
n1n2n3=−∞

K1−1∑
k1

K2−1∑
k2

K3−1∑
k3

QABC
j (k,n)

∑
m ̸=0

[∏
µ

bµ(m)e
2πi

mµkµ
Kµ

]
f(m)

QABC
j (k,n) = qj

[
Kα

2πi

]A ∂A

∂uAαj
Mn(uαj − kα − nαKα)×[

Kβ

2πi

]B ∂B

∂uBβj
Mn(uβj − kβ − nβKβ)×[

Kγ

2πi

]C ∂C

∂uCγj
Mn(uγj − kγ − nγKγ)

where ω is the per-particle contribution for particle j, q is the charge, other values are defined in the SPME
section (see: 2.4.1.5)

126

©STFC Section 6.1

6.1.4 File

The heat flux method creates a file called HEATFLUX which contains the relevant data structured as:
STEP PRESSURE VOLUME HEAT-FLUX

127

Chapter 7

Exdenting DL POLY 4 to reactive
systems: the Empirical Valence Bond
method

Scope of Chapter

This chapter presents the theoretical fundamentals of the Empirical Valence Bond (EVB) method and its
implementation into the DL POLY 4 code. This feature allows to perform molecular dynamics simulations
of reactive processes via the use of standard (non-reactive) force-fields.

128

©STFC Section 7.2

7.1 Framework and motivation

A key component of DL POLY 4 is the Force Field (FF) to model the interactions between atoms. As
already described in previous chapters, such atomic interactions are often modelled by relatively simple
functional forms with parameters either fitted to experimental data or derived from quantum mechanical
calculations. In most of the classical FFs available, functional forms and fitted parameters remain un-
changed during the course of the molecular dynamics (MD) simulation. Indeed, this is the type of FFs that
DL POLY 4 can handle. In reactive processes, however, the nature of the interactions inevitable changes
due to the formation of new chemical species. For this reason, standard FFs (thence DL POLY 4) are not
suitable to simulate chemical reactions. We shall refer to such FFs as non-reactive.
An alternative to simulate chemical reactions is offered by the so called Reactive FFs (RFFs). In contrast
to standard FFs where interactions are modelled for a particular state with a given topology and chemistry,
RFFs are designed to model the interatomic interactions valid for multiple states that are chemically differ-
ent. The task of designing RFFs, however, is very challenging and requires a high level of expertise to tackle
a multi-dimensional problem, where the modelled interactions are often expressed by complicated functional
forms with many strongly coupled parameters that are optimised via the use of sophisticated tools. Even
though RFFs have evolved considerably in the last years, a general parametrization is not yet available and,
instead, parameters have to be tuned to specific chemical systems and environments.
Within this framework and to the purpose of extending the applicability of DL POLY 4 to simulate reactive
processes, the Empirical Valence Bond (EVB) method [104] offers an appealing alternative for computa-
tional implementation and development. In contrast to facing the challenges of building RFFs, the EVB
method defines a suitable matrix using computed quantities of the participating chemical states, where
each state is modelled by a non-reactive FF. Via the definition of appropriate coupling terms and matrix
diagonalization at each time step, it is possible to obtain potential energy landscapes that account for the
change in chemistry when sampling conformations between the participating, chemically different, states.
In contrast to RFFs, the advantage of the EVB method lies in the large availability of standard non-reactive
FFs libraries. In addition, despite the initial task to calibrate the coupling terms against reference data,
research has demonstrated that these couplings are invariant to the surrounding electrostatics, making it
possible to simulate the same reactive unit in different environments. For further details about the applica-
tions of the EVB method, we refer the user to ref. [105].
The fundamentals of the EVB method are presented in the next section. Strategies to calibrate EVB-FFs
are discussed in section 7.3. The computational implementation of the EVB method is described in section
7.4. Finally, section 7.5 provides a guideline to users on how to prepare the settings for EVB simulations
with DL POLY 4.

7.2 The EVB method

Let us assume an atomic system composed of Np particles with positions described by the set of vectors
{R}. The non-reactive force field (FF) for the chemical state m is described by the configurational energy

E
(m)
c ({R}) and the set of forces F⃗

(m)
J ({R}), where the index J runs over the total number of particles. The

configurational energy function E
(m)
c ({R}) has the decomposition of eq. (2.1). In the following, however,

we shall omit the presence of external fields, such as electric or magnetic. In the current notation, we shall
use indexes m and k for the chemical states (and FFs), I and J for atoms and Greek letters for Cartesian
coordinates. Indexes in parenthesis are used to emphasize the particular chemical state.
The purpose of the EVB method is to couple NF non-reactive force fields to obtain a reactive potential.
These FFs are coupled through the Hamiltonian ĤEVB with a matrix representation HEVB ∈ RNF×NF that
has the following components

Hmk
EVB({R}) =

{
E

(m)
c ({R}) m = k

Cmk(ϵmk) m ̸= k
(7.1)

129

©STFC Section 7.2

where each diagonal element corresponds to the configurational energy E
(m)
c ({R}) of the non-reactive FF

that models the interactions as if the system was in the chemical state (m), whereas the off-diagonal terms
Cmk are the couplings between states m and k. For convenience in the notation, we shall omit hereinafter
the dependence on the set of coordinates {R} for the particles. Even though there are different possible

choices for the coupling terms, in the above definition we have set Cmk to depend on ϵmk = E
(m)
c − E(k)

c =

−[E(k)
c − E(m)

c] = −ϵkm, where ϵmk is commonly referred to as energy gap and defines a possible reaction
coordinate for the reactive process [106]. Since the HEVB matrix is Hermitian by construction and the Cmk

terms are real, the condition of Cmk = Ckm must be imposed to the off-diagonal elements. Diagonalization
of HEVB leads to NF possible eigenvalues {λ1, ..., λNF

} with

HEVBΨλm = λmΨλm , m = 1, ..., NF . (7.2)

The EVB energy, EEVB, is defined as the lowest eigenvalue

EEVB = min(λ1, ..., λNF
) (7.3)

with the corresponding normalized EVB eigenvector

ΨEVB = Ψmin(λ1,...,λNF
). (7.4)

and
EEVB =

〈
ΨEVB

∣∣ĤEVB

∣∣ΨEVB

〉
. (7.5)

Since the eigenvector ΨEVB is real and normalized we have

NF∑
k=1

∣∣Ψ(k)
EVB

∣∣2 = 1 (7.6)

from which we can interpret |Ψ(k)
EVB

∣∣2 as the fraction of the chemical state (k) being part of the EVB state.

The eigenvector ΨEVB can also be represented as a column vector ∈ RNF×1 where Ψ
(k)
EVB is the element of

the k-row. Thus, eq. (7.5) is expressed as a matrix multiplication

EEVB =

NF∑
m,k=1

Ψ̃
(m)
EVBH

mk
EVBΨ

(k)
EVB (7.7)

where Ψ̃EVB is the transpose of ΨEVB. The resulting EVB force over the particle J , F⃗EVB
J , follows from the

Hellman-Feynman theorem

F⃗EVB
J = −∇R⃗J

EEVB = −
〈
ΨEVB

∣∣∇R⃗J
ĤEVB

∣∣ΨEVB

〉
=

∑
α=x,yz

FEVB
Jα α̌ (7.8)

where α̌ corresponds to each of the orthonormal Cartesian vectors and

FEVB
Jα = −

〈
ΨEVB

∣∣∂ĤEVB

∂RJα

∣∣ΨEVB

〉
. (7.9)

From eq. (7.1) the matrix components of the operator ∂ĤEVB
∂RJα

are given as follows

∂Hmk
EVB

∂RJα
=

∂E
(m)
c

∂RJα
= −F (m)

Jα m = k

dCmk

∂RJα
=
dCmk(ϵmk)

dϵmk

∂ϵmk

∂RJα
m ̸= k

=
dCmk(ϵmk)

dϵmk

[
∂E

(m)
c

∂Jα
− ∂E

(k)
c

∂Jα

]
= C ′

mk[F
(k)
Jα − F

(m)
Jα]

(7.10)

130

©STFC Section 7.2

where C ′
mk = dCmk(ϵmk)

dϵmk
and F

(k,m)
Jα is the α component of the total configurational force over particle J in

the chemical state (k,m). Similarly to eq. (7.7), eq. (7.9) can be expressed as a matrix multiplication

FEVB
Jα = −

NF∑
m,k=1

Ψ̃
(m)
EVB

(
∂Hmk

EVB

∂RJα

)
Ψ

(k)
EVB. (7.11)

The above equations define the standard EVB force field (EVB-FF). Even though the EVB formalism was
first developed to compute molecular systems, EVB is also applicable to extended systems, customarily
modelled using the supercell approximation and periodic boundary conditions (PBCs). However, the ap-
plication of the EVB method to NPT ensembles requires the computation of the EVB stress tensor, which
cannot be derived using the standard formulation [105]. To circumvent this limitation, we propose to make
use of the well-known relation between the configurational energy and the configurational stress tensor [71]

∂E
(k)
c

∂hαβ
= −V

∑
γ=x,y,z

σc(k)αγ h−1
βγ (7.12)

where h is the set of lattice vectors of the supercell with volume V=det(h). Multiplying to the left by hνβ
and summing over β we obtain the inverse relation to eq. (7.12)

σ
c(k)
αβ = − 1

V

∑
γ=x,y,z

hβγ
∂E

(k)
c

∂hαγ
(7.13)

which can be used to define the EVB stress tensor

σEVB
αβ = − 1

V

∑
γ=x,y,z

hβγ
∂EEVB

∂hαγ
. (7.14)

Similar to the definition of the EVB force, we evaluate ∂EEVB/∂hαγ using the eq. (7.5) and the Hellman-
Feynman theorem

∂EEVB

∂hαβ
=
〈
ΨEVB

∣∣∂ĤEVB

∂hαβ

∣∣ΨEVB

〉
. (7.15)

The matrix components of the operator ∂ĤEVB
∂hαβ

follow from the definition of the EVB matrix (7.1) and the

use of relation (7.12)

∂Hmk
EVB

∂hαβ
=

∂E
(m)
c

∂hαβ
= −V

∑
γ σ

c(m)
αγ h−1

βγ m = k

dCmk

∂hαβ
=
dCmk(ϵmk)

dϵmk

∂ϵmk

∂hαβ
m ̸= k

=
dCmk(ϵmk)

dϵmk

[
∂E

(m)
c

∂hαβ
− ∂E

(k)
c

∂hαβ

]
= −V C ′

mk

∑
γ

[σc(m)
αγ − σc(k)αγ]h−1

βγ .

Finally, the EVB stress tensor of eq. (7.14) can be expressed as a matrix multiplication

σEVB
αβ = − 1

V

∑
γ=x,y,z

hβγ

NF∑
m,k=1

Ψ̃
(m)
EVB

(
∂Hmk

EVB

∂hαβ

)
Ψ

(k)
EVB. (7.16)

These expressions provide an alternative to compute the stress tensor σEVB from the configurational stress

tensors of each non-reactive FF, σ
c(k)
αγ . It is important to note that the presented scheme to compute σEVB

131

©STFC Section 7.3

can only be derived if one uses functional forms for Cmk that depend on the energy differences ϵmk, for which

one can evaluate ∂E
(m)
c

∂hαβ
− ∂E

(m)
c

∂hαβ
and use relation (7.12) with the computed configurational stress tensor for

each chemical state. In contrast, if the choice was to use coupling terms that do not depend on ϵmk but
other degrees of freedom such as spatial coordinates, it is not clear how to derive an expression for σEVB.
Similarly to the stress tensor, the inability to compute individual contributions of the EVB force [105]
prevents the evaluation of the virial using the standard formulation, and the usual decomposition of the
virial depending of the type of interaction under consideration. Within the presented formalism, we compute
the virial VEVB from σEVB

αβ as follows

VEVB = −
∑

α=x,y,z

σEVB
αα . (7.17)

The instantaneous total stress tensor, σT , is given by the following general expression

σT = σkin + σEVB + σRB + σbc (7.18)

where σkin, σRB and σbc are the contributions to the stress tensor from the kinetic energy, rigid bodies
(RB) and bond constraints (bc), respectively. The EVB method only accounts for the configurational
interactions, as described. The kinetic stress tensor is computed as usual from the instantaneous velocities
of the particles. For a particle that is part of a rigid body, the only possible interactions are intermolecular
non-bonded interactions (such as coulombic and van der Waals interactions) with other neighboring particles
that are not part of the same rigid body. Following the computation of the EVB forces via eq. (7.9), the
contribution to the stress from the rigid bodies is analogously to eq. (3.136)

σRB
αβ =

NRB∑
B=1

ηB∑
I=1

FEVB
IB,α dIB,β (7.19)

where F⃗IB is the total force over particle I of rigid body B and d⃗IB the vector distance from atom IB to the
center of mass of the rigid body B. In the above expression, index B runs over all the rigid bodies. Each rigid
body is composed of ηB particles. Since, by definition, the topology of rigid bodies remain unaltered during
the simulation, the use of RBs within in the present framework is meaningful only to model the environment
interacting reactive EVB site. A common example is the use of rigidly constrained water molecules to model
a solution.
Contributions to the stress tensor from bond constraints, σbcαβ, are obtained using the SHAKE/RATTLE al-
gorithm (sec. 3.2) during the course of the simulation. This algorithm is independent of the EVB formalism,
and corrects for the dynamics of the constrained particles. Finally, frozen particles do not contributed to
the stress tensor and are not considered in the formalism. It is important to note that the topology defined
via the setting of RBs, frozen atoms and bond constraints must be the consistent for all the coupled FFs, as
they impose well defined conditions for the dynamics. For example, if a group of atoms form a rigid body,
they must remain a rigid body independently of chemical state under consideration.

7.3 Calibrating EVB force fields

The quality of EVB for the description of reactive processes depends on the choice for the coupling terms
Cmk, particularly to reproduce accurate interactions at the intermediate region between chemical states m
and k where the change of chemistry occurs. For the implementation of the EVB method in DL POLY 4,

we have used functional forms Cmk that depend on the energy differences ϵmk = E
(m)
c −E(k)

c to compute the
stress tensor as described in Sec. 7.2. We have implemented two functional forms for the coupling terms.
One is just setting the coupling term to be a constant:

Cmk(ϵmk) = A1,mk (7.20)

and the other possibility is to use Gaussian type of function,

Cmk(ϵmk) = A1,mk e
−
(

ϵmk−A2,mk
A3,mk

)2

+A4,mk. (7.21)

132

©STFC Section 7.4

To determine the parameters for the coupling terms, it is necessary to consider a path that connects the
reference geometries for states m and k. A convenient path is the minimum energy path (MPE) at zero-
temperature, ζmk, obtained either via Density Functional Theory (DFT) or quantum chemistry (QC) meth-
ods to reproduce the change of chemistry between the states. The corresponding energy profile for this
trajectory, Ẽζmk

, is used as a reference, and the aim is to fit the coupling parameters such that EEV B

coincides with Ẽζmk
along ζmk. If we consider another state l, for example, it is expected that along ζmk the

values for E
(l)
c will be exceedingly large in comparison with E

(m)
c and E

(k)
c (|ϵlk| ≫ 1 and |ϵlm| ≫ 1), from

which Cml(ϵml) ≈ A4,ml and Ckl(ϵkl) ≈ A4,kl. One can initially set A4,kl = A4,ml = 0 for all l ̸= m, k and
the coupling term Cml is computed as follows

C2
mk(ϵmk) =

[
Ẽζmk

− E(m)
c,ζmk

] [
Ẽζmk

− E(k)
c,ζmk

]
(7.22)

where E
(m)
c,ζmk

and E
(k)
c,ζmk

are the conformational energies for states m and k along ζmk, while ϵmk is in turn
a implicit function of ζmk

ϵmk(ζmk) = E
(m)
c,ζmk

− E(k)
c,ζmk

. (7.23)

To find the parameters for the coupling Cmk, one has to plot the values obtained from eq. (7.22) as a
function of ϵmk and fit the parameters using the functional form of eqs. (7.21) or (7.20), depending on the
user’s choice. This procedure is enough when coupling two FFs. For more than two fields, however, we have
assumed A4,ln = 0 for l ̸= n ̸= m, k. Thus, in order to fit the parameters for the rest of the coupling terms of
the EVB matrix, one should consider all the possible remaining MEPs between the states. For the pair l, p,
for example, one can proceed in a similar way by setting all A4 elements to zero, but this time Cmk will not
be necessarily zero. Depending on the number of coupled FFs, different but more complicated expressions
like eq. (7.22) can be derived. Details are beyond the scope of this chapter.
The procedure to fit the coupling terms necessarily requires the use of force-fields i) consistent with the level
of theory that is used to compute the explicit electronic problem for the reaction and ii) accurate enough
far from the reference geometry for which they were fitted. Ultimately, meeting these requirements is a
non-trivial challenge, particularly for large systems. We refer the user to Ref. [105] (and references therein)
for a more detail discussion of the available strategies to calibrate EVB potentials.
Finally, depending on the non-reactive FF and the result from a DFT/QC simulation, one may want to

shift the configuration energies E
(m)
c by ∆E

(m)
shift. This is particularly convenient to correct the relative

energy between the involved chemical states. We have implemented this feature as input parameters in the
SETEVB file (see Sec. 7.5).

7.4 Computational implementation

In the standard format, DL POLY 4 reads the initial coordinates, velocities and forces from the CONFIG
file. Each particle is labelled according to its specification in the FIELD file, which contains the information
of the FF type and parameters for the interactions between the particles. Settings for the MD simulation are
specified in the CONTROL file. Initially, the code was modified to allow i) reading multiple (NF) CONFIG
and FIELD files, ii) allocating arrays of dimension NF for the relevant quantities, iii) checking consistency
of specification between all force fields and initial coordinates (including any possible constraint such as
rigid bodies), iv) reading EVB settings such as coupling terms and v) preventing the execution if there are
MD or FF options that are not consistent with a EVB simulation. With regards to this last point, not all
type of interactions in the energy decomposition of eq. (2.1) are suitable to describe reactive interactions.
For example, three-body, four-body, Tersoff and metallic interactions are, by construction, not designed to
account for different chemical states. Thus, such interactions should only be used to model the surrounding
atomic environment interacting with the EVB site.
Regarding the EVB method in itself, modifications to the code required to allow for the computations of
energies, forces, stress tensor and virials for each of the NF force-fields separately. From the computed
configurational energy of each FF and the choice of the functional forms for the coupling terms, the EVB

133

©STFC Section 7.5

matrix (7.1) is built and diagonalized, and the lowest eigenvalue and the corresponding vector are assigned
to EEV B and ΨEV B, respectively. Matrix (7.10) is computed for each particle’s Cartesian components and
the resulting EVB force is obtained via the matrix multiplication of eq. (7.11). From the stress tensors
computed for each FF, matrix (7.16) is built for all the αβ terms and the αβ component of the EVB stress
tensor obtained via eq. (7.16), and the total virial from eq. (7.17). Such EVB calculations are conducted for
each time step taking advantage of the domain decomposition as implemented in DL POLY 4.
All the NF force fields are computed in a loop architecture, i.e. one after the other, before being coupled
via the EVB method. This means that all the available processors are used to compute each force-field,
in contrast to the alternative strategy of dividing processors for each force field. For extended systems,
this choice is convenient given the relative high computational cost of the long range Coulombic part in
comparison with all the other contributions to the configurational energy. This loop structure increases the
computational time by a multiplicative factor of approximately NF with respect to the required time to
compute only a single force field.

7.5 Setting EVB calculations

Setting input files and parameters for the EVB simulation of NF coupled FFs in DL POLY 4 requires of:
• the CONTROL file with the directive evb NF

• NF CONFIG files with the same ionic coordinates. The labelling of each atom in the CONFIG file must
be consistent its FIELD file.
• NF FIELD files with the interaction parameters to describe each of the coupled chemical states. Very
important: the FFs descriptors for the reactive part of the potential must be specified before the descriptors
for the non-reactive part.
• the SETEVB file.

To avoid problems, users are advised to check consistency between CONFIG and FIELD files for each of the
chemical states separately, as for any standard simulation with DL POLY 4. It is important to remark that
the numbering and coordinates for all the atoms should be same of all CONFIG files, and all CONFIG files
must have the same number of atoms. For example, atom 1 with tag A in CONFIG (labelling consistent
with FIELD file) should be also atom 1 in CONFIG2, even though it might have a different tag B (labelling
assigned in FIELD2).
The file SETEVB is compulsory for EVB simulations. For a EVB site described by NF fields, the SETEVB
file must contain all the settings specified via the structure details in Table 7.1.
The definition of the NF values of evbtypemols in the SETEVB file requires of particular care. As described
in table 7.1, these values indicate how many of the first defined type-of-molecules for each FIELD files are
used to describe the EVB reactive site. To further clarify on this statement, let us consider a single EVB
reactive unit interacting with non-reactive water molecules. Such a reactive unit is described by two-coupled
FFs. In the chemical state 1, the reactive site is a single fragment described by the first type-of-molecule
in the FIELD file, while the second type-of-molecule describes each of the surrounding water molecules.
In the chemical state 2, the reactive site is composed of two molecular fragments, described by the first
two type-of-molecules in the FIELD2 file, while now the third type-of-molecule describes the surrounding
water. Consequently, Molecular types is set to 2 and 3 for files FIELD and FIELD2, respectively, and the
specification in the SETEVB must be: evbtypemols 1 2.
The definition of constraints is only valid for atoms that are not part of the reactive EVB site. In addi-
tion, constraints must be kept consistent between FIELD files. For example, if a bond-constraint is set in
the FIELD file for atoms X and Y , this bond-constraint should also be defined for the other FIELD files.
Similarly with ridig-bodies, tethers, core-shells and frozen atoms. This requirement is crucial to ensure
correctness in the dynamics of the system as forces over constrained atoms must be corrected to comply
with the constraint. In case there is an inconsistency found, the code will abort the execution.
For the non-reactive part of the system (non-EVB atoms), it is also important to make sure that the spec-
ification for labels, mass and charges for all non-EVB atoms is the same for all FIELD files. Likewise, all

134

©STFC Section 7.5

intermolecular (Tersoff, metallic, three-body, four-body), intramolecular (bond, angle, dihedral and inver-
sion) and vdW interactions between these non-EVB atoms must be the same for all FIELD files. If any
of these requirements is not fulfilled, DL POLY 4 aborts the execution and print an error message that
(hopefully) will guide the user to identify and fix the inconsistency.
Finally, the EVB implementation offers the possibility to restart the simulation, as NF REVCON files are
written. Analogous to the standard restart calculation, the user must copy the REVIVE file to REVOLD,
while each REVCON (REVCON2,, REVCONNF) file must be copied to the corresponding CONFIG
(CONFIG2,, CONFIGNF) file. To restart, the user must add the word restart in CONTROL file.
Additional points for further consideration:
• all FIELD files must have the same units
• Replay calculations are not allowed for EVB
• Simulations with four-body interactions are prevented
• external electric and magnetic fields are not possible within the EVB formalism (see ref. [105])

Table 7.1: Description for the settings of the SETEVB file

Setting Description

evbtypemols (Compulsory) Indicates how many of the first type-of-molecules specified in each of
the NF FIELD files are used to describe the EVB reactive site. See 7.5

evbcoupl (Compulsory) Specifies the information for coupling parameters. Since Cmk = Ckm

only NF (NF − 1)/2 of these lines are needed. If the specification for any pair is
repeated the simulation is stopped. The syntax for the specification is as follows,
depending if one sets a coupling term to be a constant (const) or use the Gaussian
functional form (gauss):

FF-Pair Type Parameters (in units of the FIELD file)
evbcoul m k const A1,mk

evbcoul m k gauss A1,mk A2,mk A3,mk A4,mk

The order for m and k is irrelevant. Execution will stop if:
• evbcoul is misspelled.
• m = k, m, k < 1 or m, k > NF .
• Input type different from const or gauss, misspelling including.
• missing Amk parameters.
• the specification of any pair is repeated.

evbshift (Compulsory) specifies the energy shift for a given FF. The syntax for this is
specification as follows:

FF ∆E
(m)
shift (in units of the FIELD file)

evbshift m value (either positive or negative)

Execution will stop if:
• evbshift is misspelled.
• m < 1 or m > NF .
• missing ∆E

(m)
shift parameters.

• the specification for a given FF is repeated.

evbpop (Optional) If present, the NF computed values of |Ψ(k)
EVB

∣∣2 are printed (index (k) for
all FFs) at each time step in file POPEVB (only after equilibration). POPEVB is not
overwritten upon restart.

As an illustrative example of the SETEVB file, we consider the case of a single reactive malonaldehyde
molecule in non-reactive water.

135

©STFC Section 7.5

#Coupling terms for EVB calculations
evbtypemols 1 1
evbcoupl 1 2 const 49.0 # In units of kcal/mol
evbshift 1 0.0 # In units of kcal/mol
evbshift 2 0.0 # In units of kcal/mol

In this case, we have two possible conformations for the molecule, each conformation described by a different
FF (see section 6 of ref. [105]). In contrast, the FF for the water molecules is the same independently of the
malonaldehyde conformation. As per guidance above, the FIELD files must first specify the FF descriptors
for the malonaldehyde molecule, followed by the FF descriptor for the surrounding water. For both FIELDS
we have 2 types of molecules, the malonaldehyde molecule for the first type and N water molecules for the
second type. Therefore, directive evbcoupl must be set to 1 1. For the EVB coupling, we must specify
the evbcoul with the involved fields (1 and 2 in this case), the type of coupling (const) and the parameter
(49.0) in units of the FIELD files. Finally, in the present case, both conformations for malonaldehyde are
energetically equivalent and the energy shift evb must be the same for both directives evbshift. Depending
on the used potentials and the system to be computed, one may want to introduce an asymmetry in the
FFs.

136

Chapter 8

Construction and Execution

Scope of Chapter

This chapter describes how to compile a working version of DL POLY 4 and run it.

137

©STFC Section 8.1

8.1 Constructing DL POLY 4: an Overview

8.1.1 Constructing the Standard Versions

DL POLY 4 was designed as a package of useful subroutines rather than a single program, which means that
users are to be able to construct a working simulation program of their own design from the subroutines
available, which is capable of performing a specific simulation. However, we recognise that many, perhaps
most, users will be content with creating a standard version that covers all of the possible applications with
DL POLY 4 native functionalities and may be a few external ones for this reason we have only provided the
necessary tools to assemble such a version. The methods of creating the standard versions is described in
detail in this chapter, however a brief step-by-step description follows.

1. DL POLY 4 is supplied as a ZIP compressed file. This must uncompressed to create the DL POLY 4
directory (Section 1.4).

2. The next step is to compile DL POLY 4 either by using the traditional Makefiles or by creating OS
customised ones using cmake. In either case make will be used to produce a binary executable (see
Section 8.2), which as a default will be named DLPOLY.Z and located in the execute subdirectory if
compiling in traditional mode or in the place of using cmake.

3. DL POLY 4 also has a Java GUI. The files for this are stored in the subdirectory java. Compilation of
this is simple and requires running the javac compiler and the jar utility. Details for these procedures
are provided in the GUI manual [21].

4. To run the executable for the first time you require the files CONTROL, FIELD and CONFIG; and
possibly a few tabulated files (TABLE, TABEAM, etc.). These must be present in the directory from
which the program is executed. (See Section 10.1 for the description of the input files.)

5. Executing the program will produce the files OUTPUT, STATIS, REVCON and REVIVE; and op-
tionally a constellation of others in the executing directory depending on user options in CONTROL
(HISTORY, RDFDAT, ZDNDAT, MSDTMP, REFERENCE, DEFECTS, etc.). (See Section 10.2 for
the description of the output files.)

This simple procedure is enough to create a standard version to run most simulations. There may however
be some difficulty with array sizes. DL POLY 4 contains features which allocate arrays after scanning the
input files for a simulation. Sometimes these initial estimates are insufficient for a long simulation when,
for example, the system volume changes markedly during the simulation or when a system is artificially
constructed to have a non-uniform density. Usually, simply restarting the program will cure the problem,
but sometimes, especially when the local atom density is somewhat higher than the global one or the system
undergoes some form of clustering and the distribution of bonded-like interactions is far from uniform, it
may be necessary to amend the array sizes in accordance with the error message obtained. To trigger
lengthening of the density dependent global arrays the user may use the densvar option in the CONTROL
(Section 10.1.1) file. However, lengthening these arrays will require a larger amount of memory from the
execution machine for the simulation, which it may not be able to provide. See Section 11.2.2 for more
insight on the DL POLY 4 source code structure.

8.1.2 Constructing Non-standard Versions

In constructing a non-standard DL POLY 4 simulation program, the first requirement is for the user to
write a program to function as the root segment. The root segment /VV/dl poly is placed in the source
directory and contains the set-up and close-down calls for a molecular dynamics simulation. It is the routine
that first opens the OUTPUT file (Section 10.2), which provides the summary of the job. The root program
calls the “molecular dynamics cycle” routines implementing the VV. These routines contain major routines

138

©STFC Section 8.1

required to perform the simulation, control the normal “molecular dynamics cycle” and monitor the cpu and
memory usage. They also bring about a controlled termination of the program if the cpu usage approaches
the allotted job time within a pre-set closure time and/or if the memory usage approaches the allocated
limit for density dependent arrays. Users are recommended to study the aforementioned root directories as
a model for other implementations of the package they may wish to construct. Some advise on hierarchies
of all the DL POLY 4 subroutines can be found in Section 11.2.2.

Should additional functionality be added to DL POLY 4 by the user, the set bounds routine (and its
support subroutines) may need modifying to allow specification of the dimensions of any new arrays.

Any molecular dynamics simulation performs five different kinds of operation: initialisation; forces calcu-
lation; integration of the equations of motion; calculation of system properties; and job termination. It
is worth considering these operations in turn and to indicate which DL POLY 4 routines are available to
perform them. We do not give a detailed description, but provide only a guide. Readers are recommended
to examine the different routines described in the DL POLY 4 User Manual for further details (particularly
regarding further dependencies i.e. additional routines that may be called).

The following outline assumes a system containing flexible molecules held together by rigid bonds.

Initialisation requires firstly that the program determine what platform resources are made available to
the specific simulation job. This is done by the DL POLY 4 routine map domains in domains module
that attempts to allocate and map the resources (nodes in parallel) in compliance with the DD strategy.
map domains is called within the routine set bounds, which also sets the necessary limits for various
simulation array sizes and all global variables as declared in setup module to convenient values based on a
rough scan through the CONFIG, CONTROL, FIELD and optionally TABLE and TABEAM (Section 10.1)
files. The routine also calls the read config routine to obtain atomic positions and optionally velocities
and forces from the CONFIG file. After allocation of all necessary simulation arrays and variables (with
compulsory initialisation to “zero” value), the job control information is required; this is obtained by the
routine read control, which reads the CONTROL file. The description of the system to be simulated –
the types of atoms and molecules present and the intermolecular forces – are obtained by the read field
routine, which reads the FIELD file. The system init routine is called next to initialise various simu-
lation arrays and variables with the data available so far and detects if the job is a restart of previous
simulation run. If so it reads the REVOLD (Section 10.1.6) to supply some arrays and variables with the
necessary values as saved from the previous job. The domain halo is constructed immediately afterwards
by the routine set halo particles. After gathering all these data, bookkeeping and exclusion arrays are
created for the intramolecular and site related interactions (core-shell, constraint and tether units) by the
build book intra and build excl intra routines. Lastly, the thermodynamic properties of the system
are checked and set by the set temperature routine (which also generates the initial velocities if required
to do so).

The calculation of the pair-like forces is carried out in the two body forces routine and represents the
main part of any simulation. For calculation of the two-body contributions to the atomic forces, the Verlet
neighbour list is constructed by the link cell pairs routine using link-cell lists. Special measures are
taken so that the list excludes: (i) pairs of atoms that are both in a frozen state as well as (ii) pairs in
which one of the atoms has the other in its exclusion list. The last is built by build excl intra where the
specifications of bond-like interactions in the FIELD file are processed. Various other subroutines are then
called to calculate specific contributions by different interactions. For example; vdw forces for the short-
range (van der Waals) forces (Section 2.3.1), metal lrc, metal ld compute and metal forces for the
metal interactions (Section 2.3.2), and ewald spme forces, ewald real forces, ewald frzn forces
and ewald excl forces for the Coulombic forces (Section 2.4).

Higher order intermolecular, site-related and intramolecular forces require the routines
tersoff forces, three body forces, four body forces,
core shell forces or core shell relax, tethers forces,
bonds forces, angles forces, dihedrals forces and inversions forces.
The routines

139

©STFC Section 8.2

external field apply and external field correct are required if the simulated system has an ex-
ternal force field (e.g. electrostatic field) operating.

To help with equilibration simulations, routines such as cap forces, zero k optimise andminimise relax
are sometimes required to reduce the magnitude of badly equilibrated forces and to steer the MD system
towards an equilibrium state.

Integration of the equations of motion is handled by one of the routines listed and described in Chapter 3.

As mentioned elsewhere, DL POLY 4 does not contain many routines for computing system properties dur-
ing a simulation. Radial distributions may be calculated however, by using the routines rdf collect,
rdf excl collect, rdf frzn collect a and rdf compute. Similarly, Z-density distributions may be
calculated by using the routines z density collect and z density compute, while velocity autocorre-
lation functions may be calculated using the routines vaf collect and vaf compute. Ordinary ther-
modynamic quantities are calculated by the routine statistics collect, which also writes the STATIS
file (Section 10.2.17). Routine trajectory write writes the HISTORY (Section 10.2.1) file for later
(postmortem) analysis. Routine defects write writes the DEFECTS (Section 10.2.3) file for later (post-
mortem) analysis. Routine msd write writes the MSDTMP (Section 10.2.2) file for later (postmortem)
analysis. Routine rsd write writes the RSDDAT (Section 10.2.4) file for later (postmortem) analysis.

Job termination is handled by the routine statistics result which writes the final summaries in the
OUTPUT file and dumps the restart files REVIVE and REVCON (Sections 10.2.10 and 10.2.9 respectively).

8.2 Compiling and Running DL POLY 4

When you have obtained DL POLY 4 from Daresbury Laboratory and unpacked it, your next task will be
to compile it.

CMake - http://www.cmake.org/ - is an open-source, cross-platform family of tools designed to build, test
and package software. CMake is used to control the software compilation process using simple platform and
compiler independent configuration files, and generate native makefiles and workspaces that can be used in
a compiler environment of your choice. The suite of CMake tools was created by Kitware in response to the
need for a powerful, cross-platform build environment for open-source projects such as ITK, VTK, KDE,
etc...

In order to build a DL POLY 4 executable with cmake there are two stages - Stage 1: generating the build
files (e.g. makefiles); and Stage 2: building the code (e.g. make).

For the examples within this section we assume that DL POLY 4 has been downloaded, the archived contents
extracted and we are stepped in the the main folder (root). All commands and discussions that follow are
relative to this root folder of DL POLY 4.

Full instructions can be also found online at https://ccp5.gitlab.io/dlpoly-setup/

• Stage 1: Configure and generate the build files.

One can pass different options to the build system to generate the build files. It is important to
determine these before one choses the ones they consider relevant for their purposes. Finding out all
available options for DL POLY 4 can be done in the following ways:

a) by using cmake:

[10:38:02 alin@abaddon:~/playground/dl-poly]: mkdir myBuild

[10:38:11 alin@abaddon:~/playground/dl-poly]: cd myBuild/

[10:38:13 alin@abaddon:~/playground/dl-poly/myBuild]: cmake .. -L

....

-- Cache values

140

http://www.cmake.org/
https://ccp5.gitlab.io/dlpoly-setup/

©STFC Section 8.2

BUILDER:STRING=

BUILD_SHARED_LIBS:BOOL=OFF

BUILD_TESTING:BOOL=OFF

CMAKE_BUILD_TYPE:STRING=

CMAKE_INSTALL_PREFIX:PATH=/usr/local

DOCS:BOOL=OFF

HOST:STRING=abaddon.dl.ac.uk

MPI_NPROCS:STRING=8

WITH_COVERAGE:BOOL=OFF

WITH_EXTRATIME:BOOL=OFF

WITH_FORCHECK:BOOL=OFF

WITH_KIM:BOOL=OFF

WITH_MPI:BOOL=ON

WITH_NETCDF:BOOL=OFF

WITH_OPENMP:BOOL=OFF

WITH_PHI:BOOL=OFF

WITH_PLUMED:BOOL=OFF

Do notice that some of the options are already filled in... cmake already tried its best to
find some of the available information about your system and picked the some defaults, a.g.
WITH MPI:BOOL=ON.

b) by reading the DL POLY 4 option file:
All available options and their description are stored in cmake/DLPOLYBuildOptions.cmake.

[10:46:01 alin@abaddon:~/playground/dl-poly]: cat cmake/DLPOLYBuildOptions.cmake

option(WITH_MPI "build a MPI version" ON)

option(WITH_OPENMP "build an OpenMP version" OFF)

option(WITH_PHI "build an executable for Xeon Phi version" OFF)

option(WITH_NETCDF "build using netcdf support version" OFF)

option(WITH_EXTRATIME "activate extra timing information" OFF)

option(WITH_KIM "Build with KIM support" OFF)

option(WITH_PLUMED "Build with PLUMED support" OFF)

option(BUILD_TESTING "Build with Testing support" OFF)

option(WITH_COVERAGE "Build with instrumentation for code coverage" OFF)

option(WITH_FORCHECK "Build with forcheck for code" OFF)

option(DOCS "Doxygen Documentation" OFF)

option(BUILD_SHARED_LIBS "Build with shared libraries" OFF)

set(MPI_NPROCS 8 CACHE STRING "number of MPI processes to be used for code

coverage and tests")

cmake_host_system_information(RESULT AH QUERY FQDN)

set(HOST "${AH}" CACHE STRING "name of the hostname we build on.")

set(BUILDER "" CACHE STRING "name of the person who built the binary.")

c) by using ccmake:
Press <c> to configure and <e> if errors appears. A typical output is shown in Figure 8.1.

[10:38:02 alin@abaddon:~/playground/dl-poly]: mkdir myBuild

[10:38:11 alin@abaddon:~/playground/dl-poly]: cd myBuild/

[10:38:13 alin@abaddon:~/playground/dl-poly/myBuild]: ccmake ..

d) by using cmake-gui:
A typical output is shown in Figure 8.2.

[10:38:02 alin@abaddon:~/playground/dl-poly]: mkdir myBuild

141

©STFC Section 8.2

Figure 8.1: Typical ccmake output for DL POLY 4

[10:38:11 alin@abaddon:~/playground/dl-poly]: cd myBuild/

[10:38:13 alin@abaddon:~/playground/dl-poly/myBuild]: cmake-gui ..

One may also choose to pass the command line options via -DOPTION=value. Explicit compiler
specification can be achieved by setting the environment variable FC (e.g. using Intel ifort FC=ifort).
Compiler flags can be altered via FFLAGS, (e.g. FFLAGS=”-O3 -xHost”). Once one is happy
with the choices made then they are ready to move to Stage 2.

• Stage 2: Build the executable.

Building is as simple as typing make -jX, where X is the number of desired compilation threads to
work in parallel. Once the build process is successful one can find the DL POLY 4 executable in the
folder bin (freshly generated if it did not exists before). One can then copy or link the executable to
any accessible to them place on the system they wish.

Examples of different builds. Assuming that the OS environment is set up properly so that access paths
to the MPI library (and any other needed libraries) and gfortran is the default FORTRAN90 compiler.

• Pure MPI

[alin@abaddon: ...dl-poly]: mkdir myBuild

[alin@abaddon: ...dl-poly]: cd myBuild/

[alin@abaddon: ...dl-poly/myBuild]: FFLAGS="-O3 -mtune=native" cmake ..

[alin@abaddon: ...dl-poly/myBuild]: make -j10

• Serial

[alin@abaddon: ...dl-poly]: mkdir myBuild

[alin@abaddon: ...dl-poly]: cd myBuild/

142

©STFC Section 8.2

Figure 8.2: Typical cmake-gui output for DL POLY 4

[alin@abaddon: ...dl-poly/myBuild]: FFLAGS="-O3 -mtune=native" cmake .. -DWITH_MPI=

OFF

[alin@abaddon: ...dl-poly/myBuild]: make -j10

• Pure MPI+NETCDF

[alin@abaddon: ...dl-poly]: mkdir myBuild

[alin@abaddon: ...dl-poly]: cd myBuild/

[alin@abaddon: ...dl-poly/myBuild]: FFLAGS="-O3 -mtune=native" cmake .. -

DWITH_NETCDF=ON

[alin@abaddon: ...dl-poly/myBuild]: make -j10

• Pure MPI+KIM

[alin@abaddon: ...dl-poly]: mkdir myBuild

[alin@abaddon: ...dl-poly]: cd myBuild/

[alin@abaddon: ...dl-poly/myBuild]: FFLAGS="-O3 -mtune=native" cmake .. -DWITH_KIM=

ON

[alin@abaddon: ...dl-poly/myBuild]: make -j10

• Pure MPI+PLUMED

[alin@abaddon: ...dl-poly]: mkdir myBuild

[alin@abaddon: ...dl-poly]: cd myBuild/

[alin@abaddon: ...dl-poly/myBuild]: FFLAGS="-O3 -mtune=native" cmake .. -

DWITH_PLUMED=ON

[alin@abaddon: ...dl-poly/myBuild]: make -j10

143

©STFC Section 8.2

• Pure MPI+Testing

[alin@abaddon: ...dl-poly]: mkdir myBuild

[alin@abaddon: ...dl-poly]: cd myBuild/

[alin@abaddon: ...dl-poly/myBuild]: FFLAGS="-O3 -mtune=native" cmake .. -

DBUILD_TESTING=ON

[alin@abaddon: ...dl-poly/myBuild]: make -j10

To run the tests one can run make test or ctest. For a complete list of tests available, run ctest -N. If
specific test is desired to run then use ctest -R TESTNAME.

For a list of complete options to build use make help. The list will be different depending on the options
used to configure.

8.2.1 Note on the Interpolation Scheme

In DL POLY 4 two-body-like contributions (van der Waals, metal and real space Ewald summation) to
energy and force are evaluated by interpolation of tables constructed at the beginning of execution. The
DL POLY 4 interpolation scheme is based on a 3-point linear interpolation in r. Note that a 5-point linear
interpolation in r is ised in DL POLY 4 for interpolation of the EAM (metal) forces from EAM table data
(TABEAM).

The number of grid points (mxgrvdw) required for interpolation in r to give good energy conservation in a
simulation is:

mxgrid = Max(mxgrid, 1004, Nint(rcut/δrmax) + 4) ,

where rcut is the main cutoff beyond which the contributions from the short-range-like interactions are
negligible, and δrmax = 0.01 Å. is the default grid bin for real space grids.

8.2.2 Running

To run the DL POLY 4 executable (DLPOLY.Z) you will initially require at least three input data files,
which you must provide in the execute sub-directory, (or whichever sub-directory you will execute the run).
The first of these is the CONTROL file (Section 10.1.1), which indicates to DL POLY 4 what kind of
simulation conditions you want to run, how much data you want to gather and for how long you want the
job to run. The second file you need is the CONFIG file (Section 10.1.2). This contains the atom positions
and, depending on how the file was created (e.g. whether this is a configuration created from ‘scratch’ or
the end point of a previous run), the velocities and forces also. The third file required is the FIELD file
(Section 10.1.3), which specifies the atomic properties (such as charge and mass), molecular stoichiometry
and intermolecular topology and interactions, and finally intermolecular interactions and external fields.
Sometimes one or a few more extra files may also be required: MPOLES (Section 10.1.4) - which contains the
specification of higher order charge distributions (multipolar momenta); TABLE (Section 10.1.7), TABEAM
(Section 10.1.8), TABBND, TABANG, TABDIH and TABINV Files (Section 10.1.9); which contain potential
and force arrays for particular type of interaction that is not supplied with an explicit analytical for in
DL POLY 4 (usually because they are too complex, e.g. spline potentials, , non-analytic functionals as in
TEABEAM, etc.). Other optional files may also be required such as REFERENCE (Section 10.1.5) - similar
to the CONFIG file it contains the ”perfect” crystalline structure of the system used as a reference to detect
instantaneous interstitial and vacancy defects during radiation damage events, HISTORY (Section 10.2.1)
- used for replaying a previously generated trajectory so that various observables could be recreated (e.g.
RDF, Z-density profiles, etc.).

Examples of input files are found in the data sub-directory, which can be copied into the execute subdirectory
using the select macro found in the execute sub-directory.

144

©STFC Section 8.2

A successful run of DL POLY 4 will generate several data files, which appear in the execute sub-directory.
The most obvious one is the file OUTPUT (Section 10.2.6), which provides an effective summary of the
job run: the input information; starting configuration; instantaneous and rolling-averaged thermodynamic
data; minimisation information, final configurations; radial distribution functions (RDFs); Z-density profiles
and job timing data. The OUTPUT file is human readable. Also present will be the restart files REVIVE
(Section 10.2.10) and REVCON (Section 10.2.9). REVIVE contains the accumulated data for a number
of thermodynamic quantities and statistical accumulators (RDFs, fluctuations, etc.), and is intended to be
used as the input file for a following run. It is not human readable. The REVCON file contains the restart
configuration, i.e. the final positions, velocities and forces of the atoms when the run ended and is human
readable. The STATIS file (Section 10.2.17) contains a catalogue of instantaneous values of thermodynamic
and other variables, in a form suitable for temporal or statistical analysis.

There are quite a few other optional files, for which more detailed description and formating can be found
in the relevant Section 10.2. It is, however, worth mentioning that these are generated upon specific user
instructions in CONTROL, so their specific functional description and activation information detail can be
found in Section 10.1.1.

8.2.3 Parallel I/O

Many users that have suffered loss of data in the OUTPUT, especially running in parallel and when an error
occurs on parallel architectures. In such circumstances the OUTPUT may be empty or incomplete, despite
being clear that the actual simulation has progressed well beyond what has been printed in OUTPUT.
Ultimately, this is due to OS’s I/O buffers not being flushed as a default by the particular OS when
certain kind of errors occurs, especially MPI related. The safest way to avoid loss of information in such
circumstances is to write the OUTPUT data to the default output channel (”the screen”). There is an easy
way to do this in DL POLY 4, which is to use the l scr keyword in the CONTROL file. The batch daemon
will then place the output in the standard output file, which can then be of use to the user, or alternatively
on many batch systems the output can be redirected into another file, allowing an easier following of the
job progress over time. This latter technique is also useful on interactive systems where simply printing
to the screen could lead to large amounts of output. However, such situations could be easily avoided by
redirecting the output using the ”>” symbol, for instance: ”mpirun -n 4 DLPOLY.Z > OUTPUT”.

It is also worth noting that the use of large batch and buffer numbers can speed up enormously the perfor-
mance of the parallel I/O, for example putting in CONTROL (see Section 10.1.1):

io read mpiio 128 10000000 1000000

io write mpiio 512 10000000 1000000

at large processor count jobs (over 1000). However, this help comes at a price as larger batches and buffers
also requires more memory. So at smaller processor counts the job will abort at the point of trying to use
some of the allocated arrays responsible for these.

More information about DL POLY 4 parallel I/O can be found in the following references [107, 108, 109].

8.2.4 Restarting

The best approach to running DL POLY 4 is to define from the outset precisely the simulation you wish to
perform and create the input files specific to this requirement. The program will then perform the requested
simulation, but may terminate prematurely through error, inadequate time allocation or computer failure.
Errors in input data are your responsibility, but DL POLY 4 will usually give diagnostic messages to help
you sort out the trouble. Running out of job time is common and provided you have correctly specified the
job time variables (using the close time and job time directives - see Section 10.1.1) in the CONTROL
file, DL POLY 4 will stop in a controlled manner, allowing you to restart the job as if it had not been
interrupted.

145

©STFC Section 8.2

To restart a simulation after normal termination you will again require the original CONTROL file (augment
it to include the restart directive and/or extend the length and duration of the new targeted MD run), the
FIELD (and TABLE and/or TABEAM) file, and a CONFIG file, which is the exact copy of the REVCON
file created by the previous job. You will also require a new file: REVOLD (Section 10.1.6), which is an
exact copy of the previous REVIVE file. If you attempt to restart DL POLY 4 without this additional file
available, the job will most probably fail. Note that DL POLY 4 will append new data to the existing
STATIS and HISTORY files if the run is restarted, other output files will be overwritten.

In the event of machine failure, you should be able to restart the job in the same way from the surviving
REVCON and REVIVE files, which are dumped at regular intervals to meet just such an emergency. In this
case check carefully that the input files are intact and use any extra files; such as STATIS, HISTORY, etc.;
with caution - there may be duplicated, mangled or missing records. The reprieve processing capabilities
of DL POLY 4 are not foolproof - the job may crash while these files are being written from memory to
disk on a parallel architecture for example, but they can help a great deal. You are advised to keep backup
copies of these files, noting the times they were written, to help you avoid going right back to the start of a
simulation.

You can also extend a simulation beyond its initial allocation of timesteps, provided you still have the
REVCON and REVIVE files. These should be copied to the CONFIG and REVOLD files respectively and
the directive timesteps adjusted in the CONTROL file to the new total number of steps required for the
simulation. For example if you wish to extend a 10000 step simulation by a further 5000 steps use the
directive timesteps 15000 in the CONTROL file and include the restart directive.

Further to the full restart option, there is an alternative restart scale directive that will reset the tem-
perature at start or restart noscale that will keep the current kinetics intact. /bf Note that these two
options are not correct restarts but rather modified starts as they make no use of REVOLD file and will
reset internal accumulators to zero at start.

Note that all these options are mutually exclusive!

If none of the restart options is specified velocities are generated anew with Gaussian distribution of the
target kinetic energy based on the provided temperature in the CONTROL file.

8.2.5 Optimising the Starting Structure

The preparation of the initial structure of a system for a molecular dynamics simulation can be difficult. It
is quite likely that the structure created does not correspond to one typical of the equilibrium state for the
required state point, for the given force field employed. This can make the simulation unstable in the initial
stages and can even prevent it from proceeding.

For this reason DL POLY 4 has available a selection of structure relaxation methods. Broadly speaking,
these are energy minimisation algorithms, but their role in DL POLY 4 is not to provide users with true
structural optimisation procedures capable of finding the ground state structure. They are simply intended
to help users improve the quality of the starting structure prior to a statistical dynamical simulation, which
implies usage during the equilibration period only!

The available algorithms are:

1. ‘Zero’ temperature molecular dynamics. This is equivalent to a dynamical simulation at low tempera-
ture. At each time step the molecules move in the direction of the computed forces (and torques), but
are not allowed to acquire a velocity larger than that corresponding to a temperature of 10 Kelvin.
The subroutine that performs this procedure is zero k optimise.

2. Conjugate Gradients Method (CGM) minimisation. This is nominally a simple minimisation of the
system configuration energy using the conjugate gradients method [80]. The algorithm coded into
DL POLY 4 is an adaptation that allows for rotation and translation of rigid bodies. Rigid (constraint)
bonds however are treated as stiff harmonic springs - a strategy which we find does allow the bonds

146

©STFC Section 8.2

to converge within the accuracy required by SHAKE. The subroutine that performs this procedure is
minimise relax which makes use of, minimise module.

3. ‘Programmed’ energy minimisation, involving both MD and CGM. This method combines the two as
minimisation is invoked by user-defined intervals of (usually low temperature) dynamics, in a cycle
of minimisation - dynamics - minimisation etc., which is intended to help the structure relax from
overstrained conditions (see Section 10.1.1). When using the programmed minimisation DL POLY 4
writes (and rewrites) the file CFGMIN 10.2.5, which represents the lowest energy structure found
during the programmed minimisation. CFGMIN is written in CONFIG file format (see section 10.1.2)
and can be used in place of the original CONFIG file.

It should be noted that none of these algorithms permit the simulation cell to change shape. It is only the
atomic structure that is relaxed. After which it is assumed that normal molecular dynamics will commence
from the final structure.

Also worth noting is that some dynamics related options can be used in assistance with the optimisation
algorithms to reach a better state (close to equlibrium) faster. Such would be the force capping (the cap
option applied at each step) and velocity rescaling (the scale option) at regular intervals of steps that will
only be applied during equlibration. Last but not least using any combination of these will be otimal and
safe only with safe integrators. For safe equlibration work we strongly recommend only NVE and Berendsen
couched NV/P/σT as appropriate! In the case of liquid and soft matter systems NσT Berendsen integrator
must be either avoided or used with orth or orth semi constraints!

Notes on the Minimisation Procedures

1. The zero temperature dynamics is really dynamics conducted at 10 Kelvin. However, the dynamics
has been modified so that the velocities of the atoms are always directed along the force vectors. Thus
the dynamics follows the steepest descent to the (local) minimum. From any given configuration, it
will always descend to the same minimum.

2. The conjugate gradient procedure has been adapted to take account of the possibilities of constraint
bonds and rigid bodies being present in the system. If neither of these is present, the conventional
unadapted procedure is followed.

(a) In the case of rigid bodies, atomic forces are resolved into molecular forces and torques. The
torques are subsequently transformed into an equivalent set of atomic forces which are perpen-
dicular both to the instantaneous axis of rotation (defined by the torque vector) and to the
cylindrical radial displacement vector of the atom from the axis. These modified forces are then
used in place of the original atomic forces in the conjugate gradient scheme. The atomic displace-
ment induced in the conjugate gradient algorithm is corrected to maintain the magnitude of the
radial position vector, as required for circular motion.

(b) With regard to constraint bonds, these are replaced by stiff harmonic bonds to permit minimisa-
tion. This is not normally recommended as a means to incorporate constraints in minimisation
procedures as it leads to ill conditioning. However, if the constraints in the original structure are
satisfied, we find that provided only small atomic displacements are allowed during relaxation
it is possible to converge to a minimum energy structure. Furthermore, provided the harmonic
springs are stiff enough, it is possible afterwards to satisfy the constraints exactly by further
optimising the structure using the stiff springs alone, without having a significant affect on the
overall system energy.

(c) Systems with independent constraint bonds and rigid bodies may also be minimised by these
methods.

3. Of the three minimisation strategies available in DL POLY 4, only the programmed minimiser is
capable of finding more than one minimum without the user intervening.

147

©STFC Section 8.2

4. Finally, we emphasise once again that the purpose of the minimisers in DL POLY 4 is to help improve
the quality of the starting structure and we believe they are adequate for that purpose. We do
not recommend them as general molecular structure optimisers. They may however prove useful for
relaxing crystal structures to 0 Kelvin for the purpose of identifying a true crystal structure.

Do examine the CONTROL file Section 10.1.1) for more information.

8.2.6 Simulation Efficiency and Performance

Although the DL POLY 4 underlining parallelisation strategy (DD and link-cells, see Section 11.1.1) is
extremely efficient, it cannot always provide linear parallelisation speed gain with increasing processor count
for a fixed size system. Nevertheless, it will always provide speedup of the simulation (i.e. there still is a
sufficient speed gain in simulations when the number of nodes used in parallel is increased). The simplest
explanation why this is is that increasing the processor count for a fixed size system decreases not only the
work- and memory-load per processor but also the ratio size of domain to size of halo (both in counts of
link cells). When this ratio falls down to values close to one and below, the time DL POLY 4 spends on
inevitable communication (MPI messages across neighbouring domains to refresh the halo data) increases
with respect to and eventually becomes prevalent to the time DL POLY 4 spends on numeric calculations
(integration and forces). In such regimes, the overall DL POLY 4 efficiency falls down since processors
spend more time on staying idle while communicating than on computing.

It is important that the user recognises when DL POLY 4 becomes vulnerable to decreased efficiency and
what possible measures could be taken to avoid this. DL POLY 4 calculates and reports the major and
secondary link-cell algorithms (Mx ·My ·Mz) employed in the simulations immediately after execution. Mx

(analogously for My and Mz) is the integer number of the ratio of the width of the system domains in
x-direction (i.e. perpendicular to the (y,z) plane) to the major and secondary (coming from three- and/or
four-body and/or Tersoff interactions) short-range cutoffs specified for the system:

Mx = Nint

[
Wx/Px

cutoff

]
Wx = MD box width ⊥ plane(y, z) (8.1)

Px = #(nodes)x−direction ,

where x, y and z represent the directions along the MD cell lattice vectors. Every domain (node) of the
MD cell is loaded with (Mx +2) · (My +2) · (Mz +2) link-cells of which Mx ·My ·Mz belong to that domain
and the rest are a halo image of link-cells forming the surface of the immediate neighbouring domains. In
this respect, if we define performance efficiency as minimising communications with respect to maximising
computation (minimising the halo volume with respect to the node volume), best performance efficiency
will require Mx ≈ My ≈ Mz ≈ M and M ≫ 1. The former expression is a necessary condition and only
guarantees good communication distribution balancing. Whereas the latter, is a sufficient condition and
guarantees prevalence of computation over communications.

DL POLY 4 issues a built-in warning when a link-cell algorithms has a dimension less than three (i.e. less
than three link-cells per domain in given direction). A useful rule of thumb is that parallelisation speed-up
inefficiency is expected when the ratio

R =
Mx ·My ·Mz

(Mx + 2) · (My + 2) · (Mz + 2)−Mx ·My ·Mz
(8.2)

is close to or drops below one. In such cases there are three strategies for improving the situation that
can be used singly or in combination. As obvious from equation (8.1) these are: (i) decrease the number
of nodes used in parallel, (ii) decrease the cutoff and (iii) increase system size. It is crucial to note that
increased parallelisation efficiency remains even when the link-cell algorithm is used inefficiently. However,
DL POLY 4 will issue an error message and cease execution if it detects it cannot fit a link-cell per domain

148

©STFC Section 8.3

as this is the minimum the DL POLY 4 link-cell algorithm can work with - (1 · 1 · 1) corresponding to ratio
R = 1/26.

It is worth outlining in terms of the O(computation ; communication) function what the rough scaling
performance is like of the most computation and communication intensive parts of DL POLY 4 in an MD
timestep.

(a) Domain hallo re-construction in set halo particles, metal ld set halo and
defects reference set halo - O (N/P ; N/R)

(b) Verlet neighbourlist construction by link-cells in link cell pairs - O (N/P ; 0), may take up to 40%
of the time per timestep

(c) Calculation of k-space contributions to energy and forces from SMPE by ewald spme forces (depends
on parallel fft which depends on gpfa module) - O (N log N ; (N log P)/P), may take up to
40% of the time per timestep

(d) Particle exchange between domains, involving construction and connection of new out of domain topol-
ogy when bonded-like interactions exist, by relocate particles - O

(
N ; (P/N)1/3

)
(e) Iterative bond and PMF constraint solvers:

constraints shake vv, constraints rattle vv, constraints shake lfv
and pmf shake vv, pmf rattle vv, pmf shake lfv - O

(
N ; (P/N)1/3

)
where N is the number of particles, P = Px · Py · Pz the total number of domains in the MD cell and the
rest of the quantities are as defined in equations (8.1-8.2).

Performance may also affected by the fluctuations in the inter-node communication, due to unavoidable
communication traffic when a simulation job does not have exclusive use of all machine resources. Such
effects may worsen the performance much, especially when the average calculation time is of the same
magnitude as or less than the average communication time (i.e. nodes spend more time communicating
rather than computing).

8.3 A Guide to Preparing Input Files

The CONFIG file and the FIELD file can be quite large and unwieldy particularly if a polymer or biological
molecule is involved in the simulation. This section outlines the paths to follow when trying to construct
files for such systems. The description of the DL POLY 4 force field in Chapter 2 is essential reading. The
various utility routines mentioned in this section are described in greater detail in the DL POLY Classic
User Manual. Many of these have been incorporated into the DL POLY GUI [21] and may be conveniently
used from there.

8.3.1 Inorganic Materials

The utility genlat can be used to construct the CONFIG file for relatively simple lattice structures. Input is
interactive. The FIELD file for such systems are normally small and can be constructed by hand. Otherwise,
the input of force field data for crystalline systems is particularly simple, if no angular forces are required
(notable exceptions to this are zeolites and silicate glasses - see below). Such systems require only the
specification of the atomic types and the necessary pair forces. The reader is referred to the description of
the DL POLY 4 FIELD file for further details (Section 10.1.3).

DL POLY 4 can simulate zeolites and silicate (or other) glasses. Both these materials require the use of
angular forces to describe the local structure correctly. In both cases the angular terms are included as
three-body terms, the forms of which are described in Chapter 2. These terms are entered into the FIELD
file with the pair potentials.

149

©STFC Section 8.3

An alternative way of handling zeolites is to treat the zeolite framework as a kind of macromolecule (see
below). Specifying all this is tedious and is best done computationally: what is required is to determine
the nearest image neighbours of all atoms and assign appropriate bond and valence angle potentials. What
must be avoided at all costs is specifying the angle potentials without specifying bond potentials. In this
case DL POLY 4 will automatically cancel the non-bonded forces between atoms linked via valence angles
and the system will collapse. The advantage of this method is that the calculation is likely to be faster than
using three-body forces. This method is not recommended for amorphous systems.

8.3.2 Macromolecules

To set up force fields for macromolecules, or indeed any covalent molecules, it is best to use DL FIELD -
http://www.ccp5.ac.uk/DL FIELD/ . It is a program application tool developed to facilitate the construc-
tion of force field models for biological molecules and other molecules with complex geometries. For instance
proteins, carbohydrates, polymers and networked molecules such as graphenes and organic cages. Although
created to assist DL POLY 4, DL FIELD is a separate program suite that requires separate
registration!

The primary functions of DL FIELD are as follows:

1. Force field model converter: DL FIELD converts the users atom models, supplied in PDB file
format, into input files that are recognisable and ready to run with DL POLY Classic and DL POLY 4
programs with minimum users intervention. This basically involves the conversion of the users atomic
configuration in simple xyz coordinates into identifiable atom types base on a particular user-selectable
potential schemes and then automatically generate the DL POLY configuration file (CONFIG), the
force field file (FIELD) and a generic control file (CONTROL).

2. Force field editor: DL FIELD allows the user to edit or modify parameters of a particular force
field scheme in order to produce a customised scheme that is specific to a particular simulation model.
In addition, the standard force field model framework can also be easily modified. For instance,
introduction of pseudo points and rigid body implementation to an otherwise standard potential
scheme such as CHARMM or AMBER, etc.

3. Force field library repertoire: DL FIELD contains a range of popular potential schemes (see
below), all described in a single DL FIELD format that are also easily recognisable by the user for
maintenance purposes. Users can easily expand the existing library to include other new molecules.

Force Field Schemes

The available force field schemes are as follows:

CHARMM - proteins, ethers, some lipids and carbohydrates.

AMBER - proteins and Glycam for carbohydrates.

OPLSAA - proteins

DREIDING - General force field for covalent molecules.

PCFF - Polyorganics and other covalent molecules.

Model Construction

DL FIELD does not have feature to construct molecular models. This can be achieved by either using
DL POLY GUI [21] or any other standard molecular building packages. The output files must be converted
into the PDB format. In the case of proteins, these structures are usually obtained from data banks such

150

http://www.ccp5.ac.uk/DL_FIELD/

©STFC Section 8.3

as PDB. These raw PBD files must first be preprocessed by the user before they are in a readable format
for DL FIELD. To ensure this, it is advisable that users take into consideration the following steps:

1. Decide on inclusion/exclusion of and if necessary manually delete molecular residues that involve
multiple occupancies in crystalline structures.

2. Usually, hydrogen atoms are not assigned in the raw PDB file. The molecules must therefore be
pre-filled with hydrogen atoms (protonated) by using any standard packages available. The user must
ensure that proper care is taken of terminal residues which must also be appropriately terminated.

3. Decide on the various charge states of some amino acids, such as histidine (HIS), lysine (LYS), glu-
tamic acid (GLU), etc., by adding or deleting the appropriate hydrogen atoms. Force field schemes
such as CHARMM will have different three-letter notations for amino acids of different charge states,
DL FIELD will automatically identify these differences and assign the appropriate potential parame-
ters accordingly.

4. For cysteine (CYS) molecules with disulphide bonds, thiolate hydrogen atoms must be removed.
DL FIELD will automatically define disulphide bonds between the molecules, provided the S-S dis-
tance is within a sensible value.

5. DL FIELD does not solvate the molecules and it is the user’s responsibility to add water by using any
standard package available (for example the DL POLY GUI [21]).

Fore more details or further information, please consult the DL FIELD manual and website
http://www.ccp5.ac.uk/DL FIELD/ .

8.3.3 Adding Solvent to a Structure

The utility wateradd adds water from an equilibrated configuration of 256 SPC water molecules at 300 K
to fill out the MD cell. The utility solvadd fills out the MD box with single-site solvent molecules from a
fcc lattice. The FIELD files will then need to be edited to account for the solvent molecules added to the
file.

Hint: to save yourself some work in entering the non-bonded interactions variables involving solvent sites to
the FIELD file put two bogus atoms of each solvent type at the end of the CONNECT DAT file (for AMBER
force-fields) the utility ambforce will then evaluate all the non-bonded variables required by DL POLY 4.
Remember to delete the bogus entries from the CONFIG file before running DL POLY 4.

8.3.4 Analysing Results

DL POLY 4 is not designed to calculate every conceivable property you might wish from a simulation.
Apart from some obvious thermodynamic quantities and radial distribution functions, it does not calculate
anything beyond the atomic trajectories. You must therefore be prepared to post-process the HISTORY file
if you want other information. There are some utilities in the DL POLY 4 package to help with this, but
the list is far from exhaustive. In time, we hope to have many more. Our users are invited to submit code
to the DL POLY 4public library to help with this.

The utilities available are described in the DL POLY Classic User Manual. Users should also be aware that
many of these utilities are incorporated into the DL POLY GUI [21].

151

http://www.ccp5.ac.uk/DL_FIELD/

©STFC Section 8.3

8.3.5 Choosing Ewald Sum Variables

8.3.5.1 Ewald sum and SPME

This section outlines how to optimise the accuracy of the Smoothed Particle Mesh Ewald sum parameters
for a given simulation..

As a guide to beginners DL POLY 4 will calculate reasonable parameters if the ewald precision directive
is used in the CONTROL file (see Section 10.1.1). A relative error (see below) of 10−6 is normally sufficient
so the directive

ewald precision 1d-6

will make DL POLY 4 evaluate its best guess at the Ewald parameters α, kmaxa, kmaxb and kmaxc, or their
doubles if ewald rather than spme is specified. (The user should note that this represents an estimate, and
there are sometimes circumstances where the estimate can be improved upon. This is especially the case
when the system contains a strong directional anisotropy, such as a surface.) These four parameters may
also be set explicitly by the ewald sum directive in the CONTROL file. For example the directive

ewald sum 0.35 6 6 8

which is equvalent to

spme sum 0.35 12 12 16

would set α = 0.35 Å−1, kmaxa = 12, kmaxb = 12 and kmaxc = 16∗. The quickest check on the accuracy of
the Ewald sum is to compare the coulombic energy (U) and virial (W) in a short simulation. Adherence to
the relationship U = −W, shows the extent to which the Ewald sum is correctly converged. These variables
can be found under the columns headed eng cou and vir cou in the OUTPUT file (see Section 10.2.6).

The remainder of this section explains the meanings of these parameters and how they can be chosen. The
Ewald sum can only be used in a three dimensional periodic system. There are five variables that control
the accuracy: α, the Ewald convergence parameter; rcut the real space force cutoff; and the kmaxa, kmaxb
and kmaxc integers that specify the dimensions of the SPME charge array (as well as FFT arrays). The
three integers effectively define the range of the reciprocal space sum (one integer for each of the three axis
directions). These variables are not independent, and it is usual to regard one of them as pre-determined
and adjust the others accordingly. In this treatment we assume that rcut (defined by the cutoff directive in
the CONTROL file) is fixed for the given system.

The Ewald sum splits the (electrostatic) sum for the infinite, periodic, system into a damped real space sum
and a reciprocal space sum. The rate of convergence of both sums is governed by α. Evaluation of the real
space sum is truncated at r = rcut so it is important that α be chosen so that contributions to the real space
sum are negligible for terms with r > rcut. The relative error (ϵ) in the real space sum truncated at rcut is
given approximately by

ϵ ≈ erfc(α rcut)/rcut ≈ exp[−(α rcut)
2]/rcut , (8.3)

which reciprocally gives an estimate for α for a given ϵ:

α ≈
√
|ln(ϵ rcut)|
rcut

. (8.4)

The recommended value for α is 3.2/rcut or greater (too large a value will make the reciprocal space sum
very slowly convergent). This gives a relative error in the energy of no greater than ϵ = 4 × 10−5 in the
real space sum. When using the directive ewald precision DL POLY 4 makes use of a more sophisticated
approximation:

erfc(x) ≈ 0.56 exp(−x2)/x (8.5)

∗ Important note: As the SPME method substitues the standard Ewald the values of kmaxa, kmaxb and kmaxc are the double
of those in the prescription of the standard Ewald since they specify the sides of a cube, not a radius of convergence.

152

©STFC Section 8.4

to solve recursively for α, using equation 8.3 to give the first guess.

The relative error in the reciprocal space term is approximately

ϵ ≈ exp(−k2max/4α
2)/k2max (8.6)

where

kmax =
2π

L

kmax

2
(8.7)

is largest k-vector considered in reciprocal space, L is the width of the cell in the specified direction and
kmax is an integer.

For a relative error of 4× 10−5 this means using kmax ≈ 6.2 α. kmax is then

kmax > 6.4 L/rcut. (8.8)

In a cubic system, rcut = L/2 implies kmax = 14. In practice the above equation slightly over estimates the
value of kmax required, so optimal values need to be found experimentally. In the above example kmax = 10
or 12 would be adequate.

If you wish to set the Ewald parameters manually (via the ewald sum or spme sum directives) the
recommended approach is as follows. Preselect the value of rcut, choose a working a value of α of about
3.2/rcut and a large value for the kmax (say 20 20 20 or more). Then do a series of ten or so single step
simulations with your initial configuration and with α ranging over the value you have chosen plus and
minus 20%. Plot the Coulombic energy (-W) versus α. If the Ewald sum is correctly converged you will see
a plateau in the plot. Divergence from the plateau at small α is due to non-convergence in the real space
sum. Divergence from the plateau at large α is due to non-convergence of the reciprocal space sum. Redo
the series of calculations using smaller kmax values. The optimum values for kmax are the smallest values
that reproduce the correct Coulombic energy (the plateau value) and virial at the value of α to be used in
the simulation. Note that one needs to specify the three integers (kmaxa, kmaxb, kmaxc) referring to the
three spatial directions, to ensure the reciprocal space sum is equally accurate in all directions. The values
of kmaxa, kmaxb and kmaxc must be commensurate with the cell geometry to ensure the same minimum
wavelength is used in all directions. For a cubic cell set kmaxa = kmaxb = kmaxc. However, for example,
in a cell with dimensions 2A = 2B = C, (ie. a tetragonal cell, longer in the c direction than the a and b
directions) use 2kmaxa = 2kmaxb = kmaxc.

If the values for the kmax used are too small, the Ewald sum will produce spurious results. If values that
are too large are used, the results will be correct but the calculation will consume unnecessary amounts of
cpu time. The amount of cpu time increases proportionally to kmaxa× kmaxb× kmaxc.

It is worth noting that the working values of the k-vectors may be larger than their original values depending
on the actual processor decomposition. This is to satisfy the requirement that the k-vector/FFT transform
down each direction per domain is a multiple of 2, 3 and 5 only, which is due to the GPFA code (single
1D FFT) which the DaFT implementation relies on. This allowes for greater flexiblity than the power of
2 multiple restriction in DL POLY 4 predicessor, DL POLY 3. As a consequence, however, execution on
different processor decompositions may lead to different working lengths of the k-vectors/FFT transforms
and therefore slightly different SPME forces/energies whithin the same level of SPME/Ewald precision/ac-
curacy specified. Note that although the number of processors along a dimension of the DD grid may be
any number, numbers that have a large prime as a factor will lead to inefficient performance!

8.4 Warning and Error Processing

8.4.1 The DL POLY 4 Internal Warning Facility

DL POLY 4 contains a number of various in-built checks scattered throughout the package which detect
a range of possible inconsistencies or errors. In all cases, such a check fails the subroutine warning is

153

©STFC Section 8.4

called, resulting in an appropriate message that identifies the inconsistency. In some cases an inconsistency
is resolved by DL POLY 4 supplying a default value or DL POLY 4 assuming a priority of one directive
over the another (in clash of mutually exclusive directives). However, in other cases this cannot be done and
controlled termination of the program execution is called by the subroutine error. In any case appropriate
diagnostic message is displayed notifying the user of the nature of the problem.

8.4.2 The DL POLY 4 Internal Error Facility

DL POLY 4 contains a number of in-built error checks scattered throughout the package which detect a wide
range of possible errors. In all cases, when an error is detected the subroutine error is called, resulting
in an appropriate message and termination of the program execution (either immediately, or after some
additional processing). In some case, if the cause for error is considered to be mendable it is corrected and
the subroutine warning results in an appropriate message.

Users intending to insert new error checks should ensure that all error checks are performed concurrently
on all nodes, and that in circumstances where a different result may obtain on different nodes, a call to the
global status routine gcheck is made to set the appropriate global error flag on all nodes. Only after this
is done, a call to subroutine error may be made. An example of such a procedure might be:

Logical :: safe

safe = (test condition)

Call gcheck(safe)

If (.not.safe) Call error(message number)

In this example it is assumed that the logical operation test condition will result in the answer .true. if it
is safe for the program to proceed, and .false. otherwise. The call to error requires the user to state the
message number is an integer which used to identify the appropriate message to be printed.

A full list of the DL POLY 4 error messages and the appropriate user action can be found in Appendix D
of this document.

154

Chapter 9

New Control Format

Scope of Chapter

This chapter describes the changes from old-style to new-style control with information for users and devel-
opers.

155

©STFC Section 9.1

9.1 Introduction

As of DLPOLY 4.11, there is a new refactored form of control (henceforth new-style). The primary moti-
vation behind this change is an overall improvement in consistency of keywords for the purpose of allowing
easier automation of DLPOLY jobs. The revisions confer several additional benefits, however, for both users
and developers. These include, but are not limited to:

• More easily extensible hash-table based control

• New control parameter allows definition of defaults, internal units and a description

• Searchable keyword help for keyword description

• Consistent “keyword value unit” scheme for all keywords

• Automated and generalised unit parsing and conversion scheme

• More standardised naming scheme

• Only reads control file once in one location

• Decomposed reading routines for easier handling and addition of new parameters

• Writing routines for parameters independent of reading

• Warnings during reading are directed to the top of output file

• Restructured indentation-based parameter output for easier parsing

The standard form of the new control is that of:

keyword value [unit]

All new-style control parameters are of this form.

Values are required if a keyword is present. Units are required for non-dimensionless data.

9.1.1 Keywords

Keywords in new-style control only have one value and attempt to only affect one thing, this means that
what, in old-style, might be a single keyword will be subdivided into multiple parameters in new-style. An
example of this is the ensemble parameter, which previously might be rendered as:

ensemble nvt hoover 1.0

will, in new-style, be rendered:

ensemble nvt

ensemble_method hoover

ensemble_thermostat_coupling 1.0 ps

9.1.2 Value types

New-style control divides control parameters into distinct classes of parameters depending on how they
should be handled by the parser. These are int, float, bool, string, option and vector (3,6), however, these
are easily extensible and in future more may be added by developers.

156

©STFC Section 9.1

9.1.2.1 Int

These values, identified by the DATA_INT enumeration, are simple integer values. There is also a special case
for unit-converted integer values for steps values (see: §9.1.3).

vaf_binsize 21

9.1.2.2 Floats

These values, identified by the DATA_FLOAT enumeration, are generally dimensioned real data and will be
converted between input and internal units when read.

analyse_max_dist 2.0 ang

9.1.2.3 Vector

These values, identified by the DATA_VECTOR3 or DATA_VECTOR6 enumerations, are connected sets of data
which may be either floats or ints

pressure_tensor [1.0 2.0 3.0 4.0 5.0 6.0] GPa

ewald_kvec [32 64 32]

9.1.2.4 Bool

These values, identified by the DATA_BOOL enumeration, are binary options which are set by “On” or “Off”

vdw_force_shift ON

9.1.2.5 String

These values, identified by the DATA_STRING enumeration, are arbitrary strings of characters usually used
for setting filepaths, however, they may have special options such as SCREEN or NONE to specify override their
function.

io_file_config CONTROL.new

io_file_output SCREEN

9.1.2.6 Option

These values, identified by the DATA_OPTION enumeration, would otherwise be indistinguishable from strings,
however, they are differentiated by the fact that there are number of expected values to switch between.

coul_method dddp

9.1.3 Units

The automatic units conversion allows the user to enter any dimensionally correct physical unit as input to
allow ease and complete flexibility. Units can be entered in a natural manner with decimal prefixes.

Units are case insensitive, however decimal prefixes are case sensitive.

157

©STFC Section 9.2

Units can be combined using a full stop (period) [.] for product or slash [/] for quotients or raised to an
exponent with a caret [^]

2.0 e.V

1.0 m/s

3.0 ang^3

for 2 electron-volts, 1 metre per second & 3 cubic Ångströms respectively.

Decimal prefixes are applied directly to the unit they affect.

2.0 GPa

3.0 ang/ps

for 2 Gigapascals & 3 Ångströms per picosecond respectively.

The special unit “steps” is derived from the timestep parameter and will be automatically converted to/from
to allow consistent run-lengths.

timestep 2.0 fs

time_run 30 steps

time_run 60.0 fs

will mean the calculation will perform 30 steps of 2 fs (60fs) and alternatively 60fs regardless of the timestep.

9.2 Adding new keywords

New keywords should be added to the parameters hash in initialise_control in the style:

call table%set("<keyword>", control_parameter(&

key = "<keyword>", &

name = "<human-readable-full-name>", &

val = "<default-value>", &

units = "<units-of-default>", &

internal_units = "<units-to-use-internally>", &

description = "<description-for-help>", &

data_type = <data-type>))

where values in <> are to be filled in, and data-type is one of DATA_INT, DATA_FLOAT, DATA_STRING,
DATA_BOOL, DATA_OPTION, DATA_VECTOR3, DATA_VECTOR6 and other relevant data is filled in.

If your data is unitless, you can remove the units and internal_units entries and they will default to
unitless.

Keywords to be parsed in initialise_control are grouped into named blocks for ease of maintaining
these, ensure your keyword is appropriately grouped either into one of these or its own relevant block.

Once the data exists in the parameters table (through initialise_control) it is ready to be read in and
searched for through the help functions.

The next step is to retrieve the parsed keyword, there are various functions to subdivide reading to increase
maintainability and reduce argument lists to workable levels. Within an appropriate read function, call the
following function:

call params%retrieve("<keyword>", <storage>)

158

©STFC Section 9.3

where <storage> is the variable (of an appropriate type) to store the data. Any necessary unit or data
conversion will be performed by the retrieval automatically. If the keyword is not present in control, it will
default to “¡default-value¿ ¡default-units¿” as specified in the table entry.

Note: Only floats, vectors and ints in units of steps will act upon units.

Following this, the information should be added to the write function corresponding to the read function
for ease of maintainability. It should be noted that written data should be appropriately indented.

Note: Should you be writing a lot of information, it may be best to hide the information printing behind
the print level via:

Call info(message, .true., level=N)

where higher N requires the print_level variable to be a higher value (default=2).

9.3 Going from old to new

For most cases to go from old to new, it should be a simple case of using the dlpoly-py tool (Available
from: https://gitlab.com/drFaustroll/dlpoly-py/) and using the old2new tool in the tools directory
through:

<path-to-old2new>/old2new.py CONTROL

which will create/overwrite CONTROL.new.

Old Keyword New Keyword(s)

first line (taken to be title) title

l scr io file output SCREEN

l tor io file revcon NONE
io file revive NONE

l eng output energy ON

l rout io write ascii revive ON

l rin io read ascii revive ON

l print print level

l dis initial minimum separation

l fast unsafe comms ON

adf i j adf calculate ON
adf frequency i steps
adf precision j

analyse all (sampling) (every) f nbins n rmax r
analyse all ON

159

https://gitlab.com/drFaustroll/dlpoly-py/

©STFC Section 9.3

analyse frequency f steps
analyse max dist r ang
analayse num bins n

ana (bon | ang | dih | inv) (sampling) (every) f nbins n
analyse (bonds|angles|dihedrals|inversion) ON
analyse frequency (bonds|angles|dihedrals|inversion) f steps
analyse num bins (bonds|angles|dihedrals|inversion) n

binsize f rdf binsize f ang
zden binsize f ang

cap (forces) f equilibration force cap f k B.temp/ang

close time f time close f s

job time f time job f s
Note: Defaults to 1e304

coord i j f coord calculate ON
coord ops (icoord|ccoord|full)
coord start j steps
coord interval f steps

collect record equilibration

coul|distan|reaction|shift coul method (dddp|pairwise|reaction field|force shifted)
shift damp α coul damping α 1/ang
reaction damp α
shift precision f coul precision f
reaction precision f

cutoff f (≡ rcut f) cutoff f ang

defects i j f defects calculate ON
defects start j steps
defects interval f steps
defects distance f ang

delr f (≡ rpad 4f) removed (see: padding)

densvar f density variance f %

displacements i j f displacements calculate ON
displacements start j steps
displacements interval f steps
displacements distance f ang

dump n data dump frequency n steps

ensemble (nve|nvt|npt|nst) ensemble (nve|nvt|npt|nst)
evans ensemble method evans

160

©STFC Section 9.3

langevin f ensemble method langevin
ensemble thermostat friction f 1/ps

andersen f1 f2 ensemble method andersen
ensemble thermostat coupling f1 ps
ensemble thermostat softness f2

berendsen f ensemble method berendsen
ensemble thermostat coupling f ps

hoover f ensemble method (hoover|nose|nose-hoover)
ensemble thermostat coupling f ps

gst f1 f2 ensemble method (gentle|gst)
ensemble thermostat coupling f1 ps
ensemble thermostat friction f2 1/ps

ttm|inhomo f1 f2 f3 ensemble method ttm
ttm e-phonon friction f3 1/ps
ttm e-stopping friction f2 1/ps
ttm e-stopping velocity f3 ang/ps

dpd s1 gamma ensemble method dpd
ensemble dpd order (1|first)
ensemble dpd drag gamma Da/ps

dpd s2 gamma ensemble method dpd
ensemble dpd order (2|second)
ensemble dpd drag gamma Da/ps

epsilon f coul dielectric constant f

equilibration (steps) f time equilibration f steps

ewald precision f coul method ewald
ewald precision f

ewald (sum) α k1 k2 k3 coul method ewald
ewald alpha α
ewald kvec [k1 k2 k3]

exclude coul extended exclusion ON

finish removed

heat flux heat flux ON

impact i j E x y z impact part index i
impact time j steps
impact energy E ke.V
impact direction [x y z]

nfold i j k nfold [i j k]

no elec coul method off

no index ignore config indices ON

no strict strict checks OFF

161

©STFC Section 9.3

no topology print topology info OFF

no vafaveraging vaf averaging OFF

no vdw vdw method OFF

no vom fixed com ON

metal direct metal direct ON
metal sqrtrho metal sqrtrho ON

minimise string n f s minimisation criterion (off|force|energy|distance)
optimise string f s minimisation frequency n steps

minimisation tolerance f (internal f|internal e|ang)
minimisation step length s ang

msdtmp i j msd calculate ON
msd start i steps
msd interval i steps

padding f (≡ rpad f) padding f ang

plumed string (on|off) plumed (ON|OFF)
plumed input <filename> plumed input <filename>
plumed log <filename> plumed log <filename>
plumed precision int-val plumed precision int-val
plumed restart string (yes|no) plumed restart (ON|OFF)

polarisation scheme/type thole f polarisation model (charmm|default)
polarisation thole f

pressure f pressure hydrostatic f katm
pressure tensor xx yy zz xy xz yz pressure tensor [xx yy zz xy xz yz] katm

pressure perpendicular xx yy zz katm

pp dump write per particle ON

print (every) n print frequency n steps

print analysis removed
print rdf rdf print ON

print vaf vaf print ON

print zden zden print ON

pseudo string f1 f2 pseudo thermostat method (off|langevin-direct|langevin|gaussian|direct)
pseudo thermostat width f1 ang
pseudo thermostat temperature f2 K

quaternion (tolerance) f removed

162

©STFC Section 9.3

rdf (sampling) (every) f rdf frequency f steps

regauss (every) n regauss frequency n steps

replay (history) Now command line option

restart (|noscale|scale) restart (clean|continue|rescale|noscale)

rlxtol f s rlx tol f internal f
rlx cgm step s ang

rvdw (cutoff) f vdw cutoff f ang

scale (temperature) (every) f rescale frequency f steps

seed n1 n2 n3 random seed [n1 n2 n3]

slab removed

stack (size) n stack size n steps

stats (every) n stats frequency n steps

steps n time run n steps

subcelling (threshold) (density) f subcell threshold f

temperature f temperature f K

trajectory i j k traj calculate ON
traj start i steps
traj interval j steps
traj key (pos|pos-vel|pos-vel-force|compressed)

ttm amin n ttm min atoms n
ttm bcs Q ttm boundary condition (periodic|dirichlet|neumann|robin)

ttm boundary xy (ON|OFF)
ttm boundary heat flux f %

ttm ceconst f ttm heat cap model (constant|tanh|linear|tabulated)
ttm cetab ttm heat cap f |f1 internal e/amu/K
ttm celin f1 f2 ttm fermi temp f2 K
ttm cetanh f1 f2 ttm temp term f2 K^-1
ttm deconst|diff f ttm diff model (constant|reciprocal|tabulated)
ttm derecip f1 f2 ttm diff f |f1 m^2/s
ttm detab ttm fermi temp f2 K
ttm dedx f ttm stopping power f e.V/nm
ttm dyndens ttm dens model (constant|dynamic)
ttm atomdens f ttm dens f ang^-3
ttm keconst f ttm elec cond model (infinite|constant|drude|tabulated)
ttm kedrude f ttm elec cond f W/m/K
ttm keinf

163

©STFC Section 9.3

ttm ketab
ttm delta ttm temporal dist delta
ttm pulse f ttm temporal duration f |f1 ps
ttm gauss f1 f2 ttm temporal cutoff f2 ps
ttm nexp f1 f2
ttm sflat ttm spatial dist flat
ttm sgauss f1 f2 ttm spatial dist gaussian
ttm sigma f1 f2 ttm spatial sigma f1 nm

ttm spatial cutoff f2 nm
ttm laser f1 f2 ttm spatial dist laser
ttm laser f1 f2 zdep ttm laser type (flat|exponential)

ttm fluence f1 mJ/cm^2
ttm penetration depth f2 nm

ttm metal ttm metal ON
ttm nonmetal ttm metal OFF
ttm ncit n ttm num ion cells n
ttm ncet n1 n2 n3 ttm num elec cell [n1 n2 n3]
ttm offset f ttm time offset f ps
ttm oneway ttm oneway ON
ttm redistribute ttm redistribute ON
ttm thvelz ttm com correction (full|zdir|off)
ttm nothvel
ttm stats n ttm stats frequency n steps
ttm traj n ttm traj frequency n steps
ttm varg homogeneous ttm variable ep homo
ttm varg heterogeneous ttm variable ep hetero

vaf (sampling) (every) i (bin) (size) n
vaf calculate ON
vaf frequency i steps
vaf binsize n

timestep f timestep f ps

variable timestep f timestep f ps
timestep variable ON

maxdis f timestep variable max dist f ang
mindis f timestep variable min dist f ang
mxstep f timestep variable max delta f ps

vdw direct vdw method (tabulated|direct|ewald|off)
vdw mixing rule vdw mix method (Lorentz-Berthelot|Fender-Hasley|Hogervorst|

Waldman-Hagler|Tang-Toennies|Functional)
vdw shift vdw force shift ON

zden (sampling) (every) f zden calculate ON
zden frequency f steps

zero (fire) (every n) reset temperature interval n steps

164

Chapter 10

Data Files

Scope of Chapter

This chapter describes all the input and output files for DL POLY 4, examples of which are to be found in
the data sub-directory.

165

©STFC Section 10.1

10.1 The INPUT Files

Figure 10.1: DL POLY 4 input (left) and output (right) files. Note: files marked with an asterisk are
non-mandatory.

DL POLY 4 may require many input files. However, only CONTROL, CONFIG and FIELD are mandatory.
The MPOLES and TAB* are complimentary to FIELD and are only required when opted within. HISTORY
is required when an old trajectory is opted for re-play in CONTROL. REFERENCE is optionally required
when defect detection is switched on in CONTROL. REVOLD is required only when the job represents a
continuation of a previous job. In the following sections we describe the form and content of these files.

It is worth noting that historically DL POLY used hard-coded names for different I/O files as shown in
Figure 10.1. This is no longer the case! Upon instructions in the CONTROL many I/O file name can
be overridden with specific, user-defined filenames (see I/O Control Options). Even the CONTROL file
can be named differently but in this case the alternative name must be passed as a command line
argument to the DL POLY 4 executable (usually named DLPOLY.Z). Thus the DL POLY 4 engine can
be efficiently embedded and utilised within external frameworks for user-definable work-flows.

166

©STFC Section 10.1

10.1.1 The CONTROL File

The CONTROL file is read by the subroutine read new control and defines the control variables for
running a DL POLY 4 job. Keywords are character strings that appear as the first entry on a data record
(or line) and which invoke a particular operation or provide numerical parameters. Keywords can appear
in any order in the CONTROL file and some of the directives are mandatory (for example the timestep
directive that defines the timestep), others are optional.

This way of constructing the file is very convenient, but it has inherent dangers. It is, for example, quite easy
to specify contradictory directives, or invoke algorithms that do not work together. By large DL POLY 4
tries to sort out these difficulties and print helpful error messages, but it does not claim to be fully foolproof.
It is important to think carefully about a simulation beforehand and ensure that DL POLY 4 is being asked
to do something that is physically reasonable. It should also be remembered that the present capabilities
the package may not allow the simulation required and it may be necessary for you yourself to add new
features.

An example CONTROL file appears below. The directives and keywords appearing are described in the
following section.

title DL_POLY_4 CONTROL DIRECTIVES

I/O REDIRECT

io_file_output my-dl_poly-run

io_file_field FIELD-dl_field.out

io_file_config CONFIG-CDS-generated

io_file_history new-trajectory

io_file_revive REVIVE-2ps-run

io_file_revcon REVCON-100k-output

io_file_revold REVIVE-1ps-run

SYSTEM REPLICATION & IMPACT OPTION

nfold [10 10 10]

impact_part_index 1

impact_time 2000.0 steps

impact_energy 7.5 ke.V

impact_direction [1.0 2.0 3.0]

DENSITY VARIATION ARRAY BOOST

density_variance 10.0 %

INDEX AND VERIFICATION BYPASS AND NO TOPOLOGY REPORTING

ignore_config_indices ON

strict_checks OFF

print_topology_info OFF

INTERACTIONS BYPASS

vdw_method OFF

coul_method OFF

APPLY MIXING TO ALLOWED & AVAILABLE VDW CROSS INTERACTIONS

vdw_mix_method Lorentz-Berthelot

DIRECT CALCULATION OF VDW/METAL INTERACTIONS INSTEAD OF

EVALUATION BY SPLINING OVER TABULATED VALUES IN MEMORY

167

©STFC Section 10.1

vdw_method direct

metal_direct ON

FORCE-SHIFT VDW INTERACTIONS SO THAT ENERGY AND FORCE

CONTRIBUTIONS FALL SMOOTHLY TO ZERO WHEN APPROACHING R_CUT

vdw_force_shift ON

RANDOM NUMBER GENERATOR SEEDING

random_seed [100 200 300]

RESTART OPTIONS

restart noscale

data_dump_frequency 1000 steps

SYSTEM TARGET TEMPERATURE AND PRESSURE

pressure_hydrostatic 0.001 katm

temperature 300.0 K

SYSTEM CUTOFFS AND ELECTROSTATICS

vdw_cutoff 8.0 ang

padding 0.35 ang

cutoff 10.0 ang

subcelling_threshold_density 50.0 %

coul_extended_exclusion ON

coul_dielectric_constant 1.0

coul_method ewald

ewald_precision 1e-05

RELAXED SHELL MODEL TOLERANCE

rlx_tol 1.0

CONSTRANTS ITERATION LENGTH and TOLERANCE

shake_max_iter 250

shake_tolerance 1e-05 ang

INTEGRATION FLAVOUR, ENSEMBLE AND PSEUDO THERMOSTAT

ensemble nst

ensemble_method berendsen

ensemble_thermostat_coupling 0.5 ps

ensemble_barostat_coupling 1.5 ps

pseudo_thermostat_method langevin

pseudo_thermostat_width 2.0 ang

pseudo_thermostat_temperature 150.0 K

INTEGRATION TIMESTEP

timestep 0.001 ps

timestep_variable ON

timestep_variable_min_dist 0.03 ang

timestep_variable_max_dist 0.1 ang

timestep_variable_max_delta 0.005 ps

SIMULATION & EQUILIBRATION LENGTH

168

©STFC Section 10.1

time_run 10000.0 steps

time_equilibration 1000.0 steps

EQUILIBRATION DIRECTIVES

reset_temperature_interval 1.0 steps

equilibration_force_cap 500.0 k_B.temp/ang

rescale_frequency 5.0 steps

regauss_frequency 3.0 steps

minimisation_criterion energy

minimisation_tolerance 0.001 internal_e

minimisation_frequency 20.0 steps

minimisation_step_length 1e-05 ang

STATISTICS

record_equilibration ON

stack_size 50.0 steps

stats_frequency 10.0 steps

OUTPUT

print_frequency 20.0 steps

HISTORY

traj_calculate ON

traj_start 20.0 steps

traj_interval 30.0 steps

traj_key pos

DEFECTS TRAJECTORY - DEFECTS

defects_calculate ON

defects_start 40.0 steps

defects_interval 15.0 steps

defects_distance 0.75 ang

DISPLACEMENTS TRAJECTORY - RSDDAT

displacements_calculate ON

displacements_start 70.0 steps

displacements_interval 10.0 steps

displacements_distance 0.25 ang

MSDTMP

msd_calculate ON

msd_start 1000.0 steps

msd_frequency 100.0 steps

INTRAMOLECULAR PDF ANALYSIS BY TYPE IF PRESENT

analyse_bonds ON

analyse_frequency_bonds 100 steps

analyse_num_bins_bonds 250

analyse_angles ON

analyse_frequency_angles 100 steps

analyse_num_bins_angles 360

169

©STFC Section 10.1

analyse_dihedrals ON

analyse_frequency_dihedrals 100 steps

analyse_num_bins_dihedrals 720

analyse_inversions ON

analyse_frequency_inversions 100 steps

analyse_num_bins_inversions 360

analyse_all ON

analyse_frequency 100 steps

analyse_num_bins 1000

analyse_max_dist 5.0 ang

RDF & Z-DENSITY

rdf_print ON

rdf_calculate ON

rdf_frequency 7.0 steps

rdf_binsize 0.05

zden_print ON

zden_calculate ON

zden_frequency 7.0 steps

zden_binsize 0.05

EMPIRICAL VALENCE BOND (EVB) DIRECTIVE

evb 2

EXECUTION TIME

time_job 1000.0 s

time_close 10.0 s

10.1.1.1 The CONTROL File Format

The file is free-formatted and not case-sensitive. Every line is treated as a command sentence (record).
Commented records (beginning with a # or !) and blank lines are not processed and may be added to aid
legibility (see example above). Records must be limited in length to 200 characters. Records are read in as
up to three words “keyword value unit”. A word must not exceed 256 characters in length.

Additional annotation must be rendered as a comment.

The first keyword (i.e. not comment) in the CONTROL file is must be title and a suiltable title.

10.1.1.2 The CONTROL File Directives

Note that in some cases additional keywords, shown in brackets “(...)”, may also be supplied in the directives,
or directives may be used in a long form. However, it is strongly recommended that the user uses only the
bold part of these directives.

The MAIN LIST of directives available is as follows:

title STRING Run title
simulation method OPTION Set simulation method, options: MD, EVB, FFS (default =

md)

170

©STFC Section 10.1

random seed VECTOR3 Set random seed (default = 1 2 3)
density variance FLOAT Set expected density variance for determining maximum ar-

ray sizes (default = 0.0 %)
data dump frequency FLOAT Set data dumping frequency for restarts (default = 1000

steps)
subcell threshold FLOAT Set subcelling threshold density for setting minimum parti-

cles per link-cell (default = 50.0)
time run FLOAT Set duration of simulation (inc. equilibration) (default = 0

steps)
time equilibration FLOAT Set equilibration duration (default = 0 steps)
time job FLOAT Set total job time before attempted safe closure (default =

-1.0 hr)
time close FLOAT Estimated closure time for finite-time jobs (default = -1.0

min)
stats frequency FLOAT Set frequency of stats sampling to statis file (default = 0

steps)
stack size FLOAT Set rolling average stack to n timesteps (default = 0 steps)
record equilibration BOOL Include equilibration in output (default = off)
print per particle contrib BOOL Calculate and print per-particle contributions to energy,

force and stress to file every stats step (default = off)
print probability distribution BOOL Calculate and print probability distribution (enforces RDF

print) (default = off)
analyse all BOOL Enable analysis for all bonds, angles, dihedrals and inver-

sions (default = off)
analyse angles BOOL Enable analysis for all angles (default = off)
analyse bonds BOOL Enable analysis for all bonds (default = off)
analyse dihedrals BOOL Enable analysis for all dihedrals (default = off)
analyse inversions BOOL Enable analysis for all inversions (default = off)
analyse frequency FLOAT Set global frequency of data analysis (default = 1 steps)
analyse frequency bonds FLOAT Set frequency of bonds data analysis (default = 1 steps)
analyse frequency angles FLOAT Set frequency of angles data analysis (default = 1 steps)
analyse frequency dihedrals FLOAT Set frequency of dihedrals data analysis (default = 1 steps)
analyse frequency inversions FLOAT Set frequency of inversions data analysis (default = 1 steps)
analyse max dist FLOAT Set cutoff for bonds analysis (default = 2.0 ang)
analyse num bins INT Set global number of bins to be used in bonding analysis

(default = -1)
analyse num bins bonds INT Set number of bins to be used in bond analysis (default =

0)
analyse num bins angles INT Set number of bins to be used in angle analysis (default =

0)
analyse num bins dihedrals INT Set number of bins to be used in dihedral analysis (default

= 0)
analyse num bins inversions INT Set number of bins to be used in inversion analysis (default

= 0)
msd calculate BOOL Enable calculation of MSD (default = off)
msd print BOOL Enable printing of MSD (default = off)
msd start FLOAT Start timestep for dumping MSD configurations (default =

0 steps)
msd frequency FLOAT Interval between dumping MSD configurations (default = 1

steps)
traj calculate BOOL Enable calculation of trajectory (default = off)

171

©STFC Section 10.1

traj key OPTION Set trajectory output, options: pos, pos-vel, pos-vel-force,
compressed (default = pos)

traj start FLOAT Start timestep for dumping trajectory configurations (de-
fault = 0 steps)

traj interval FLOAT Interval between dumping trajectory configurations (default
= 1 steps)

defects calculate BOOL Enable calculation of defects (default = off)
defects start FLOAT Start timestep for dumping defects configurations (default

= 0 steps)
defects interval FLOAT Interval between dumping defects configurations (default =

1 steps)
defects distance FLOAT Set cutoff for deviation to be considered by defects as inter-

stitial (default = 0.75 ang)
defects backup BOOL Enable defects backup (default = off)
displacements calculate BOOL Enable calculation of displacements (default = off)
displacements start FLOAT Start timestep for dumping displacements configurations

(default = 0 steps)
displacements interval FLOAT Interval between dumping displacements configurations (de-

fault = 1 steps)
displacements distance FLOAT Set cutoff for qualifying as displacement (default = 0.75 ang)
coord calculate BOOL Enable calculation of coordination numbers (default = off)
coord ops OPTION Set Coordops, options: icoord: only dumps the coordination

of each atom at i; CCOORD: only dumps coordination of
each atom at i; FULL: dumps the coordination of each atom
every j steps (default = icoord)

coord start FLOAT Start timestep for dumping coordination configurations (de-
fault = 0 steps)

coord interval FLOAT Interval between dumping coordination configurations (de-
fault = 100 steps)

adf calculate BOOL Enable calculation of ADF (default = off)
adf frequency FLOAT Set frequency of ADF sampling (default = 100 steps)
adf precision FLOAT Set precision of angular distribution bins in ADF analysis

(default = 0.0)
rdf calculate BOOL Enable calculation of RDF (default = off)
rdf print BOOL Enable printing of RDF (default = on)
rdf frequency FLOAT Set frequency of RDF sampling (default = 1 steps)
rdf binsize FLOAT Set number of bins to be used in RDF analysis (default =

0.05 ang)
rdf error analysis OPTION Enable RDF error analysis, options: Off, Jackknife, Block

(default = off)
rdf error analysis blocks INT Set number of RDF error analysis blocks (default = 1)
zden calculate BOOL Enable calculation of ZDen (default = off)
zden print BOOL Enable printing of ZDen (default = on)
zden frequency FLOAT Set frequency of ZDen sampling (default = 1 steps)
zden binsize FLOAT Set number of bins to be used in ZDen analysis (default =

0.05 ang)
vaf calculate BOOL Enable calculation of VAF (default = off)
vaf print BOOL Enable printing of VAF (default = on)
vaf frequency FLOAT Set frequency of VAF sampling (default = 1 steps)
vaf binsize INT Set number of bins to be used in VAF analysis (default = 0)
vaf averaging BOOL Ignore time-averaging of VAF, report all calculated VAF to

VAFDAT files and final profile to OUTPUT (default = on)

172

©STFC Section 10.1

currents calculate BOOL Enable calculation of currents (default = off)
heat flux BOOL Enable calculation of heat flux (default = off)
write per particle BOOL Enable dumping of per-particle information (default = off)
print frequency FLOAT Set frequency of printing results to output (default = 0

steps)
io units scheme OPTION Set I/O units scheme, options: internal, si, atomic (*un-

used*) (default = internal)
io units length OPTION Set I/O units for length (*unused*) (default = internal l)
io units time OPTION Set I/O units for time (*unused*) (default = internal t)
io units mass OPTION Set I/O units for mass (*unused*) (default = internal m)
io units charge OPTION Set I/O units for charge (*unused*) (default = internal q)
io units energy OPTION Set I/O units for energy (*unused*) (default = internal e)
io units pressure OPTION Set I/O units for pressure (*unused*) (default = internal p)
io units force OPTION Set I/O units for force (*unused*) (default = internal f)
io units velocity OPTION Set I/O units for velocity (*unused*) (default = internal v)
io units power OPTION Set I/O units for power (*unused*) (default = inter-

nal e/internal t)
io units surface tension OPTION Set I/O units for surface tension (*unused*) (default = in-

ternal f/internal l)
io units emf OPTION Set I/O units for electromotive force (*unused*) (default =

internal e/internal q)
io read method OPTION Set I/O read method, possible read methods: mpiio, direct,

netcdf, master (default = mpiio)
io read readers INT Set number of parallel I/O readers (default = 0

(Automatic))
io read batch size INT Set I/O reader batch size (default = 0 (Automatic))
io read buffer size INT Set I/O reader buffer size (default = 0 (Automatic))
io read error check BOOL Enable extended error checking on read (default = off)
io read ascii revold BOOL Read human-readable (ASCII) REVOLD file (default = off)
io write method OPTION Set I/O write method, possible write methods: mpiio, direct,

netcdf, master (default = mpiio)
io write writers INT Set number of parallel I/O writers (default = 0

(Automatic))
io write batch size INT Set I/O writer batch size (default = 0 (Automatic))
io write buffer size INT Set I/O writer buffer size (default = 0 (Automatic))
io write sorted BOOL Enable sorted output for atomic data (default = on)
io write error check BOOL Enable extended error checking on write (default = off)
io write netcdf format OPTION Set netcdf write format, options: amber, 32bit, 32-bit, 64-

bit, 64bit (default = 64bit)
io write ascii revive BOOL Write REVIVE as a human-readable (ASCII) file (default

= off)
io file output STRING Set output filepath, special options: SCREEN, NONE (de-

fault = OUTPUT)
io file config STRING Set input configuration filepath (default = CONFIG)
io file field STRING Set input field filepath (default = FIELD)
io file statis STRING Set output statistics filepath, special options: NONE (de-

fault = STATIS)
io file history STRING Set output history filepath, special options: NONE (default

= HISTORY)
io file historf STRING Set output historf filepath, special options: NONE (default

= HISTORF)

173

©STFC Section 10.1

io file revive STRING Set output revive filepath, special options: NONE (default
= REVIVE)

io file revold STRING Set output revold filepath, special options: NONE (default
= REVOLD)

io file revcon STRING Set output revcon filepath, special options: NONE (default
= REVCON)

io file rdf STRING Set output RDF filepath, special options: NONE (default =
RDFDAT)

io file msd STRING Set output MSD filepath, special options: NONE (default
= MSDTMP)

io file tabbnd STRING Set input TABBND filepath (default = TABBND)
io file tabang STRING Set input TABANG filepath (default = TABANG)
io file tabdih STRING Set input TABDIH filepath (default = TABDIH)
io file tabinv STRING Set input TABINV filepath (default = TABINV)
io file tabvdw STRING Set input TABVDW filepath (default = TABVDW)
io file tabeam STRING Set input TABEAM filepath (default = TABEAM)
output energy BOOL Output final energy e tot in output file (default = off)
ignore config indices BOOL Ignore indices as defined in CONFIG and use read order

instead (default = off)
print topology info BOOL Print topology information in output file (default = off)
print level INT Disable unnecessary printing, levels: 0 - silent, 1 - quiet, 2 -

standard, 3 - full (default = 1)
timer depth INT Do not display timers beyond this many levels in final timer

output (default = 4)
timer per mpi BOOL Write timings for each MPI process individually (default =

off)
timestep FLOAT Set calculation timestep or initial timestep for variable

timestep calculations (default = 0.0 internal_t)
timestep variable BOOL Enable variable timestep (default = off)
timestep variable min dist FLOAT Set minimum permissible distance for variable timestep (de-

fault = 0.03 ang)
timestep variable max dist FLOAT Set maximum permissible distance for variable timestep (de-

fault = 0.1 ang)
timestep variable max delta FLOAT Set maximum timestep delta for variable timestep (default

= 0.0 internal_t)
ensemble OPTION Set ensemble constraints, options: NVE, PMF, NVT, NPT,

NST (default = NVE)
ensemble method OPTION Set ensemble method, options NVT: Evans, Langevin, An-

dersen, Berendsen, Hoover, gentle, ttm, dpds1, dpds2.
NP—ST: Langevin, Berendsen, Hoover, MTK.

ensemble thermostat coupling FLOAT Set thermostat relaxation/decorrelation times (use ensem-
ble thermostat friction for langevin) (default = 0.0 ps)

ensemble dpd order OPTION Set dpd method, options: off, first, second (default = off)
ensemble dpd drag FLOAT Set DPD drag coefficient (default = 0.0 Da/ps)
ensemble thermostat friction FLOAT Set thermostat friction for langevin and gentle stochastic

thermostats (default = 0.0 ps^-1)
ensemble thermostat softness FLOAT Set thermostat softness for Andersen thermostat (default =

0.0)
ensemble barostat coupling FLOAT Set barostat relaxation/decorrelation times (use ensem-

ble barostat friction for langevin) (default = 0.0 ps)
ensemble barostat friction FLOAT Set barostat friction (default = 0.0 ps^-1)

174

©STFC Section 10.1

ensemble semi isotropic OPTION Enable semi-isotropic barostat constraints, options: area,
tension, orthorhombic (default = off)

ensemble semi orthorhombic BOOL Enable semi-orthorhombic barostat constraints (default =
off)

ensemble tension FLOAT Set tension in NPngT calctulation (default = 0.0 N/m)
pressure tensor VECTOR6 Set the target pressure tensor for NsT calculations (default

= 0.0 0.0 0.0 0.0 0.0 0.0 katm)
pressure hydrostatic FLOAT Set the target hydrostatic pressure (1/3Tr[P]) for NPT cal-

culations (default = 0.0 katm)
pressure perpendicular VECTOR3 Set the target pressure as x, y, z perpendicular to cell faces

for NPT calculations (default = 0.0 0.0 0.0 katm)
temperature FLOAT Set the initial temperature or target temperature (for ther-

mostats) (default = 0.0 K)
pseudo thermostat method OPTION Set pseudo thermostat method, possible options: Off,

Langevin-Direct, Langevin, Gauss, Direct (default = off)
pseudo thermostat width FLOAT Set the width of thermostatted boundaries for pseudo ther-

mostats (default = 2.0 ang)
pseudo thermostat temperature FLOAT Set the temperature of the pseudo thermostat (default = 0.0

K)
impact part index INT Set particle index for impact simulations (default = 0)
impact time FLOAT Set time for impact in impact simulations (default = 0.0

internal_t)
impact energy FLOAT Set impact energy for impact simulations (default = 0.0

ke.V)
impact direction VECTOR3 Direction vector for impact simulations (default = 1.0 1.0

1.0)
ttm calculate BOOL Enable calculation of two-temperature model (default = off)
ttm num ion cells INT Set number of coarse-grained ion temperature cells (CIT)

(default = 10)
ttm num elec cells VECTOR3 Set number of coarse-grained electronic temperature cells

(CET) (default = 50 50 50)
ttm metal BOOL Specifies parameters for metallic system are required for two-

temperature model, i.e. thermal conductivity (default = off)
ttm heat cap model OPTION Sets model for specific heat capacity in TTM, options: const,

linear, tabulated, tanh
ttm heat cap FLOAT Sets constant, scale or maximum heat capcity in TTM (de-

fault = 0.0 internal_e/internal_m/K)
ttm temp term FLOAT Set Fermi temperature in TTM, for tanh (default = 0.0

K^-1)
ttm fermi temp FLOAT Set Fermi temperature in TTM, for linear (default = 0.0 K)
ttm elec cond model OPTION Set electronic conductivity model in TTM, options: Infinite,

constant, drude, tabulated
ttm elec cond FLOAT Set electronic conductivity in TTM (default = 0.0 W/m/K)
ttm diff model OPTION Set diffusion model in TTM, options: constant, recip, tabu-

lated
ttm diff FLOAT Set TTM thermal diffusivity (default = 0.0 m^2/s)
ttm dens model OPTION Set density model in TTM, options are: constant, dynamic
ttm dens FLOAT Set constant density in TTM (default = 0.0 ang^-3)
ttm min atoms INT Minimum number of atoms needed per ionic temperature

cell (default = 0)
ttm stopping power FLOAT Electronic stopping power of projectile entering electronic

system (default = 0.0 e.V/nm)

175

©STFC Section 10.1

ttm spatial dist OPTION Set the spatial distribution of TTM, options: flat, gaussian,
flat-laser, exp-laser

ttm spatial sigma FLOAT Set the sigma for spatial distributions of TTM (default =
1.0 nm)

ttm spatial cutoff FLOAT Set the cutoff for spatial distributions of TTM (default =
5.0 nm)

ttm fluence FLOAT Initial energy deposition into electronic system by laser for
TTM (default = 0.0 mJ/cm^2)

ttm penetration depth FLOAT Set laser penetration depth for TTM (default = 0.0 nm)
ttm laser type OPTION Set laser deposition type. options: flat, exponential (default

= flat)
ttm temporal dist OPTION Set temporal distribution for TTM, options: gaussian, ex-

ponential, delta, square
ttm temporal duration FLOAT Set duration of energy deposition for TTM (gaussian, expo-

nential, square) (default = 0.001 ps)
ttm temporal cutoff FLOAT Set temporal cutoff for TTM (gaussian, exponential) (de-

fault = 5.0 ps)
ttm variable ep OPTION Set electron-phonon coupling for TTM, options: homo, het-

ero
ttm boundary condition OPTION Set boundary conditions for TTM, options: periodic, dirich-

let, neumann, robin
ttm boundary xy BOOL Fix Neumann (zero-flux) boundary in Z (default = off)
ttm boundary heat flux BOOL Set boundary heat flux in Robin boundaries for TTM (de-

fault = 96 %)
ttm time offset FLOAT Set electron-ion coupling offset for TTM (default = 0.0 ps)
ttm oneway BOOL Enable one-way electron-phonon coupling when electronic

temperature is greater than ionic temperature (default =
off)

ttm stats frequency FLOAT Frequency of write to TTM PEAK E and PEAK I (default
= 0 steps)

ttm traj frequency FLOAT Frequency of write to TTM LATS E and LATS I (default =
0 steps)

ttm com correction OPTION Apply inhomogeneous Langevin thermostat to selected di-
rections in TTM, options: full, zdir, off (default = full)

ttm redistribute BOOL Redistribute electronic energy in newly-deactivated temper-
ature cells to nearest active neighbours

ttm e-phonon friction FLOAT Set TTM electron-phonon friction (default = 0.0 ps^-1)
ttm e-stopping friction FLOAT Set TTM electron-stopping friction (default = 0.0 ps^-1)
ttm e-stopping velocity FLOAT Set TTM electron-stopping velocity (default = 0.0 ang/ps)
rlx cgm step FLOAT Set CGM stepping for relaxed shell model (default = -1.0

ang)
rlx tol FLOAT Set force tolerance for relaxed shell model (default = 1.0

internal_f)
shake max iter INT Set maximum number of SHAKE/RATTLE iterations (de-

fault = 250)
shake tolerance FLOAT Set accepted SHAKE/RATTLE tolerance (default = 1e-6

ang)
dftb BOOL Enable DFTB (default = off)
fixed com BOOL Remove net centre of mass momentum (default = on)
reset temperature interval FLOAT Interval between temperature zeroing during equilibration

for minimisation (default = -1 steps)

176

©STFC Section 10.1

regauss frequency FLOAT Set the frequency of temperature regaussing (default = -1
steps)

rescale frequency FLOAT Set the frequency of temperature rescaling (default = -1
steps)

equilibration force cap FLOAT Set force cap clamping maximum force during equilibration
(default = 1000.0 k_b.temp/ang)

minimisation criterion OPTION Set minimisation criterion, options: off, force, energy, dis-
tance (default = off)

minimisation tolerance FLOAT Set minimisation tolerance, units: determined by criterion
(default = 0.0)

minimisation step length FLOAT Set minimisation tolerance (default = -1.0 ang)
minimisation frequency FLOAT Set minimisation frequency (default = 0 steps)
initial minimum separation FLOAT Turn on the check on minimum separation distance between

VNL pairs at re/start (default = -1.0 internal_l)
restart OPTION Set restart settings, possible options: Clean, Continue,

Rescale, Noscale (default = clean)
nfold VECTOR3 Expand cell before running (default = 1 1 1)
cutoff FLOAT Set the global cutoff for real-speace potentials (default = 1.0

internal_l)
padding FLOAT Set padding for sizing of Verlet neighbour lists (default =

0.0 internal_l)
coul damping FLOAT Calculate electrostatics using Fennell damping (Ewald-like)

with given alpha (default = 0.0 1/Ang)
coul dielectric constant FLOAT Set dielectric constant relative to vacuum (default = 1.0)
coul extended exclusion BOOL Enable extended coulombic exclusion affecting intra-

molecular interactions (default = off)
coul method OPTION Set method for electrostatics method, options: off, spme,

dddp, pairwise, reaction field, force shifted (default = off)
coul precision FLOAT Calculate electrostatics using Fennell damping (Ewald-like)

with given precision (default = 0.0)
ewald precision FLOAT Set Ewald parameters to calculate within given precision for

Ewald calculations (default = 1.0e-6)
ewald alpha FLOAT Set real-recip changeover location for Ewald calculations

(default = 0.0 ang^-1)
ewald kvec VECTOR3 Set number of k-space samples for Ewald calculations (de-

fault = 0 0 0)
ewald kvec spacing FLOAT Calculate k-vector samples for an even sampling of given

spacing in Ewald calculations (default = 0.0 ang^-1)
ewald nsplines INT Set number of B-Splines for Ewald SPME calculations,

min=3 (default = 8)
polarisation model OPTION Enable polarisation, options: default, CHARMM (default =

default)
polarisation thole FLOAT Set global atomic damping factor (default = 1.3)
metal direct BOOL Enable direct (non-tabulated) calculation of metallic forces

(default = off)
metal sqrtrho BOOL Enable metal sqrtrho interpolation option for EAM embed-

ing function in TABEAM (default = off)
vdw method OPTION Set method for Van der Waal’s calculations, options: off,

direct, tabulated, ewald (default = tabulated)
vdw cutoff FLOAT Set cut-off for Van der Waal’s potentials (default = 0.0

internal_l)

177

©STFC Section 10.1

vdw mix method OPTION Enable VdW mixing, possible mixing schemes: Off, Lorentz-
Berthelot, Fender-Hasley, Hogervorst, Waldman-Hagler,
Tang-Toennies, Functional (default = off)

vdw force shift BOOL Enable force shift corrections to Van der Waals’ forces (de-
fault = off)

plumed BOOL Enabled plumed dynamics (default = off)
plumed input STRING Set plumed input file
plumed log STRING Set plumed log file
plumed precision INT Set plumed numerical precision (4=single, 8=double) (de-

fault = 8)
plumed restart BOOL Restart plumed dynamics (default = on)
strict checks BOOL Enforce strict checks such as: good system cutoff, particle

index contiguity, disable non-error warnings, minimisation
information (default = on)

unsafe comms BOOL Do not ensure checks of logicals are enforced in parallel (de-
fault = off)

dftb test BOOL Do not perform a DLPOLY run, instead run dftb tests (de-
fault = off)

10.1.1.3 Further Comments on the CONTROL File

1. All keywords in new-style control files must be unique, double specification will result in an error. This
is to protect users from unexpected behaviour.

2. The following parameters are mandatory:

(a) ensemble

(b) ensemble method

(c) cutoff

(d) timestep

3. Some directives are optional. If not specified DL POLY 4 may give default values if necessary. (defaults
are specified above in the list of directives) However fail-safe DL POLY 4 is, ensure parameters are
appropriate for the system of interest and defaults should only be used after it is known that they are
valid.

4. The time run and time equilibration directives have a default of zero. If not used or used with their
default values a ”dry run” is performed. This includes force generation and system dump (REVCON
and REVIVE) and, depending on the rest of the options, may include; velocity generation, force
capping, application of the CGM minimiser, application of the pseudo thermostat, and dumps of
HISTORY, DEFECTS, RDFDAT, ZDNDAT and MSDTMP. Note that, since no actual dynamics is
to be performed, the temperature and pressure directives do not play any role and are therefore
not necessary.

5. If the CGM minimiser, minimise frequency, is specified with zero frequency, it is only applied at
timestep zero if time equilibration ≥ time run (i.e. optimise structure at start only!). In this
way it can be used as a configuration optimiser at the beginning of the equilibration period or when
a ”dry run” (time run = 0) is performed (i.e. equilibrate without any actual dynamics!). Note
that the default CGM search algorithm stepping uses a step that is proportional to the square of the
instantaneous value of the timestep and thus its usage in may lead to algorithm’s instability and
failure in the cases when optimisation is applied before any dynamics occurs in a model system in
an unphysical state (i.e. much away from equilibrium) and/or with an ill/badly defined forcefield for
the state. Hence, special care (specifying the optional CGM stepping for example) should be taken

178

©STFC Section 10.1

when the option is used, especially in a ”dry run” mode with a timestep value too large for the model
system state.

6. The timestep variable option requires the user to specify an initial guess for a reasonable timestep
for the system. The simulation is unlikely to retain this as the operational timestep however, as the lat-
ter may change in response to the dynamics of the system. The option is used in conjunction with the
default values of timestep variable max dist (0.10 Å) and timestep variable min dist (0.03 Å),
which can also be optionally altered if used as directives (note the rule that timestep variable max dist
> 2.5 timestep variable min dist applies). Also, an additional timestep variable max delta
(in ps) control can be applied. These serve as control values in the variable timestep algorithm, which
calculates the greatest distance a particle has travelled in any timestep during the simulation. If the
maximum distance is exceeded, the timestep variable is halved and the step repeated. If the greatest
move is less than the minimum allowed, the timestep variable is doubled and the step repeated pro-
vided it does not exceed the user specified timestep variable max delta. If it does then it scales
to timestep variable max delta and the step is repeated. In this way the integration timestep self-
adjusts in response to the dynamics of the system. Note that this option is abandoned when used in
conjunction with DPD thermostats (ensemble method dpd), since it cannot be applied efficiently
and furthermore it is not well defined in a DPD sense either.

7. The starting options for a simulation are governed by the keyword restart. If this is not specified in
the control file, the simulation will start as new. When specified, it will continue a previous simulation
(restart) provided all needed restart files are in place and not corrupted. If they are not in place or
are found corrupted, it will start a new simulation without initial temperature scaling of the previous
configuration (restart noscale).

8. The ensemble nst keyword is also used in the NσT ensembles extension to NPnAT and NPnγT ones.
Note that these semi-isotropic ensembles are only correct for infinite interfaces placed perpendicularly
to the z axis! This means that the interface is homogeneous (unbroken) and continuous in the (x,y)
plane of the MD cell, which assumes that that two of the cell vectors have a cross product only in the z
direction. (For example, if the MD box is defined by its lattice vectors (a, b, c) then a× b = ±(0, 0, 1).)
It is the users’ responsibility to ensure this holds for their model system.

9. The reset temperature interval directive, enables a ”zero temperature” optimisation. In this case
a crude energy minimiser is used to help the system relax before each integration of the equations of
motion. The function of the minimiser can be summarised as

vi ←

0 : vi · f i < 0

f
i

vi · f
i

f
i
· f

i

: vi · f i ≥ 0
(10.1)

for systems with free particles only, where vi and f
i
are the force and velocity of particle i. The

algorithm is extended in the case of RBs by including

V j ←

 0 : V j · F j < 0

F j
V j · F j

F j · F j

: V j · F j ≥ 0
(10.2)

ωj ←

{
0 : ωj · τ j < 0

τ j
ωj · τ j

τ j · τ j
: ωj · τ j ≥ 0

,

where V j and F j are the velocity and force of the RB’s centre of mass, and ωj and τ j are the
angular velocity and torque of RB j. Measures are taken to conserve the MD cell momentum and the
thermostat’s instantaneous kinetic energy.

179

©STFC Section 10.1

This must not be thought of as a true energy minimization method. Note that this optimisation is
only applied when the simulation runs in equilibration mode.

The algorithm is developed in the DL POLY 4 routine zero k optimise.

10. The impact directives will not be activated if the particle index is beyond the one of the last particle.
The option will fail in a controlled manner at application time if the particle is found to be in a frozen
state or the shell of an ion or part of a rigid body. During application the center of mass momentum is
re-zeroed to prevent any drifts. The user must take care to have the impactinitiated after any possible
equilibration. Otherwise, the system will be thermostatted and the impact energy dissipated during
the equilibration.

11. The pseudo thermostat directives are intended to be used in highly non-equilibrium simulations
when users are primarily interested in the structural changes in the core of the simulated system as
the the MD cell boundaries of the system are coupled to a thermal bath.

The thermal bath can be used with several types of temperature scaling algorithms

(a) Langevin (stochastic thermostat),

(b) Gauss

(c) Direct (direct thermostat).

The user is also required to specify the width of the pseudo thermostat, pseudo thermostat width,
which must be larger than 2 Å and less than or equal to a quarter of minimum width of the MD cell.
The thermostat is an pseudo thermostat width thick buffer layer attached on the inside at the MD
cell boundaries.

The temperature of the bath is specified by the user, pseudo thermostat temperature, which must
be larger than 1 Kelvin.

• langevin

The stochasticity of the Langevin thermostat emulates an infinite environment around the MD
cell, providing a means for “natural” heat exchange between the MD system and the heath bath
thus aiding possible heat build up in the system. In this way the instantaneous temperature of the
system is driven naturally towards the bath temperature. Every particle within the thermostat
buffer layer is coupled to a viscous background and a stochastic heat bath, such that

dri(t)

dt
= vi(t)

dvi(t)

dt
=

f
i
(t) +Ri(t)

mi
− χ(t) vi(t) , (10.3)

where χ(t) is the friction parameter from the dynamics in the the MD cell and R(t) is stochastic
force with zero mean that satisfies the fluctuation-dissipation theorem:〈

Rα
i (t) R

β
j (t

′)
〉
= 2 χ(t) mi kBT δij δαβ δ(t− t′) , (10.4)

where superscripts denote Cartesian indices, subscripts particle indices, kB is the Boltzmann
constant, T the bath temperature and mi the particle’s mass. The algorithm is implemented in
routine pseudo and has two stages:

– Generate random forces on all particles within the thermostat. Here, care must be exercised
to prevent introduction of non-zero net force when the random forces are added to the system
force field.

180

©STFC Section 10.1

– Rescale the kinetic energy of the thermostat bath so that particles within have Gaussian dis-
tributed kinetic energy with respect to the target temperature and determine the (Gaussian
constraint) friction within the thermostat:

χ(t) =Max

(
0,

∑
i[f⃗i(t) + R⃗i(t)] · v⃗i(t)∑

imi v⃗2i (t)

)
. (10.5)

Care must be exercised to prevent introduction of non-zero net momentum. (Users are
reminded to use for target temperature the temperature at which the original system was
equilibrated in order to avoid simulation instabilities.)

The effect of this algorithm is to relax the buffer region of the system on a local scale and to
effectively dissipate the incomingexcess kinetic energy from the rest of the system, thus emulating
an infinite-like environment surrounding the MD cell. The thermostat width matters as the more
violent the events on the inside of the MD cell, the bigger width may be needed in order to ensure
safe dissipation of the excess kinetic energy.

• Gaussian

– Rescale the kinetic energy of the thermostat bath so that particles within have Gaussian
distributed kinetic energy with respect to the target temperature.

• direct

The Direct thermostat is the simplest possible model allowing for heat exchange between the MD
system and the heath bath. All (mass, non-frozen) particles within the bath have their kinetic
energy scaled to 1.5 kBT at the end of each time step during the simulation. Care is exercised to
prevent introduction of non-zero net momentum when scaling velocities. (Users are reminded to
use for target temperature the temperature at which the original system was equilibrated in order
to avoid simulation instabilities.) Due to the “unphysical” nature of this temperature control the
thermostat width does not matter to the same extent as in the case of the Langevin thermostat.

Note that embedding a thermostat in the MD cell walls is bound to produce wrong ensemble
averages, and instantaneous pressure and stress build-ups at the thermostat boundary. Therefore,
ensembles lose their meaning as such and so does the conserved quantity for true ensembles.

The algorithms are developed in the DL POLY 4 routine pseudo vv.

12. The defects calculate option will trigger reading of REFERENCE (see Section 10.1.5), which defines
a reference MD cell with particles’ positions defining the crystalline lattice sites. If REFERENCE is
not found the simulation will either:

• halt if the simulation has been restarted, i.e. is a continuation of an old one - the restart option
is used in CONTROL and the REVOLD (see Section 10.1.6) file has been provided.

• recover using CONFIG (see Section 10.1.2) if it is a new simulation run, i.e restart option is not
used in CONTROL or REVOLD has not been provided.

The actual defect detection is based on comparison of the simulated MD cell to the reference MD cell
based on a user defined site-interstitial cutoff, Rdef ,

Min [0.3, rcut/3] Å ≤ Rdef ≤ Min [1.2, rcut/2] Å

with a default value of Min [0.75, rcut/3] Å. (If the supplied value exceeds the limits the simulation
execution will halt). If a particle, p, is located in the vicinity of a site, s, defined by a sphere with its
centre at this site and a radius, Rdef , then the particle is a first hand claimee of s, and the site is not
vacant. Otherwise, the site is presumed vacant and the particle is presumed a general interstitial. If
a site, s, is claimed and another particle, p′, is located within the sphere around it, then p′ becomes
an interstitial associated with s. After all particles and all sites are considered, it is clear which sites

181

©STFC Section 10.1

are vacancies. Finally, for every claimed site, distances between the site and its first hand claimee and
interstitials are compared and the particle with the shortest one becomes the real claimee. If a first
hand claimee of s is not the real claimee it becomes an interstitial associated with s. At this stage it
is clear which particles are interstitials. The sum of interstitials and vacancies gives the total number
of defects in the simulated MD cell.

Frozen particles and particles detected to be shells of polarisable ions are not considered in the defect
detection.

Note that the algorithm cannot be applied safely if Rdef is larger than half the shortest interatomic
distance within the reference MD cell since a particle may; (i) claim more than one site, (ii) be an
interstitial associated with more than one site, or both (i) and (ii). On the other hand, low values of
Rdef are likely to lead to slight overestimation of defects.

If the simulation and reference MD cell have the same number of atoms then the total number of
interstitials is always equal to the total number of defects.

13. The displacements calculate option will trigger dump of atom displacements based on a qualifying
cutoff in a trajectory like manner. Displacements of atoms from their original position at the end of
equilibration (the start of statistics), t = 0 , is carried out at each timestep.

14. The tolerance and stepping for relaxed shell model rlx tol, is a last resort option to aid shell relaxation
of systems with very energetic and/or rough potential surface. Users are advised to use it with caution,
should there really need be, as the use of high values for the tolerance (default of 1) may result
in physically incorrect dynamics and small stepping (default Max(kcore−shell)/2) to expensive force
evaluations.

15. The choice of reaction field electrostatics (directive coul method reaction field) relies on the specifi-
cation of the relative dielectric constant external to the cavity. This is specified by the coul dielectric constant
directive.

16. DL POLY 4 uses two different potential cutoffs. These are as follows:

(a) rcut - the universal cutoff set by cutoff. It applies to the real space part of the electrostatics
calculations and to the van der Waals potentials if no other cutoff is applied.

(b) rvdw - the user-specified cutoff for the van der Waals potentials set by vdw cutoff. If not specified
its value defaults to rcut.

17. Constraint algorithms in DL POLY 4, SHAKE/RATTLE (see Section 3.2), use default iteration pre-
cision of 10−6 and limit of iteration cycles of 250. Users may experience that during optimisation of a
new built system containing constraints simulation may fail prematurely since a constraint algorithm
failed to converge. In such cases directives shake max iter (to increase) and shake tolerance (to
decrease) may be used to decrease the strain in the system and stablise the simulation numerics until
equilibration is achieved.

18. DL POLY 4’s DD strategy assumes that the local (per domain/node or link cell) density of various
system entities (i.e. atoms, bonds, angles, etc.) does not vary much during a simulation and some lim-
its for these are assumed empirically. This may not the case in extremely non-equilibrium simulations,
where the assumed limits are prone to be exceeded or in some specific systems where these do not
hold from the start. A way to tackle such circumstances and avoid simulations crash (by controlled
termination) is to use the density variance f option. In the set bounds subroutine DL POLY 4
makes assumptions at the beginning of the simulation and corrects the lengths of bonded-like inter-
action lists arrays (mxshl, mxcons, mxrgd, mxteth, mxbond, mxangl, mxdihd, mxinv) as well as
the lengths of link-cell (mxlist) and domain (mxatms, mxatdm) lists arrays when the option is acti-
vated with f > 0. Greater values of f will correspond to allocation bigger global arrays and larger
memory consumption by DL POLY 4 during the simulation. Note that this option may demand more

182

©STFC Section 10.1

memory than available on the computer architecture. In such cases DL POLY 4 will terminate with
an array allocation failure message.

19. As a default, DL POLY 4 does not store statistical data during the equilibration period. If the directive
record equilibration is used, equilibration data will be incorporated into the overall statistics.

20. The vaf calculate directive switches on velocity autocorrelation function (VAF) calculations for in-
dividual atomic species in DL POLY 4 after equilibration or immediately at start if the directive
record equilibration is used. It controls how often VAF profiles are started what the size of each
profile (in timesteps). Overlapping profiles are possible and require more memory to store them (and
initial velocities) while they are being calculated. By default DL POLY 4 will report time-averaged
VAF profiles. This can be overridden using the vaf averaging directive, which will instead report
individual ‘instantaneous’ VAF profiles.

21. The no vom option will trigger a default bypass of the getvom routine which will return zero and
thus no COM removal will happen. Note that this will lead to COM momentum accumulation
for many though not all ensembles!. Such accumulation will propagate to the generation of flow
in the MD cell and ultimately suppress the thermal motion of the particles in the system, leading to
the so called ”frozen ice cube effect”! It is worth nothing that this option must be turned on for the
correct application of stochastic dynamics via the langevin temperature control (NVT Langevin)! If
the option is not applied then the dynamics will lead to peculiar thermalisation of different atomic
species to mass- and system size-dependent temperatures.

22. The padding option will add extra distance, rpad, if larger than f ≥ Min[0.05, 0.5%.rcut] Å, to
the major cutoff, rcut, to construct a larger link-cell width, rlnk = rcut + rpad, which will trigger a
construction of a larger Verlet neighbour list (VNL) while at the same time facilitate its conditional
update, rather at every timestpe. The VNL conditaional update is check at the end of each tiemstep
and triggered only when the most travelled particle has moved a distance larger than rpad/2. It is
worth noting that padding is at expense of extra memory but if used wisely it could improve time to
solution from 10% to 100% depending on force-field complexity. If it is too large or too small (that is
why the f ≥ Min[0.05, 0.5%.rcut] Å limit) it will lead to performace degradation. It is recomended that
rpad is set up at a value of ≈ 1 ÷ 5% of the cutoff, rcut, as long as the major link-cell algorithm uses
a link-cell decomposition that not worse than 4⊗ 4⊗ 4 per domain. For such setups, in practice, one
may expect average compute speedups ∗ of the order of 10÷ 30% for force-fields involving the Ewald
summation methodology and 60÷100% for force-fields without electrostatics evaluations involving the
Ewald summation methodology.

23. The subcelling threshold density option will set the threshold density of particles per link cell
below which subcelling (decreasing link-cell size) stops. The default is 50 although experimenting
with values between 10 and 100 may provide sufficient information about a performance sweetspot.
The comparison condition is carried out on the average density per sub-link cell of each domain.
Thus subcelling takes into account only the per domain density variation. Obviously, the subcelling
threshhold is limited to 1 particle per cell for the sake of safety and sanity reasons.

24. The coul extended exclusion option will make sure that for all conventional (no distance restraints)
intra-molecular interactions (bonds, angles, digedrals, inversions) as well as for CB and RB units any
intra-core-shell interactions fall within the list of excluded interactions. This is not a default behaviour.
The option is also triggered by the polarisation directvies.

25. The various ttm options all have the effect of switching on the two-temperature model (TTM), which
assumes the use of the inhomogeneous Langevin NVT ensemble. It is not possible to specify any other
ensemble for TTM-based systems, so the inhomogeneous Langevin NVT ensemble will always be used

∗ I.e. I/O effects are excluded from comparison with a default simulation and comparisons are carried over a few hundreds of
timesteps. This is usually accounting for over 90% of the time to solution.

183

©STFC Section 10.1

in this case, with default values for the friction terms and cut-off velocity if these are not specified. No
implementation of the inhomogeneous Langevin ensemble currently exists for rigid bodies. To model
metallic systems, the thermal conductivity must be specified either as infinitely large, a constant value,
a linear function of electronic temperature (based on the Drude model) or as a tabulated function of
temperature, while non-metallic systems require a constant thermal diffusivity. Any energy deposition
is applied after equilibration. An additional restart file, DUMP E, consisting of electronic temperatures
for each electronic temperature cell (CET), is produced along with REVCON and REVIVE when TTM
is switched on.

Users are advised to study the example CONTROL files appearing in the data sub-directory to see how
different files are constructed.

10.1.2 The CONFIG File

The CONFIG file contains the dimensions of the unit cell, the key for periodic boundary conditions and the
atomic labels, coordinates, velocities and forces. This file is read by the subroutine read config (optionally
by scan config) in the set bounds routine. The first few records of a typical CONFIG file are shown
below:

IceI structure 6x6x6 unit cells with proton disorder

2 3 276

26.988000000000000 0.000000000000000 0.000000000000000

-13.494000000000000 23.372293600000000 0.000000000000000

0.000000000000000 0.000000000000000 44.028000000000000

OW 1

-2.505228382 -1.484234330 -7.274585343

0.5446573999 -1.872177437 -0.7702718106

3515.939287 13070.74357 4432.030587

HW 2

-1.622622646 -1.972916834 -7.340573742

1.507099154 -1.577400769 4.328786484

7455.527553 -4806.880540 -1255.814536

HW 3

-3.258494716 -2.125627191 -7.491549620

2.413871957 -4.336956694 2.951142896

-7896.278327 -8318.045939 -2379.766752

OW 4

0.9720599243E-01 -2.503798635 -3.732081894

1.787340483 -1.021777575 0.5473436377

9226.455153 9445.662860 5365.202509

etc.

10.1.2.1 The CONFIG File Format

The file is free-formatted and case sensitive for the atom species names. Every line is treated as a command
sentence (record). However, line records are limited to 72 characters in length. Records are read in words,
as a word must not exceed 40 characters in length. Words are recognised as such by separation by one or
more space characters. The first record in the CONFIG file is a header (up to 72 characters long) to aid
identification of the file. Blank and commented lines are not allowed.

184

©STFC Section 10.1

10.1.2.2 Definitions of Variables in the CONFIG File

record 1
header a72 title line

record 2
levcfg integer CONFIG file key. See Table 10.2 for permitted values
imcon integer Periodic boundary key. See Table 10.3 for permitted values
megatm integer Optinal, total number of particles (crystalographic entities)

record 3 omitted if imcon = 0
cell(1) real x component of the a cell vector in Å
cell(2) real y component of the a cell vector in Å
cell(3) real z component of the a cell vector in Å

record 4 omitted if imcon = 0
cell(4) real x component of the b cell vector in Å
cell(5) real y component of the b cell vector in Å
cell(6) real z component of the b cell vector in Å

record 5 omitted if imcon = 0
cell(7) real x component of the c cell vector in Å
cell(8) real y component of the c cell vector in Å
cell(9) real z component of the c cell vector in Å

Note that record 2 may contain more information apart from the mandatory as listed above. If the file
has been produced by DL POLY 4 then it also contains other items intended to help possible parallel I/O
reading. Also, it is worth mentioning that the periodic boundary conditions (PBC), as specified in Table 10.3
and described in detail in Appendix B, refer generally to a triclinic type of super-cell, for which there are
no symmetry assumptions! Records 3, 4 and 5 contain the Cartesian components of the super-cell’s
lattice vectors in Å. DL POLY 4 can only tract triclinic type of super-cells as the only types of super-cell
shapes that are commensurate with the domain decomposition (DD) parallelisation strategy of it. However,
this is not a restriction for the replicated data (RD) parallelisation that DL POLY Classic adopts and thus
it can also accept truncated octahedral and rhombic dodecahedral periodic boundaries.

Subsequent records consists of blocks of between 2 and 4 records depending on the value of the levcfg

variable. Each block refers to one atom. The atoms do not need to be listed sequentially in order of
increasing index. Within each block the data are as follows:

record i
atmnam a8 atom name
index integer atom index

record ii
xxx real x coordinate in Å
yyy real y coordinate in Å
zzz real z coordinate in Å

record iii included only if levcfg > 0
vxx real x component of velocity in Å/picosecond
vyy real y component of velocity in Å/picosecond
vzz real x component of velocity in Å/picosecond

record iv included only if levcfg > 1
fxx real x component of force in Å·Dalton/picosecond2

fyy real y component of force in Å·Dalton/picosecond2

fzz real z component of force in Å·Dalton/picosecond2

Note that on record i only the atom name is strictly mandatory, any other items are not read by
DL POLY Classic but may be added to aid alternative uses of the file, for example alike DL POLY GUI

185

©STFC Section 10.1

[21], DL POLY Classic assume that the atoms’ indices are in a sequentially ascending order starting form 1.
However, DL POLY 4 needs the index or the no index option needs to be specified in the CONTROL file!
It is worth mentioning that DL POLY 4 (as well as DL POLY Classic) assumes that the origin of Cartesian
system with respect to which the particle positions are specified is the middle of MD cell. Also, as both the
cell vectors and the particles’ positions are specified in Å, there is a fine connection between them! This
would not be the case if the particles’ positions were kept in reduced space with fractional coordinates. Last
but not least, it is worth pointing out that composite entities, such as velocities and forces, have their units
expressed as composites of the default DL POLY units as shown in Section 1.3.7.

Table 10.2: CONFIG File Key (record 2)

levcfg meaning

0 coordinates included in file
1 coordinates and velocities included in file
2 coordinates, velocities and forces included in file

Table 10.3: Periodic Boundary Key (record 2)

imcon meaning

0 no periodic boundaries
1 cubic boundary conditions
2 orthorhombic boundary conditions
3 parallelepiped boundary conditions
6 x-y parallelogram boundary conditions with

no periodicity in the z direction

10.1.2.3 Further Comments on the CONFIG File

The CONFIG file has the same format as the output file REVCON (Section 10.2.9). When restarting from
a previous run of DL POLY 4 (i.e. using the restart, restart noscale or restart scale directives in the
CONTROL file - above), the CONFIG file must be replaced by the REVCON file, which is renamed as the
CONFIG file. The copy macro in the execute sub-directory of DL POLY 4 does this for you.

The CONFIG file has the same format as the optional output file CFGMIN, which is only produced when
the minimise (optimise) option has been used during an equilibration simulation or a ”dry run”.

10.1.3 The FIELD File

The FIELD file contains the force field information defining the nature of the molecular forces. This infor-
mation explicitly includes the (site) topology of the system which sequence must be matched (implicitly) in
the crystallographic description of the system in the CONFIG file. The FIELD file is read by the subroutine
read field. (It is also read by the subroutine scan field in the set bounds routine.) Excerpts from
a force field file are shown below. The example is the antibiotic Valinomycin in a cluster of 146 water
molecules:

Valinomycin Molecule with 146 SPC Waters

UNITS kcal

MOLECULES 2

Valinomycin

NUMMOLS 1

186

©STFC Section 10.1

ATOMS 168

O 16.0000 -0.4160 1

OS 16.0000 -0.4550 1

" " " "

" " " "

HC 1.0080 0.0580 1

C 12.0100 0.4770 1

BONDS 78

harm 31 19 674.000 1.44900

harm 33 31 620.000 1.52600

" " " " "

" " " " "

harm 168 19 980.000 1.33500

harm 168 162 634.000 1.52200

CONSTRAINTS 90

20 19 1.000017

22 21 1.000032

" " "

" " "

166 164 1.000087

167 164 0.999968

ANGLES 312

harm 43 2 44 200.00 116.40

harm 69 5 70 200.00 116.40

" " " " " "

" " " " " "

harm 18 168 162 160.00 120.40

harm 19 168 162 140.00 116.60

DIHEDRALS 371

harm 1 43 2 44 2.3000 180.00

harm 31 43 2 44 2.3000 180.00

" " " " " " "

" " " " " " "

cos 149 17 161 16 10.500 180.00

cos 162 19 168 18 10.500 180.00

FINISH

SPC Water

NUMMOLS 146

ATOMS 3

OW 16.0000 -0.8200

HW 1.0080 0.4100

HW 1.0080 0.4100

CONSTRAINTS 3

1 2 1.0000

1 3 1.0000

2 3 1.63299

FINISH

VDW 45

C C lj 0.12000 3.2963

C CT lj 0.08485 3.2518

" " " " "

" " " " "

187

©STFC Section 10.1

" " " " "

OW OS lj 0.15100 3.0451

OS OS lj 0.15000 2.9400

CLOSE

10.1.3.1 The FIELD File Format

The file is free-formatted and not case-sensitive (except for the site names). Every line is treated as a
command sentence (record). Commented records (beginning with a #) and blank lines are not processed
and may be added to aid legibility (see example above). Records must be limited in length to 200 characters.
Records are read in words, as a word must not exceed 40 characters in length. Words are recognised as such
by separation by one or more space characters. The contents of the file are variable and are defined by the
use of directives. Additional information is associated with the directives.

10.1.3.2 Definitions of Variables in the FIELD File

The file divides into three sections: general information, molecular descriptions, and non-bonded interaction
descriptions, appearing in that order in the file.

General information

The first viable record in the FIELD file is the title. The second is the units directive. Both of these are
mandatory.

record 1
header a200 field file header

record 2
units a40 Unit of energy used for input and output

The energy units on the units directive are described by additional keywords:

a. eV, for electron-Volts

b. kcal/mol, for k-calories per mol

c. kJ/mol, for k-Joules per mol

d. Kelvin/Boltzmann, for Kelvin per Boltzmann

e. internal, for DL POLY internal units (10 Joules per mol).

If no units keyword is entered, DL POLY internal units are assumed for both input and output. The units
directive only affects the input and output interfaces, all internal calculations are handled using DL POLY
units. System input and output energies are read in units per MD cell.

Note that all energy bearing potential parameters are read in terms of the specified energy units. If such
a parameter depends on an angle then the dependence is read in terms of radians although the following
angle in the parameter sequence is read in terms of degrees. As to any rule, there is an exception - the
electrostatic bond potential has no energy bearing parameter!

A third optional record can then be supplied before any molecular description:

record 3
multipolar order n a50, integer Electrostatics evaluation to order n poles

188

©STFC Section 10.1

This will later trigger the parsing of the MPOLES file (see Section 10.1.4) which supplies the multipolar
momenta values of the molecular sites specified in FIELD. Sites with specified pole orders, m, smaller than
the one required, n, will have their m+1 to n order poles’ momenta zeroed. Similarly, if sites have momenta
of poles of higher order than the one required, n, these will not be processed by DL POLY 4.

Note, although algorithms in DL POLY 4 could in principle handle any high pole order summation, in
practice, however, DL POLY 4 will abort if the order is higher than hexadecapole (order 4)! For more
information on this functionality refer to Section 2.4.2.

Molecular details

It is important for the user to understand that there is an organisational correspondence between the FIELD
file and the CONFIG file described above. It is required that the order of specification of molecular types
and their atomic constituents in the FIELD file follows the order of indices in which they appear in the
CONFIG file. Failure to adhere to this common sequence will be detected by DL POLY 4 and result in
premature termination of the job. It is therefore essential to work from the CONFIG file when constructing
the FIELD file. It is not as difficult as it sounds!

The entry of the molecular details begins with the mandatory directive:

molecules n

where n is an integer specifying the number of different types of molecule appearing in the FIELD file. Once
this directive has been encountered, DL POLY 4 enters the molecular description environment in which only
molecular description keywords and data are valid.

Immediately following the molecules directive, are the records defining individual molecules:

1. name-of-molecule
which can be any character string up to 200 characters in length. (Note: this is not a directive, just
a simple character string.)

2. nummols n
where n is the number of times a molecule of this type appears in the simulated system. The molecular
data then follow in subsequent records:

3. atoms n
where n indicates the number of atoms in this type of molecule. A number of records follow, each
giving details of the atoms in the molecule i.e. site names, masses and charges. Each record carries
the entries:

sitnam a8 atomic site name
weight real atomic site mass (in Daltons)
chge real atomic site charge (in protons)
nrept integer repeat counter
ifrz integer ‘frozen’ atom (if ifrz > 0)

The integer nrept need not be specified if the atom/site is not frozen (in which case a value of 1 is
assumed.) A number greater than 1 specified here indicates that the next (nrept-1) entries in the
CONFIG file are ascribed the atomic characteristics given in the current record. The sum of the repeat
numbers for all atoms in a molecule should equal the number specified by the atoms directive.

4. shell n
where n is the number of core-shell units. Each of the subsequent n records contains:

index 1 (i) integer site index of core

189

©STFC Section 10.1

index 2 (j) integer site index of shell
k2 real force constant of core-shell spring
k4 real quartic (anharmonic) force constant of spring

The spring potential is

U(r) =
1

2
k2r

2
ij +

1

4!
k4r

4
ij , (10.6)

with the force constant k2 entered in units of engunit×Å−2 and k4 in engunit Å−4, where usually
k2 >> k4. The engunit is the energy unit specified in the units directive.

Note that the atomic site indices referred to above are indices arising from numbering each atom
in the molecule from 1 to the number specified in the atoms directive for this molecule. This same
numbering scheme should be used for all descriptions of this molecule, including the constraints,
pmf, rigid, teth, bonds, angles, dihedrals and inversions entries described below. DL POLY 4
will itself construct the global indices for all atoms in the systems.

Note that DL POLY 4 determines which shell model to use by scanning shells’ weights provided the
FIELD file (see Section 2.5). If all shells have zero weight the DL POLY 4 will choose the relaxed
shell model. If no shell has zero weight then DL POLY 4 will choose the dynamical one. In case
when some shells are massless and some are not DL POLY 4 will terminate execution controllably
and provide information about the error and possible possible choices of action in the OUTPUT file
(see Section 10.2.6). Shell models’ extensions are dealt according to the user specifications in the
FIELD files.

This directive (and associated data records) need not be specified if the molecule contains no core-shell
units.

5. constraints n
where n is the number of constraint bonds in the molecule. Each of the following n records contains:

index 1 integer first atomic site index
index 2 integer second atomic site index
bondlength real constraint bond length

This directive (and associated data records) need not be specified if the molecule contains no constraint
bonds. See the note on the atomic indices appearing under the shell directive above.

6. pmf b
where b is the potential of mean force bondlength (Å). There follows the definitions of two PMF units:

(a) pmf unit n1
where n1 is the number of sites in the first unit. The subsequent n1 records provide the site
indices and weighting. Each record contains:

index integer atomic site index
weight real site weighting

(b) pmf unit n2
where n2 is the number of sites in the second unit. The subsequent n2 records provide the site
indices and weighting. Each record contains:

index integer atomic site index
weight real site weighting

This directive (and associated data records) need not be specified if no PMF constraints are present.
See the note on the atomic indices appearing under the shell directive.

190

©STFC Section 10.1

Note that if a site weighting is not supplied DL POLY 4 will assume it is zero. However, DL POLY 4
detects that all sites in a PMF unit have zero weighting then the PMF unit sites will be assigned the
masses of the original atomic sites.

The PMF bondlength applies to the distance between the centres of the two PMF units. The centre,
R⃗i, of each unit is given by

Ri =

∑ni
j=1wj r⃗j∑nj

j=1wj

, (10.7)

where rj is a site position and wj the site weighting.

Note that the PMF constraint is intramolecular. To define a constraint between two molecules, the
molecules must be described as part of the same DL POLY 4 “molecule”. DL POLY 4 allows only one
type of PMF constraint per system. The value of nummols for this molecule determines the number
of PMF constraint in the system.

Note that in DL POLY 4 PMF constraints are handeled in every available ensemble.

7. rigid n
where n is the number of basic rigid units in the molecule. It is followed by at least n records, each
specifying the sites in a rigid unit:

m integer number of sites in rigid unit
site 1 integer first site atomic index
site 2 integer second site atomic index
site 3 integer third site atomic index
.. .. etc.
site m integer m’th site atomic index

Up to 15 sites can be specified on the first record. Additional records can be used if necessary. Up to
16 sites are specified per record thereafter.

This directive (and associated data records) need not be specified if the molecule contains no rigid
units. See the note on the atomic indices appearing under the shell directive above.

8. teth n
where n is the number of tethered atoms in the molecule. It is followed n records specifying the tehered
sites in the molecule:

tether key a4 potential key, see Table 10.4
index 1 (i) integer atomic site index
variable 1 real potential parameter, see Table 10.4
variable 2 real potential parameter, see Table 10.4

The meaning of these variables is given in Table 10.4.

This directive (and associated data records) need not be specified if the molecule contains no flexible
chemical bonds. See the note on the atomic indices appearing under the shell directive above.

9. bonds n
where n is the number of flexible chemical bonds in the molecule. Each of the subsequent n records
contains:

bond key a4 potential key, see Table 10.5
index 1 (i) integer first atomic site index in bond
index 2 (j) integer second atomic site index in bond
variable 1 real potential parameter, see Table 10.5

191

©STFC Section 10.1

Table 10.4: Tethering Potentials

key potential type Variables (1-3) functional form

harm Harmonic k U(r) = 1
2 k (ri − rt=0

i)2

rhrm Restraint k rc U(r) = 1
2 k (ri − rt=0

i)2 : |ri − rt=0
i | ≤ rc

U(r) = 1
2 k r

2
c + k rc(|ri − rt=0

i | − rc) : |ri − rt=0
i | > rc

quar Quartic k k′ k′′ U(r) = k
2 (ri − rt=0

i)2 + k′

3 (ri − rt=0
i)3

+k′′

4 (ri − rt=0
i)4

variable 2 real potential parameter, see Table 10.5
variable 3 real potential parameter, see Table 10.5
variable 4 real potential parameter, see Table 10.5

The meaning of these variables is given in Table 10.5.

This directive (and associated data records) need not be specified if the molecule contains no flexible
chemical bonds. See the note on the atomic indices appearing under the shell directive above.

10. angles n
where n is the number of valence angle bonds in the molecule. Each of the n records following contains:

angle key a4 potential key, see Table 10.6
index 1 (i) integer first atomic site index
index 2 (j) integer second atomic site index (central site)
index 3 (k) integer third atomic site index
variable 1 real potential parameter, see Table 10.6
variable 2 real potential parameter, see Table 10.6
variable 3 real potential parameter, see Table 10.6
variable 4 real potential parameter, see Table 10.6

The meaning of these variables is given in Table 10.6.

This directive (and associated data records) need not be specified if the molecule contains no angular
terms. See the note on the atomic indices appearing under the shell directive above.

11. dihedrals n
where n is the number of dihedral interactions present in the molecule. Each of the following n records
contains:

dihedral key a4 potential key, see Table 10.7
index 1 (i) integer first atomic site index
index 2 (j) integer second atomic site index (central site)
index 3 (k) integer third atomic site index
index 4 (l) integer fourth atomic site index
variable 1 real first potential parameter, see Table 10.7
variable 2 real second potential parameter, see Table 10.7
variable 3 real third potential parameter, see Table 10.7
variable 4 real 1-4 electrostatic interaction scale factor
variable 5 real 1-4 van der Waals interaction scale factor
variable 6 real fourth potential parameter, see Table 10.7
variable 7 real fifth potential parameter, see Table 10.7

192

©STFC Section 10.1

Table 10.5: Chemical Bond Potentials

key potential type Variables (1-4) functional form

tab Tabulation, see tabulated potential
-tab Sections 2.2.1 10.1.9 in TABBND file

harm Harmonic k r0 U(r) = 1
2 k (rij − r0)2

-hrm

mors Morse E0 r0 k U(r) = E0 [{1− exp(−k (rij − r0))}2 − 1]
-mrs

12-6 12-6 A B U(r) =

(
A
r12ij

)
−
(

B
r6ij

)
-126

lj Lennard-Jones ϵ σ U(r) = 4ϵ

[(
σ
rij

)12
−
(

σ
rij

)6]
-lj

rhrm Restraint k r0 rc U(r) = 1
2 k (rij − r0)2 : |rij − r0| ≤ rc

-rhm U(r) = 1
2 k r

2
c + k rc(|rij − r0| − rc) : |rij − r0| > rc

quar Quartic k r0 k′ k′′ U(r) = k
2 (rij − r0)2 + k′

3 (rij − r0)3
-qur +k′′

4 (rij − r0)4

buck Buckingham A ρ C U(r) = A exp
(
− rij

ρ

)
− C

r6ij

-bck

coul Coulomb k U(r) = k · UElectrostatics(rij)
(
= k

4πϵ0ϵ
qiqj
rij

)
-cul

fene Shifted∗ FENE k Ro ∆ U(r) = −0.5 k Ro ln

[
1−

(
rij−∆
R2

o

)2]
: rij < Ro +∆

-fne [32, 33, 34] U(r) =∞ : rij ≥ Ro +∆

mmst MM3 bond stretch k ro U(r) = k δ2
[
1− 2.55 δ + (7/12) 2.552 δ2

]
; δ = r − ro

-mst [35]

∗ Note: ∆ defaults to zero if |∆| > 0.5 Ro or if it is not specified in the FIELD file.
Note: Bond potentials with a dash (-) as the first character of the keyword, do not contribute to the excluded
atoms list (see Section 2). In this case DL POLY 4 will also calculate the non-bonded pair potentials between
the described atoms, unless these are deactivated by another potential specification.

193

©STFC Section 10.1

Table 10.6: Valence Angle Potentials

key potential type Variables (1-4,5-6) functional form†

tab Tabulation, see tabulated potential
-tab Sections 2.2.3 10.1.9 in TABANG file

harm Harmonic k θ0 U(θ) = k
2 (θ − θ0)2

-hrm

quar Quartic k θ0 k′ k′′ U(θ) = k
2 (θ − θ0)2 + k′

3 (θ − θ0)
3 + k′′

4 (θ − θ0)4
-qur

thrm Truncated harmonic k θ0 ρ U(θ) = k
2 (θ − θ0)2 exp[−(r8ij + r8ik)/ρ

8]

-thm

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]

-shm

bvs1 Screened Vessal [36] k θ0 ρ1 ρ2 U(θ) = k
8(θ0−π)2

{[
(θ0 − π)2 − (θ − π)2

]2}×
-bv1 exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal [37] k θ0 a ρ U(θ) = k (θ − θ0)2
[
θa(θ + θ0 − 2π)2

-bv2 +a
2π

a−1(θ0 − π)3
]
exp[−(r8ij + r8ik)/ρ

8]

hcos Harmonic Cosine k θ0 U(θ) = k
2 (cos(θ)− cos(θ0))

2

-hcs

cos Cosine A δ m U(θ) = A [1 + cos(m θ − δ)]
-cos

mmsb MM3 stretch-bend [35] A θ0 roij rojk U(θ) = A (θ − θ0) (rij − roij) (rik − roik)
-msb

stst Compass [38] A roij rojk U(θ) = A (rij − roij) (rik − roik)
-sts stretch-stretch

stbe Compass [38] A θ0 roij U(θ) = A (θ − θ0) (rij − roij)
-stb stretch-bend

cmps Compass [38] A B C θ0 U(θ) = A (rij − roij) (rik − roik) + (θ − θ0)×
-cmp all terms roij rojk [B (rij − roij) + C (rik − roik)]

mmbd MM3 angle bend k θ0 U(θ) = k ∆2[1− 1.4 · 10−2∆+ 5.6 · 10−5∆2

-mbd [35] −7.0 · 10−7∆3 + 2.2 · 10−8∆4)] ; ∆ = θ − θ0

kky KKY [51] fk θ0 gr ro U(θ) = 2 fk
√
Kij ·Kik sin2 [(θ − θ0)] ;

-kky Kij = 1/ [exp [gr(rij − ro)] + 1]

†θ is the i-j-k angle.
Note: valence angle potentials with a dash (-) as the first character of the keyword, do not contribute to the
excluded atoms list (see Section 2). In this case DL POLY 4 will calculate the non-bonded pair potentials
between the described atoms. 194

©STFC Section 10.1

The meaning of the variables 1-3,6-7 is given in Table 10.7. The variables 4 and 5 specify the scaling
factor for the 1-4 electrostatic and van der Waals non-bonded interactions respectively.

This directive (and associated data records) need not be specified if the molecule contains no dihedral
angle terms. See the note on the atomic indices appearing under the shell directive above.

Table 10.7: Dihedral Angle Potentials

key potential type Variables (1-3,6-7) functional form‡

tab Tabulation, see tabulated potential
Sections 2.2.5 2.2.6 10.1.9 in TABDIH file

cos Cosine A δ m U(ϕ) = A [1 + cos(mϕ− δ)]

harm Harmonic k ϕ0 U(ϕ) = k
2 (ϕ− ϕ0)2

hcos Harmonic cosine k ϕ0 U(ϕ) = k
2 (cos(ϕ)− cos(ϕ0))

2

cos3 Triple cosine A1 A2 A3 U(ϕ) = 1
2 {A1 (1 + cos(ϕ)) +

A2 (1− cos(2ϕ)) +
A3 (1 + cos(3ϕ))}

ryck Ryckaert-Bellemans [41] A U(ϕ) = A {a+ b cos(ϕ) + c cos2(ϕ) +
d cos3(ϕ) + e cos4(ϕ) + f cos5(ϕ)}

rbf Fluorinated Ryckaert- A U(ϕ) = A {a+ b cos(ϕ) + c cos2(ϕ) +
Bellemans [42] d cos3(ϕ) + e cos4(ϕ) + f cos5(ϕ)) +

g exp(−h(ϕ− π)2))}

opls OPLS torsion A0 A1 A2 U(ϕ) = A0 +
1
2 {A1 (1 + cos(ϕ− ϕ0)) +

A3 ϕ0 A2 (1− cos(2(ϕ− ϕ0))) +
A3 (1 + cos(3(ϕ− ϕ0)))}

‡ϕ is the i-j-k-l dihedral angle.

12. inversions n
where n is the number of inversion interactions present in the molecule. Each of the following n records
contains:

inversion key a4 potential key, see Table 10.8
index 1 (i) integer first atomic site index (central site)
index 2 (j) integer second atomic site index
index 3 (k) integer third atomic site index
index 4 (l) integer fourth atomic site index
variable 1 real potential parameter, see Table 10.8
variable 2 real potential parameter, see Table 10.8
variable 3 real potential parameter, see Table 10.8

The meaning of the variables 1-2 is given in Table 10.8.

This directive (and associated data records) need not be specified if the molecule contains no inversion
angle terms. See the note on the atomic indices appearing under the shell directive above.

195

©STFC Section 10.1

Table 10.8: Inversion Angle Potentials

key potential type Variables (1-3) functional form‡

tab Tabulation, see tabulated potential
Sections 2.2.8 10.1.9 in TABINV file

harm Harmonic k ϕ0 U(ϕ) = k
2 (ϕ− ϕ0)2

hcos Harmonic cosine k ϕ0 U(ϕ) = k
2 (cos(ϕ)− cos(ϕ0))

2

plan Planar A U(ϕ) = A [1− cos(ϕ)]

xpln Extended planar k m ϕ0 U(ϕ) = k
2 [1− cos(m ϕ− ϕ0)]

calc Calcite 2.2.9 A B U(u) = Au2 +Bu4

‡ϕ is the i-j-k-l inversion angle.

Note that the calcite potential is not dependent on an angle ϕ, but on a displacement u. See Sec-
tion 2.2.9 for details.

13. finish
This directive is entered to signal to DL POLY 4 that the entry of the details of a molecule has been
completed.

The entries for a second molecule may now be entered, beginning with the name-of-molecule record
and ending with the finish directive.

The cycle is repeated until all the types of molecules indicated by the molecules directive have been
entered.

The user is recommended to look at the example FIELD files in the data directory to see how typical FIELD
files are constructed.

Non-bonded Interactions

Non-bonded interactions are identified by atom types as opposed to specific atomic indices. The following
different types of non-bonded potentials are available in DL POLY 4; vdw - van der Waals pair, metal -
metal, tersoff - Tersoff, tbp - three-body and fbp - four-body. Each of these types is specified by a specific
keyword as described bellow.

When DL POLY 4 is cross-compiled with an OpenKIM functionality (see Section 2.10), it is possible to
specify a complete model of inter-molecular interactions, by calling the OpenKIM model name provided
it available in your local KIM library. Two keywords are employed when using OpenKIM IMs, one to
select the IM and perform necessary initialisation (kim init), and the other (kim interactions) to define
a mapping between atom types in DL POLY 4 to the available species in the OpenKIM IM.

1. kim init model name
where the model name is the OpenKIM model identifier, it uses the information retrieved from the
OpenKIM repository to initialise and activate OpenKIM IMs for use in the DL POLY 4.

2. kim interactions site names
where site names defines a list of unique atomic names. It defines a mapping between atom types in

196

©STFC Section 10.1

DL POLY 4 to the available species in the OpenKIM IM. For example, consider an OpenKIM IM that
supports Si and C species. If the DL POLY 4 simulation has four atoms, where the first three are Si,
and the fourth is C, the kim interactions would be used as:

kim interactions Si C

The Si and C arguments map the DL POLY 4 atom types to the Si and C species as defined within
KIM PM.

In addition to the usual DL POLY 4 error messages, the KIM library itself may generate errors, which
should be printed to the screen. In this case, it is also useful to check the kim.log file for additional
error information. The file kim.log should be generated in the same directory where DL POLY 4 is
running.

Note that although a KIM model fully describes a model system, it is still possible to specify further,
complementing intra- and inter-molecular interactions in the FIELD! This is a viable option only when
the model system is extended beyond what the specific KIM model is intended to describe.

By default, all the species in the DL POLY 4 system should match to the available species in the
OpenKIM IM.

Note that there is an experimental feature, implemented in the DL POLY 4, where one can use a
KIM IM in a hybrid style. In this case, one can create a system where part of species are interacting
using a KIM IM (e.g., a machine learning model in KIM), and the rest of the species are interacting with
the internal DL POLY 4 intra- and inter-molecular interactions provided in the FIELD. While this
new feature provides great flexibility, it is not fully compliant with the KIM API interface standard.
Thus using this feature some of the KIM IMs might fail with the error message unexpected species code
detected or unknown species detected.

3. vdw n
where n is the number of pair potentials to be entered. It is followed by n records, each specifying a
particular pair potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key, see Table 10.9
variable 1 real potential parameter, see Table 10.9
variable 2 real potential parameter, see Table 10.9
variable 3 real potential parameter, see Table 10.9
variable 4 real potential parameter, see Table 10.9
variable 5 real potential parameter, see Table 10.9
variable 6 real potential parameter, see Table 10.9
variable 7 real potential parameter, see Table 10.9

The variables pertaining to each potential are described in Table 10.9.

Note that any pair potential not specified in the FIELD file, will be assumed to be zero.

4. metal n
where n is the number of metal potentials to be entered. It is followed by n records, each specifying a
particular metal potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key, see Table 10.10
variable 1 real potential parameter, see Table 10.10
variable 2 real potential parameter, see Table 10.10

197

©STFC Section 10.1

Table 10.9: Pair Potentials

key potential type Variables (1-4,5-7) functional form

tab Tabulation, see tabulated potential
Sections 2.3.1 10.1.7 in TABLE file

12-6 12-6 A B U(r) =
(

A
r12

)
−
(
B
r6

)
lj Lennard-Jones ϵ σ U(r) = 4ϵ

[(
σ
r

)12 − (σr)6]
ljc LJ cohesive [45] ϵ σ c U(r) = 4ϵ

[(
σ
r

)12 − c (σr)6]
ljf LJ Frenkel [46] ϵ σ rc see Eq. 2.88

nm n-m [47, 48] Eo n m r0 U(r) = Eo
(n−m)

[
m
(
ro
r

)n − n (ror)m]
buck Buckingham A ρ C U(r) = A exp

(
− r

ρ

)
− C

r6

bhm Born-Huggins A B σ C U(r) = A exp[B(σ − r)]− C
r6
− D

r8

-Meyer D

hbnd 12-10 H-bond A B U(r) =
(

A
r12

)
−
(

B
r10

)
snm Shifted force† Eo n m r0 U(r) = αEo

(n−m)×

n-m [47, 48] rc
‡

[
mβn

{(
ro
r

)n − (1
γ

)n}
− nβm

{(
ro
r

)m − (1
γ

)m}]
+nmαEo

(n−m)

(
r−γro
γro

){(
β
γ

)n
−
(
β
γ

)m}
mors Morse E0 r0 k U(r) = E0[{1− exp(−k(r − r0))}2 − 1]

wca Shifted∗ [49] Weeks- ϵ σ‡ ∆ U(r) = 4ϵ

[(
σ

r−∆

)12
−
(

σ
r−∆

)6]
+ ϵ : rij < 2

1
6 σ +∆

Chandler-Andersen U(r) = 0 : rij ≥ 2
1
6 σ +∆

dpd Standard DPD [50] A rc
‡ U(r) = A

2 rc

(
1− r

rc

)2
: r < rc

(Groot-Warren) U(r) = 0 : r ≥ rc

14-7 14-7 buffered ϵ ro U(r) = ϵ
(

1.07
(rij/ro)+0.07

)7 (
1.12

(rij/ro)7+0.12
− 2
)

AMOEBA FF [51]

mstw Morse modified E0 r0 k c U(r) = E0{[1− exp (−k (r − r0))]2 − 1}+ c
r12

ryd Rydberg a b ρ U(r) = (a+ br) exp (−r/ρ)

zbl ZBL Z1 Z2 U(r) = Z1 Z2 e2

4πε0εr

∑4
i=1 bi exp (−cir/a)

continues on next page

198

©STFC Section 10.1

Pair Potentials - continued from previous page

key potential type Variables (1-4,5-7) functional form

zbls ZBL mixed Z1 Z2 rm ξ U(r) = f (r)UZBL (r) +
with Morse E0 r0 k + (1− f (r))Umorse (r)

zblb ZBL mixed Z1 Z2 rm ξ U(r) = f (r)UZBL (r) +
with Buckingham A ρ C + (1− f (r))Ubuckingham (r)

mlj Lennard-Jones tapered with MDF ϵ σ ri U(r) = 4ϵ
[(

σ
r

)12 − (σr)6] f(r)
mbuc Buckingham tapered with MDF A ρ C ri U(r) =

[
A exp

(
− r

ρ

)
− C

r6

]
f(r)

m126 12-6 Lennard-Jones tapered with MDF A B ri U(r) =
(

A
r12
− B

r6

)
f(r)

† Note: in this formula the terms α, β and γ are compound expressions involving the variables Eo, n,m, r0
and rc. See Section 2.3.1 for further details.
‡ Note: All local potential cutoffs, rc, default to the general van der Waals cutoff, rvdw, or the general
domain decomposition cutoff, rcut, if unspecified or set to zero in the FIELD file! Similarly, if the specified
value of rvdw (and/or rcut) in CONTROL is found shorter than any of rc (including the WCA equivalent

2
1
6 σ+∆) values specified in FIELD then rvdw (and/or rcut) will be reset by DL POLY 4 to the largest of

all values!
∗ Note: ∆ defaults to zero if |∆| > 0.5 σ or it is not specified in the FIELD file.

variable 3 real potential parameter, see Table 10.10
variable 4 real potential parameter, see Table 10.10
variable 5 real potential parameter, see Table 10.10
variable 6 real potential parameter, see Table 10.10
variable 7 real potential parameter, see Table 10.10
variable 8 real potential parameter, see Table 10.10
variable 9 real potential parameter, see Table 10.10

The variables pertaining to each potential are described in Table 10.10.

5. rdf n
where n is the number of RDF pairs to be entered. It is followed by n records, each specifying a
particular RDF pair in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type

By default in DL POLY Classic and DL POLY 4 every vdw and met potential specifies an RDF pair.
If the control option rdf f is specified in the CONTROL file then all pairs defined in vdw and/or
met potentials sections will also have their RDF calculated. The user has two choices to enable the
calculation of RDFs in systems with force fields that do not have vdw and/or met potentials: (i) to
define fictitious potentials with zero contributions or (ii) to use rdf n option - which not only provides
a neater way for specification of RDF pairs but also better memory efficiency since DL POLY 4 will
not allocate (additional) potential arrays for fictitious interactions that will not be used. (This option
is not available in DL POLY Classic.)

Note that rdf and vdw/met are not complementary - i.e. if the former is used in FIELD none of
the pairs defined by the latter will be considered for RDF calculations.

199

©STFC Section 10.1

Table 10.10: Metal Potential

key potential type Variables (1-5,6-9) functional form

eam EAM tabulated potential in TABEAM

eeam EEAM tabulated potential in TABEAM

2bea 2BEAM tabulated potential in TABEAM

2bee 2BEEAM tabulated potential in TABEAM

fnsc Finnis-Sinclair c0 c1 c2 c A Ui(r) =
1
2

∑
j ̸=i

(rij − c)2(c0 + c1rij + c2r
2
ij)−A

√
ρi ;

d β ρi =
∑
j ̸=i

[
(rij − d)2 + β

(rij−d)3

d

]
exfs Extended c0 c1 c2 c3 c4 Ui(r) =

1
2

∑
j ̸=i

(rij − c)2(c0 + c1rij + c2r
2
ij + c3r

3
ij + c4r

4
ij)

Finnis-Sinclair c A d B −A√ρi ; ρi =
∑
j ̸=i

[
(rij − d)2 +B2(rij − d)4

]

stch Sutton-Chen ϵ a n m c Ui(r) = ϵ

[
1
2

∑
j ̸=i

(
a
rij

)n
− c√ρi

]
; ρi =

∑
j ̸=i

(
a
rij

)m
gupt Gupta A r0 p B qij Ui(r) =

∑
j ̸=i

A exp
(
−p rij−r0

r0

)
−B√ρi ;

ρi =
∑
j ̸=i

exp
(
−2qij rij−r0

r0

)

mbpc MBPC† ϵ a m α ro Ui(r) = −ϵ
√
ρi ; ρi =

∑
j ̸=i

(
a
rmij

)
1
2 [1 + erf (α(rij − ro))]

†Note that the parameters α and ro must be the same for all defined potentials of this type. DL POLY 4
will set α = Max(0, αpq) and ro = Max(0, ro pq) for all defined interactions of this type between species p
and q. If after this any is left undefined, i.e. zero, the undefined entities will be set to their defaults: α = 20
and ro = Min(1.5, 0.2 rcut).

200

©STFC Section 10.1

The selected RDFs are calculated in the rdf collect, rdf excl collect, rdf frzn collect and
rdf compute by collecting distance information from all two-body pairs as encountered in the Verlet
neighbour list created in the link cell pairs routine within the two body forces routine. In the
construction of the Verlet neighbour list, pairs of particles (part of the exclusion list) are excluded.
The exclusion list contains particles that are part of:

• core-shell units

• bond constraints

• chemical bonds, that are NOT distance restraints

• valence angles, that are NOT distance restraints

• dihedrals

• inversions

• frozen particles

RDF pairs containing type(s) of particles that fall in this list will be polluted. However, there are
many ways to overcome such effects.

6. tersoff n
where n is the number of specified Tersoff potentials. There are two types of Tersoff potential forms
that cannot be mixed (used simultaneously). They are shorthanded as ters and kihs atomkeys.

• ters atomkey expects 2n records specifying n particular Tersoff single atom type parameter sets
and n(n+ 1)/2 records specifying cross atom type parameter sets in the following manner:

potential 1 : record 1
atmnam a8 atom type
key a4 potential key, see Table 10.11
variable 1 real potential parameter, see Table 10.11
variable 2 real potential parameter, see Table 10.11
variable 3 real potential parameter, see Table 10.11
variable 4 real potential parameter, see Table 10.11
variable 5 real cutoff range for this potential (Å)

potential 1 : record 2
variable 6 real potential parameter, see Table 10.11
variable 7 real potential parameter, see Table 10.11
variable 8 real potential parameter, see Table 10.11
variable 9 real potential parameter, see Table 10.11
variable 10 real potential parameter, see Table 10.11
variable 11 real potential parameter, see Table 10.11
...
...

potential n : record 2n− 1
...

potential n : record 2n
...

cross term 1 : record 2n+ 1
atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
variable a real potential parameter, see Table 10.11
variable b real potential parameter, see Table 10.11
variable c real potential parameter, see Table 10.11
...
...

201

©STFC Section 10.1

cross term n(n+ 1)/2 : record 2n+ n(n+ 1)/2
...

• kihs atomkey expects 3n records specifying n particular Tersoff single atom type parameter sets
in the following manner:

potential 1 : record 1
atmnam a8 atom type
key a4 potential key, see Table 10.11
variable 1 real potential parameter, see Table 10.11
variable 2 real potential parameter, see Table 10.11
variable 3 real potential parameter, see Table 10.11
variable 4 real potential parameter, see Table 10.11
variable 5 real cutoff range for this potential (Å)

potential 1 : record 2
variable 6 real potential parameter, see Table 10.11
variable 7 real potential parameter, see Table 10.11
variable 8 real potential parameter, see Table 10.11
variable 9 real potential parameter, see Table 10.11
variable 10 real potential parameter, see Table 10.11
variable 11 real potential parameter, see Table 10.11

potential 1 : record 3
variable 12 real potential parameter, see Table 10.11
variable 13 real potential parameter, see Table 10.11
variable 14 real potential parameter, see Table 10.11
variable 15 real potential parameter, see Table 10.11
variable 16 real potential parameter, see Table 10.11
...
...

potential n : record 2n− 1
...

potential n : record 2n
...

The variables pertaining to each potential are described in Table 10.11.

Note that the fifth variable is the range at which the particular tersoff potential is truncated. The
distance is in Å.

Table 10.11: Tersoff Potential

key potential type Variables (1-5,6-11,a-c/12-16) functional form

ters Tersoff A a B b R Potential forms
(single) S β η c d h

(cross) χ ω δ as shown in

kihs KIHS A a B b R
S η δ c1 c2 c3 Section 2.3.3
c4 c5 h α β

202

©STFC Section 10.1

7. tbp n
where n is the number of three-body potentials to be entered. It is followed by n records, each
specifying a particular three-body potential in the following manner:

atmnam 1 (i) a8 first atom type
atmnam 2 (j) a8 second (central) atom type
atmnam 3 (k) a8 third atom type
key a4 potential key, see Table 10.12
variable 1 real potential parameter, see Table 10.12
variable 2 real potential parameter, see Table 10.12
variable 3 real potential parameter, see Table 10.12
variable 4 real potential parameter, see Table 10.12
variable 5 real cutoff range for this potential (Å)

The variables pertaining to each potential are described in Table 10.12.

Note that the fifth variable is the range at which the three body potential is truncated. The distance
is in Å, measured from the central atom. Note that interactions defined with less than four potential
parameters must provide zeros for the ones up to the cutoff one.

Table 10.12: Three-body Potentials

key potential type Variables (1-4) functional form†

harm Harmonic k θ0 0 0 U(θ) = k
2 (θ − θ0)2

thrm Truncated harmonic k θ0 ρ 0 U(θ) = k
2 (θ − θ0)2 exp[−(r8ij + r8ik)/ρ

8]

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]

bvs1 Screened Vessal [36] k θ0 ρ1 ρ2 U(θ) = k
8(θ0−π)2

{[
(θ0 − π)2 − (θ − π)2

]2}×
exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal [37] k θ0 a ρ U(θ) = k (θ − θ0)2
[
θa(θ − θ0)2(θ + θ0 − 2π)2

+a
2π

a−1(θ0 − π)3
]
exp[−(r8ij + r8ik)/ρ

8]

hbnd H-bond [19] Dhb Rhb 0 0 U(θ) = Dhb cos4(θ)×
[5(Rhb/rjk)

12 − 6(Rhb/rjk)
10]

†θ is the i-j-k angle.

8. fbp n
where n is the number of four-body potentials to be entered. It is followed by n records, each specifying
a particular four-body potential in the following manner:

atmnam 1 (i) a8 first (central) atom type
atmnam 2 (j) a8 second atom type
atmnam 3 (k) a8 third atom type
atmnam 4 (l) a8 fourth atom type
key a4 potential key, see Table 10.13
variable 1 real potential parameter, see Table 10.13
variable 2 real potential parameter, see Table 10.13
variable 3 real cutoff range for this potential (Å)

203

©STFC Section 10.1

The variables pertaining to each potential are described in Table 10.13.

Note that the third variable is the range at which the four-body potential is truncated. The distance
is in Å, measured from the central atom. Note that interactions idefined with less than two potential
parameters must provide zeros for the ones up to the cutoff one.

Table 10.13: Four-body Potentials

key potential type Variables (1-2) functional form‡

harm Harmonic k ϕ0 U(ϕ) = k
2 (ϕ− ϕ0)2

hcos Harmonic cosine k ϕ0 U(ϕ) = k
2 (cos(ϕ)− cos(ϕ0))

2

plan Planar A 0 U(ϕ) = A [1− cos(ϕ)]

‡ϕ is the i-j-k-l four-body angle.

10.1.3.3 External Field

The presence of an external field is flagged by the directive:

extern

The following line in the FIELD file must contain another directive indicating what type of field is to
be applied, followed by the field parameters in the following manner:

field key a4 external field key, see Table 10.14
variable 1 real potential parameter, see Table 10.14
variable 2 real potential parameter, see Table 10.14
variable 3 real potential parameter, see Table 10.14
variable 4 real potential parameter, see Table 10.14
variable 5 real potential parameter, see Table 10.14
variable 6 real potential parameter, see Table 10.14

The variables pertaining to each field potential are described in Table 10.14.

Note: only one type of field can be applied at a time.

Note that external force parameters are read in terms of the specified energy units and the general DL POLY
units so that the two sides of the equation defining the field are balanced. For example, the magnetic field
units, H = (H1,H2,H3), in the DL POLY FIELD scope will follow from the interaction definition as seen
in Table 10.14:

F = q (v ×H) therefore,

[H] =
[F]

[q] [v]
=

[m] [a]

[q] [v]

[H] =
Dalton Å/ps2

proton Å/ps
=

Dalton

proton ps
(10.8)

[H] = 1.037837512× 104 Tesla (10.9)

H(DL POLY) = H(MKS) 1.037837512× 104 .

Thus to apply a magnetic field of 1 Tesla along the y axis, one could specify in FIELD the following:

204

©STFC Section 10.1

Table 10.14: External Fields

key potential type Variables (1-6) functional form

elec Electric Field Ex Ey Ez F = q E

oshr Oscillating Shear A n F x = A cos(2nπ · z/Lz)

shrx Continuous Shear A z0 vx = A
2
|z|
z : |z| > z0

grav Gravitational Field Gx Gy Gz F = m G

magn Magnetic Field Hx Hy Hz F = q (v ×H)

sphr Containing Sphere A R0 n Rcut F = A (R0 − r)−n : r > Rcut

zbnd Repulsive Wall A z0 f = ±1 F = A (z0 − z) : f · z > f · z0

xpis X-Piston igid jgid Pkatm F x =
P ·Area(⊥X-dir)

[
∑j

k=i mk]/mk
: ∀ k = i, .., j

zres Molecule in HR Zone igid jgid A zmn zmx F z =

{
A(zcm − zmx) : zcm > zmx

A(zmn − zcm) : zcm < zmn

zrs− HR Zone (push out) igid jgid A zmn zmx F z =

{
A(z − zmx) : z ≥ zmx+zmn

2
A(zmn − z) : z < zmx+zmn

2

zrs+ HR Zone (pull in) igid jgid A zmn zmx F z =

{
A(z − zmx) : z > zmx

A(zmn − z) : z < zmn

osel Osc. Electric Field Ex Ey Ez ωps−1 F = q E sin(2πωt)

ushr umbrella sampling [82] iAgid jAgid iBgid jBgid k R0 UAB = k
2 (RAB −R0)

2

harm. constraint [83]

UNITS internal

...

external

magnetic 0 1/1.037837512e04 0

...

when working in DL POLY internal units. If we worked in unit units then

H ∝ Energy

Energy(DL POLY) = Energy(unit) kunit→DL POLY

H(DL POLY) = H(MKS) 1.037837512× 104 (10.10)

H(unit) = H(MKS)
1.037837512× 104

kunit→DL POLY
,

205

©STFC Section 10.1

with the following conversion factors values:

keV→DL POLY = 9648.530821

kkcal/mol→DL POLY = 418.4

kkJ/mol→DL POLY = 100.0 (10.11)

kK/Boltz→DL POLY = 0.831451115

kDL POLY→DL POLY = 1.0 .

Obviously, for eV units

H(unit) = H(MKS)
1.037837512× 104

kunit→DL POLY

keV→DL POLY = 9648.530821 (10.12)

H(eV) = H(MKS) 1.07564305 ,

the FIELD file should be amended to read:

UNITS eV

...

external

magnetic 0 1/1.07564305 0

...

10.1.3.4 crd

crd i j k

This section defines the atomic pairs to use for both coordination and angular distribution calculations. The
start of this section is given by the keyword crd followed by the i j k records:

i = The number of unique atomic pairs

i number of the following pattern: atom1 atom2 bond length

j = The number of unique atoms you are building the pairs from

j number of the following pattern: atom minimun displacement

k = The number of lists to build coordination and angular distribution between

k number of the following pattern: atom atom ... - atom atom ...

Example in the FIELD File

crd 2 3 1

B O 1.9

Si O 2.0

B 0.9

Si 1.0

O 1.0

Si B - O

10.1.3.5 Closing the FIELD File

The FIELD file must be closed with the directive:

close
which signals the end of the force field data. Without this directive DL POLY 4 will abort.

206

©STFC Section 10.1

10.1.4 The MPOLES File

The MPOLES file serves to define the multipolar momenta of the sites defined in FIELD (see Section 10.1.3).
It is only read by DL POLY 4 when the multipolar order n directive is specified at the top of FIELD. The
file is read by the subroutine read mpoles. The MPOLES file and has the same molecular topology syntax
and rules as FIELD except that
(i) it only understands the stoichiometry information; and
(ii) will abort should more FIELD like detail is supplied.
Thus the molecular topology/stoichiometry information must explicitly match that in FIELD.

Example from a water system with multipolar momenta beyond the single point charges is shown below:

Puddle Test Case (32000 AMOEBA Waters)

MOLECULES 1

SPC WATER

NUMMOLS 32000

ATOMS 3

O 2 1 0.837 0.39

-0.51966

0.00000 0.00000 0.14279

0.37928 0.00000 0.00000 -0.41809 0.00000 0.03881

H 2 2 0.496 0.39

0.25983

-0.03859 0.00000 -0.05818

-0.03673 0.00000 -0.00203 -0.10739 0.00000 0.14412

FINISH

CLOSE

10.1.4.1 The MPOLES File Format

The file is free-formatted and not case-sensitive (except for the site names). Every line is treated as a
command sentence (record). Commented records (beginning with a #) and blank lines are not processed
and may be added to aid legibility (see example above). Records must be limited in length to 200 characters.
Records are read in words, as a word must not exceed 40 characters in length. Words are recognised as such
by separation by one or more space characters. The contents of the file are variable and are defined by the
use of directives. Additional information is associated with the directives.

10.1.4.2 Definitions of Variables in the MPOLES File

The file divides into two sections: general information, molecular descriptions.

General information

The first viable record in the MPOLES file is the title, which is mandatory.

207

©STFC Section 10.1

record 1
header a200 field file header

Molecular details

It is important for the user to understand that there is an organisational correspondence between the FIELD
file and the CONFIG file described above. It is required that the order of specification of molecular types
and their atomic constituents in the FIELD file follows the order of indices in which they appear in the
CONFIG file. Failure to adhere to this common sequence will be detected by DL POLY 4 and result in
premature termination of the job. It is therefore essential to work from the CONFIG file when constructing
the FIELD file. It is not as difficult as it sounds!

The entry of the molecular details begins with the mandatory directive:

molecules n

where n is an integer specifying the number of different types of molecule appearing in the FIELD file. Once
this directive has been encountered, DL POLY 4 enters the molecular description environment in which only
molecular description keywords and data are valid.

Immediately following the molecules directive, are the records defining individual molecules:

1. name-of-molecule
which can be any character string up to 200 characters in length. (Note: this is not a directive, just
a simple character string.)

2. nummols n
where n is the number of times a molecule of this type appears in the simulated system. The molecular
data then follow in subsequent records:

3. atoms n
where n indicates the number of atoms in this type of molecule. A number of records follow, each
giving details of the atoms in the molecule i.e. site names, masses and charges. Each record carries
the entries:

sitnam a8 atomic site name
order integer multipolar order supplied
nrept integer repeat counter
α real(1) optional atomic polarisability (in Å3)
a real(1) optional Thole dumping factor

The integer nrept may be omitted (in which case a value or 1 is assumed) only if no further optional
directives are provided! A number greater than 1 specified here indicates that the next (nrept-1)
entries in the CONFIG file are ascribed the atomic characteristics given in the current record. The
sum of the repeat numbers for all atoms in a molecule should equal the number specified by the atoms
directive.

The atomic polarisability, α, and the Thole [77] dumping factor, a, are optional and are only parsed
for the core (non-Druder) particles of core-shell units. If all polarisabilities as well as core and shell
charges and associated force constants are well defined then a may default for (Druder nuclei) core
particles if no Thole dumping is specified in both MPOLES and CONTROL.

For each pole order specified DL POLY 4 will read a new line that will specify the pole order momenta.
If a site has a specified pole order, m, smaller than the one specified in FIELD, n, then the m+1 to n
order poles’ momenta will be zero. Similarly, if a site has momenta of poles of higher order than the
one specified in FIELD, n, these will not be processed by DL POLY 4.

DL POLY 4 will read same order momenta in their natural vector format:

208

©STFC Section 10.1

charge real(1) scalar q (in protons)
dipole real(3) vector (x, y, z) (in protons/Å)
quadrupole real(6) vector (xx, xy, xz, yy, yz, zz) (in protons/Å2)
octupole real(10) vector (xxx, xxy, xxz, xyy, xyz, xzz, yyy, yyz, yzz, zzz) (in protons/Å3)
hexadecapole real(15) vector (xxxx, xxxy, xxxz,, yyyz, yyzz, yzzz, zzzz) (in protons/Å4)

Note that the charge values supplied in FIELD will be overwritten with those supplied here!

Note, although algorithms in DL POLY 4 could in principle handle any high pole order summation,
in practice, however, DL POLY 4 will abort if the order is higher than hexadecapole (order 4)!

4. finish
This directive is entered to signal DL POLY 4 that the entry of the details of a molecule has been
completed.

The entries for a second molecule may now be entered, beginning with the name-of-molecule record
and ending with the finish directive.

The cycle is repeated until all the types of molecules indicated by the molecules directive have been
entered.

10.1.4.3 Closing the MPOLES File

The MPOLES file must be closed with the directive:

close
after which DL POLY 4 will resume will processing the intermolecular part of FIELD.

10.1.5 The REFERENCE File

The REFERENCE has the same format and structure as CONFIG (see Section 10.1.2) file with the exception
that imcon MUST BE ̸= 0. REFERENCE may contain more or less particles than CONFIG does and
may have particles with identities that are not defined in FIELD (see Section 10.1.3). The positions of these
particles are used to define the crystalline lattice sites to which the particles in CONFIG compare during
simulation when the defect detection option, defects, is used. REFERENCE is read by the subroutine
defects reference read.

10.1.6 The REVOLD File

This file contains statistics arrays from a previous job. It is not required if the current job is not a con-
tinuation of a previous run (i.e. if the restart directive is not present in the CONTROL file - see above).
The file is unformatted and therefore not human readable. DL POLY 4 normally produces the file REVIVE
(see Section 10.2.10) at the end of a job which contains the statistics data. REVIVE should be copied
to REVOLD before a continuation run commences. This may be done by the copy macro supplied in the
execute sub-directory of DL POLY 4.

10.1.6.1 Format

The REVOLD file is unformatted. All variables appearing are written in native working precision (see
Section 8.3.5) real representation. Nominally, integer quantities (e.g. the timestep number nstep) are
represented by the nearest real number. The contents are as follows (the dimensions of array variables are
given in brackets, in terms of parameters from the setup module file - see Section 11.2.7).

209

©STFC Section 10.1

record 1:
nstep timestep of final configuration
numacc number of configurations used in averages
numrdf number of configurations used in RDF averages
numzdn number of configurations used in Z-density averages
time elapsed simulation time
tmst elapsed simulation before averages were switched on
chit thermostat related quantity (first)
chip barostat related quantity
cint thermostat related quantity (second)

record 2:
eta scaling factors for simulation cell matrix elements (9)

record 3:
stpval instantaneous values of thermodynamic variables (mxnstk)

record 4:
sumval average values of thermodynamic variables (mxnstk)

record 5:
ssqval fluctuation (squared) of thermodynamic variables (mxnstk)

record 6:
zumval running totals of thermodynamic variables (mxnstk)

record 7:
ravval rolling averages of thermodynamic variables (mxnstk)

record 8:
stkval stacked values of thermodynamic variables (mxstak×mxnstk)

record 9:
strcon constraint bond stress (9)

record 10:
strpmf PMF constraint stress (9)

record 11:
stress atomic stress (9)

record 12: (Optional)
rdf RDF arrays (mxgrdf×mxrdf)

record 13: (Optional)
usr umbrella sampling RDF array (mxgusr)

record 14: (Optional)
zdens Z-density array (mxgrdf×mxatyp)

record 15: (Optional)
vaf VAF arrays (sizes dependent on sampling frequency and VAF bin size)

10.1.6.2 Further Comments

Note that different versions of DL POLY 4 may have a different order of the above parameters or include
more or less such. Therefore different versions of DL POLY 4 may render any existing REVOLD file
unreadable by the code.

10.1.7 The TABLE File

The TABLE file provides an alternative way of reading in the short range potentials - in tabular form. This is
particularly useful if an analytical form of the potential does not exist or is too complicated to specify in the
vdw generate subroutine. The table file is read by the subroutine vdw table read (see Chapter 11).

The option of using tabulated potentials is specified in the FIELD file (see above). The specific potentials

210

©STFC Section 10.1

that are to be tabulated are indicated by the use of the tab keyword on the record defining the short range
potential (see Table 10.9).

10.1.7.1 The TABLE File Format

The file is free-formatted but blank and commented lines are not allowed.

10.1.7.2 Definitions of Variables

record 1
header a200 file header

record 2
delpot real mesh resolution in Å (delpot = cutpot

ngrid−4)

cutpot real cutoff used to define tables in Å
ngrid integer number of grid points in tables

The subsequent records define each tabulated potential in turn, in the order indicated by the specification
in the FIELD file. Each potential is defined by a header record and a set of data records with the potential
and force tables.

header record:
atom 1 a8 first atom type
atom 2 a8 second atom type

potential data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

force data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

10.1.7.3 Further Comments

It should be noted that the number of grid points in the TABLE file should not be less than the number
of grid points DL POLY 4 is expecting. (This number is given by the parameter mxgvdw calculated in the
setup module file - see Section 8.2.1 and 11.2.7.) DL POLY 4 will re-interpolate the tables if delpot =
cutpot
ngrid−4 < dlrvdw = rvdw

mxgvdw−4 (usually when ngrid > mxgvdw), but will abort if delpot > dlrvdw.

The potential and force tables are used to fill the internal arrays vvdw and gvdw respectively (see Sec-
tion 2.3.1). The contents of force arrays are derived from the potential via the formula:

G(r) = −r ∂
∂r
U(r) . (10.13)

Note, this is not the same as the true force.

During simulation, interactions beyond distance cutpot are discarded.

211

©STFC Section 10.1

10.1.8 The TABEAM File

The TABEAM file contains the tabulated potential functions (no explicit analytic form) describing the EAM
or EEAM metal interactions in the MD system. This file is read by the subroutine metal table read
(see Chapter 11).

10.1.8.1 The TABEAM File Format

The file is free-formatted but blank and commented lines are not allowed.

10.1.8.2 Definitions of Variables

record 1
header a200 file header

record 2
numpot integer number of potential functions in file

For an n component alloy, numpot is

• n(n+ 5)/2 for the EAM potential or

• 3n(n+ 1)/2 for the EEAM potential or

• n(n+ 4) for the 2BEAM potential or

• 5n(n+ 1)/2 for the 2BEEAM potential.

The subsequent records for an n component alloy define n(n + 1)/2 cross pair potential functions - pairs
keyword and

• EAM: n embedding functions (one for each atom type) - embedding keyword, n electron density
functions (one for each atom type) - density keyword;

• EEAM: n embedding functions (one for each atom type) and n2 for the EEAM potential (one for each
non-commuting pair of atoms types);

• 2BEAM: n s-band embedding functions (one for each atom type) - sembedding keyword, n(n +
1)/2 s-band density functions (one for each cross-pair of atoms types) - sdensity keyword, n d-band
embedding functions (one for each atom type) - dembedding or embeedding keyword, and n d-band
density functions (one for each atom types) - ddensity or density keyword;

• 2BEEAM: n s-band embedding functions (one for each atom type) - sembedding keyword, n2 s-band
density functions (one for each non-commuting pair of atoms types) - sdensity keyword, n d-band
embedding functions (one for each atom type) - dembedding or embeedding keyword, and n2 d-band
density functions (one for each non-commuting pair of atoms types) - ddensity or density keyword.

The functions may appear in any random order in TABEAM as their identification is based on their unique
keyword, defined first in the function’s header record. The header record is followed by predefined number
of data records as a maximum of four data per record are read in - allowing for incompletion of the
very last record.

header record:
keyword a4 type of EAM function: pair, embed or density, with

2B extension alternatives for the s-band - [sembed and sdensity]

212

©STFC Section 10.1

and d-band - dembed = embed and ddensity = density
atom 1 a8 first atom type
atom 2 a8 second atom type - only specified for pair potential functions and

for the (i) density functions in the EEAM potential case or
(ii) sdensity functions in the 2BEAM potential case or
(iii) sden and dden functions in the 2BEEAM potential case

ngrid integer number of function data points to read in
limit 1 real lower interpolation limit in Å for dens/sden/dden and pair

or in density units for embe/semb/demb
limit 2 real upper interpolation limit in Å for dens/sden/dden and pair

or in density units for embe/semb/demb
function data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

10.1.8.3 Further Comments

The tabled data are used to fill the internal arrays vmet, dmet and fmet, and optionally dmes and fmes

for the 2B extensions of EAM and EEAM (see Section 2.3.2). The force arrays are generated from these
(by the metal table derivatives routine) using a five point interpolation procedure. During simulation,
interactions beyond distance Min(rcut, limit 2) are discarded, whereas interactions at distances shorter
than limit 1 will cause the simulation to abort. For the purpose of extrapolating the embedding functions
F (ρ) beyond its limit 2 specified in the tabulated array, it is assumed that

F (ρ > limit 2) = F (ρ = limit 2) . (10.14)

The simulation will however abort if any local density is less than the limit 1 for its corresponding embed-
ding function.

It is worth noting that in the 2BEAM and 2BEEAM the s-band contribution is usually only for the alloy
component, so that local concentrations of a single element revert to the standard EAM or EEAM! In such
case, the densities functions must be zeroed in the DL POLY 4 TABEAM file. A convenient way to do this,
for example, will be data record of the type:

SDEN Atom1 Atom1 1 0 1

0

10.1.9 The TABBND, TABANG, TABDIH & TABINV Files

DL POLY 4 allows the specification of tabulated data for intramolecular interactions:

• TABBND - for chemical bonds potentials - distance dependent

• TABANG - for bond angles potentials - angle dependent

• TABDIH - for dihedrals (torsional) potentials - angle dependent

• TABINV - for inversions potentials - angle dependent.

The files have the same formatting rules with examples shown in Section 4.3. Refer to Section 4.1 for their
derivation and usage in coarse grained model systems.

213

©STFC Section 10.1

10.1.9.1 Definitions of Variables

record 1
header a200 file header

record 2
a1 a hash (#) symbol
cutpot real cutoff in Å - only expected in TABBND as the

cutoff ranges are known for TABANG, TABDIH & TABINV
ngrid integer number of grid points in table for all potentials

record 3
a1 a hash (#) symbol

The subsequent records define each tabulated potential in turn, in the order indicated by the specification
in the FIELD file. Each potential is defined by a header record and a set of data records with the potential
and force tables.

empty record:
id record:
a1 a hash (#) symbol
atom 1 a8 first atom type
atom 2 a8 second atom type
atom 3 a8 third atom type - only required for TABANG
atom 4 a8 forth atom type - only required for TABDIH & TABINV

interaction data records 0/1–ngrid:
abscissa real consecutive value over the full cutoff/range in

Å for TABBND and degrees for TABANG, TABDIH & TABINV
potential real potential at the abscissa grid point in units as specified in FIELD
force real complementary force (virial for TABBND) value

10.1.9.2 Further Comments

It should be noted that the number of grid points in the table files should not be less than the number of grid
points DL POLY 4 is expecting. For more information the reader is advised to examine setup module
and inspect the mxgint variables, where int refers to bnd for bonds, ang for angles, dih for dihedrals and
inv for inversions.

The potential and force tables are used to fill the internal arrays vint and gint for the respective intrmolecular
potential (see Chapter 2).

The contents of force arrays for TABBND are derived from the potential via the formula:

G(r) = −r ∂
∂r
U(r) . (10.15)

Note, this is not the same as the true force. During simulation, interactions beyond distance cutpot will
bring the run to a controlled termination.

10.1.10 The DUMP E File

The DUMP E file contains the values of coarse-grained electronic temperature (CET) cells from a previous
job with the two-temperature model (TTM). It is not required if the current job is not a continuation of a
previous run (i.e. if the restart directive is not present in the CONTROL file - see above). The two-line
header consists of the following records:

214

©STFC Section 10.1

record 1:
eltsys(1) integer number of CET cells in x-direction
eltsys(2) integer number of CET cells in y-direction
eltsys(3) integer number of CET cells in z-direction

record 2:
nstep integer timestep of current electronic temperature profile
time real elapsed simulation time
depostart real time when energy deposition started
depoend real time when energy deposition ended or is due to end

and each subsequent record is formatted as follows:

x integer x-coordinate of CET cell
y integer y-coordinate of CET cell
z integer z-coordinate of CET cell
eltemp real electronic temperature at current CET cell (K)

with the origin of CET cell coordinates at the centre of the grid.

The file is read by the subroutine ttm system init. It will not be accepted by DL POLY 4 if the number
of CET cells in each direction does not match the values given in the CONTROL file or insufficient electronic
temperatures are supplied. No matching up of restart timestep or elapsed simulation time between REVOLD
and DUMP E is absolutely necessary, but the user will be warned if they are not the same.

10.1.11 The Ce.dat, Ke.dat, De.dat and g.dat Files

The two-temperature model (TTM) implementation in DL POLY 4 allows specification of the following
tabulated data:

• Ce.dat - for electronic volumetric heat capacity - temperature dependent

• Ke.dat - for metallic thermal conductivity - temperature dependent

• De.dat - for non-metallic thermal diffusivity - temperature dependent

• g.dat - for electron-phonon coupling constants - temperature dependent

Each file is free-formatted and only consist of two columns: the first column gives temperature in K, while the
second gives electronic volumetric heat capacity in J m−3 K−1 (Ce.dat), thermal conductivity in W m−1 K−1

(Ke.dat), thermal diffusivity in m2 s−1 (De.dat) or the electron-phonon coupling constant in W m−3 K−1

(g.dat). These files are read by the subroutine ttm table read if the ttm cetab, ttm ketab, ttm detab
and/or ttm gvar directives are included in the CONTROL file.

10.1.12 The HISTORY/HISTROF File

The HISTORY file is usually an output file (see Section 10.2.1). However, upon specifying the replay option
a HISTORY trajectory can be replayed and various observables recreated should there is enough information
within to recover the specific observable (e.g. velocities supplied within HISTORY for regeneration of velocity
autocorrelation data). Thus it can be used as input as well.

If the replay force option is used in CONTROL it enforce a new trajectory generation, i.e. generation
of HISTORY, which necessitates the trajectory reading routine to default to reading a differently named,

215

©STFC Section 10.2

HISTORF (copy of HISTORY), basic trajectory file instead. However, using this option expects a full force
evaluation driven by expectedly a different FIELD field file from the one used for the HISTORF generation.
For more information do refer to CONTROL file directives and options (see Section 10.1.1).

10.1.13 The SETEVB File

The file SETEVB is needed for EVB simulations. If this file is not found, the execution of DL POLY 4 is
aborted. See section ?? for a detailed explanation of the input parameters for EVB calculations.

10.2 The OUTPUT Files

DL POLY 4 may produce many output files. However only OUTPUT (an incremental summary file of the
simulation), STATIS (a statistical history file), REVCON (a restart configuration file - final) and REVIVE (a
restart statistics accumulators file - final) are mandatory. DUMP E (a restart electronic temperature grid file
- final) is also produced if the two-temperature model (TTM) is in use. The existence of the remaining files
is optional upon user specifications in CONTROL. Some of these optional files are HISTORY, DEFECTS,
MSDTMP, CFGMIN, RDFDAT, USRDAT, ZDNDAT, VDFDAT *, LATS E, LATS I, PEAK E, PEAK I.
These respectively contain: an incremental dump file of all atomic coordinates, velocities and forces; an
incremental dump file of atomic coordinates of defected particles (interstitials) and sites (vacancies); an
incremental dump file of of individual atomic mean square displacement and temperature; a dump file of all
atomic coordinates of a minimised structure; a radial distribution function (RDF) data file; the RDF data
file for the umbrella sampling (harmonic restraint); Z-density distribution data file; velocity autocorrelation
function (VAF) data files (one file for each species); electronic temperature profile data file; ionic temperature
profile data file; electronic temperature statistical data file; ionic temperature statistical data file.

10.2.1 The HISTORY File

The HISTORY file is the dump file of atomic coordinates, velocities and forces. Its principal use is for
off-line analysis. The file is written by the subroutine trajectory write. The control variables for this
file are ltraj, nstraj, istraj and keytrj which are created internally, based on information read from
the traj directive in the CONTROL file (see Section 10.1.1). The HISTORY file will be created only if the
directive traj appears in the CONTROL file.

The HISTORY file can become very large, especially if it is formatted. For serious simulation work it
is recommended that the file be written to a scratch disk capable of accommodating a large data file.
Alternatively, the file may be written in netCDF format instead of in ASCII (users must change ensure this
functionality is available), which has the additional advantage of speed.

The HISTORY has the following structure:

record 1
header a72 file header

record 2
keytrj integer trajectory key (see Table ??) in last frame
imcon integer periodic boundary key (see Table 10.3) in last frame
megatm integer number of atoms in simulation cell in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nstraj the HISTORY file is appended at intervals specified by the traj directive
in the CONTROL file, with the following information for each configuration:

216

©STFC Section 10.2

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
megatm integer number of atoms in simulation cell (again)
keytrj integer trajectory key (again)
imcon integer periodic boundary key (again)
tstep real integration timestep (ps)
time real elapsed simulation time (ps)

record ii
cell(1) real x component of a cell vector in Å
cell(2) real y component of a cell vector in Å
cell(3) real z component of a cell vector in Å

record iii
cell(4) real x component of b cell vector in Å
cell(5) real y component of b cell vector in Å
cell(6) real z component of b cell vector in Å

record iv
cell(7) real x component of c cell vector in Å
cell(8) real y component of c cell vector in Å
cell(9) real z component of c cell vector in Å

This is followed by the configuration for the current timestep. i.e. for each atom in the system the following
data are included:

record a
atmnam a8 atomic label
iatm integer atom index
weight real atomic mass (a.m.u.)
charge real atomic charge (e)
rsd real displacement from position at t = 0 in Å

record b
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

record c only for keytrj > 0
vxx real x component of velocity in Å/picosecond
vyy real y component of velocity in Å/picosecond
vzz real z component of velocity in Å/picosecond

record d only for keytrj > 1
fxx real x component of force in Å·Dalton/picosecond2

fyy real y component of force in Å·Dalton/picosecond2

fzz real z component of force in Å·Dalton/picosecond2

Thus the data for each atom is a minimum of two records and a maximum of 4.

10.2.2 The MSDTMP File

The MSDTMP file is the dump file of individual atomic mean square displacements (square roots in Å)
and mean square temperature (square roots in Kelvin). Its principal use is for off-line analysis. The file is
written by the subroutine msd write. The control variables for this file are l msd, nstmsd, istmsd which
are created internally, based on information read from the msdtmp directive in the CONTROL file (see
Section 10.1.1). The MSDTMP file will be created only if the directive msdtmp appears in the CONTROL
file.

217

©STFC Section 10.2

The MSDTMP file can become very large, especially if it is formatted. For serious simulation work it is
recommended that the file be written to a scratch disk capable of accommodating a large data file.

The MSDTMP has the following structure:

record 1
header a52 file header

record 2
megatm integer number of atoms in simulation cell in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nstmsd the MSDTMP file is appended at intervals specified by the msdtmp
directive in the CONTROL file, with the following information for each configuration:

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
megatm integer number of atoms in simulation cell (again)
tstep real integration timestep (ps)
time real elapsed simulation time (ps)

This is followed by the configuration for the current timestep. i.e. for each atom in the system the following
data are included:

record a
atmnam a8 atomic label
iatm integer atom index√
MSD(t) real square root of the atomic mean square displacements (in Å)

Tmean real atomic mean temperature (in Kelvin)

10.2.3 The DEFECTS File

The DEFECTS file is the dump file of atomic coordinates of defects (see Section 10.1.5). Its principal use
is for off-line analysis. The file is written by the subroutine defects write. The control variables for this
file are ldef, nsdef, isdef and rdef which are created internally, based on information read from the
defects directive in the CONTROL file (see Section 10.1.1). The DEFECTS file will be created only if the
directive defects appears in the CONTROL file.

The DEFECTS file may become very large, especially if it is formatted. For serious simulation work it is
recommended that the file be written to a scratch disk capable of accommodating a large data file.

The DEFECTS has the following structure:

record 1
header a72 file header

record 2
rdef real site-interstitial cutoff (Å) in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nsdef the DEFECTS file is appended at intervals specified by the defects
directive in the CONTROL file, with the following information for each configuration:

218

©STFC Section 10.2

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
tstep real integration timestep (ps)
time real elapsed simulation time (ps)
imcon integer periodic boundary key (see Table 10.3)
rdef real site-interstitial cutoff (Å)

record ii
defects a7 the character string “defects”
ndefs integer the total number of defects
interstitials a13 the character string “interstitials”
ni integer the total number of interstitials
vacancies a9 the character string “vacancies”
nv integer the total number of vacancies

record iii
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record iv
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record v
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

This is followed by the ni interstitials for the current timestep, as each interstitial has the following data
lines:

record a
atmnam a10 i atomic label from CONFIG
iatm integer atom index from CONFIG

record b
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

This is followed by the nv vacancies for the current timestep, as each vacancy has the following data lines:

record a
atmnam a10 v atomic label from REFERENCE
iatm integer atom index from REFERENCE

record b
xxx real x coordinate from REFERENCE
yyy real y coordinate from REFERENCE
zzz real z coordinate from REFERENCE

10.2.4 The RSDDAT File

The RSDDAT file is the dump file of atomic coordinates of atoms that are displaced from their original
position at t = 0 farther than a preset cutoff. Its principal use is for off-line analysis. The file is written by

219

©STFC Section 10.2

the subroutine rsd write. The control variables for this file are lrsd, nsrsd, isrsd and rrsd which are
created internally, based on information read from the displacements directive in the CONTROL file (see
Section 10.1.1). The RSDDAT file will be created only if the directive defects appears in the CONTROL
file.

The RSDDAT file may become very large, especially if it is formatted. For serious simulation work it is
recommended that the file be written to a scratch disk capable of accommodating a large data file.

The RSDDAT has the following structure:

record 1
header a72 file header

record 2
rdef real displacement qualifying cutoff (Å) in last frame
frame integer number configuration frames in file
records integer number of records in file

For timesteps greater than nsrsd the RSDDAT file is appended at intervals specified by the displacements
directive in the CONTROL file, with the following information for each configuration:

record i
timestep a8 the character string “timestep”
nstep integer the current time-step
tstep real integration timestep (ps)
time real elapsed simulation time (ps)
imcon integer periodic boundary key (see Table 10.3)
rrsd real displacement qualifying cutoff (Å)

record ii
displacements a13 the character string “displacements”
nrsd integer the total number of displacements

record iii
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record iv
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record v
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

This is followed by the nrsd displacements for the current timestep, as each atom has the following data
lines:

record a
atmnam a10 atomic label from CONFIG
iatm integer atom index from CONFIG
ratm real atom displacement from its position at t = 0

record b
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

220

©STFC Section 10.2

10.2.5 The CFGMIN File

The CFGMIN file only appears if the user has selected the programmed minimisation option (directive
minimise (or optimise) in the CONTROL file). Its contents have the same format as the CONFIG file (see
Section 10.1.2), but contains only atomic position data and will never contain either velocity or force data
(i.e. parameter levcfg is always zero). In addition, three extra numbers appear on the end of the second
line of the file:

1. an integer indicating the number of minimisation cycles required to obtain the structure,

2. the configuration energy of the minimised configuration expressed in DL POLY 4 units (Section 1.3.7),
and

3. the configuration energy of the initial structure expressed in DL POLY 4 units (Section 1.3.7).

10.2.6 The OUTPUT File

The job output consists of 7 sections: Header; Simulation control specifications; Force field specification;
System specification; Summary of the initial configuration; Simulation progress; Sample of the final configu-
ration; Summary of statistical data; and Radial distribution functions and Z-density profile. These sections
are written by different subroutines at various stages of a job. Creation of the OUTPUT file always results
from running DL POLY 4. It is meant to be a human readable file, destined for hardcopy output.

10.2.6.1 Header

Gives the DL POLY 4 version number, the number of processors in use, the link-cell algorithm in use and a
title for the job as given in the header line of the input file CONTROL. This part of the file is written from
the subroutines dl poly, set bounds and read control.

10.2.6.2 Simulation Control Specifications

Echoes the input from the CONTROL file. Some variables may be reset if illegal values were specified in
the CONTROL file. This part of the file is written from the subroutine read control.

10.2.6.3 Force Field Specification

Echoes the FIELD file. A warning line will be printed if the system is not electrically neutral. This warning
will appear immediately before the non-bonded short-range potential specifications. This part of the file is
written from the subroutine read field.

10.2.6.4 System Specification

Echoes system name, periodic boundary specification, the cell vectors and volume, some initial estimates
of long-ranged corrections the energy and pressure (if appropriate), some concise information on topology
and degrees of freedom break-down list. This part of the file is written from the subroutines scan config,
check config, system init, report topology and set temperature.

10.2.6.5 Summary of the Initial Configuration

This part of the file is written from the main subroutine dl poly . It states the initial configuration of (a
maximum of) 20 atoms in the system. The configuration information given is based on the value of levcfg

221

©STFC Section 10.2

in the CONFIG file. If levcfg is 0 (or 1) positions (and velocities) of the 20 atoms are listed. If levcfg is
2 forces are also written out.

10.2.6.6 Simulation Progress

This part of the file is written by the DL POLY 4 root segment dl poly. The header line is printed at the
top of each page as:

−−

step eng tot temp tot eng cfg eng src eng cou eng bnd eng ang eng dih eng tet
time(ps) eng pv temp rot vir cfg vir src vir cou vir bnd vir ang vir con vir tet
cpu (s) volume temp shl eng shl vir shl alpha beta gamma vir pmf press

−−

The labels refer to :

line 1
step MD step number
eng tot total internal energy of the system
temp tot system temperature (in Kelvin)
eng cfg configurational energy of the system
eng src configurational energy due to short-range potential contributions
eng cou configurational energy due to electrostatic potential
eng bnd configurational energy due to chemical bond potentials
eng ang configurational energy due to valence angle and three-body potentials
eng dih configurational energy due to dihedral inversion and four-body potentials
eng tet configurational energy due to tethering potentials

line 2
time(ps) elapsed simulation time (in pico-seconds) since the beginning of the job
eng pv enthalpy of system
temp rot rotational temperature (in Kelvin)
vir cfg total configurational contribution to the virial
vir src short range potential contribution to the virial
vir cou electrostatic potential contribution to the virial
vir bnd chemical bond contribution to the virial
vir ang angular and three-body potentials contribution to the virial
vir con constraint bond contribution to the virial
vir tet tethering potential contribution to the virial

line 3
cpu (s) elapsed cpu time (in seconds) since the beginning of the job
volume system volume (in Å3)
temp shl core-shell temperature (in Kelvin)
eng shl configurational energy due to core-shell potentials
vir shl core-shell potential contribution to the virial
alpha angle between b and c cell vectors (in degrees)
beta angle between c and a cell vectors (in degrees)
gamma angle between a and b cell vectors (in degrees)
vir pmf PMF constraint contribution to the virial
press pressure (in kilo-atmospheres)

Note: The total internal energy of the system (variable tot energy) includes all contributions to the energy
(including system extensions due to thermostats etc.). It is nominally the conserved variable of the system,

222

©STFC Section 10.2

and is not to be confused with conventional system energy, which is a sum of the kinetic and configuration
energies.

The interval for printing out these data is determined by the directive print in the CONTROL file. At
each time-step that printout is requested the instantaneous values of the above statistical variables are
given in the appropriate columns. Immediately below these three lines of output the rolling averages of the
same variables are also given. The maximum number of time-steps used to calculate the rolling averages
is controlled by the directive stack in file CONTROL (see above) and listed as parameter mxstak in the
setup module file (see Section 11.2.2). The default value is mxstak = 100.

Energy Units

The energy unit for the energy and virial data appearing in the OUTPUT is defined by the units directive
appearing in the FIELD file. System energies are therefore read in units per MD cell.

Pressure Units

The unit of pressure is katms, irrespective of what energy unit is chosen.

Two-Temperature Model

If the two-temperature model is in use, information about the timestep sizes used for electronic thermal
diffusivity is written immediately prior to each report of statistical variables at each molecular dynamics
timestep for which printout is requested. The optimum diffusive timestep size is given in pico-seconds, along
with the chosen value and the corresponding number of divisions of the MD timestep. If dynamic calculation
of the average atomic density in active cells is requested, this value is included along with the number of
active ionic temperature cells. Reports are also given when energy deposition starts and finishes.

10.2.6.7 Sample of Final Configuration

The positions, velocities and forces of the 20 atoms used for the sample of the initial configuration (see
above) are given. This is written by the main subroutine dl poly.

10.2.6.8 Summary of Statistical Data

This portion of the OUTPUT file is written from the subroutine statistics result. The number of time-
steps used in the collection of statistics is given. Then the averages over the production portion of the
run are given for the variables described in the previous section. The root mean square variation in these
variables follow on the next two lines. The energy and pressure units are as for the preceding section.

Also provided in this section are estimates of the diffusion coefficient and the mean square displacement
for the different atomic species in the simulation. These are determined from a single time origin and are
therefore approximate. Accurate determinations of the diffusion coefficients can be obtained using the msd
utility program, which processes the HISTORY file (see DL POLY Classic User Manual).

If an NPT (NσT) simulation is performed the OUTPUT file also provides the mean pressure (and stress
tensor in pressure units as density) and mean simulation cell vectors. In case when extended NσT ensembles
are used then further mean (x, y) plain area and mean surface tension are also displayed in the OUTPUT
file.

223

©STFC Section 10.2

10.2.6.9 Radial Distribution Functions

If both calculation and printing of radial distribution functions have been requested (by selecting directives
rdf and print rdf in the CONTROL file) radial distribution functions are printed out. This is written from
the subroutine rdf compute. First the number of time-steps used for the collection of the histograms is
stated.

For each function a header line states the atom types (‘a’ and ‘b’) represented by the function. Then r, g(r)
and n(r) are given in tabular form. n(r) is the average number of atoms of type ‘b’ within a sphere of radius
r around an atom of type ‘a’. Note that a readable version of these data is provided by the RDFDAT file
(below).

10.2.6.10 Umbrella Sampling Restraint RDF

If an umbrella sampling harmonic restraint is defined in the FIELD file (by selecting the ushr external field
sectione) the RDF of the two restraint objects/fragments is printed out. This is written from the subroutine
usr compute in rdf compute. Note that a readable version of these data is provided by the USRDAT
file (below).

10.2.6.11 Z-density Profile

If both calculation and printing of Z-density profiles have been requested (by selecting directives zden
and print zden in the CONTROL file Z-density profiles are printed out as the last part of the OUTPUT
file. This is written by the subroutine z density compute. First the number of time-steps used for the
collection of the histograms is stated. Then each function is given in turn. For each function a header line
states the atom type represented by the function. Then z, ρ(z) and n(z) are given in tabular form. Output
is given from Z = [−L/2, L/2] where L is the length of the MD cell in the Z direction and ρ(z) is the mean
number density. n(z) is the running integral from −L/2 to z of (xy cell area)×ρ(s) ds. Note that a readable
version of these data is provided by the ZDNDAT file (below).

10.2.6.12 Velocity Autocorrelation Functions

If both calculation and printing of velocity autocorrelation functions have been requested (by selecting
directives vaf and print vaf in the CONTROL file the velocity autocorrelation function for the system
(either time-averaged or the last complete sample) is printed out as the last part of the OUTPUT file.
This is written by the subroutine vaf compute. First the details of the calculations are stated: either the
number of samples used to give a time-averaged profile or the number of the last completed sample with
its starting time. The absolute value of the velocity autocorrelation function for the system at t = 0, C(0),
is then stated. Then t and Z(t) are given in tabular form. Z(t) = C(t)/C(0) is the value of the velocity
autocorrelation function, C(t) = ⟨vi(0) · vi(t)⟩, scaled by C(0) ≡ 3kBT/m. Note that a readable version of
these data for individual species is provided by the VAFDAT files (below).

10.2.7 The HEATFLUX File

The HEATFLUX file contains data relevant to the calculation of heat-flux via a Green-Kubo mothod via
an external convolution, the information is written as:

STEP STPTMP VOLUME HEAT_FLUX

224

©STFC Section 10.2

10.2.8 The PP CONT File

This file contains the contributions of each particle to energies, forces and stresses in a format similar to to
the CONFIG file, but with ID replaced with energy, and velocities/forces with the stress 6-vector.

TAG ATMNAM KIN_E MASS ENERGY

STR_XX STR_YX STR_ZX

STR_XY STR_YY STR_ZY

STR_XZ STR_YZ STR_ZZ

10.2.9 The REVCON File

This file is formatted and written by the subroutine revive. REVCON is the restart configuration file. The
file is written every ndump time steps in case of a system crash during execution and at the termination of the
job. A successful run of DL POLY 4 will always produce a REVCON file, but a failed job may not produce
the file if an insufficient number of timesteps have elapsed. ndump is controlled by the directive dump in file
CONTROL (see above) and listed as parameter ndump in the setup module file (see Section 11.2.2). The
default value is ndump = 1000. REVCON is identical in format to the CONFIG input file (see Section 10.1.2).
REVCON should be renamed CONFIG to continue a simulation from one job to the next. This is done for
you by the copy macro supplied in the execute directory of DL POLY 4.

10.2.10 The REVIVE File

This file is unformatted and written by the subroutine system revive. It contains the accumulated sta-
tistical data. It is updated whenever the file REVCON is updated (see previous section). REVIVE should
be renamed REVOLD to continue a simulation from one job to the next. This is done by the copy macro
supplied in the execute directory of DL POLY 4. In addition, to continue a simulation from a previous job
the restart keyword must be included in the CONTROL file.

The format of the REVIVE file is identical to the REVOLD file described in Section 10.1.6.

10.2.11 The DUMP E File

This file is formatted and written by the subroutine ttm system revive every ndump time steps. It
contains the electronic temperatures of all coarse-grained electronic temperature (CET) cells and can be
used to restart a simulation using the two-temperature model without renaming the file.

The format of the DUMP E is described in Section 10.1.10.

10.2.12 The RDFDAT File

This is a formatted file containing Radial Distribution Function (RDF) data. Its contents are as follows:

record 1
cfgname a72 configuration name

record 2
ntprdf integer number of different RDF pairs tabulated in file
mxgrdf integer number of grid points for each RDF pair

There follow the data for each individual RDF, i.e. ntprdf times. The data supplied are as follows:

first record

225

©STFC Section 10.2

atname 1 a8 first atom name
atname 2 a8 second atom name

following records (mxgrdf records)
radius real interatomic distance (Å)
g(r) real RDF at given radius
n(r) real RDF at given radius

Note 1. The RDFDAT file is optional and appears when the print rdf option is specified in the CONTROL
file.

Note 2. Along with the RDFDAT file, two other files will be created whenever the print analysis di-
rective is invoked: VDWPMF & VDWTAB, both containing the data for potentials of mean force and
the corresponding virials calculated based on the obtained RDF:s, i.e. PMF ∼ − ln(RDF) (in the energy
units specified in the FIELD file). These files have a simple three column format, the same as that used
for *PMF files in the case of bonded units, see Section 4.2. The purpose of these files is to provide the
user with means of setting up a PMF-based force-field, for example in the case of initial coarse-graining of
an atomistic system. In particular, one can convert the VDWTAB file into a correctly formatted TABLE
file (Section 10.1.7) by using the utility called pmf2tab.f (subject to compilation; found in DL POLY 4
directory utility) as follows,

[user@host]$ pmf2tab.exe < VDWTAB

see Section 4.1 for completeness.

10.2.13 The USRDAT File

record 1
title a100 file header title

record 2
header a100 file information header

record 3
info a30 information to follow string

record 3
bins integer number of bins
cutoff real cutoff in Å
frames integer number of sampled configurations
volume real average cell volue Å3

record 4
a1 a hash (#) symbol

following records (mxgusr records)
radius real interatomic distance (Å)
g(r) real RDF at given radius

10.2.14 The ZDNDAT File

This is a formatted file containing the Z-density data. Its contents are as follows:

record 1
cfgname a72 configuration name

record 2
ntpatm integer number of unique atom types profiled in file
mxgrdf integer number of grid points in the Z-density function

226

©STFC Section 10.2

There follow the data for each individual Z-density function, i.e. ntpatm times. The data supplied are as
follows:

first record
atname a8 unique atom name

following records (mxgrdf records)
z real distance in z direction (Å)
ρ(z) real Z-density at given height z

Note the ZDNDAT file is optional and appears when the print rdf option is specified in the CONTROL
file.

10.2.15 The VAFDAT Files

These are formatted files containing Velocity Autocorrelation Function (VAF) data. An individual file is
created for each atomic species, i.e. VAFDAT atname. Their contents are as follows:

record
cfgname a72 configuration name

There follow the data for the VAF, either a single time-averaged profile or successive profiles separated by
two blank lines. The data supplied are as follows:

first record
atname a8 atom name
binvaf integer number of data points in VAF profile, excluding t = 0
vaforigin real absolute value of VAF at t = 0 (C(0) ≡ 3kBT/m)
vaftime0 real simulation time (ps) at beginning of (last) VAF profile (t = 0)

following records (binvaf+1 records)
t real time (ps)
Z(t) real scaled velocity autocorrelation function (C(t)/C(0)) at given time t

Note the VAFDAT files are optional and appear when the print vaf option is specified in the CONTROL
file.

10.2.16 The INTDAT, INTPMF & INTTAB Files

These files, where INT is referring to INT ra-molecular interactions and VDW (RDF derived inter-
molecular), have very similar formatting rules with some examples shown in Section 4.2. Refer to Section 4.2
for their meaning and usage in coarse grained model systems.

record 1
title a100 file header title

record 2
header a100 file information header

record 3
info a30 information to follow string
bins integer number of bins for all PDFs
cutoff real cutoff in Å for bonds and RDFs or degrees

for angular intramolecular interactions
frames integer number of sampled configurations

227

©STFC Section 10.2

types integer number of unique types of these interactions
record 4
a1 a hash (#) symbol

record 5
info 1 a100 information to follow string

record 6
a1 a hash (#) symbol

The subsequent records define each PDF potential in turn, in the order indicated by the specification in the
FIELD file. Each potential is defined by a header record and a set of data records with the potential-like
and force-like tables.

empty record:
id record:
info a25 information to follow string
atom 1 a8 first atom type
atom 2 a8 second atom type
atom 3 a8 third atom type - only available in ANG* files
atom 4 a8 forth atom type - only available in DIH* & INV* files
index integer unique index of PDF in file
instances integer instances of this unique type of PDF

interaction data records 1–bins:
abscissa real consecutive value over the full cutoff/range in

Å for BNDTAB & VDWTAB and degrees for ANGTAB, DIHTAB & INVTAB
potential real potential at the abscissa grid point in units as specified in FIELD
force real complementary force (virial for BNDTAB & VDWTAB) value

10.2.17 The STATIS File

The file is formatted, with integers as “i10” and reals as “e14.6”. It is written by the subroutine statis-
tics collect. It consists of two header records followed by many data records of statistical data.

record 1
cfgname a72 configuration name

record 2
string a8 energy units

Data records
Subsequent lines contain the instantaneous values of statistical variables dumped from the array stpval. A
specified number of entries of stpval are written in the format “(1p,5e14.6)”. The number of array elements
required (determined by the parameter mxnstk in the setup module file) is

mxnstk ≥ 28 + 9 (stress tensor elements) +

ntpatm (number of unique atomic sites) +

10 (if constant pressure simulation requested) +

2 (if iso > 0 requested) + 2 (if iso > 1 requested) +

2 ∗mxatdm (if msdtmp option is used)

The STATIS file is appended at intervals determined by the stats directive in the CONTROL file. The
energy unit is as specified in the FIELD file with the units directive, and are compatible with the data
appearing in the OUTPUT file. The contents of the appended information of calculated instantaneous
observables is:

228

©STFC Section 10.2

record i
nstep integer current MD time-step
time real elapsed simulation time
nument integer number of array elements to follow

record ii stpval(1) – stpval(5)
engcns real total extended system energy, Ex

tot = (Ekin + Erot) + Econf + Econsv

(i.e. including the conserved quantity, Econsv)

temp real system temperature, 2Ekin+Erot

fkB
engcfg real configurational energy, Econf

engsrc real short range potential energy
engcpe real electrostatic energy

record iii stpval(6) – stpval(10)
engbnd real chemical bond energy
engang real valence angle and 3-body potential energy
engdih real dihedral, inversion, and 4-body potential energy
engtet real tethering energy
enthal real enthalpy (Ex

tot + P · V) for NVE/T/Ekin ensembles
enthalpy (Ex

tot + P · V) for NP/σT or NPnA/γ ensembles
record iv stpval(11) – stpval(15)
tmprot real rotational temperature, Erot

vir real total virial
virsrc real short-range virial
vircpe real electrostatic virial
virbnd real bond virial

record v stpval(16) – stpval(20)
virang real valence angle and 3-body virial
vircon real constraint bond virial
virtet real tethering virial
volume real volume, V
tmpshl real core-shell temperature

record vi stpval(21) – stpval(25)
engshl real core-shell potential energy
virshl real core-shell virial
alpha real MD cell angle α
beta real MD cell angle β
gamma real MD cell angle γ

record vii stpval(26), stpval(27), stpval(0)
virpmf real PMF constraint virial
press real pressure, P
consv real extended DoF energy, Econsv

the next 9 entries for the stress tensor in pressure units
stress(1) real xx component of stress tensor
stress(2) real xy component of stress tensor
stress(3) real xz component of stress tensor
stress(4) real yx component of stress tensor
... real ...
stress(9) real zz component of stress tensor

the next ntpatm entries
amsd(1) real mean squared displacement of first atom types
amsd(2) real mean squared displacement of second atom types
...
amsd(ntpatm) real mean squared displacement of last atom types

229

©STFC Section 10.2

the next 10 entries - if a NPT or NσT simulation is undertaken

cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector
cell(4) real x component of b cell vector
... real ...
cell(9) real z component of c cell vector
stpipv real pressure, P · V

the next 2 entries - if NPnAT simulation is undertaken with iso ¿ 0
h z real MD cell height hz to normal surface A ⊥ z
A⊥z real MD cell normal surface A ⊥ z = V/hz

the next 2 entries - if a NγnAT simulation is undertaken with iso ¿ 1
gamma x real surface tension γnx on normal surface A ⊥ z
gamma y real surface tension γny on normal surface A ⊥ z

10.2.18 The LATS E and LATS I Files

These are formatted files containing electronic (LATS E) and ionic (LATS I)temperatures at user-requested
intervals along the y-direction in the centre of the system’s xz-plane from two-temperature model calcula-
tions.

Each line in these files consists of a series of electronic or ionic temperatures along the y-direction –
-eltsys(2)/2 ≤ y ≤ +eltsys(2)/2 and -ntsys(2)/2 ≤ y ≤ +ntsys(2)/2 at x = z = 0 – corresponding
to a requested timestep. The number of values in each line will depend on the number of electronic or ionic
temperature cells requested by the user.

10.2.19 The PEAK E and PEAK I Files

These are formatted files containing statistics from two-temperature model calculations at user-requested
intervals. Each line in these files corresponds to a requested time step and the data is based upon active
coarse-grained electronic (CET) and ionic (CIT) temperature grid cells.

In the PEAK E file, the data are formatted as follows:

record i
nstep integer current MD time-step
time real elapsed simulation time
eltemp min real minimum value of electronic temperature in system (K)
eltemp max real maximum value of electronic temperature in system (K)
eltemp mean real mean value of electronic temperature in system (K)
eltemp sum real sum of electronic temperatures in system (K)
Ue real total electronic energy in system (eV)

The PEAK I file is formatted in a similar fashion, as follows:

record i
nstep integer current MD time-step
time real elapsed simulation time
tempion min real minimum value of ionic temperature in system (K)
tempion max real maximum value of ionic temperature in system (K)
tempion mean real mean value of ionic temperature in system (K)
tempion sum real sum of ionic temperatures in system (K)

230

©STFC Section 10.2

10.2.20 The POPEVB Files

This is an unformatted file to print the weight of each chemical state |Ψ(k)
EVB

∣∣2 in the total EVB state, as
described in section 7.2. Values are printed at each time step only after equilibration.
The structure of the printed data is as follows:

Time (ps) |Ψ(1)
EVB

∣∣2 |Ψ(2)
EVB

∣∣2 |Ψ(3)
EVB

∣∣2 · · · · · · |Ψ(NF)
EVB

∣∣2
where NF is the number of force-fields coupled via the EVB simulation.

10.2.21 The ICOORD, CCOORD and ADFDAT files

ICOORD and CCOORD are output files that log coordination number data for pairs of atomic species
specified by the user. To perform this analysis and output these files the user must enter the keyword
coord calculate (see section 10.1.1.2) into the CONTROL file and crd (see section 10.1.3.4) into the
FIELD file.

ICOORD is a dump file that can contain 2 types of data. The top of the file contains the initial coordination
of each atom and the exact atoms it is coordinated to. There is an option to write this data at set intervals
(the writing step interval) or just at the initial step. The bottom of the file provides the coordination
distribution statistics for each atom after each writing step interval. The coordination distribution for the
[atom list] - [atom list] pairs will also be displayed here.

CCOORD is a coordination displacement file that dumps the positions of all atoms that are considered to
both change their initial local atomic coordination, and move more than a set distance from their initial
position, at set intervals. This procedure is described in reference [110].

ADFDAT is statistics file containing the angular distributions for the atom pairs specified.

231

Chapter 11

The DL POLY 4 Parallelisation and
Source Code

Scope of Chapter

This chapter we discuss the DL POLY 4 parallelisation strategy, describe the principles used in the DL POLY 4
modularisation of the source code and list the file structure found in the source subdirectory.

232

©STFC Section 11.1

11.1 Parallelisation

DL POLY 4 is a distributed parallel molecular dynamics package based on the Domain Decomposition
parallelisation strategy [2, 3, 9, 10, 5, 6]. In this section we briefly outline the basic methodology. Users
wishing to add new features DL POLY 4 will need to be familiar with the underlying techniques as they are
described in the above references.

11.1.1 The Domain Decomposition Strategy

The Domain Decomposition (DD) strategy [2, 3, 5] is one of several ways to achieve parallelisation in MD.
Its name derives from the division of the simulated system into equi-geometrical spatial blocks or domains,
each of which is allocated to a specific processor of a parallel computer. I.e. the arrays defining the atomic
coordinates ri, velocities vi and forces f

i
, for all N atoms in the simulated system, are divided in to sub-

arrays of approximate size N/P , where P is the number of processors, and allocated to specific processors.
In DL POLY 4 the domain allocation is handled by the routine domains module and the decision of
approximate sizes of various bookkeeping arrays in set bounds. The division of the configuration data
in this way is based on the location of the atoms in the simulation cell, such a geometric allocation of
system data is the hallmark of DD algorithms. Note that in order for this strategy to work efficiently,
the simulated system must possess a reasonably uniform density, so that each processor is allocated almost
an equal portion of atom data (as much as possible). Through this approach the forces computation and
integration of the equations of motion are shared (reasonably) equally between processors and to a large
extent can be computed independently on each processor. The method is conceptually simple though tricky
to program and is particularly suited to large scale simulations, where efficiency is highest.

The DD strategy underpinning DL POLY 4 is based on the link cell algorithm of Hockney and Eastwood
[111] as implemented by various authors (e.g. Pinches et al. [9] and Rapaport [10]). This requires that
the cutoff applied to the interatomic potentials is relatively short ranged. In DL POLY 4 the link-cell list
is build by the routine link cell pairs. As with all DD algorithms, there is a need for the processors to
exchange ‘halo data’, which in the context of link-cells means sending the contents of the link cells at the
boundaries of each domain, to the neighbouring processors, so that each may have all necessary information
to compute the pair forces acting on the atoms belonging to its allotted domain. This in DL POLY 4 is
handled by the set halo particles routine.

Systems containing complex molecules present several difficulties. They often contain ionic species, which
usually require Ewald summation methods [22, 112], and intra-molecular interactions in addition to inter-
molecular forces. Intramolecular interactions are handled in the same way as in DL POLY Classic, where
each processor is allocated a subset of intramolecular bonds to deal with. The allocation in this case is
based on the atoms present in the processor’s domain. The SHAKE and RATTLE algorithms [88, 23]
require significant modification. Each processor must deal with the constraint bonds present in its own
domain, but it must also deal with bonds it effectively shares with its neighbouring processors. This
requires each processor to inform its neighbours whenever it updates the position of a shared atom during
every SHAKE (RATTLE VV1) cycle (RATTLE VV2 updates the velocities), so that all relevant processors
may incorporate this update into its own iterations. In the case of the DD strategy the SHAKE (RATTLE)
algorithm is simpler than for the Replicated Data method of DL POLY Classic, where global updates of
the atom positions (merging and splicing) are required [113]. The absence of the merge requirement means
that the DD tailored SHAKE and RATTLE are less communications dependent and thus more efficient,
particularly with large processor counts.

The DD strategy is applied to complex molecular systems as follows:

1. Using the atomic coordinates ri, each processor calculates the forces acting between the atoms in its
domain - this requires additional information in the form of the halo data, which must be passed from
the neighbouring processors beforehand. The forces are usually comprised of:

233

©STFC Section 11.1

(a) All common forms of non-bonded atom-atom (van der Waals) forces

(b) Atom-atom (and site-site) coulombic forces

(c) Metal-metal (local density dependent) forces

(d) Tersoff (local density dependent) forces (for hydro-carbons) [17]

(e) Three-body valence angle and hydrogen bond forces

(f) Four-body inversion forces

(g) Ion core-shell polarasation

(h) Tether forces

(i) Chemical bond forces

(j) Valence angle forces

(k) Dihedral angle (and improper dihedral angle) forces

(l) Inversion angle forces

(m) External field forces.

2. The computed forces are accumulated in atomic force arrays f
i
independently on each processor

3. The force arrays are used to update the atomic velocities and positions of all the atoms in the domain

4. Any atom which effectively moves from one domain to another, is relocated to the neighbouring
processor responsible for that domain.

It is important to note that load balancing (i.e. equal and concurrent use of all processors) is an essential
requirement of the overall algorithm. In DL POLY 4 this is accomplished quite naturally through the DD
partitioning of the simulated system. Note that this will only work efficiently if the density of the system
is reasonably uniform. There are no load balancing algorithms in DL POLY 4 to compensate
for a bad density distribution.

11.1.2 Distributing the Intramolecular Bonded Terms

The intramolecular terms in DL POLY 4 are managed through bookkeeping arrays which list all atoms
(sites) involved in a particular interaction and point to the appropriate arrays of parameters that define the
potential. Distribution of the forces calculations is accomplished by the following scheme:

1. Every atom (site) in the simulated system is assigned a unique ‘global’ index number from 1 to N .

2. Every processor maintains a list of the local indices of the atoms in its domain. (This is the local atom
list.)

3. Every processor also maintains a sorted (in ascending order) local list of global atom indices of the
atoms in its domain. (This is the local sorted atom list.)

4. Every intramolecular bonded term Utype in the system has a unique index number itype: from 1 to
Ntype where type represents a bond, angle, dihedral, or inversion. Also attached there with unique
index numbers are core-shell units, bond constraint units, PMF constraint units, rigid body units and
tethered atoms, their definition by site rather than by chemical type.

5. On each processor a pointer array keytype(ntype, itype) carries the indices of the specific atoms involved
in the potential term labelled itype . The dimension ntype will be 1 if the term represents a tether, 1, 2
for a core-shell unit or a bond constraint unit or a bond, 1, 2, 3 for a valence angle and 1, 2, 3, 4 for
a dihedral or an inversion, 1, .., nPMF unit1 or 2 +1 for a PMF constraint unit, or −1, 0, 1, .., nRB unit for
a rigid body unit.

234

©STFC Section 11.1

6. Using the key array, each processor can identify the global indices of the atoms in the bond term and
can use this in conjunction with the local sorted atoms list and a binary search algorithm to find the
atoms in local atom list.

7. Using the local atom identity, the potential energy and force can be calculated.

It is worth mentioning that although rigid body units are not bearing any potential parameters, their
definition requires that their topology is distributed in the same manner as the rest of the intra-molecular
like interactions.

Note that, at the start of a simulation DL POLY 4 allocates individual bonded interactions to specific
processors, based on the domains of the relevant atoms (DL POLY 4 routine build book intra). This
means that each processor does not have to handle every possible bond term to find those relevant to its
domain. Also this allocation is updated as atoms move from domain to domain i.e. during the relocation
process that follows the integration of the equations of motion (DL POLY 4 routine relocate particles).
Thus the allocation of bonded terms is effectively dynamic, changing in response to local changes.

11.1.3 Distributing the Non-bonded Terms

DL POLY 4 calculates the non-bonded pair interactions using the link cell algorithm due to Hockney and
Eastwood [111]. In this algorithm a relatively short ranged potential cutoff (rcut) is assumed. The simulation
cell is logically divided into so-called link cells, which have a width not less than (or equal to) the cutoff
distance. It is easy to determine the identities of the atoms in each link cell. When the pair interactions are
calculated it is already known that atom pairs can only interact if they are in the same link cell, or are in
link cells that share a common face. Thus using the link cell ‘address’ of each atom, interacting pairs are
located easily and efficiently via the ‘link list’ that identifies the atoms in each link cell. So efficient is this
process that the link list can be recreated every time step at negligible cost.

For reasons, partly historical, the link list is used to construct a Verlet neighbour list [22]. The Verlet list
records the indices of all atoms within the cutoff radius (rcut) of a given atom. The use of a neighbour list
is not strictly necessary in the context of link-cells, but it has the advantage here of allowing a neat solution
to the problem of ‘excluded’ pair interactions arising from the intramolecular terms and frozen atoms (see
below).

In DL POLY 4, the neighbour list is constructed simultaneously on each node, using the DD adaptation of
the link cell algorithm to share the total burden of the work reasonably equally between nodes. Each node
is thus responsible for a unique set of non-bonded interactions and the neighbour list is therefore different
on each node.

A feature in the construction of the Verlet neighbour list for macromolecules is the concept of excluded atoms,
which arises from the need to exclude certain atom pairs from the overall list. Which atom pairs need to be
excluded is dependent on the precise nature of the force field model, but as a minimum atom pairs linked
via extensible bonds or constraints and atoms (grouped in pairs) linked via valence angles are probable
candidates. The assumption behind this requirement is that atoms that are formally bonded in a chemical
sense, should not participate in non-bonded interactions. (However, this is not a universal requirement of
all force fields.) The same considerations are needed in dealing with charged excluded atoms.

The modifications necessary to handle the excluded and frozen atoms are as follows. A distributed excluded
atoms list is constructed by the DL POLY 4 routine build excl intra at the start of the simulation and
is then used in conjunction with the Verlet neighbour list builder link cell pairs to ensure that excluded
interactions are left out of the pair force calculations. Note that, completely frozen pairs of atoms are
excluded in the same manner. The excluded atoms list is updated during the atom relocation process
described above (DL POLY 4 routine exchange particles).

Once the neighbour list has been constructed, each node of the parallel computer may proceed independently
to calculate the pair force contributions to the atomic forces (see routine two body forces).

235

©STFC Section 11.1

The potential energy and forces arising from the non-bonded interactions, as well as metal and Ter-
soff interactions are calculated using interpolation tables. These are generated in the following routines:
vdw generate, metal generate, metal table derivatives and tersoff generate.

11.1.4 Modifications for the Ewald Sum

For systems with periodic boundary conditions DL POLY 4 employs the Ewald Sum to calculate the coulom-
bic interactions (see Section 2.4.1.5). It should be noted that DL POLY 4 uses only the Smoothed Particle
Mesh (SPME) form of the Ewald sum.

Calculation of the real space component in DL POLY 4 employs the algorithm for the calculation of the
non-bonded interactions outlined above, since the real space interactions are now short ranged (implemented
in ewald real forces routine).

The reciprocal space component is calculated using Fast Fourier Transform (FFT) scheme of the SMPE
method [71, 114] as discussed in Section 2.4.1.5. The parallelisation of this scheme is entirely handled
within the DL POLY 4 by the 3D FFT routine parallel fft, (using gpfa module) which is known as
the Daresbury advanced Fourier Transform, due to I.J. Bush [115]. This routine distributes the SPME
charge array over the processors in a manner that is completely commensurate with the distribution of the
configuration data under the DD strategy. As a consequence the FFT handles all the necessary commu-
nication implicit in a distributed SPME application. The DL POLY 4 subroutine ewald spme forces
perfoms the bulk of the FFT operations and charge array construction, while spme forces calculates the
forces.

Other routines required to calculate the Ewald sum include ewald module,
ewald excl forces,
ewald frzn forces and spme container.

11.1.5 Metal Potentials

The simulation of metals (Section 2.3.2) by DL POLY 4 makes use of density dependent potentials. The
dependence on the atomic density presents no difficulty however, as this class of potentials can be resolved
into pair contributions. This permits the use of the distributed Verlet neighbour list as outlined above.
DL POLY 4 implements these potentials in various subroutines with names beginning with metal .

11.1.6 Tersoff, Three-Body and Four-Body Potentials

DL POLY 4 can calculate Tersoff, three-body and four-body interactions. Although some of these inter-
actions have similar terms to some intramolecular ones (three-body to the bond angle and four-body to
inversion angle), these are not dealt with in the same way as the normal bonded interactions. They are
generally very short ranged and are most effectively calculated using a link-cell scheme [111]. No ref-
erence is made to the Verlet neighbour list nor the excluded atoms list. It follows that atoms involved
these interactions can interact via non-bonded (pair) forces and ionic forces also. Note that contributions
from frozen pairs of atoms to these potentials are excluded. The calculation of the Tersoff three-body and
four-body terms is distributed over processors on the basis of the domain of the central atom in them.
DL POLY 4 implements these potentials in the following routines tersoff forces, tersoff generate,
three body forces and four body forces.

11.1.7 Globally Summed Properties

The final stage in the DD strategy, is the global summation of different (by terms of potentials) contributions
to energy, virial and stress, which must be obtained as a global sum of the contributing terms calculated on
all nodes.

236

©STFC Section 11.1

The DD strategy does not require a global summation of the forces, unlike the Replicated Data method
used in DL POLY Classic, which limits communication overheads and provides smooth parallelisation to
large processor counts.

11.1.8 The Parallel (DD tailored) SHAKE and RATTLE Algorithms

The essentials of the DD tailored SHAKE and RATTLE algorithms (see Section 3.2) are as follows:

1. The bond constraints acting in the simulated system are allocated between the processors, based on
the location (i.e. domain) of the atoms involved.

2. Each processor makes a list of the atoms bonded by constraints it must process. Entries are zero if
the atom is not bonded.

3. Each processor passes a copy of the array to the neighbouring processors which manage the domains
in contact with its own. The receiving processor compares the incoming list with its own and keeps a
record of the shared atoms and the processors which share them.

4. In the first stage of the algorithms, the atoms are updated through the usual Verlet algorithm, without
regard to the bond constraints.

5. In the second (iterative) stage of the algorithms, each processor calculates the incremental correction
vectors for the bonded atoms in its own list of bond constraints. It then sends specific correction
vectors to all neighbours that share the same atoms, using the information compiled in step 3.

6. When all necessary correction vectors have been received and added the positions of the constrained
atoms are corrected.

7. Steps 5 and 6 are repeated until the bond constraints are converged.

8. Finally, the change in the atom positions from the previous time step is used to calculate the atomic
velocities.

The compilation of the list of constrained atoms on each processor, and the circulation of the list (items 1 - 3
above) is done at the start of the simulation, but thereafter it needs only to be done every time a constraint
bond atom is relocated from one processor to another. In this respect DD-SHAKE and DD-RATTLE
resemble every other intramolecular term.

Since the allocation of constraints is based purely on geometric considerations, it is not practical to arrange
for a strict load balancing of the DD-SHAKE and DD-RATTLE algorithms. For many systems, however,
this deficiency has little practical impact on performance.

11.1.9 The Parallel Rigid Body Implementation

The essentials of the DD tailored RB algorithms (see Section 3.6) are as follows:

1. Every processor works out a list of all local and halo atoms that are qualified as free (zero entry) or
as members of a RB (unit entry.

2. The rigid body units in the simulated system are allocated between the processors, based on the
location (i.e. domain) of the atoms involved.

3. Each processor makes a list of the RB and their constituting atoms that are fully or partially owned
by the processors domain.

237

©STFC Section 11.2

4. Each processor passes a copy of the array to the neighbouring processors which manage the domains
in contact with its own. The receiving processor compares the incoming list with its own and keeps
a record of the shared RBs and RBs’ constituent atoms, and the processors which share them. Note
that a RB can be shared between up to eight domains!

5. The dynamics of each RB is calculated in full on each domain but domains only update {r, v, f} of
RB atoms which they own. Note that a site/atom belongs to one and only one domain at a time
(no sharing) !

6. Strict bookkeeping is necessary to avoid multiple counting of kinetic properties. {r, v, v} updates are
necessary for halo parts (particles) of partially shared RBs. For all domains the kinetic contributions
from each fully or partially present RB are evaluated in full and then waited with the ratio - number
of RB’s sites local to the domain to total RB’s sites, and then globally summed.

The compilation of the lists in items 1 - 3 above and their circulation of the list is done at the start of the
simulation, but thereafter these need updating on a local level every time a RB site/atom is relocated from
one processor to another. In this respect RBs topology transfer resembles every other intramolecular term.

Since the allocation of RBs is based purely on geometric considerations, it is not practical to arrange for a
strict load balancing. For many systems, however, this deficiency has little practical impact on performance.

11.2 Source Code

11.2.1 Modularisation Principles

Modules in DL POLY 4 are constructed to define parameters and variables (scalars and arrays) and/or
develop methods that share much in common. The division is far from arbitrary and module interdependence
is reduced to minimum. However, some dependencies exist which leads to the following division by groups
in hierarchical order:

• precision module:: kinds f90

The precision module defines the working precision wp of all real variables and parameters in DL POLY 4.
By default it is set to 64-bit (double) precision. If the precision is changed, the user must check whether
the specific platform supports it and make sure it is allowed for in the MPI implementation. If all is
OK then the code must be recompiled.

• MPI module:: mpi module

The MPI module implements all MPI functional calls used in DL POLY 4. It is only used when
DL POLY 4 is to be compiled in serial mode.

• communication module:: comms module (mpi module)

The communication module defines MPI related parameters and develops MPI related functions and
subroutines such as: initialisation and exit; global synchronisation, sum, maximum and minimum;
node ID and number of nodes; simulation time. It is dependent on kinds f90 and on mpi module if
MPI is emulated for DL POLY 4 compilation in serial mode. The mpi module implements all MPI
functional calls used in DL POLY 4.

• global parameters module:: setup module

The global parameters module holds all important global variables and parameters (see above). It is
dependent on kinds f90.

• parse module:: parse module

238

©STFC Section 11.2

The parse module develops several methods used to deal with textual input: get line strip blanks

lower case get word word 2 real. Depending on the method dependencies on kinds f90 comms module
setup module domains module are found.

• development module:: development module

The development module contains several methods used to help with testing and debugging DL POLY 4.
Depending on the method dependencies on kinds f90 comms module setup module domains module
are found.

• netCDF module:: netcdf module

The netCDF module contains all important netCDF functions and global variables in DL POLY 4
context. It is dependent on kinds f90.

• I/O module:: io module

The I/O module contains all important global variables that define the I/O methods and types used
in the package and contains basic routines essential for the I/O in DL POLY 4. It is dependent on
kinds f90.

• domains module:: domains module

The domains module defines DD parameters and maps the available computer resources on a DD
grid. The module does not depend on previous modules but its mapping subroutine is dependent on
kinds f90 and comms module.

• site module:: site module

The site module defines all site related arrays (FIELD) and is dependent on kinds f90 only. However,
it also develops an allocation method that is dependent on setup module.

• configuration module:: config module

The configuration module defines all configuration related arrays (CONFIG) and is dependent on
kinds f90 only. However, it also develops an allocation method that is dependent on setup module.

• vnl module:: vnl module

The Verlet neighbour list (VNL) module defines all VNL related control variables and arrays needed
for the VNL conditional update functionality, and is dependent on kinds f90 only. However, it is
assisted by a vnl check routine that is dependent on more modules.

• defects modules:: defects module defects1 module

The defects modules define all defects and configuration related arrays (REFERENCE) and are de-
pendent on kinds f90 only. However, they also develop allocation methods that are dependent on
setup module.

• dpd module:: dpd module

The Dissipative Particle Dynamics (DPD) module defines all DPD related control variables and arrays
needed for the DPD functionality, and is dependent on kinds f90 only. However, it also develops an
allocation method that is dependent on setup module.

• electrostatic modules:: ewald module mpoles module

This modules define all variables and arrays needed for the SPME (i) refreshment k-space driven
properties (ii) and multipola relectrostatics control variable and arrays in the DL POLY 4 scope when.
They depend on kinds f90 and but their allocation methods on setup module.

239

©STFC Section 11.2

• inter-molecular interactions modules:: vdw module metal module
tersoff module three body module four body module

The intermolecular modules define all variables and potential arrays needed for the calculation of the
particular interaction in the DL POLY 4 scope. They depend on kinds f90. Their allocation methods
depend on setup module.

• extra-molecular interactions modules:: kim module plumed module

These modules define all variables, arrays and functions needed OpenKIM and PLUMED integrable
into DL POLY 4 plugins. They depend on kinds f90. Their allocation methods depend on setup module.

• intra-molecular interactions and site-related modules:: rdf module z density module
core shell module constraints module pmf module rigid bodies module
tethers module bonds module angles module dihedrals module inversions module

These modules define all variables and potential or statistical grid arrays needed for the calculation
of the particular interaction or distribution function in the DL POLY 4 scope. They all depend on
kinds f90 with allocation methods depending on setup module.

• external field module:: external field module

This module defines all variables and potential arrays needed for the application of an external field
in the DL POLY 4 scope. It depends on kinds f90 and its allocation method on setup module.

• langevin module:: langevin module

This module defines all variables and arrays needed for the application of NPT and NσT Langevin rou-
tines in the DL POLY 4 scope. It depends on kinds f90 and its allocation method on setup module.

• minimise module:: minimise module

This module defines all variables and arrays needed for the application of a Conjugate Gradient Method
minimisation routine in the DL POLY 4 scope. It depends on kinds f90 and its allocation method
on setup module.

• msd module:: msd module

This module globalises a CONTROL variable.

• statistics module:: statistics module

This module defines all variables and arrays needed for the statistical accountancy of a simula-
tion in DL POLY 4. It depends on kinds f90 and its allocation methods on setup module and
comms module.

• greenkubo module:: greenkubo module

This module defines all variables and arrays needed for calculation of Green-Kubo relations during a
simulation in DL POLY 4. It depends on kinds f90 and its allocation methods on setup module.

• kinetic module:: kinetic module

The kinetic module contains a collection of routines for the calculation of various kinetic properties.
It is dependent on kinds f90.

• DaFT module:: gpfa module parallel fft

These modules contain all necessary functionality for DL POLY 4 DaFT and it GPFA 1D FFT de-
pendence. They have dependencies on kinds f90, comms module.f90 and setup module.f90.

240

©STFC Section 11.2

11.2.2 File Structure

Generally, the DL POLY 4 file structure can be divided into four groups as follows:

• general files in the source directory

• SERIAL specific files in the source/SERIAL directory

The files in each group are listed in hierarchal order as closely as possible as examplified in the relevant
DL POLY 4 Makefies in the build subdirectory. The further down the category the file, the more dependent
it is on the files listed above it.

11.2.3 Module Files

The DL POLY 4 module files contain all global variables (scalars and arrays) and parameters as well as some
general methods and generic functions intrinsically related to the purpose or/and contents of the specific
module. The file-names and the methods or/and functions developed in them have self-explanatory names.
More information of their purpose can be found in their headers.

The rest of files in DL POLY 4 are dependent on the module files in various ways. The dependency relation
to a module file is explicitly stated in the declaration part of the code.

11.2.4 General Files

The DL POLY 4 general files are common to both MPI and SERIAL version of the code. In most cases,
they have self-explanatory names as their order is matched as closely as possible to that occurring in
the main segment of the code - dl poly. Only the first five files are exception of that rule; warning
and error are important reporting subroutines that have call points at various places in the code, and
numeric container, and spme container are containers of simple functions and subroutines related in
some way to their purpose in the code.

11.2.5 SERIAL Specific Files

These implement an emulation of some general MPI calls used in DL POLY 4 source code when compiling
in serial mode as well as some modified counterparts of the general files changed to allow for faster and/or
better memory optimised serial execution. Names are self-explanatory.

11.2.6 Comments on MPI Handling

Only a few files make explicit calls to MPI routines.

11.2.7 Comments on setup module

The most important module, by far, is setup module, which holds the most important global parameters
and variables (some of which serve as “parameters” for global array bounds, set in set bounds). A brief
account of these is given below:

parameter value function

DLP VERSION string version string - number
DLP RELEASE string release string - date

241

©STFC Section 11.2

pi 3.14159265358979312 π constant
twopi 6.28318530717958623 2π constant
fourpi 12.56637061435917246 4π constant
sqrpi 1.772453850905588 2

√
π constant

rtwopi 0.15915494309189535 1
2π constant

rt2 1.41421356237309515 2
√
2 constant

rt3 1.73205080756887719 2
√
3 constant

r4pie0 138935.4835 electrostatics conversion factor to internal units, i.e. 1
4πϵo

boltz 0.831451115 Boltzmann constant in internal units
also used as Kelvin/Boltzmann energy unit (very rarely used)

engunit variable the system energy unit
eu ev 9648.530821 eV energy unit (most used)
eu kcpm 418.4 kcal/mol energy unit (often used)
eu kjpm 100.0 kJouls/mol energy unit (rarely used)
prsunt 0.163882576 conversion factor for pressure from internal units to katms
tenunt 1.660540200 conversion factor for surface tension from internal units to dyn/cm

del max 0.01 maximum bin sizes in Angstroms for distance grids
delth max 0.20 maximum bin sizes in degrees for angle grids

nread 5 main input channel
nconf 11 configuration file input channel
nfield 12 force field input channel
ntable 13 tabulated potentials file input channel
nrefdt 14 reference configuration input channel
nrite 6 main output channel
nstats 21 statistical data file output channel
nrest 22 output channel accumulators restart dump file
nhist 23 trajectory history file channel
ndefdt 24 output channel for defects data file
nrdfdt 25 output channel for RDF data
nzdfdt 26 output channel for Z-density data file
nrsddt 27 output channel for displacements data files
npdfdt 28 output channel for raw PDF files
ngdfdt 29 output channel for normalised RDF data files
nvafdt 28 output channel for VAF files
nmpldt 29 output channel for the PLOLES data file

seed(1:3) variable pair of seeds for the random number generator
lseed variable logical swich on/off indicator for seeding

mxsite variable max number of molecular sites
mxatyp variable max number of unique atomic types
mxtmls variable max number of unique molecule types
mxexcl variable max number of excluded interactions per atom
mxompl variable max number of multipolar order specified
mximpl variable max number of multipolar total momenta for this order
mxspl variable SPME FFT B-spline order
mxspl1 variable SPME FFT B-spline possible extension when rpad > 0
kmaxa variable SPME FFT amended array dimension (a direction)
kmaxb variable SPME FFT amended array dimension (b direction)

242

©STFC Section 11.2

kmaxc variable SPME FFT amended array dimension (c direction)
kmaxa1 variable SPME FFT original array dimension (a direction)
kmaxb1 variable SPME FFT original array dimension (b direction)
kmaxc1 variable SPME FFT original array dimension (c direction)
mxtshl variable max number of specified core-shell unit types in system
mxshl variable max number of core-shell units per node
mxfshl variable max number of related core-shell units (1+1)
mxtcon variable max number of specified bond constraints in system
mxcons variable max number of constraint bonds per a node
mxfcon variable max number of related constraint units (6+1)
mxlshp variable max number of shared particles per node

Max(2 mxshl
2 , 2 mxcons

2 , mxlrgd ∗ mxrgd
2)

mxproc variable number of neighbour nodes in DD hypercube (26)
mxtpmf(1:2) variable max number of specified particles in a PMF unit (1:2)
mxpmf variable max number of PMF constraints per a node
mxfpmf variable max number of related PMF units (1+1)
mxtrgd variable max number of types RB units
mxrgd variable max number of RB units per node
mxlrgd variable max number of constituent particles of an RB unit
mxfrgd variable max number of related RB units (1+1)
mxtteth variable max number of specified tethered potentials in system
mxteth variable max number of tethered atoms per node
mxftet variable max number of related tether units (1+1)
mxpteth variable max number of parameters for tethered potentials (3)
mxtbnd variable max number of specified chemical bond potentials in system
mxbond variable max number of chemical bonds per node
mxfbnd variable max number of related chemical bonds (1+(6*(6+1))/2)
mxpbnd variable max number of parameters for chemical bond potentials (4)
mxgbnd variable max number of grid points in chemical bond pot. arrays (> 1004)
mxtang variable max number of specified bond angle potentials in system
mxangl variable max number of bond angles per node
mxfang variable max number of related bond angles (1+(6*(6+1))/2)
mxpang variable max number of parameters for bond angle potentials (6)
mxgang variable max number of grid points in bond angle pot. arrays (> 1004)
mxtdih variable max number of specified dihedral angle potentials in system
mxdihd variable max number of dihedral angles per node
mxfdih variable max number of related dihedral angles (1+((6-2)6*(6+1))/2)
mxpdih variable max number of parameters for dihedral angle potentials (7)
mxgdih variable max number of grid points in dihedral angle pot. arrays (> 1004)
mxtinv variable max number of specified inversion angle potentials in system
mxinv variable max number of inversion angles per node
mxfinv variable max number of related inversion angles (1+(6*(6+1))/4)
mxpinv variable max number of parameters for inversion angle potentials (3)
mxginv variable max number of grid points in inversion angle pot. arrays (> 1004)
mxrdf variable max number of pairwise RDF in system
mxgrdf variable number of grid points for RDF and Z-density arrays (> 1004)
mxgele variable max number of grid points for ewald exclusion potential arrays
mxgusr variable number of grid points for umbrella sampling restraint’s RDF (> 1004)
mxvdw variable max number of van der Waals potentials in system
mxpvdw variable max number of van der Waals potential parameters (5)
mxgvdw variable max number of grid points in vdw potential arrays (> 1004)
mxmet variable max number of metal potentials in system

243

©STFC Section 11.2

mxmed variable max number of metal density potentials in system
mxmds variable max number of metal extra density potentials in system
mxpmet variable max number of metal potential parameters (9)
mxgmet variable max number of grid points in metal potential arrays (> 1004)
mxter variable max number of Tersoff potentials in system
mxpter variable max number of Tersoff potential parameters (11)
mxgter variable max number of grid points in tersoff potential arrays (> 1004)
mxgrid variable max number of grid points in potential arrays (> 1004)
mxtana variable max number of PDFs per type
mxgana variable max number of grid points for PDFs arrays
mxgbnd variable max number of grid points for chemical bonds PDFs
mxgang variable max number of grid points for bond angles PDFs
mxgdih variable max number of grid points for dihedral angles PDFs
mxginv variable max number of grid points for inversion angles PDFs
mxtbp variable max number of three-body potentials in system
mx2tbp variable array dimension of three-body potential parameters
mxptbp variable max number of three-body potential parameters (5)
mxfbp variable max number of four-body potentials in system
mx2fbp variable array dimension of four-body potential parameters
mxpfbp variable max number of four-body potential parameters (3)
mxpfld variable max number of external field parameters (5)
mxstak variable dimension of stack arrays for rolling averages
mxnstk variable max number of stacked variables
mxlist variable max number of atoms in the Verlet list on a node
mxcell variable max number of link cells per node
mxatms variable max number of local+halo atoms per node
mxatdm variable max number of local atoms per node
mxbfdp variable max dimension of the transfer buffer for deport functions
mxbfss variable max dimension of the transfer buffer for statistics functions
mxbfxp variable max dimension of the transfer buffer for export functions
mxbfsh variable max dimension of the transfer buffer for shared units
mxbuff variable max dimension of the principle transfer buffer

zero plus variable the machine representation of +0 at working precision
half plus variable the machine representation of +0.5 ↑ at working precision
half minus variable the machine representation of +0.5 ↓ at working precision

244

Chapter 12

Examples

Scope of Chapter

This chapter describes the example simulations and benchmark tests for DL POLY 4, the input and output
files for which are in the data sub-directory.

245

©STFC Section 12.1

12.1 Example Simulations

Because of the size of the data files for the DL POLY 4 example simulations, they are not shipped in the
standard download of the DL POLY 4 source. Instead users are requested to download them from the CCP5
FTP server as follows:

FTP site : ftp.dl.ac.uk

Username : anonymous

Password : your email address

Directory: ccp5/DL_POLY/DL_POLY_4.0/DATA

Files : test_X.tar.xz

where ‘ X’ stands for the example simulation number.

Remember to use the BINARY data option when transferring these files.

Unpack the files in the ‘data’ subdirectory using ‘gunzip’ and ‘tar -xf’ to create the ‘TEST X’ directory.

These are provided to give examples of DL POLY 4 simulations and demonstrate a limited set of relevant
functionality over a limited extent of molecular systems’ complexity only. Without modification, they
are not necessarily appropriate for serious simulation of the given systems. In other words, the
examples are not warranted to have well-defined force fields in terms of applicability, transferability and
fullness, nor are they likely to have a well-defined state point (i.e. initial configurations may be away from
equilibrium, if physical at all).

The README.txt file supplied both in the data directory and in the directory on the CCP5 FTP server
provides a list of all example simulations used as test cases to check that DL POLY 4 is working correctly,
including those described in more detail below. All the jobs are of a size suitable to test the code in parallel
execution. They may not be suitable for a single processor computer. The files are stored in compressed
format. The examples can be run by typing

select n

from the execute directory, where n is the number of the test case. The select macro will copy the appropriate
input files (at least CONTROL, CONFIG, and FIELD in all cases) to the execute directory ready for
execution. The output file OUTPUT may be compared with the file supplied in the data directory.

12.1.1 Example 1: Sodium Chloride

This is a 27,000 ion system with unit electric charges on sodium and chlorine. Simulation at 500 K with a
NVT Berendsen ensemble. The SPME method is used to calculate the Coulombic interactions.

12.1.2 Example 2: DPMC in Water

The system consists of 200 DMPC molecules in 9379 and water molecules. Simulation at 300 K using NVE
ensemble with SPME and RATTLE algorithm for the constrained motion. The total system size is 51,737
atoms.

12.1.3 Example 3: KNaSi2O5 - Potassium/Sodium Disilicate Glass

Potassium Sodium disilicate glass (NaKSi2O5) using two and three-body potentials. Some of the two-body
potentials are read from the TABLE file. Simulation at 1000 K using NVT Nosé-Hoover ensemble with
SPME. Cubic periodic boundaries are in use. The total system size is 69,120 ions.

246

©STFC Section 12.1

12.1.4 Example 4: Gramicidin A Molecules in Water

The system consists of 8 gramicidin A molecules in aqueous solution (32,096 water molecules) with total of
99,120 of atoms. Simulation at 300 K using NPT Berendsen ensemble with SPME and SHAKE/RATTLE
algorithm for the constrained motion.

12.1.5 Example 5: SiC with Tersoff Potentials

The system consists of 74,088 atoms. Simulation at 300 K using NPT Nosé-Hoover ensemble with Tersoff
forces and no electrostatics.

12.1.6 Example 6: Cu3Au alloy with Sutton-Chen (metal) Potentials

The systems consists of 32,000 atoms. Simulation at 300 K using NVT Nosé-Hoover ensemble with Sutton-
Chen forces and no electrostatics.

12.1.7 Example 7: Lipid Bilayer in Water

The systems consists of 12,428 atoms. Simulation at 300 K using NVT Berendsen ensemble with SPME
and SHAKE/RATTLE algorithm for the constrained motion.

12.1.8 Examples 8 and 9: MgO with Adiabatic and with Relaxed Shell Models

These system consist of 8,000 (4,000 shells) charged points. Simulation at 3000 K using NPT Berendsen
ensemble with SPME.

12.1.9 Example 10: Potential of Mean Force on K+ in Water

The system consists of 13,500 (500 PMFs) atoms. Simulation at 300 K using NPT Berendsen ensemble with
SPME and SHAKE/RATTLE algorithm for the constrained motion.

12.1.10 Example 11: Cu3Au Alloy with Gupta (metal) Potentials

The system consists of 32,000 atoms. Simulation at 300 K using NVT Nosé-Hoover ensemble with Gupta
forces and no electrostatics.

12.1.11 Example 12: Cu with EAM (metal) Potential

The system consists of 32,000 atoms. Simulation at 300 K using NPT Berendsen ensemble with EAM
tabulated forces and no electrostatics.

12.1.12 Examples 13 and 14: Al with Analytic and with EAM Tabulated Sutton-Chen
(metal) Potentials

The system consists of 32,000 atoms. Simulation at 300 K using NVT Evans ensemble with Sutton-Chen
forces and no electrostatics.

247

©STFC Section 12.1

12.1.13 Examples 15: NiAl Alloy with EAM (metal) Potentials

The system consists of 27,648 atoms. Simulation at 300 K using NVT Evans ensemble with EAM tabulated
forces and no electrostatics.

12.1.14 Examples 16: Fe with Finnis-Sincair (metal) Potential

The system consists of 31,250 atoms. Simulation at 300 K using NPT Berendsen ensemble with Finnis-
Sinclair forces and no electrostatics.

12.1.15 Examples 17: Ni with EAM (metal) Potential

The system consists of 32,000 atoms. Simulation at 300 K using NPT Berendsen ensemble with EAM
tabulated forces and no electrostatics.

12.1.16 Examples 18 and 19: SPC IceVII Water with CBs and with RBs

The system consists of 11,664 (34,992 atoms) water molecules. Simulation at 25 K using NVE ensemble
with CGM force minimisation and SPME electrostatics.

12.1.17 Example 20: NaCl Molecules in SPC Water Represented as CBs+RBs

The system consists of 64 NaCl ion pairs with 4,480 water molecules represented by constraint bonds and
4,416 water molecules represented by ridig bodies. Totalling 26,816 atoms. Simulation at 295 K using NPT
Berendsen ensemble with CGM energy minimisation and SPME electrostatics.

12.1.18 Example 21: TIP4P Water: RBs with a Massless Charged Site

The system consists of 7,263 TIP4P rigid body water molecules totaling 29,052 particles. Simulation at
295 K using NPT Berendsen ensemble with CGM energy minimisation and SPME electrostatics.

12.1.19 Example 22: Ionic Liquid Dimethylimidazolium Chloride as RBs

The system consists of 44,352 ions. Simulation at 400 K using NPT Berendsen ensemble, using both particle
and rigid body dynamics with SPME electrostatics.

12.1.20 Example 23: Calcite Nano-Particles in TIP3P Water

In this case 600 molecules of calcium carbonate in the calcite structure form 8 nano-particles which are
suspended in 6,904 water molecules, represented by a flexible 3-centre TIP3P model. Simulation with SPME
electrostatics at 310 K and 1 atmosphere maintained in a Hoover NPT ensemble. The system consists of
23,712 ions.

12.1.21 Example 24: Iron/Carbon Alloy with 2BEAM (metal) Potentials

In this case a steel alloy of iron and carbon in ratio 35132 to 1651 is modelled using an EEAM potential
forcefield. Simulation at 1000 K and 0 atmosphere is maintained in a Berendsen NPT ensemble. The system
consists of 36,803 particles.

248

©STFC Section 12.1

12.1.22 Example 25: Iron/Chromium Alloy with 2BEAM (metal) Potentials

In this case a steel alloy of iron and chromium in ratio 27635 to 4365 is modelled using an 2BEAM potential
forcefield. Simulation at 300 K and 0 atmosphere is maintained in an Evans NVT isokinetic ensemble. The
system consists of 32,000 particles.

12.1.23 Examples 26 and 27: Hexane and Methanol Melts, with Full Atomistic and
Coarse-Grained Force-Fields

These two examples contain a Hexane and a Methanol melt respectively, (1000 molecules each) modelled by
the OPLSAA force-field (FF). Each system is also supplied in a CG-mapped representation as converted by
VOTCA, http://www.votca.org/, or DL CGMAP http://www.ccp5.ac.uk/projects/ccp5 cg.shtml.

These test cases are to exemplify the Coarse-Graining (CG) procedure (see Chapter 4), including FA-to-CG
mapping and obtaining the PMF data by means of Boltzmann Inversion [116]. As a result, DL POLY 4
could be used for simulating a CG system with numerically defined, tabulated FFs, see TABBND, TABANG,
TABDIH and TABINV files for intra-molecular potentials, and TABLE for inter-molecular (short-range,
VDW) potentials.

Both tests are also available as parts of the tutorial cases from the VOTCA package [117]. Therefore, the
CONFIG, CONTROL and FIELD input files are fully consistent with the corresponding setup files found
in the VOTCA tutorial directories “csg-tutorials/hexane” and “csg-tutorials/methanol’.

12.1.24 Example 28: Butane in CCl4 Solution with Umbrella Sampling via PLUMED

Free Energy calculation for Buthane with respect to the dihedral angle as collective variable. We use
umbrella sampling as implemented in PLUMED.

PLUMED enabling in CONTROL:

plumed input umbrella.dat

Contents of umbrella.dat:

phi: TORSION ATOMS=1,2,3,4

restraint-phi: RESTRAINT ARG=phi KAPPA=500 AT=1.20

PRINT STRIDE=10 ARG=phi,restraint-phi.bias FILE=COLVAR

Two extra output files are generated in this case: OUTPUT.PLUMED and COLVAR.

Note, a DL POLY 4 version with PLUMED enabled is used for this.

12.1.25 Example 29: Iron with tabulated EAM (metal) Potential, TTM and Cascade

In this example 54,000 atoms of iron are modelled with a tabulated embedded-atom potential optimised
to produce correct energetics of point defects and clusters (M07 in [118]). An energy impact of 10 keV is
applied to an atom and the resulting radiation damage is evolved using the Two-Temperature Model (TTM)
to represent energy transfers due to electron-phonon coupling and electronic stopping between atoms and a
continuum electronic gas [99].

This test case produces additional output files: DUMP E, LATS E, LATS I, PEAK E and PEAK I. It also
requires an additional input file (Ce.dat) to supply tabulated heat capacity data required for evolving the
electronic system.

249

http://www.votca.org/
http://www.ccp5.ac.uk/projects/ccp5_cg.shtml

©STFC Appendix

12.1.26 Example 30: Silicon with original Tersoff Potential, TTM and Swift heavy ion
irradiation

This system consists of 200,000 atoms of silicon modelled using an original Tersoff (T3) potential. The
Two-Temperature Model (TTM) is in use and an energy deposition is applied to the electronic system using
a Gaussian spatial function, an exponentially decaying temporal function and an electronic stopping power
of 50,000 eV/nm. This simulation represents Swift heavy ion irradiation in silicon, including the resulting
creation of ion tracks [101].

12.1.27 Example 31: Tungsten with extended Finnis-Sinclair Potential, TTM and laser
irradiation

This system consists of 722,672 atoms of tungsten modelled using an extended Finnis-Sinclair potential. The
Two-Temperature Model (TTM) is in use and an energy deposition is applied to the electronic system using
a spatial function that is homogeneous in x and y directions and exponentially decaying in the z direction,
as well as a Gaussian temporal function. This energy deposition represents a laser applied to the surface of
a thin film of tungsten [119] with a surface fluence of 36 mJ/cm2 and penetration depth of 12.5 nm, causing
the film to expand outwards in the z direction.

Additional input files (Ce.dat and g.dat) are required to supply tabulated heat capacity and electron-phonon
coupling values.

12.2 Benchmark Cases

DL POLY 4 benchmark test cases are available to download them from the CCP5 FTP server as follows:

FTP site : ftp.dl.ac.uk

Username : anonymous

Password : your email address

Directory: ccp5/DL_POLY/DL_POLY_4.0/BENCH

The DL POLY 4 authors provide these on an ”AS IS” terms. For more information refer to the README.txt
file within.

250

Appendix A

DL POLY 4 Dissipative Particle
Dynamics

A.1 Introduction

Although in a Molecular Dynamics sense Dissipative Particle Dynamics (DPD) is regarded as a type of
thermostat, on its own it is an off-lattice, discrete particle method for modelling mesoscopic systems in a
fluid state. It has little in common with Lattice Gas Automata and Lattice Boltzmann dynamics methods
[92], except in its application to systems of similar length and time scales, and last but not least that it
captures hydrodynamics behaviour.

The DPD method inherits its methodology from Brownian/Langevin Dynamics (BD). However, it differs
from BD in an important way: it is Galilean invariant and for this reason conserves hydrodynamic behaviour,
while the BD method does not (its microscopic behaviour is only diffusive. Many systems in their fluid state
are crucially dependent on hydrodynamic interactions and it is essential to retain this feature in their
models. DPD is particularly useful for simulating coarse-grained systems on the near-molecular scale, such
as polymers, biopolymers, lipids, emulsions and surfactants – systems in which large scale structure evolves
on a time scale that is too long to be modelled effectively by traditional MD. The particles in DPD [93] are
not regarded as molecules in a fluid but as lumps of molecules grouped to form a fluid particle in much the
same spirit as the renormalisation group has been applied in polymer physics where lumps of monomers are
grouped to form a bead. Hence, the beads are regarded as carriers of momentum.

It is worth noting that DPD may also be used when such systems experience shear and flow gradients.

A.2 Outline of Method

Following [50] the DPD algorithm can be summarised by the following:

• A condensed phase system may be modelled as a system of ‘free’ particles interacting directly through
soft forces. Note that DL POLY 4 allows for the application of the DPD thermostat beyond systems
of free particles only. Thus it will be valid on systems with any inratamolecular like interactions.

• The system is coupled to a heat bath via stochastic forces, which act on the particles in a pairwise
manner.

• The particles also experience a damping or drag force, which also acts in a pairwise manner.

• Thermodynamic equilibrium is maintained through the balance of the stochastic and drag forces, i.e.
the method satisfies the fluctuation-dissipation theorem.

251

©STFC Appendix A

• At equilibrium (or steady state) the properties of the system are calculated as averages over the
individual particles, as in traditional Molecular Dynamics.

Therefore, the equation of motion are the same as these for the microcanonical ensemble (NVE) but force,
fi, on particle i is now a sum of pair forces:

f
i
=

N∑
j ̸=i

(
fC
ij
+ fD

ij
+ fR

ij

)
, (A.1)

in which fC
ij
, fD

ij
and fR

ij
are the conservative, drag and random (or stochastic) pair forces respectively. Each

represents the force exerted on particle i due to the presence of particle j.

The conservative interactions are usually soft (i.e. weakly interacting) so that the particles can pass by each
other (or even through each other) relatively easily so that equilibrium is achieved quickly. A common form
of interaction potential is an inverse parabola (part of VDW types of potentials, see Section 2.3.1)

V (rij) =

{
Aij

2 rc

(
1− rij

rc

)2
: rij < rc

0 : rij ≥ rc
, (A.2)

where rij = |rj − ri|, rc is a cutoff radius and Aij is the interaction strength (that may be the same for all
particle pairs or may be different for different particle types).

Equation (A.1) gives rise to a repulsive force of the form:

fC
ij
= Aij w

C(rij)
rij
rij

= Aij

(
1− rij

rc

)
rij
rij

. (A.3)

This is the deterministic or conservative force fC
ij

exerted on particle i by particle j. Note the switching

function:

wC(rij) =

{ (
1− rij

rc

)
: rij < rc

0 : rij ≥ rc
, (A.4)

and the force are zero when rij ≥ rc and thus the particles have an effective diameter of 1 in units of the
cutoff radius rc. In the DL POLY 4 context all inter- and intra-molecular forces will fall into this category
of force!

The stochastic forces experienced by the particles is again pairwise in nature and takes the form:

fR
ij
= σijw

R(rij)ζij∆t
− 1

2
rij
rij

, (A.5)

in which ∆t is the time step and wR(rij) is a switching function which imposes a finite limit on the range of
the stochastic force. ζij is a random number with zero mean and unit variance. The constant σij is related
to the temperature, as is understood from the role of the stochastic force in representing a heat bath.

Finally, the particles are subject to a drag force, which depends on the relative velocity between interacting
pairs of particles:

fD
ij
= −γijwD(rij)

(
rij · vij

) rij
r2ij

, (A.6)

where wD(rij) is once again a switching function and vij = vj − vi is the inter-particle relative veloc-
ity. The constant γij is the drag coefficient. It follows from the fluctuation-dissipation theorem that for
thermodynamic equilibrium to result from this method the following relations must hold:

σ2ij = 2 γijkBT (A.7)

wD(rij) =
[
wR(rij)

]2
. (A.8)

252

©STFC Appendix A

In practice, the switching functions are defined through:

wR(rij) =
[
wC(rij)

]2
, (A.9)

which ensures that all interactions are switched off at the range rij = rc.

In many DPD simulations, the stochastic and drag coefficients are often constant for all interactions, i.e.
σij ≡ σ and γij ≡ γ, although this assumption does not have to apply. In DL POLY 4 the γij coefficients
may be supplied at the end of each specified vdw interaction potential as a parameter further to the last
one for the particular vdw potential form. For a DPD thermostat to work correctly all possible two body
interactions must be defined and all γij ̸= 0. What DL POLY 4 will attempt first, if a two body interaction
is missing, is to derive it using mixing rules (default may be overridden by user specification). However, if
any of γij = 0 then DL POLY 4 will check for the existence of a global γ that may be optionally supplied by
the user on the ensemble nvt dpdINT line and if it is non-zero a global override will occur. Otherwise,
when the requirements for a DPD thermostat are not satisfied, everything else will result in a controlled
termination.

A.3 Equation of state and dynamic properties

The form of the conservative force determines the equation of state for a DPD fluid, which can be derived
using the virial theorem to express system pressure as follows:

P = ρkBT +
1

3V

〈∑
j>i

(ri − rj) · fCij

〉
(A.10)

= ρkBT +
2π

3
ρ2
∫ rc

0
A

(
1− r

rc

)
r3g(r) dr , (A.11)

where g(r) is a radial distribution function for the soft sphere model [50] and ρ is the DPD particle density.
For sufficiently large densities (ρ > 2), g(r) takes the same form and the equation of state can be well-
approximated by:

P = ρkBT + αAρ2 , (A.12)

where the parameter α ≈ 0.101 ± 0.001 has units equivalent to r4c . This expression permits the use of
fluid compressibilities to obtain conservative force parameters for bulk fluids, e.g. for water A ≈ 75kBT/ρ.
Alternative equations of state may be obtained by modifying the functional form of conservative interactions
to include localized densities (i.e. many-body DPD) [120, 121].

Transport coefficients for a DPD fluid without conservative forces can be derived using the expressions for
the drag and stochastic forces[50, 122, 123]. The kinematic viscosity can be found to be

ν ≈ 45kBT

4πγρr3c
+

2πγρr5c
1575

, (A.13)

while the self-diffusion coefficient is given as

D ≈ 45kBT

2πγρr3c
. (A.14)

The ratio of these two properties, the Schmidt number (Sc = ν/D), is therefore:

Sc ≈ 1

2
+

(2πγρr4c)
2

70875kBT
(A.15)

and for values of the drag coefficient and density frequently used in DPD simulations, this value is of the
order of unity, which is an appropriate magnitude for gases but three orders of magnitude too small for
liquids.

253

©STFC Appendix A

This property of standard DPD does not rule it out for simulations of liquid phases except when hydrody-
namics are important. It may also be argued that the self-diffusion of DPD particles might not correspond to
that of individual molecules and thus a Schmidt number of the order 103 is unnecessary for modelling liquids
[124]. Alternative thermostats are available in the DL MESO [103] - http://www.ccp5.ac.uk/DL MESO/
package, which can model systems with higher Schmidt numbers [125, 126].

A.4 Derivation of Equilibrium

The derivation of the DPD algorithm is based on the Fokker-Planck equation

∂ρ

∂t
= Lρ (A.16)

where ρ is the equilibrium distribution function and L is the evolution operator, which may be split into
conservative and stochastic+dissipative parts:

L = LC + LR+D (A.17)

with

LC = −
N∑
i=1

p
i

mi

∂

∂ri
−

N∑
i ̸=j

fC
ij

∂

∂p
i

(A.18)

LR+D =

N∑
i=1

êij ·
∂

∂p
i

[
σ2

2

{
wR (rij)

}2
êij ·

{
∂

∂p
i

− ∂

∂p
j

}
+ γwD

(
êij · vij

)]
, (A.19)

where êij =
rij
rij

.

When σ = γ = 0 then equation (A.16) becomes

∂ρ

∂t
= LCρ , (A.20)

for which the equilibrium solution is evidently

ρeq =
1

Z
exp

 1

kBT

 N∑
i=1

p2i
2mi

+
1

2

N∑
j ̸=i

ϕ(rij)

 (A.21)

which is, of course, the Boltzmann distribution function for an equilibrium system. Thus it is apparent that
for the simulation based on equation (A.16) to maintain the same distribution function, the terms in the
operator LR+D of equation (A.19) must sum to zero. It follows that the conditions given in equations (A.7)
and (A.8) must apply.

A.5 Summary of Dissipative Particle Dynamics

DPD is a simple method that can be viewed as a novel thermostatting method for molecular dynamics. All
that is required is a system of spherical particles enclosed in a periodic box undergoing time evolution as
a result of the above forces. It should be noted that all computed interactions are pairwise, which means
that the principle of the conservation of momentum in the system, or Galilean invariance, is preserved. The
conservation of momentum is required for the preservation of hydrodynamic forces. Therefore, the DPD
method is an NVT method that preserves hydrodynamics. The presence of hydrodynamics is important in
annealing defects in ordered mesophases [127]. Thus DPD has an intrinsic advantage over other methods
such as traditional molecular dynamics, dynamic density functional theory (which are purely diffusive!) or
Monte Carlo methods, in trying to evolve a system towards an ordered thermodynamic equilibrium state.

254

http://www.ccp5.ac.uk/DL_MESO/

Appendix B

DL POLY 4 Periodic Boundary
Conditions

B.1 Introduction

DL POLY 4 is designed to accommodate a number of different periodic boundary conditions, which are
defined by the shape and size of the simulation cell. Briefly, these are as follows (which also indicates the
IMCON flag defining the simulation cell type in the CONFIG file - see Section 10.1.2):

1. None e.g. isolated polymer in space (imcon = 0)
2. Cubic periodic boundaries (imcon = 1)
3. Orthorhombic periodic boundaries (imcon = 2)
4. Parallelepiped periodic boundaries (imcon = 3)
5. Slab (X,Y periodic; Z non-periodic) (imcon = 6)

We shall now look at each of these in more detail. Note that in all cases the cell vectors and the positions
of the atoms in the cell are to be specified in Angstroms (Å).

B.2 No periodic boundary (imcon = 0)

Simulations requiring no periodic boundaries are best suited to in vacuuo simulations, such as the confor-
mational study of an isolated polymer molecule. This boundary condition is not recommended for studies
in a solvent, since evaporation is likely to be a problem.

Note this boundary condition have to be used with caution. DL POLY 4 is not naturally suited to carry
out efficient calculations on systems with great fluctuation of the local density in space, as is the case for
clusters in vacuum. The parallelisation and domain decomposition is therefore limited to eight domains
(maximum of two in each direction in space).

This boundary condition should not used with the SPM Ewald summation method.

B.3 Cubic periodic boundaries (imcon = 1)

The cubic MD cell is perhaps the most commonly used in simulation and has the advantage of great
simplicity. In DL POLY 4 the cell is defined with the principle axes passing through the centres of the
faces. Thus for a cube with sidelength D, the cell vectors appearing in the CONFIG file should be: (D,0,0);
(0,D,0); (0,0,D). Note the origin of the atomic coordinates is the centre of the cell.

255

©STFC Appendix B

Z

X

Y

Figure B.1: The cubic MD cell

B.4 Orthorhombic periodic boundaries (imcon = 2)

Z

X

Y

Figure B.2: The orthorhomic MD cell

The orthorhombic cell is also a common periodic boundary, which closely resembles the cubic cell in use.
In DL POLY 4 the cell is defined with principle axes passing through the centres of the faces. For an
orthorhombic cell with sidelengths D (in X-direction), E (in Y-direction) and F (in Z-direction), the cell
vectors appearing in the CONFIG file should be: (D,0,0); (0,E,0); (0,0,F). Note the origin of the atomic
coordinates is the centre of the cell.

B.5 Parallelepiped periodic boundaries (imcon = 3)

Z

X

Y

Figure B.3: The parallelepiped MD cell

The parallelepiped (e.g. monoclinic or triclinic) cell is generally used in simulations of crystalline materials,
where its shape and dimension is commensurate with the unit cell of the crystal. Thus for a unit cell specified

256

©STFC Appendix B

by three principal vectors a, b, c, the MD cell is defined in the DL POLY 4 CONFIG file by the vectors
(La1,La2,La3), (Mb1,Mb2,Mb3), (Nc1,Nc2,Nc3), in which L,M,N are integers, reflecting the multiplication of
the unit cell in each principal direction. Note that the atomic coordinate origin is the centre of the MD cell.

B.6 Slab boundary conditions (imcon = 6)

Slab boundaries are periodic in the X- and Y-directions, but not in the Z-direction. They are particularly
useful for simulating surfaces. The periodic cell in the XY plane can be any parallelogram. The origin of
the X,Y atomic coordinates lies on an axis perpendicular to the centre of the parallelogram. The origin of
the Z coordinate is where the user specifies it. However, it is recommended that it is in the middle of the
slab. Domain decomposition division across Z axis is limited to 2.

If the XY parallelogram is defined by vectors A and B, the vectors required in the CONFIG file are:
(A1,A2,0), (B1,B2,0), (0,0,D), where D is any real number (including zero). If D is nonzero, it will be used
by DL POLY to help determine a ‘working volume’ for the system. This is needed to help calculate RDFs
etc. (The working value of D is in fact taken as one of: 3×cutoff; or 2×max abs(Z coordinate)+cutoff; or
the user specified D, whichever is the larger.)

The surface in a system with charges can also be modelled with DL POLY 4 if periodicity is allowed in the
Z-direction. In this case slabs of ions well-separated by vacuum zones in the Z-direction can be handled
with imcon = 1, 2 or 3.

257

Appendix C

DL POLY 4 Macros

Introduction

Macros are simple executable files containing standard UNIX commands. A number of the are supplied with
DL POLY 4 and are found in the execute sub-directory. These are not guaranteed to be immaculate but
with little adaptation they can become a useful tool to a researcher. The available macros are as follows:

• cleanup

• copy

• gopoly

• gui

• select

• store

The function of each of these is described below. It is worth noting that most of these functions could be
performed by the DL POLY Java GUI [21].

cleanup

cleanup removes several standard data files from the execute sub-directory. It contains the UNIX commands:

rm -vf OUTPUT STATIS REVCON RVEIVE CFGMIN DEFECTS *DAT* *PMF *TAB MSDTMP

It is useful for cleaning the sub-directory up after a run. (Useful data should be stored elsewhere however!)

copy

copy invokes the UNIX commands:

mv -v CONFIG CONFIG.OLD

mv -v REVCON CONFIG

mv -v REVIVE REVOLD

which collectively prepare the DL POLY 4 files in the execute sub-directory for the continuation of a simu-
lation. It is always a good idea to store these files elsewhere in addition to using this macro.

258

©STFC Appendix C

gopoly

gopoly is used to submit a DL POLY 4 job to the HPCx, which operates a LOAD-LEVELER job queuing
system. It invokes the following script:

#@ shell = /usr/bin/tcsh

#

#@ job_type = parallel

#@ job_name = gopoly

#

#@ cpus = 32

#

#@ node_usage = not_shared

#@ network.MPI = csss,shared,US

#

#@ wall_clock_limit = 00:30:00

#@ account_no = mine

#

#@ output = $(job_name).$(schedd_host).$(jobid).out

#@ error = $(job_name).$(schedd_host).$(jobid).err

#@ notification = never

#

#@ bulkxfer = yes

#@ data_limit = 850000000

#@ stack_limit = 10000000

#

#@ queue

#

ENVIRONMENT SETTINGS

#

setenv MP_EAGER_LIMIT 65536

setenv MP_SHARED_MEMORY yes

setenv MEMORY_AFFINITY MCM

setenv MP_TASK_AFFINITY MCM

setenv MP_SINGLE_THREAD yes

#

poe ./DLPOLY.Z

Using LOADLEVELLER, the job is submitted by the UNIX command:

llsubmit gopoly

where llsubmit is a local command for submission to the IBM SP4 cluster. The number of required nodes
and the job time are indicated in the above script.

gui

gui is a macro that starts up the DL POLY 4 Java GUI. It invokes the following UNIX commands:

java -jar ../java/GUI.jar $1 &

In other words the macro invokes the Java Virtual Machine which executes the instructions in the Java
archive file GUI.jar, which is stored in the java subdirectory of DL POLY 4. (Note: Java 1.3.0 or a higher
version is required to run the GUI.)

259

©STFC Appendix C

select

select is a macro enabling easy selection of one of the test cases. It invokes the UNIX commands:

cp -vpLH ../data/TEST$1/CONTROL .

cp -vpLH ../data/TEST$1/CONFIG .

cp -vpLH ../data/TEST$1/HISTORY .

cp -vpLH ../data/TEST$1/FIELD .

cp -vpLH ../data/TEST$1/MPOLES .

cp -vpLH ../data/TEST$1/TAB* .

cp -vpLH ../data/TEST$1/REFERENCE .

cp -vpLH ../data/TEST$1/Ce.dat .

cp -vpLH ../data/TEST$1/g.dat .

select requires one argument (an integer) to be specified:

select n

where n is test case number, which ranges from 1 to 18.

This macro sets up the required input files in the execute sub-directory to run the n-th test case. The last
three copy commands may not be necessary in most cases.

store

The store macro provides a convenient way of moving data back from the execute sub-directory to the data
sub-directory. It invokes the UNIX commands:

mkdir -pv ../data/TEST$1

cp -vpLH CONTROL ../data/TEST$1

cp -vpLH CONFIG ../data/TEST$1

cp -vpLH FIELD ../data/TEST$1

cp -vpLH MPOLES ../data/TEST$1

cp -vpLH TAB* ../data/TEST$1

cp -vpLH REFERENCE ../data/TEST$1

cp -vpLH HISTORY ../data/TEST$1

cp -vpLH Ce.dat ../data/TEST$1

cp -vpLH g.dat ../data/TEST$1

mv -v OUTPUT ../data/TEST$1

mv -v STATIS ../data/TEST$1

mv -v REV* ../data/TEST$1

mv -v CFGMIN ../data/TEST$1

mv -v HISTORF ../data/TEST$1

mv -v DEFECTS ../data/TEST$1

mv -v *DAT* ../data/TEST$1

mv -v *PMF ../data/TEST$1

mv -v *TAB ../data/TEST$1

mv -v MSDTMP ../data/TEST$1

mv -v DUMP_E ../data/TEST$1

mv -v LATS_* ../data/TEST$1

mv -v PEAK_* ../data/TEST$1

chmod -R a-w ../data/TEST$1

which first creates a new DL POLY data/TEST.. sub-directory and then moves the standard DL POLY 4
output data files into it.

260

©STFC Appendix C

store requires one argument:

store n

where n is a unique string or number to label the output data in the data/TESTn sub-directory.

Note that store sets the file access to read-only. This is to prevent the store macro overwriting existing data
without your knowledge.

261

Appendix D

DL POLY 4 Error Messages & User
Action

Introduction

In this appendix we document the error messages encoded in DL POLY 4 and the recommended user action.
The correct response is described as the standard user response in the appropriate sections below, to
which the user should refer before acting on the error encountered.

The reader should also be aware that some of the error messages listed below may be either disabled in, or
absent from, the public version of DL POLY 4. Note that the wording of some of the messages may have
changed over time, usually to provide more specific information. The most recent wording appears below.

The Standard User Response

DL POLY 4 uses FORTRAN90 dynamic array allocation to set the array sizes at run time. This means
that a single executable may be compiled to over all the likely uses of the code. It is not foolproof however.
Sometimes an estimate of the required array sizes is difficult to obtain and the calculated value may be too
small. For this reason DL POLY 4 retains array dimension checks and will terminate when an array bound
error occurs.

When a dimension error occurs, the standard user response is to edit the DL POLY 4
subroutine set bounds. Locate where the variable defining the array dimension is fixed and increase
accordingly. To do this you should make use of the dimension information that DL POLY 4 prints in the
OUTPUT file prior to termination. If no information is supplied, simply doubling the size of the variable
will usually do the trick. If the variable concerned is defined in one of the support subroutines scan config,
scan field, scan control you will need to insert a new line in set bounds to redefine it - after the
relevant subroutine has been called! Finally the code must be recompiled, as in this case it will only be
necessary to recompile set bounds and not the whole code.

The DL POLY 4 Error Messages

Message 1: error - word 2 real failure

The semantics in some of the INPUT files is wrong. DL POLY 4 has tried to read a number but the has
found a word in non-number format.

Action:

Look into your INPUT files and correct the semantics where appropriate and resubmit. DL POLY 4 will
have printed out in the OUTPUT file what the found non-uniform word is.

262

©STFC Appendix D

Message 2: error - too many atom types in FIELD (scan field)

This error arises when DL POLY 4 scans the FIELD file and discovers that there are too many different
types of atoms in the system (i.e. the number of unique atom types exceeds the 1000).

Action:

Increase the number of allowed atom types (mmk) in scan field, recompile and resubmit.

Message 3: error - unknown directive found in CONTROL file

This error most likely arises when a directive is misspelt in the CONTROL file.

Action:

Locate the erroneous directive in the CONTROL file and correct error and resubmit.

Message 4: error - unknown directive found in FIELD file

This error most likely arises when a directive is misspelt or is encountered in an incorrect location in the
FIELD file, which can happen if too few or too many data records are included.

Action:

Locate the erroneous directive in the FIELD file and correct error and resubmit.

Message 5: error - unknown energy unit requested

The DL POLY 4 FIELD file permits a choice of units for input of energy parameters. These may be:
electron-Volts (eV); k-calories per mol (kcal/mol); k-Joules per mol (kJ/mol); Kelvin per Boltzmann
(Kelvin/Boltzmann); or the DL POLY 4 internal units, 10 Joules per mol (internal). There is no default
value. Failure to specify any of these correctly, or reference to other energy units, will result in this error
message. See documentation of the FIELD file.

Action:

Correct energy keyword on units directive in FIELD file and resubmit.

Message 6: error - energy unit not specified

A units directive is mandatory in the FIELD file. This error indicates that DL POLY 4 has failed to find
the required record.

Action:

Add units directive to FIELD file and resubmit.

Message 7: error - selected external field incompatible with selected ensemble (NVE only!!!)

Action:

Change the external field directive in FIELD file and or the type of ensemble in CONTROL and resubmit.

Message 8: error - ewald precision must be a POSITIVE real number

Ewald precision must be a positive non-zero real number. For example 10e-5 is accepted as a standard.

Action:

263

©STFC Appendix D

Put a correct number at the ”ewald precision” directive in the CONTROL file and resubmit.

Message 9: error - ewald sum parameters must be well defined

Ewald sum parameters must be well defined.

Action:

Referer to the manual and references within for understanding the meaning of the parameters and how to
chose them. Alternatively, try using the “ewald precision” CONTROL directive with a sensible precision
value, of say 10−5.

Message 10: error - too many molecular types specified

This should never happen! This indicates an erroneous FIELD file or corrupted DL POLY 4 executable.
Unlike DL POLY Classic, DL POLY 4 does not have a set limit on the number of kinds of molecules it can
handle in any simulation (this is not the same as the number of molecules).

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 11: error - duplicate molecule directive in FIELD file

The number of different types of molecules in a simulation should only be specified once. If DL POLY 4
encounters more than one molecules directive, it will terminate execution.

Action:

Locate the extra molecule directive in the FIELD file and remove and resubmit.

Message 12: error - unknown molecule directive in FIELD file

Once DL POLY 4 encounters the molecules directive in the FIELD file, it assumes the following records
will supply data describing the intra-molecular force field. It does not then expect to encounter directives not
related to these data. This error message results if it encounters a unrelated directive. The most probable
cause is incomplete specification of the data (e.g. when the finish directive has been omitted.)

Action:

Check the molecular data entries in the FIELD file, correct and resubmit.

Message 13: error - molecule species not specified

This error arises when DL POLY 4 encounters non-bonded force data in the FIELD file, before the molecular
species have been specified. Under these circumstances it cannot assign the data correctly, and therefore
terminates.

Action:

Make sure the molecular data appears before the non-bonded forces data in the FIELD file and resubmit.

Message 14: error - too many unique atom types specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4 executable
are corrupted.

264

©STFC Appendix D

Action:

Recompile the program and/or recreate the FIELD file afresh. If no combination of these works, send the
problem to us.

Message 15: error - duplicate vdw potential specified

In processing the FIELD file, DL POLY 4 keeps a record of the specified short range pair potentials as they
are read in. If it detects that a given pair potential has been specified before, no attempt at a resolution of
the ambiguity is made and this error message results. See specification of FIELD file.

Action:

Locate the duplication in the FIELD file, rectify and resubmit.

Message 16: error - strange exit from FIELD file processing

This should never happen! It simply means that DL POLY 4 has ceased processing the FIELD data, but
has not reached the end of the file or encountered a close directive. Probable cause: corruption of the
DL POLY 4 executable or of the FIELD file. We would be interested to hear of other reasons!

Action:

See action notes on message 14 above.

Message 17: error - strange exit from CONTROL file processing

This should never happen! It simply means that DL POLY 4 has ceased processing the CONTROL data,
but has not reached the end of the file or encountered a close directive. Probable cause: corruption of the
DL POLY 4 executable or of the FIELD file. We would be interested to hear of other reasons!

Action:

Recompile the program and/or recreate the CONTROL file afresh. If no combination of these works, send
the problem to us.

Message 18: error - duplicate three-body potential specified

DL POLY 4 has encountered a repeat specification of a three-body potential in the FIELD file.

Action:

Locate the duplicate entry, remove and resubmit job.

Message 19: error - duplicate four-body potential specified

A 4-body potential has been duplicated in the FIELD file.

Action:

Locate the duplicated four-body potential, remove and resubmit job.

Message 20: error - too many molecule sites specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4 executable
are corrupted.

Action:

265

©STFC Appendix D

See action notes on message 14 above.

Message 21: error - molecule contains more atoms/sites than declared

The molecule contains more atom/site entries that it declares in the beginning.

Action:

Recreate or correct the erroneous entries in the FIELD file and try again.

Message 22: error - unsuitable radial increment in TABLE||TABBND||TABANG||TABDIH||TABINV
file

This arises when the tabulated van der Waals potentials presented in the TABLE file have an increment that
is greater than that used to define the other potentials in the simulation. Ideally, the increment should be
rcut/(mxgrid−4), where rcut is the largest potential cutoff of all supplied ,for the short range potentials and
the domain decomposition link cell size, and mxgrid is the parameter defining the length of the interpolation
arrays. An increment less than this is permissible however. The same argument holds for the tabulated
intra-molecular interactions that are possibly supplied via the TABBND, TABANG, TABDIH and TABINV
files. All should have grids sized less than the generic mxgrid−4.
Action:

The tables must be recalculated with an appropriate increment.

Message 23: error - incompatible FIELD and TABLE file potentials

This error arises when the specification of the short range potentials is different in the FIELD and TABLE
files. This usually means that the order of specification of the potentials is different. When DL POLY 4
finds a change in the order of specification, it assumes that the user has forgotten to enter one.

Action:

Check the FIELD and TABLE files. Make sure that you correctly specify the pair potentials in the FIELD
file, indicating which ones are to be presented in the TABLE file. Then check the TABLE file to make sure
all the tabulated potentials are present in the order the FIELD file indicates.

Message 24: error - end of file encountered in TABLE||TABBND||TABANG||TABDIH||TABINV
file

This means the TABLE||TABBND||TABANG||TABDIH||TABINV file is incomplete in some way: either by
having too few potentials included, or the number of data points is incorrect.

Action:

Examine the TABLE file contents and regenerate it if it appears to be incomplete. If it look intact, check
that the number of data points specified is what DL POLY 4 is expecting.

Message 25: error - wrong atom type found in CONFIG file

On reading the input file CONFIG, DL POLY 4 performs a check to ensure that the atoms specified in the
configuration provided are compatible with the corresponding FIELD file. This message results if they are
not or the parallel reading wrongly assumed that CONFIG complies with the DL POLY 3/4 style.

Action:

266

©STFC Appendix D

The possibility exists that one or both of the CONFIG or FIELD files has incorrectly specified the atoms
in the system. The user must locate the ambiguity, using the data printed in the OUTPUT file as a guide,
and make the appropriate alteration. If the reason is in the parallel reading then produce a new CONFIG
using a serial reading and continue working with it.

Message 26: error - neutral group option now redundant

DL POLY 4 does not have the neutral group option.

Action:

Use the Ewald sum option. (It’s better anyway.)

Message 27: error - unit’s member indexed outside molecule’s site range

An intra-molecular or intra-molecular alike interaction (topological) unit has member/site which is given a
number outside the scope of the molecule it is part of.

Action:

Find the erroneous entry in FIELD, correct it and try running DL POLY 4 again.

Message 28: error - wrongly indexed atom entries found in CONFIG file

DL POLY 4 has detected that the atom indices in the CONFIG file do not form a contnual and/or non-
repeating group of indices.

Action:

Make sure the CONFIG file is complies with the DL POLY 4 standards. You may use the no index
option in the CONTROL file to override the crystalographic sites’ reading from the CONFIG file from
reading by index to reading by order of the atom entries with consecutive incremental indexing. Using this
option assumes that the FIELD topology description matches the crystalographic sites (atoms entries) in
the CONFIG file by order (consecutively).

Message 30: error - too many chemical bonds specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4 executable
are corrupted.

Action:

See action notes on message 14 above.

Message 31: error - too many chemical bonds per domain

DL POLY 4 limits the number of chemical bond units in the system to be simulated (actually, the number
to be processed by each node) and checks for the violation of this. Termination will result if the condition
is violated.

Action:

Use densvar option in CONTROL to increase mxbond (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

267

©STFC Appendix D

Message 32: error - coincidence of particles in core-shell unit

DL POLY 4 has found a fault in the definition of a core-shell unit in the FIELD file. The same particle has
been assigned to the core and shell sites.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 33: error - coincidence of particles in constraint bond unit

DL POLY 4 has found a fault in the definition of a constraint bond unit in the FIELD file. The same
particle has been assigned to the both sites.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 34: error - length of constraint bond unit >= real space cutoff (rcut)

DL POLY 4 has found a constraint bond unit length (FIELD) larger than the real space cutoff (rcut)
(CONTROL).

Action:

Increase cutoff in CONTROL or decrease the constraint bondlength in FIELD and resubmit. For small
system consider using DL POLY Classic.

Message 35: error - coincidence of particles in chemical bond unit

DL POLY 4 has found a faulty chemical bond in FIELD (defined between the same particle).

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 36: error - only one *bonds* directive per molecule is allowed

DL POLY 4 has found more than one bonds entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 38: error - outgoing transfer buffer size exceeded in metal ld export

This should not usually happen!

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alternatively,
increase mxbfxp parameter in set bounds recompile and resubmit. Send the problem to us if this is
persistent.

Message 39: error - incoming data transfer size exceeds limit in metal ld export

See notes on message 38 above.

Action:

268

©STFC Appendix D

See action notes on message 38 above.

Message 40: error - too many bond constraints specified

This should never happen!

Action:

See action notes on message 14 above.

Message 41: error - too many bond constraints per domain

DL POLY 4 limits the number of bond constraint units in the system to be simulated (actually, the number
to be processed by each node) and checks for the violation of this. Termination will result if the condition
is violated.

Action:

Use densvar option in CONTROL to increase mxcons (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

Message 42: error - undefined direction passed to deport atomic data

This should never happen!

Action:

Send the problem to us.

Message 43: error - outgoing transfer buffer size exceeded in deport atomic data

This may happen in extremely non-equilibrium simulations or usually when the potentials in use do not
hold the system stable.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alternatively,
increase mxbfdp parameter in set bounds recompile and resubmit.

Message 44: error - incoming data transfer size exceeds limit in deport atomic data

Action:

See action notes on message 43 above.

Message 45: error - too many atoms in CONFIG file or per domain

This can happen in circumstances when indeed the CONFIG file has more atoms listed than defined in
FIELD, or when one of the domains (managed by an MPI process) has higher particle density than the
system average and contains more particles than allowed by the default based on the system.

Action:

Check if CONFIG and FIELD numbers of particles match. Try executing on various number of processors.
Try using the densvar option in CONTROL to increase mxatms (alternatively, increase it by hand in
set bounds and recompile) and resubmit. Send the problem to us if this is persistent.

269

©STFC Appendix D

Message 46: error - undefined direction passed to export atomic data

This should never happen!

Action:

Send the problem to us.

Message 47: error - undefined direction passed to metal ld export

This should never happen!

Action:

Send the problem to us.

Message 48: error - transfer buffer too small in * table read

Action:

Standard user response. Increase mxgrid parameter in set bounds recompile and resubmit.

Message 49: error - frozen shell (core-shell) unit specified

The DL POLY 4 option to freeze the location of an atom (i.e. hold it permanently in one position) is not
permitted for the shells in core-shell units.

Action:

Remove the frozen atom option from the FIELD file. Consider using a non-polarisable atom instead.

Message 50: error - too many bond angles specified

This should never happen! This error most likely arises when the FIELD file or/and DL POLY 4 executable
are corrupted.

Action:

See action notes on message 14 above.

Message 51: error - too many bond angles per domain

DL POLY 4 limits the number of valence angle units in the system to be simulated (actually, the number
to be processed by each node) and checks for the violation of this. Termination will result if the condition
is violated.

Action:

Use densvar option in CONTROL to increase mxangl (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

Message 52: error - end of FIELD file encountered

This message results when DL POLY 4 reaches the end of the FIELD file, without having read all the data
it expects. Probable causes: missing data or incorrect specification of integers on the various directives.

Action:

Check FIELD file for missing or incorrect data, correct and resubmit.

270

©STFC Appendix D

Message 53: error - end of CONTROL file encountered

This message results when DL POLY 4 reaches the end of the CONTROL file, without having read all the
data it expects. Probable cause: missing finish directive.

Action:

Check CONTROL file, correct and resubmit.

Message 54: error - outgoing transfer buffer size exceeded in export atomic data

See notes on message 38 above.

Action:

See naction otes on message 38 above.

Message 55: error - end of CONFIG file encountered

This error arises when DL POLY 4 attempts to read more data from the CONFIG file than is actually
present. The probable cause is an incorrect or absent CONFIG file, but it may be due to the FIELD file
being incompatible in some way with the CONFIG file.

Action:

Check contents of CONFIG file. If you are convinced it is correct, check the FIELD file for inconsistencies.

Message 56: error - incoming data transfer size exceeds limit in export atomic data

See notes on message 38 above.

Action:

See action notes on message 38 above.

Message 57: error - too many core-shell units specified

This should never happen!

Action:

See action notes on message 14 above.

Message 58: error - number of atoms in system not conserved

Either and an atom has been lost in transfer between nodes/domains or your FIELD is ill defined with
respect to what is supplied in CONFIG/HISTORY.

Action:

If this error is issued at start before timestep zero in a simulation then it is either your FIELD file is
ill defined or that your CONFIG file (or the first frame of your HISTRORY being replayed). Check out
for mistyped number or identities of molecules, atoms, etc. in FIELD and for mangled/blank lines in
CONFIG/HISTORY, or a blank line(s) at the end of CONFIG or missing FOF (End Of File) character in
CONFIG. If this error is issued after timestep zero in a simulation that is not replaying HISTORY then
it is big trouble and you should report that to the authors. If it is during replaying HISTORY then your
HISTORY file has corrupted frames and you must correct it before trying again.

271

©STFC Appendix D

Message 59: error - too many core-shell units per domain

DL POLY 4 limits the number of core-shell units in the system to be simulated (actually, the number to
be processed by each node) and checks for the violation of this. Termination will result if the condition is
violated.

Action:

Use densvar option in CONTROL to increase mxshl (alternatively, increase it by hand in set bounds and
recompile) and resubmit.

Message 60: error - too many dihedral angles specified

This should never happen!

Action:

See action notes on message 14 above.

Message 61: error - too many dihedral angles per domain

DL POLY 4 limits the number of dihedral angle units in the system to be simulated (actually, the number
to be processed by each node) and checks for the violation of this. Termination will result if the condition
is violated.

Action:

Use densvar option in CONTROL to increase mxdihd (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

Message 62: error - too many tethered atoms specified

This should never happen!

Action:

See action notes on message 14 above.

Message 63: error - too many tethered atoms per domain

DL POLY 4 limits the number of tethered atoms in the system to be simulated (actually, the number to
be processed by each node) and checks for the violation of this. Termination will result if the condition is
violated.

Action:

Use densvar option in CONTROL to increase mxteth (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

Message 64: error - incomplete core-shell unit found in build book intra

This should never happen!

Action:

Report problem to authors.

272

©STFC Appendix D

Message 65: error - too many excluded pairs specified

This should never happen! This error arises when DL POLY 4 is identifying the atom pairs that cannot
have a pair potential between them, by virtue of being chemically bonded for example (see subroutine
build excl intra). Some of the working arrays used in this operation may be exceeded, resulting in
termination of the program.

Action:

Contact authors.

Message 66: error - coincidence of particles in bond angle unit

DL POLY 4 has found a fault in the definition of a bond angle in the FIELD file.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 67: error - coincidence of particles in dihedral unit

DL POLY 4 has found a fault in the definition of a dihedral unit in the FIELD file.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 68: error - coincidence of particles in inversion unit

DL POLY 4 has found a fault in the definition of a inversion unit in the FIELD file.

Action:

Correct the erroneous entry in FIELD and resubmit.

Message 69: error - too many link cells required in three body forces

The number of link cells required for the build up of the Verlet neighbour list (as in link cell pairs) or
the calculation of three- & four-body as well tersoff forces (as in three body forces, four body forces, ter-
soff body forces) in the given model exceeds the number allowed for by the DL POLY 4 arrays. Probable
cause: your system has expanded unacceptably much to DL POLY 4. This may not be physically sensible!

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations.

Message 70: error - constraint quench failure

When a simulation with bond constraints is started, DL POLY 4 attempts to extract the kinetic energy of
the constrained atom-atom bonds arising from the assignment of initial random velocities. If this procedure
fails, the program will terminate. The likely cause is a badly generated initial configuration.

Action:

Some help may be gained from increasing the cycle limit, by using the directive mxshak in the CONTROL
file. You may also consider reducing the tolerance of the SHAKE iteration using the directive shake in the
CONTROL file. However it is probably better to take a good look at the starting conditions!

273

©STFC Appendix D

Message 71: error - too many metal potentials specified

This should never happen!

Action:

Report to authors.

Message 72: error - too many tersoff potentials specified

This should never happen!

Action:

Report to authors.

Message 73: error - too many inversion potentials specified

This should never happen!

Action:

Report to authors.

Message 74: error - unidentified atom in tersoff potential list

This shows that DL POLY 4 has encountered and erroneous entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

Message 76: error - duplicate tersoff potential specified

This shows that DL POLY 4 has encountered and erroneous entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

Message 77: error - too many inversion angles per domain

DL POLY 4 limits the number of inversion units in the system to be simulated (actually, the number to
be processed by each node) and checks for the violation of this. Termination will result if the condition is
violated.

Action:

Use densvar option in CONTROL to increase mxinv (alternatively, increase it by hand in set bounds and
recompile) and resubmit.

Message 79: error - tersoff potential cutoff undefined

This shows that DL POLY 4 has encountered and erroneous entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

274

©STFC Appendix D

Message 80: error - too many pair potentials specified

This should never happen!

Action:

Report to authors.

Message 81: error - unidentified atom in pair potential list

This shows that DL POLY 4 has encountered and erroneous entry for vdw or metal potentials in FIELD or
cited TABle file.

Action:

Correct FIELD and/or cited TABle file.

Message 82: error - calculated pair potential index too large

This should never happen! In checking the vdw and metal potentials specified in the FIELD file DL POLY 4
calculates a unique integer indices that henceforth identify every specific potential within the program. If
this index becomes too large, termination of the program results.

Action:

Report to authors.

Message 83: error - too many three-body/angles potentials specified

This should never happen!

Action:

Report to authors.

Message 84: error - unidentified atom in three-body/angles potential list

This shows that DL POLY 4 has encountered and erroneous entry at three-body or angles definitions in
FIELD.

Action:

Correct FIELD and resubmit.

Message 85: error - required velocities not in CONFIG file

If the user attempts to start up a DL POLY 4 simulation with any type of restart directive (see description
of CONTROL file,) the program will expect the CONFIG file to contain atomic velocities as well as positions.
Termination results if these are not present.

Action:

Either replace the CONFIG file with one containing the velocities, or if not available, remove the restart
... directive altogether and let DL POLY 4 create the velocities for itself.

275

©STFC Appendix D

Message 86: error - calculated three-body potential index too large

This should never happen! DL POLY 4 has a permitted maximum for the calculated index for any three-
body potential in the system (i.e. as defined in the FIELD file). If there are m distinct types of atom in the
system, the index can possibly range from 1 to (m2 ∗ (m− 1))/2. If the internally calculated index exceeds
this number, this error reports results.

Action:

Report to authors.

Message 88: error - legend array exceeded in build book intra

The second dimension of a legend array has been exceeded.

Action:

If you have an intra-molecular (like) interaction present in abundance in your model that you suspect is
driving this out of bound error increase its legend bound value, mxfinteraction, at the end of scan field,
recompile and resubmit. If the error persists contact authors.

Message 89: error - too many four-body/dihedrals/inversions potentials specified

This should never happen!

Action:

Report to authors.

Message 90: error - specified tersoff potentials have different types’

This is not allowed! Only one general type of tersoff potential is allowed in FIELD as there are no mixing
rules between different tersoff potentials!

Action:

Correct your model representation in FIELD and try again.

Message 91: error - unidentified atom in four-body/dihedrals/inversions potential list

The specification of a four-body or dihedrals or inversions potential in the FIELD file has referenced an
atom type that is unknown.

Action:

Locate the errant atom type in the four-body/dihedrals/inversions potential definition in the FIELD file
and correct. Make sure this atom type is specified by an atoms directive earlier in the file.

Message 92: error - specified metal potentials have different types

The specified metal interactions in the FIELD file are referencing more than one generic type of metal
potentials. Only one such type is allowed in the system.

Action:

Locate the errant metal type in the metal potential definition in the FIELD file and correct. Make sure only
one metal type is specified for all relevan atom interactions in the file.

276

©STFC Appendix D

Message 93: error - PMFs mixing with rigid bodies not allowed

Action:

Correct FIELD and resubmit.

Message 95: error - error - rcut or (rcut+rpad) > minimum of all half-cell widths

In order for the minimum image convention to work correctly within DL POLY 4, it is necessary to ensure
that the major cutoff, plus its possible padding distance, applied to the pair interactions does not exceed half
the perpendicular width of the simulation cell. (The perpendicular width is the shortest distance between
opposing cell faces.) Termination results if this is detected. In NVE and NVT simulations this can only
happen at the start of a simulation, but in NPT and NσT, it may occur at any time.

Action:

Supply a cutoff that is less than half the cell width. If running constant pressure calculations, use a cutoff
that will accommodate the fluctuations in the simulation cell. Study the fluctuations in the OUTPUT file
to help you with this.

Message 96: error - incorrect atom totals assignments in metal ld set halo

This should never happen!

Action:

Big trouble. Report to authors.

Message 97: error - constraints mixing with rigid bodies not allowed

Action:

Correct FIELD and resubmit.

Message 99: error - cannot have shells as part of a constraint, rigid body or tether

Action:

Correct FIELD and resubmit.

Message 100: error - core-shell unit separation > rcut (the system cutoff)

This could only happen if FIELD and CONFIG do not match each other or CONFIG is damaged.

Action:

Regenerate CONFIG (and FIELD) and resubmit.

Message 101: error - calculated four-body potential index too large

This should never happen! DL POLY 4 has a permitted maximum for the calculated index for any four-
body potential in the system (i.e. as defined in the FIELD file). If there are m distinct types of atom in
the system, the index can possibly range from 1 to (m2 ∗ (m+ 1) ∗ (m+ 2))/6. If the internally calculated
index exceeds this number, this error report results.

Action:

Report to authors.

277

©STFC Appendix D

Message 102: error - rcut < 2*rcter (maximum cutoff for tersoff potentials)

The nature of the Tersoff interaction requires they have at least twice shorter cutoff than the standard pair
interctions (or the major system cutoff).

Action:

Decrease Tersoff cutoffs in FIELD or increase cutoff in CONTROL and resubmit.

Message 103: error - parameter mxlshp exceeded in pass shared units

Various algorithms (constraint and core-shell ones) require that information about ‘shared’ atoms be passed
between nodes. If there are too many such atoms, the arrays holding the information will be exceeded and
DL POLY 4 will terminate execution.

Action:

Use densvar option in CONTROL to increase mxlshp (alternatively, increase it by hand in set bounds
and recompile) and resubmit.

Message 104: error - arrays listme and lstout exceeded in pass shared units

This should not happen! Dimensions of indicated arrays have been exceeded.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations.

Message 105: error - shake algorithm (constraints shake) failed to converge

The SHAKE algorithm for bond constraints is iterative. If the maximum number of permitted iterations
is exceeded, the program terminates. Possible causes include: a bad starting configuration; too large a
time step used; incorrect force field specification; too high a temperature; inconsistent constraints (over-
constraint) etc..

Action:

You may try to increase the limit of iteration cycles in the constraint subroutines by using the directive
mxshak and/or decrease the constraint precision by using the directive shake in CONTROL. But the
trouble may be much more likely to be cured by careful consideration of the physical system being simulated.
For example, is the system stressed in some way? Too far from equilibrium?

Message 106: error - neighbour list array too small in link cell pairs

Construction of the Verlet neighbour list in subroutine link cell pairs non-bonded (pair) force has ex-
ceeded the neighbour list array dimensions.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations or increase by hand
mxlist in set bounds.

Message 107: error - too many pairs for rdf look up specified

This should never happen! A possible reason is corruption in FIELD or/and DL POLY 4 executable.

Action:

See action notes on message 14 above.

278

©STFC Appendix D

Message 108: error - unidentified atom in rdf look up list

During reading of RDF look up pairs in FIELD DL POLY 4 has found an unlisted previously atom type.

Action:

Correct FIELD by either defining the new atom type or changing it to an already defined one in the erroneous
line. Resubmit.

Message 109: error - calculated pair rdf index too large

This should never happen! In checking the RDF pairs specified in the FIELD file DL POLY 4 calculates
a unique integer index that henceforth identify every RDF pair within the program. If this index becomes
too large, termination of the program results.

Action:

Report to authors.

Message 108: error - duplicate rdf look up pair specified

During reading of RDF look up pairs in FIELD DL POLY 4 has found a duplicate entry in the list.

Action:

Delete the duplicate line and resubmit.

Message 111: error - bond constraint unit separation > rcut (the system cutoff)

This should never happen! DL POLY 4 has not been able to find an atom in a processor domain or its
bordering neighbours.

Action:

Probable cause: link cells too small. Use larger potential cutoff. Contact DL POLY 4 authors.

Message 112: error - only one *constraints* directive per molecule is allowed

DL POLY 4 has found more than one constraints entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 113: error - intra-molecular bookkeeping arrays exceeded in deport atomic data

One or more bookkeeping arrays for site-related interactions have been exceeded.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alternatively, you
will need to print extra diagnostic data from the deport atomic data subroutine to find which boded-like
contribution has exceeded its assumed limit and then correct for it in set bounds, recompile and resubmit.

Message 114: error - legend array exceeded in deport atomic data

The array legend has been exceeded.

Action:

279

©STFC Appendix D

Try increasing parameter mxfix in set bounds, recompile and resubmit. Contact DL POLY 4 authors if
the problem persists.

Message 115: error - transfer buffer exceeded in update shared units

The transfer buffer has been exceeded.

Action:

Consider increasing parameter mxbfsh in set bounds, recompile and resubmit. Contact DL POLY 4 au-
thors if the problem persists.

Message 116: error - incorrect atom transfer in update shared units

An atom has become misplaced during transfer between nodes.

Action:

This happens when the simulation is very numerically unstable. Consider carefully the physical grounds
of your simulation, i.e. are you using the adiabatic shell model for accounting polarisation with too big a
timestep or too large control distances for the variable timestep, is the ensemble type NPT or NσT and the
system target temperature too close to the melting temperature?

Message 118: error - construction error in pass shared units

This should not happen.

Action:

Report to authors.

Message 120: error - invalid determinant in matrix inversion

DL POLY 4 occasionally needs to calculate matrix inverses (usually the inverse of the matrix of cell vectors,
which is of size 3 × 3). For safety’s sake a check on the determinant is made, to prevent inadvertent use of
a singular matrix.

Action:

Locate the incorrect matrix and fix it - e.g. are cell vectors correct?

Message 122: error - FIELD file not found

DL POLY 4 failed to find a FIELD file in your directory.

Action:

Supply a valid FIELD file before you start a simulation

Message 124: error - CONFIG file not found

DL POLY 4 failed to find a CONFIG file in your directory.

Action:

Supply a valid CONFIG file before you start a simulation

280

©STFC Appendix D

Message 126: error - CONTROL file not found

DL POLY 4 failed to find a CONTROL file in your directory.

Action:

Supply a valid CONTROL file before you start a simulation

Message 128: error - chemical bond unit separation > rcut (the system cutoff)

This could only happen if FIELD and CONFIG do not match each other or if the instantaneous configuration
is ill defined because of generation of large forces on bonded particles. This may be due to having a badly
defined force-field and/or starting form a configuration which is too much away from equilibrium.

Action:

Regenerate CONFIG (and FIELD) and resubmit. Try topology verification by using nfold 1 1 1 in CON-
TROL. Try using options as scale, cap, zero and optimise. Try using smaller SHAKE tolerance if
constraints are present in the system. You may as well try using the variable timestep option.

Message 130: error - bond angle unit diameter > rcut (the system cutoff)

See action notes on message 128 above.

Action:

See action notes on message 128 above.

Message 132: error - dihedral angle unit diameter > rcut (the system cutoff)

See notes on message 128 above.

Action:

See action notes on message 128 above.

Message 134: error - inversion angle unit diameter > rcut (the system cutoff)

See notes on message 128 above.

Action:

See action notes on message 128 above.

Message 138: error - incorrect atom totals assignments in refresh halo positions

This should never happen although, sometimes, it could due to ill defined force field and/or and/or starting
form a configuration which is too much away from equilibrium.

Action:

Try using the variable timestep option and/or running in serial to determine if particles gain too much
speed and leave domains.

Message 141: error - duplicate metal potential specified

During reading of metal potentials (pairs of atom types) in FIELD DL POLY 4 has found a duplicate pair
of atoms in the list.

281

©STFC Appendix D

Action:

Delete one of the duplicate entries and resubmit.

Message 150: error - unknown van der waals potential selected

DL POLY 4 checks when constructing the interpolation tables for the short ranged potentials that the
potential function requested is one which is of a form known to the program. If the requested potential form
is unknown, termination of the program results. The most probable cause of this is the incorrect choice of
the potential keyword in the FIELD file.

Action:

Read the DL POLY 4 documentation and find the potential keyword for the potential desired.

Message 151: error - unknown EAM keyword in TABEAM

DL POLY 4 checks when constructing the interpolation tables for the EAM metal potentials that the po-
tential function requested is one which is of a form known to the program. If the requested potential form
is unknown, termination of the program results. The most probable cause of this is the incorrect choice of
the potential keyword in the FIELD file.

Action:

Read the DL POLY 4 documentation and find the potential keyword for the potential desired.

Message 152: error - undefined direction passed to dpd v export

This should never happen!

Action:

Report to authors.

Message 154: error - outgoing transfer buffer size exceeded in dpd v export

See notes on message 38 above.

Action:

See action notes on message 38 above.

Message 156: error - incoming data transfer size exceeds limit in dpd v export

See notes on message 38 above.

Action:

See action notes on message 38 above.

Message 158: error - incorrect atom totals assignments in dpd v set halo

This should never happen!

Action:

Big trouble. Report to authors.

282

©STFC Appendix D

Message 160: error - undefined direction passed to statistics connect spread

This should never happen!

Message 163: error - outgoing transfer buffer size exceeded in statistics connect spread

The transfer buffer has been exceeded.

Action:

Consider using densvar option in CONTROL for extremely non-equilibrium simulations. Alternatively,
increase mxbfss parameters in set bounds recompile and resubmit.

Message 164: error - incoming data transfer size exceeds limit in statistics connect spread

See notes on message 163 above.

Action:

See action notes on message 163 above.

Message 170: error - too many variables for statistics array

This error means the statistics arrays appearing in subroutine statistics collect are too small. This
should never happen!

Action:

Contact DL POLY 4 authors.

Message 172: error - duplicate intra-molecular entries specified
in TABBND||TABANG||TABDIH||TABINV

A duplicate entry has been encountered in the intra-molecular table file.

Action:

Contact DL POLY 4 authors.

Message 200: error - rdf/z-density buffer array too small in system revive

This error indicates that a global summation buffer array in subroutine system revive is too small, i.e
mxbuff < mxgrdf. This should never happen!

Action:

Contact DL POLY 4 authors.

Message 210: error - only one *angles* directive per molecule is allowed

DL POLY 4 has found more than one angles entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

283

©STFC Appendix D

Message 220: error - only one *dihedrals* directive per molecule is allowed

DL POLY 4 has found more than one dihedrals entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 230: error - only one *inversions* directive per molecule is allowed

DL POLY 4 has found more than one inversions entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 240: error - only one *tethers* directive per molecule is allowed

DL POLY 4 has found more than one tethers entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 300: error - incorrect boundary condition for link-cell algorithms

The use of link cells in DL POLY 4 implies the use of appropriate boundary conditions. This error re-
sults if the user specifies octahedral or dodecahedral boundary conditions, which are only available in
DL POLY Classic.

Action:

Correct your boundary condition or consider using DL POLY Classic.

Message 305: error - too few link cells per dimension for many-body and tersoff forces sub-
routines.

The link cells algorithms for many-body and tersoff forces in DL POLY 4 cannot work with less than 3
(secondary) link cells per dimension. This depends on the cell size widths (as supplied in CONFIG) and
the largest system cut-off (as specified in CONTROL although it may be drawn or overridden by cutoffs
specified as part of some potentials’ parameter sets in FIELD).

Action:

Decrease many-body and tersoff potentials cutoffs or/and number of nodes or/and increase system size.

Message 307: error - link cell algorithm violation

DL POLY 4 does not like what you are asking it to do. Probable cause: the cutoff is too large to use link
cells in this case.

Action:

Rethink the simulation model; reduce the cutoff or/and number of nodes or/and increase system size.

Message 308: error - link cell algorithm in contention with SPME sum precision

DL POLY 4 does not like what you are asking it to do. Probable cause: you ask for SPME precision that

284

©STFC Appendix D

is not achievable by the current settings of the link cell algorithm.

Action:

Rethink the simulation model; reduce number of nodes or/and SPME sum precision or/and increase cutoff.

Message 340: error - invalid integration option requested

DL POLY 4 has detected an incompatibility in the simulation instructions, namely that the requested
integration algorithm is not compatible with the physical model. It may be possible to override this error
trap, but it is up to the user to establish if this is sensible.

Action:

This is a non-recoverable error, unless the user chooses to override the restriction.

Message 350: error - too few degrees of freedom

This error can arise if a small system is being simulated and the number of constraints applied is too large.

Action:

Simulate a larger system or reduce the number of constraints.

Message 360: error - degrees of freedom distribution problem

This should never happen for a dynamically sensical system. This error arises if a model system contains
one or more free, zero mass particles. Zero mass (mass-less) particles/sites are only allowed for shells in
core-shell units and as part of rigid bodies (mass-less but charged RB sites).

Action:

Inspect your FIELD to find and correct the erroneous entries, and try again.

Message 380: error - simulation temperature not specified or < 1 K

DL POLY 4 has failed to find a temp directive in the CONTROL file.

Action:

Place a temp directive in the CONTROL file, with the required temperature specified.

Message 381: error - simulation timestep not specified

DL POLY 4 has failed to find a timestep directive in the CONTROL file.

Action:

Place a timestep directive in the CONTROL file, with the required timestep specified.

Message 382: error - simulation cutoff not specified

DL POLY 4 has failed to find a cutoff directive in the CONTROL file.

Action:

Place a cutoff directive in the CONTROL file, with the required forces cutoff specified.

285

©STFC Appendix D

Message 387: error - system pressure not specified

The target system pressure has not been specified in the CONTROL file. Applies to NPT simulations only.

Action:

Insert a press directive in the CONTROL file specifying the required system pressure.

Message 390: error - npt/nst ensemble requested in non-periodic system

A non-periodic system has no defined volume, hence the NPT algorithm cannot be applied.

Action:

Either simulate the system with a periodic boundary, or use another ensemble.

Message 402: error - van der waals not specified

The user has not set any cutoff in CONTROL, (rvdw) - the van der Waals potentials cutoff is needed in
order for DL POLY 4 to proceed.

Action:

Supply a cutoff value for the van der Waals terms in the CONTROL file using the directive rvdw, and
resubmit job.

Message 410: error - cell not consistent with image convention

The simulation cell vectors appearing in the CONFIG file are not consistent with the specified image
convention.

Action:

Locate the variable imcon in the CONFIG file and correct to suit the cell vectors.

Message 414: error - conflicting ensemble options in CONTROL file

DL POLY 4 has found more than one ensemble directive in the CONTROL file.

Action:

Locate extra ensemble directives in CONTROL file and remove.

Message 416: error - conflicting force options in CONTROL file

DL POLY 4 has found incompatible directives in the CONTROL file specifying the electrostatic interactions
options.

Action:

Locate the conflicting directives in the CONTROL file and correct.

Message 430: error - integration routine not available

A request for a non-existent ensemble has been made or a request with conflicting options that DL POLY 4
cannot deal with.

Action:

Examine the CONTROL and FIELD files and remove inappropriate specifications.

286

©STFC Appendix D

Message 432: error - undefined tersoff potential

This shows that DL POLY 4 has encountered an unfamiliar entry for Tersoff potentials in FIELD.

Action:

Correct FIELD and resubmit.

Message 433: error - rcut must be specified for the Ewald sum precision

When specifying the desired precision for the Ewald sum in the CONTROL file, it is also necessary to specify
the real space cutoff rcut.

Action:

Place the cut directive before the ewald precision directive in the CONTROL file and rerun.

Message 436: error - unrecognised ensemble

An unknown ensemble option has been specified in the CONTROL file.

Action:

Locate ensemble directive in the CONTROL file and amend appropriately.

Message 440: error - undefined angular potential

A form of angular potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to DL POLY 4
if this is possible. Alternatively, you may consider defining the required potential in the code yourself.
Amendments to subroutines read field and angles forces will be required.

Message 442: error - undefined three-body potential

A form of three-body potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to DL POLY 4
if this is reasonable. Alternatively, you may consider defining the required potential in the code yourself.
Amendments to subroutines read field and three body forces will be required.

Message 443: error - undefined four-body potential

DL POLY 4 has been requested to process a four-body potential it does not recognise.

Action:

Check the FIELD file and make sure the keyword is correctly defined. Make sure that subroutine
three body forces contains the code necessary to deal with the requested potential. Add the code
required if necessary, by amending subroutines read field and three body forces.

Message 444: error - undefined bond potential

DL POLY 4 has been requested to process a bond potential it does not recognise.

287

©STFC Appendix D

Action:

Check the FIELD file and make sure the keyword is correctly defined. Make sure that subroutine bonds forces
contains the code necessary to deal with the requested potential. Add the code required if necessary, by
amending subroutines read field and bonds forces.

Message 445: error - r 14 > rcut in dihedrals forces

The 1-4 coulombic scaling for a dihedral angle bonding cannot be performed since the 1-4 distance has
exceeded the system short range interaction cutoff, rcut, in subroutine dihedral forces.

Action:

To prevent this error occurring again increase rcut.

Message 446: error - undefined electrostatic key in dihedral forces

The subroutine dihedral forces has been requested to process a form of electrostatic potential it does
not recognise.

Action:

The error arises because the integer key keyfrc has an inappropriate value (which should not happen in
the standard version of DL POLY 4). Check that the FIELD file correctly specifies the potential. Make
sure the version of dihedral forces does contain the potential you are specifying. Report the error to the
authors if these checks are correct.

Action:

To prevent this error occurring again increase rvdw.

Message 447: error - only one *shells* directive per molecule is allowed

DL POLY 4 has found more than one shells entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 448: error - undefined dihedral potential

A form of dihedral potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to DL POLY 4
if this is reasonable. Alternatively, you may consider defining the required potential in the code yourself.
Amendments to subroutines read field and dihedral forces (and its variants) will be required.

Message 449: error - undefined inversion potential

A form of inversion potential has been encountered which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to DL POLY 4
if this is reasonable. Alternatively, you may consider defining the required potential in the code yourself.
Amendments to subroutines read field and inversions forces will be required.

288

©STFC Appendix D

Message 450: error - undefined tethering potential

A form of tethering potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to DL POLY 4
if this is reasonable. Alternatively, you may consider defining the required potential in the code yourself.
Amendments to subroutines read field and tethers forces will be required.

Message 451: error - three-body potential cutoff undefined

The cutoff radius for a three-body potential has not been defined in the FIELD file.

Action:

Locate the offending three-body force potential in the FIELD file and add the required cutoff. Resubmit
the job.

Message 452: error - undefined vdw potential

A form of vdw potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to DL POLY 4
if this is reasonable. Alternatively, you may consider defining the required potential in the code yourself.
Amendments to subroutines read field, vdw generate* and dihedrals 14 vdw will be required.

Message 453: error - four-body potential cutoff undefined

The cutoff radius for a four-body potential has not been defined in the FIELD file.

Action:

Locate the offending four-body force potential in the FIELD file and add the required cutoff. Resubmit the
job.

Message 454: error - unknown external field

A form of external field potential has been requested which DL POLY 4 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable to DL POLY 4
if this is reasonable. Alternatively, you may consider defining the required potential in the code yourself.
Amendments to subroutines read field and external field apply will be required.

Message 456: error - external field xpis-ton is applied to a layer with at least one frozen
particle

For a layer to emulate a piston no particle constituting it must be frozen.

Action:

Locate the offending site(s) in the FIELD file and unfreeze the particles.

289

©STFC Appendix D

Message 461: error - undefined metal potential

A form of metal potential has been requested which DL POLY 4 does not recognise.

Action:

Locate erroneous entry in the FIELD file and correct the potental interaction to one of the allowed ones for
metals in DL POLY 4.

Message 462: error - thermostat friction constant must be > 0

A zero or negative value for the thermostat friction constant has been encountered in the CONTROL file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time constant.

Message 463: error - barostat friction constant must be > 0

A zero or negative value for the barostat friction constant has been encountered in the CONTROL file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time constant.

Message 464: error - thermostat relaxation time constant must be > 0

A zero or negative value for the thermostat relaxation time constant has been encountered in the CONTROL
file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time constant.

Message 466: error - barostat relaxation time constant must be > 0

A zero or negative value for the barostat relaxation time constant has been encountered in the CONTROL
file.

Action:

Locate the ensemble directive in the CONTROL file and assign a positive value to the time constant.

Message 467: error - rho must not be zero in valid buckingham potential

User specified vdw type buckingham potential has a non-zero force and zero rho constants. Only both zero
or both non-zero are allowed.

Action:

Inspect the FIELD file and change the values in question appropriately.

Message 468: error - r0 too large for snm potential with current cutoff

The specified location (r0) of the potential minimum for a shifted n-m potential exceeds the specified
potential cutoff. A potential with the desired minimum cannot be created.

Action:

290

©STFC Appendix D

To obtain a potential with the desired minimum it is necessary to increase the van der Waals cutoff. Locate
the rvdw directive in the CONTROL file and reset to a magnitude greater than r0. Alternatively adjust the
value of r0 in the FIELD file. Check that the FIELD file is correctly formatted.

Message 470: error - n < m in definition of n-m potential

The specification of a n-m potential in the FIELD file implies that the exponent m is larger than exponent
n. (Not all versions of DL POLY 4 are affected by this.)

Action:

Locate the n-m potential in the FIELD file and reverse the order of the exponents. Resubmit the job.

Message 471: error - rcut < 2*rctbp (maximum cutoff for three-body potentials)

The cutoff for the pair interactions is smaller than twice that for the three-body interactions. This is a
bookkeeping requirement for DL POLY 4.

Action:

Either use a smaller three-body cutoff, or a larger pair potential cutoff.

Message 472: error - rcut < 2*rcfbp (maximum cutoff for four-body potentials)

The cutoff for the pair interactions is smaller than twice that for the four-body interactions. This is a
bookkeeping requirement for DL POLY 4.

Action:

Either use a smaller four-body cutoff, or a larger pair potential cutoff.

Message 474: error - conjugate gradient mimimiser cycle limit exceeded

The conjugate gradient minimiser exceeded the iteration limit (100 for the relaxed shell model, 1000 for the
configuration minimiser).

Action:

Decrease the respective convergence criterion. Alternatively, you may try to increase the limit by hand in
core shell relax or in minimise relax respectively and recompile. However, it is unlikely that such
measures will cure the problem as it is more likely to lay in the physical description of the system being
simulated. For example, are the core-shell spring constants well defined? Is the system being too far from
equilibrium?

Message 476: error - shells MUST all HAVE either zero or non-zero masses

The polarisation of ions is accounted via a core-shell model as the shell dynamics is either relaxed - shells
have no mass, or adiabatic - all shells have non-zero mass.

Action:

Choose which model you would like to use in the simulated system and adapt the shell masses in FIELD to
comply with your choice.

291

©STFC Appendix D

Message 478: error - shake algorithms (constraints & pmf) failed to converge

Your system has both bond and PMF constraints. SHAKE (RATTLE VV1) is done by combined application
of both bond and PMF constraints SHAKE (RATTLE VV1) in an iterative manner until the PMF constraint
virial converges to a constant. No such convergence is achieved.

Action:

See action notes on message 515 below.

Message 480: error - PMF constraint length > minimum of all half-cell widths

The specified PMF length has exceeded the minimum of all half-cell widths.

Action:

Specify shorter PMF length or increase MD cell dimensions.

Message 484: error - only one potential of mean force permitted

Only one potential of mean force is permitted in FIELD.

Action:

Correct the erroneous entries in FIELD.

Message 486: error - only one of the PMF units is permitted to have frozen atoms

Only one of the PMF units is permitted to have frozen atoms.

Action:

Correct the erroneous entries in FIELD.

Message 488: error - too many PMF constraints per domain

This should not happen.

Action:

Is the use of PMF constraints in your system physically sound?

Message 490: error - local PMF constraint not found locally

This should not happen.

Action:

Is your system physically sound, is your system equilibrated?

Message 492: error - a diameter of a PMF unit > minimum of all half cell widths

The diameter of a PMF unit has exceeded the minimum of all half-cell widths.

Action:

Consider the physical concept you are trying to imply in the simulation. Increase MD cell dimensions.

292

©STFC Appendix D

Message 494: error - overconstrained PMF units

PMF units are oveconstrained.

Action:

DL POLY 4 algorithms cannot handle overconstrained PMF units. Decrease the number of constraints on
the PMFs.

Message 497: error - pmf quench failure

Action:

See notes on message 515 below.

Message 498: error - shake algorithm (pmf shake) failed to converge

Action:

See action notes on message 515 below.

Message 499: error - rattle algorithm (pmf rattle) failed to converge

See notes on message 515 below.

Action:

See action notes on message 515 below.

Message 500: error - PMF unit of zero length is not permitted

PMF unit of zero length is found in FIELD. PMF units are either a single atom or a group of atoms usually
forming a chemical molecule.

Action:

Correct the erroneous entries in FIELD.

Message 501: error - coincidence of particles in PMF unit

A PMF unit must be constituted of non-repeating particles!

Action:

Correct the erroneous entries in FIELD.

Message 502: error - PMF unit member found to be present more than once

A PMF unit is a group of unique (distingushed) atoms/sites. No repetition of a site is allowed in a PMF
unit.

Action:

Correct the erroneous entries in FIELD.

293

©STFC Appendix D

Message 504: error - cutoff too large for TABLE||TABBND file

The requested cutoff exceeds the information in the TABLE file or the TABBND cutoff is larger than half
the system cutoff rcut.

Action:

In the case when this is received while reading TABLE, reduce the value of the vdw cutoff (rvdw) in the
CONTROL file or reconstruct the TABLE file. In the case when this is received while reading TABBND
then specify a larger rcut in CONTROL.

Message 505: error - EAM metal densities or pair crossfunctions out of range

The resulting densities or pair crossfunctions are not defined in the TABEAM file.

Action:

Recreate a TABEAM file with wider interval of defined densities and pair cross functions.

Message 506: error - EAM or MBPC metal densities out of range

The resulting densities are not defined in the TABEAM file if EAM is used or ill defined due to atoms nearly
overlapping when MBPC metal potential is in use..

Action:

Recreate a TABEAM file with wider range of densities.

Message 507: error - metal density embedding out of range

In the case of EAM type of metal interactions this indicates that the electron density of a particle in
the system has exceeded the limits for which the embedding function for this particle’s type is defined (as
supplied in TABEAM. In the case of Finnis-Sinclair type of metal interactions, this indicates that the density
has become negative.

Action:

Reconsider the physical sanity and validity of the metal interactions in your system and this type of simula-
tion. You MUST change the interactions’ parameters and/or the way the physical base of your investigation
is handled in MD terms.

Message 508: error - EAM metal interaction entry in TABEAM unspecified in FIELD

The specified EAM metal interaction entry found in TABEAM is not specified in FIELD.

Action:

For N metal atom types there are (5N +N2)/2 EAM functions in the TABEAM file. One density (N) and
one embedding (N) function for each atom type and (N +N2)/2 cross-interaction functions. Fix the table
entries and resubmit.

Message 509: error - duplicate entry for a pair interaction detected in TABEAM

A duplicate cross-interaction function entry is detected in the TABEAM file.

Action:

Remove all duplicate entries in the TABEAM file and resubmit.

294

©STFC Appendix D

Message 510: error - duplicate entry for a density function detected in TABEAM

A duplicate density function entry is detected in the TABEAM file.

Action:

Remove all duplicate entries in the TABEAM file and resubmit.

Message 511: error - duplicate entry for an embedding function detected in TABEAM

A duplicate embedding function entry is detected in the TABEAM file.

Action:

Remove all duplicate entries in the TABEAM file and resubmit.

Message 512: error - non-definable vdw/dpd interactions detected in FIELD

A VDW corss-interaction was uncpecified and recovering it by using a mixing rule proved impossible due to
type difference of the single species potentials.

Action:

Rethink your FIELD file interactions before restarting the job with a new compatible FIELD and possibly
CONTROL file.

Message 513: error - particle assigned to non-existent domain in read config

This can only happen if particle coordinates do not match the cell parameters in CONFIG. Probably, due
to negligence or numerical inaccuracy inaccuracy in generation of big supercell from a small one.

Action:

Make sure lattice parameters and particle coordinates marry each other. Increase accuracy when generating
a supercell.

Message 514: error - allowed image conventions are: 0, 1, 2, 3 and 6

DL POLY 4 has found unsupported boundary condition specified in CONFIG.

Action:

Correct your boundary condition or consider using DL POLY Classic.

Message 515: error - rattle algorithm (constraints rattle) failed to converge

The RATTLE algorithm for bond constraints is iterative. If the maximum number of permitted iterations
is exceeded, the program terminates. Possible causes include: incorrect force field specification; too high a
temperature; inconsistent constraints (over-constraint) etc..

Action:

You may try to increase the limit of iteration cycles in the constraint subroutines by using the directive
mxshak and/or decrease the constraint precision by using the directive shake in CONTROL. But the
trouble may be much more likely to be cured by careful consideration of the physical system being simulated.
For example, is the system stressed in some way? Too far from equilibrium?

295

©STFC Appendix D

Message 517: error - allowed configuration information levels are: 0, 1 and 2

DL POLY 4 has found an erroneous configuration information level, l : 0.le.l.le.2, (i) for the trajectory
option in CONTROL or (ii) in the header of CONFIG.

Action:

Correct the error in CONFIG and rerun.

Message 518: error - control distances for variable timestep not intact

DL POLY 4 has found the control distances for the variable timestep algorithm to be in contention with
each other.

Action:

mxdis MUST BE > 2.5× mndis. Correct in CONTROL and rerun.

Message 519: error - REVOLD is incompatible or does not exist

Either REVOLD does not exist or its formatting is incompatible.

Action:

Change the restart option in CONTROL and rerun.

Message 520: error - domain decomposition failed

A DL POLY 4 check during the domain decomposition mapping has been violated. The number of nodes
allowed for imcon = 0 is only 1,2,4 and 8! The number of nodes allowed for imcon = 6 is restricted to 2
along the z direction! The number of nodes should not be a prime number since these are not factoris-
able/decomposable!

Action:

You must ensure DL POLY 4 execution on a number of processors that complies with the advise above.

Message 530: error - pseudo thermostat thickness MUST comply with: 2 Angs <= thick-
ness < a quarter of the minimum MD cell width

DL POLY 4 has found a check violated while reading CONTROL.

Action:

Correct accordingly in CONTROL and resubmit.

Message 540: error - pseudo thermostat MUST only be used in bulk simulations, i.e. imcon
MUST be 1, 2 or 3

DL POLY 4 has found a check violated while reading CONTROL.

Action:

Correct accordingly in CONTROL nve or in CONFIG (imcon) and resubmit.

Message 551: error - REFERENCE not found !!!

The defect detection option is used in conjunction with restart but no REFERENCE file is found.

296

©STFC Appendix D

Action:

Supply a REFERENCE configuration.

Message 552: error - REFERENCE must contain cell parameters !!!

REFERENCE MUST contain cell parameters i.e. image convention MUST be imcon = 1, 2, 3 or 6.

Action:

Supply a properly formatted REFERENCE configuration.

Message 553: error - REFERENCE is inconsistent !!!

An atom has been lost in transfer between nodes. This should never happen!

Action:

Big trouble. Report problem to authors immediately.

Message 554: error - REFERENCE’s format different from CONFIG’s !!!

REFERENCE complies to the same rules as CONFIG with the exception that image convention MUST be
imcon = 1, 2, 3 or 6.

Action:

Supply a properly formatted REFERENCE configuartion.

Message 555: error - particle assigned to non-existent domain in defects read reference

See notes on message 513 above.

Action:

See action notes on message 513 above.

Message 556: error - too many atoms in REFERENCE file

See notes on message 45 above.

Action:

See action notes on message 45 above.

Message 557: error - undefined direction passed to defects reference export

See notes on message 42 above.

Action:

See action notes on message 42 above.

Message 558: error - outgoing transfer buffer exceeded in defects reference export

See notes on message 38 above.

Action:

See action notes on message 38 above.

297

©STFC Appendix D

Message 559: error - incoming data transfer size exceeds limit in defects reference export

See notes on message 38 above.

Action:

See action notes on message 38 above.

Message 560: error - rdef found to be > half the shortest interatomic distance in REFERENCE

The defect detection option relies on a cutoff, rdef, to define the vicinity around a site (defined in REF-
ERENCES) in which a particle can claim to occupy the site. Evidently, rdef MUST be < half the shortest
interatomic distance in REFERENCE.

Action:

Decrease the value of rdef at directive defect in CONTROL.

Message 570: error - unsupported image convention (0) for system expansion option nfold

System expansion is possible only for system with periodicity on their boundaries.

Action:

Change the image convention in CONFIG to any other suitable periodic boundary condition.

Message 580: error - replay (HISTORY) option can only be used for structural property
recalculation

No structural property has been specified for this option to activate itself.

Action:

In CONTROL specify properties for recalculation (RDFs,z-density profiles, defect detection) or alternatively
remove the option.

Message 585: error - end of file encountered in HISTORY file

This means that the HISTORY file is incomplete in some way: Either should you abort the replay (HIS-
TORY) option or provide a fresh HISTORY file before restart.

Action:

In CONTROL specify properties for recalculation (RDFs,z-density profiles, defect detection) or alternatively
remove the option.

Message 590: error - uknown minimisation type, only ”force”, ”energy” and ”distance” are
recognised

Configuration minimisation can take only these three criteria.

Action:

In CONTROL specify the criterion you like followed by the needed arguments.

Message 600: error - ”impact” option specified more than once in CONTROL

Only one instance of the ”impact” option is allowed in CONTROL.

298

©STFC Appendix D

Action:

Remove any extra instances of the ”impact” option in CONTROL.

Message 610: error - ”impact” applied on particle that is either frozen, or the shell of a
core-shell unit or part of a RB

It is the user’s responsibility to ensure that impact is initiated on a ”valid” particle.

Action:

In CONTROL remove the ”impact” directive or correct the particle identity in it so that it complies with
the requirements.

Message 620: error - duplicate or mixed intra-molecular entries specified in FIELD

The FIELD parser has detected an inconsistency in the description of bonding interactions. It is the user’s
responsibility to ensure that no duplicate or mixed-up intra-molecular entries are specified in FIELD.

Action:

Look at the preceding warning message in OUTPUT and find out which entry of what intra-molecular-like
interaction is at fault. Correct the bonding description and try running again.

Message 625: error - only one *rigid* directive per molecule is allowed

DL POLY 4 has found more than one rigids entry per molecule in FIELD.

Action:

Correct the erroneous part in FIELD and resubmit.

Message 630: error - too many rigid body units specified

This should never happen! This indicates an erroneous FIELD file or corrupted DL POLY 4 executable.
Unlike DL POLY Classic, DL POLY 4 does not have a set limit on the number of rigid body types it can
handle in any simulation (this is not the same as the total number of RBs in the system or per domain).

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 632: error - rigid body unit MUST have at least 2 sites

This is likely to be a corrupted FIELD file.

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 634: error - rigid body unit MUST have at least one non-massless site

No RB dynamics is possible if all sites of a body are massless as no rotational inertia can be defined!

Action:

Examine FIELD for erroneous directives, correct and resubmit.

299

©STFC Appendix D

Message 638: error - coincidence of particles in rigid body unit

This indicates a corrupted FIELD file as all members of a RB unit must be destinguishable from one another.

Action:

Examine FIELD for erroneous directives, correct and resubmit.

Message 640: error - too many rigid body units per domain

DL POLY 4 limits the number of rigid body units in the system to be simulated (actually, the number to
be processed by each node) and checks for the violation of this. Termination will result if the condition is
violated.

Action:

Use densvar option in CONTROL to increase mxrgd (alternatively, increase it by hand in set bounds and
recompile) and resubmit.

Message 642: error - rigid body unit diameter > rcut (the system cutoff)

DL POLY 4 domain decomposition limits the size of a RB to a largest diagonal < system cutoff. I.e. the
largest RB type is still within a linked cell volume.

Action:

Increase cutoff.

Message 644: error - overconstrained rigid body unit

This is a very unlikely message which usually indicates a corrupted FIELD file or unphysically overcon-
strained system.

Action:

Decrease constraint on the system. Examine FIELD for erroneous directives, if any, correct and resubmit.

Message 646: error - overconstrained constraint unit

This is a very unlikely message which usually indicates a corrupted FIELD file or unphysically overcon-
strained system.

Action:

Decrease constraint on the system. Examine FIELD for erroneous directives, if any, correct and resubmit.

Message 648: error - quaternion setup failed

This error indicates that the routine q setup has failed in reproducing all the atomic positions in rigid
units from the centre of mass and quaternion vectors it has calculated.

Action:

Check the contents of the CONFIG file. DL POLY 4 builds its local body description of a rigid unit
type from the first occurrence of such a unit in the CONFIG file. The error most likely occurs because
subsequent occurrences were not sufficiently similar to this reference structure. If the problem persists
increase the value of tol in q setup and recompile. If problems still persist double the value of dettest in
rigid bodies setup and recompile. If you still encounter problems contact the authors.

300

©STFC Appendix D

Message 650: error - failed to find principal axis system

This error indicates that the routine rigid bodies setup has failed to find the principal axis for a rigid
unit.

Action:

This is an unlikely error. DL POLY 4 should correctly handle linear, planar and 3-dimensional rigid units.
There is the remote possibility that the unit has all of its mass-bearing particles frozen while some of the
massless are not or the unit has just one mass-bearing particle. Another, more likely, possibility, in case of
linear molecules is that the precision of the coordinates of these linear molecules’ constituentsi, as produced
by the user, is not good enough, which leads DL POLY 4 to accepting it as non-linear while, in fact, it is
and then failing at the current point. It is quite possible, despite considered as wrong practice, that the
user defined system of linear RBs is, in fact, generated from a system of CBs (3 per RB) which has not been
run in a high enough SHAKE/RATTLE tolerance accuracy (10̂-8 and higher may be needed). Check the
definition of the rigid unit in the CONFIG file, if sensible report the error to the authors.

Message 655: error - FENE bond breaking failure

A FENE type bond was broken.

Action:

Examine FIELD for erroneous directives, if any, correct and resubmit.

Message 660: error - bond-length > cutoff in TABBND or cutoff for PDF collection

A bond has reached a length beyond the cutoff over which (i) its interactions are defined in TABBND or
(ii) its potential distribution function is sampled.

Action:

If there is a TABBND present, reconstruct TABBND with the original interaction potentials defined over a
larger cutoff and try to run the system with new TABBND. If bonds PDFs are collected then increase the
PDF bond cutoff value in CONTROL and try to run the system.

Message 670: error - insufficient electronic temperature cells for TTM heat diffusion

The number of coarse-grained electronic temperature (CET) cells for the heat diffusion calculations of the
two-temperature model (TTM) in any direction (x, y or z) is less than the number of coarse-grained ionic
temperature (CIT) cells.

Action:

Examine the OUTPUT for the number of ionic temperature cells and modify the ttm ncet directive in the
CONTROL file to ensure there are at least as many electronic temperature cells.

Message 680: error - rpad too large for calculation of ionic temperatures

The padding distance applied to pair interactions is the maximum distance a particle may exist beyond a
periodic boundary. In the case of calculating ionic temperatures for TTM, this distance extends beyond the
extent (in any direction) of the ionic temperature cells and thus this property cannot be reliably calculated.

Action:

Reduce the padding distance for pair interactions with the rpad directive in the CONTROL file.

301

©STFC Appendix D

Message 681: error - electronic specific heat not fully specified

Not enough information is given for electronic specific heat capacity functions (other than a constant value)
used in two-temperature model calculations.

Action:

Ensure that two positive parameters are given with either the ttm cetanh or ttm celin directives in the
CONTROL file.

Message 682: error - thermal conductivity of metal not specified

No information given for thermal conductivity of metal used in two-temperature model calculations.

Action:

Ensure that a positive parameter is given with either the ttm keconst or ttm kedrude directives in the
CONTROL file.

Message 683: error - thermal diffusivity of non-metal not specified

No information given for thermal diffusivity of non-metal used in two-temperature model calculations.

Action:

Ensure that a positive parameter is given with the ttm diff directive in the CONTROL file.

Message 684: error - cannot find or open thermal conductivity table file (Ke.dat)

No readable file (Ke.dat) is available to read tabulated thermal conductivities.

Action:

Ensure that a readable text file named Ke.dat is available in the directory where DL POLY 4 is being run.
(This must be supplied if the ttm ketab directive is given in the CONTROL file.)

Message 685: error - no data found in thermal conductivity table file (Ke.dat)

No tabulated thermal conductivities can be read from the Ke.dat file.

Action:

Ensure that the Ke.dat file is formatted correctly in two columns: temperature and thermal conductivity.
Temperatures should be greater than or equal to 0 kelvin.

Message 686: error - cannot find or open volumetric heat capacity table file (Ce.dat)

No readable file (Ce.dat) is available to read tabulated volumetric heat capacities.

Action:

Ensure that a readable text file named Ce.dat is available in the directory where DL POLY 4 is being run.
(This must be supplied if the ttm cetab directive is given in the CONTROL file.)

Message 687: error - no data found in volumetric heat capacity table file (Ce.dat)

No tabulated volumetric heat capacities can be read from the Ce.dat file.

Action:

302

©STFC Appendix D

Ensure that the Ce.dat file is formatted correctly in two columns: temperature and volumetric heat capacity
(equal to product of specific heat capacity and density). Temperatures should be greater than or equal to
0 kelvin.

Message 688: error - cannot find or open thermal diffusivity table file (De.dat)

No readable file (Ce.dat) is available to read tabulated volumetric heat capacities.

Action:

Ensure that a readable text file named De.dat is available in the directory where DL POLY 4 is being run.
(This must be supplied if the ttm detab directive is given in the CONTROL file.)

Message 689: error - no data found in thermal diffusivity table file (De.dat)

No tabulated thermal diffusivities can be read from the De.dat file.

Action:

Ensure that the De.dat file is formatted correctly in two columns: temperature and thermal diffusivity.
Temperatures should be greater than or equal to 0 kelvin.

Message 690: error - cannot find or open coupling constant table file (g.dat)

No readable file (g.dat) is available to read tabulated electron-phonon coupling constants.

Action:

Ensure that a readable text file named g.dat is available in the directory where DL POLY 4 is being run.
(This must be supplied if the ttm gvar directive is given in the CONTROL file.)

Message 691: error - no data found in coupling constant table file (g.dat)

No tabulated thermal conductivities can be read from the g.dat file.

Action:

Ensure that the g.dat file is formatted correctly in two columns: temperature and electron-phonon coupling
constant. Temperatures should be greater than or equal to 0 kelvin.

Message 692: error - end of file encountered in table file (Ke.dat, Ce.dat, De.dat or g.dat)

DL POLY 4 encountered the end of one of the tabulated files (Ke.dat, Ce.dat, De.dat or g.dat) for two-
temperature model calculations prematurely.

Action:

Check that the tabulated files are not corrupted or incomplete in some way.

Message 693: error - negative electronic temperature: instability in electronic heat diffusion
equation

A negative (non-physical) electronic temperature has been obtained during solution of the thermal diffusion
equation used in the two-temperature model. This is an indication of instability in the numerical solution
of this partial differential equation.

Action:

303

©STFC Appendix D

This error should not happen due to careful selection of the timestep used for the explicit difference solver.
In some limited circumstances, it may be possible to improve the solver stability by decreasing the value of
fopttstep in ttm thermal diffusion, which is used to scale the timestep.

Message 694: error - electronic temperature restart file (DUMP E) does not exist

The DUMP E file (containing electronic temperatures for restarting simulations with the two-temperature
model) does not exist.

Action:

A DUMP E file should be supplied if the restart directive is included in the CONTROL file.

Message 695: error - mismatch in electronic temperature lattice sizes between restart (DUMP E)
and CONTROL files

The electronic temperature lattice size (number of CET cells) given in the DUMP E restart file for two-
temperature model simulations does not correspond to the size given in the CONTROL file.

Action:

Ensure that the ttm ncet directive in the CONTROL file matches up with the three numbers in the first
line of the DUMP E file.

Message 696: error - cannot read electronic temperature restart (DUMP E) file

The electronic temperature lattice size (number of CET cells) given in the DUMP E restart file for two-
temperature model simulations does not correspond to the size given in the CONTROL file.

Action:

Check that the DUMP E file is not corrupted or incomplete in some way.

Message 1000: error - working precision mismatch between FORTRAN90 and MPI imple-
mentation

DL POLY 4 has failed to match the available modes of MPI precision for real numbers to the defined in sc
kinds f90 FORTRAN90 working precision wp for real numbers. wp is a precompile parameter.

Action:

This simply mean that wp must have been changed from its original value to something else and the new
value is not matched by the mpi wp variable in comms module. It is the user’s responsibility to ensure
that wp and mpi wp are compliant. Make the necessary corrections to sc kinds f90 and/or comms module.

Message 1001: error - allocation failure in comms module − > gcheck vector

DL POLY 4 has failed to find available memory to allocate an array or arrays, i.e. there is lack of sufficient
memory (per node) on the execution machine.

Action:

This may simply mean that your simulation is too large for the machine you are running on. Consider
this before wasting time trying a fix. Try using more processing nodes if they are available. If this is not
an option investigate the possibility of increasing the heap size for your application. Talk to your systems
support people for advice on how to do this.

304

©STFC Appendix D

Message 1002: error - deallocation failure in comms module − > gcheck vector

DL POLY 4 has failed to deallocate an array or arrays, i.e. to free memory that is no longer in use.

Action:

Talk to your systems support people for advice on how to manage this.

Message 1003: error - allocation failure in comms module − > gisum vector

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1004: error - deallocation failure in comms module − > gisum vector

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1005: error - allocation failure in comms module − > grsum vector

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1006: error - deallocation failure in comms module − > grsum vector

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1007: error - allocation failure in comms module − > gimax vector

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1008: error - deallocation failure in comms module − > gimax vector

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1009: error - allocation failure in comms module − > grmax vector

See notes on message 1001 above.

305

©STFC Appendix D

Action:

See action notes on message 1001 above.

Message 1010: error - deallocation failure in comms module − > grmax vector

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1011: error - allocation failure in parse module − > get record

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1012: error - deallocation failure in parse module − > get record

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1013: error - allocation failure in angles module − > allocate angles arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1014: error - allocation failure in bonds module − > allocate bonds arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1015: error - allocation failure in core shell module − >
allocate core shell arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1016: error - allocation failure in statistics module − > allocate statitics arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

306

©STFC Appendix D

Message 1017: error - allocation failure in tethers module − > allocate tethers arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1018: error - allocation failure in constraints module − >
allocate constraints arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1019: error - allocation failure in external field module − >
allocate external field arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1020: error - allocation failure in dihedrals module − > allocate dihedrals arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1021: error - allocation failure in inversions module − > allocate inversion arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1022: error - allocation failure in vdw module − > allocate vdw arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1023: error - allocation failure in metal module − > allocate metal arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

307

©STFC Appendix D

Message 1024: error - allocation failure in three body module − >
allocate three body arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1025: error - allocation failure in config module − > allocate config arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1026: error - allocation failure in site module − > allocate site arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1027: error - allocation failure in tersoff module − > alocate tersoff arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1028: error - deallocation failure in angles module − > deallocate angles arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1029: error - deallocation failure in bonds module − > deallocate bonds arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1030: error - deallocation failure in core shell module − >
deallocate core shell arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

308

©STFC Appendix D

Message 1031: error - deallocation failure in tethers module − >
deallocate tethers arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1032: error - deallocation failure in constraints module − >
deallocate constraints arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1033: error - deallocation failure in dihedrals module − >
deallocate dihedrals arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1034: error - deallocation failure in inversions module − >
deallocate inversions arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1035: error - allocation failure in defects module − > allocate defects arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1036: error - allocation failure in pmf module − > allocate pmf arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1037: error - deallocation failure in pmf module − > deallocate pmf arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

309

©STFC Appendix D

Message 1038: error - allocation failure in minimise module − > allocate minimise arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1039: error - deallocation failure in minimise module − >
deallocate minimise arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1040: error - allocation failure in ewald module − > ewald allocate kall arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1041: error - allocation failure in langevin module − >
langevin allocate arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1042: error - allocation failure in rigid bodies module − >
allocate rigid bodies arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1043: error - deallocation failure in rigid bodies module − >
deallocate rigid bodies arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1044: error - allocation failure in comms module − > gimin vector

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

310

©STFC Appendix D

Message 1045: error - deallocation failure in comms module − > gimin vector

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1046: error - allocation failure in comms module − > grmin vector

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1047: error - deallocation failure in comms module − > grmin vector

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1048: error - error - allocation failure in comms module − > grsum matrix

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1049: error - deallocation failure in comms module − > grsum matrix

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1050: error - sorted I/O base communicator not set

Possible corruption if io module. This should never happen!

Action:

Make sure you have a clean copy of DL POLY 4, compiled without any suspicious warning messages. Contact
authors if the problem persists.

Message 1053: error - sorted I/O allocation error

Your I/O buffer (and possibly batch) size is too big.

Action:

Decrease the value of the I/O buffer (and possibly batch) size in CONTROL and restart your job.

311

©STFC Appendix D

Message 1056: error - unkown write option given to sorted I/O

This should never happen!

Action:

Contact authors if the problem persists.

Message 1059: error - unknown write level given to sorted I/O

This should never happen!

Action:

Contact authors if the problem persists.

Message 1060: error - allocation failure in statistics module − > allocate statitics connect

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1061: error - allocation failure in statistics module − > deallocate statitics connect

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1063: error - allocation failure in vdw module − > allocate vdw table arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1066: error - allocation failure in vdw module − > allocate vdw direct fs arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1069: error - allocation failure in metal module − > allocate metal table arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1070: error - allocation failure in ewald module − > ewald allocate kfrz arrays

See notes on message 1001 above.

312

©STFC Appendix D

Action:

See action notes on message 1001 above.

Message 1072: error - allocation failure in bonds module − > allocate bond pot arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1073: error - allocation failure in bonds module − > allocate bond dst arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1074: error - allocation failure in angles module − > allocate angl pot arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1075: error - allocation failure in angles module − > allocate angl dst arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1076: error - allocation failure in dihedrals module − > allocate dihd pot arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1077: error - allocation failure in dihedrals module − > allocate dihd dst arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1078: error - allocation failure in inversions module − > allocate invr pot arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

313

©STFC Appendix D

Message 1079: error - allocation failure in inversions module − > allocate invr dst arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1080: error - allocation failure in greenkubo module − > allocate greenkubo arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1081: error - allocation failure in dpd module − > allocate dpd arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1083: error - allocation failure in ttm module − > allocate ttm arrays

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1084: error - deallocation failure in ttm module − > deallocate ttm arrays

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1085: error - allocation failure in ttm ion temperature

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1086: error - deallocation failure in ttm ion temperature

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1087: error - allocation failure in ttm thermal diffusion

See notes on message 1001 above.

314

©STFC Appendix D

Action:

See action notes on message 1001 above.

Message 1088: error - deallocation failure in ttm thermal diffusion

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

Message 1089: error - allocation failure in ttm track module − > depoinit

See notes on message 1001 above.

Action:

See action notes on message 1001 above.

Message 1090: error - deallocation failure in ttm track module − > depoevolve

See notes on message 1002 above.

Action:

See action notes on message 1002 above.

315

Appendix E

DL POLY 4 INSTALL Notes &
README Wisdom

E.1 INSTALL

Building notes

* these notes are for building with [**cmake**](https://cmake.org)

* you can pass options to cmake using **-DOPTION=value**. For a complete list of options

inspect cmake/DLPOLYBuildOptions.cmake

* cmake -L <path to CMakeLists.txt> will show you a list of all available options.

* explicit compiler specification can be achieved by using environment variable **FC** (

eg. using Intel ifort *FC=ifort*)

* compiler flags can be altered via **FFLAGS**, (eg *FFLAGS="-O3 -xHost"*)

* one also can use **cmake-gui** or **ccmake** to setup the build options

* to change the install path use **-DCMAKE_INSTALL_PREFIX=<path>** (*-

DCMAKE_INSTALL_PREFIX=$HOME/101/DL_POLY*)

* automatic testing can be done after **DL_POLY_4** is built, using **make test**

* to see all the tests available use **ctest -N**

* to run one specific test use **ctest -R <TESTNAME>**

* for a list of all supported targets **make help**

* TODO check it works on Windows...

Standard MPI

‘‘‘sh

mkdir build-mpi-pure

pushd build-mpi-pure

FFLAGS="-O3" cmake ../

make -j10

make install

‘‘‘

* will use whatever default MPI is found

Intel Compilers - Intel MPI

‘‘‘sh

FC=ifort FFLAGS="-O3" cmake ../ -DMPI_Fortran_COMPILER=mpiifort

‘‘‘

Intel Compilers - Some default mpi library, other than Intel MPI

‘‘‘sh

316

©STFC Appendix E

FC=ifort FFLAGS="-O3" cmake ../

‘‘‘

Hybrid MPI and OpenMP

‘‘‘sh

mkdir build-mpi-openmp

pushd build-mpi-openmp

FFLAGS="-O3" cmake ../ -DWITH_OPENMP=ON

make -j10

make install

‘‘‘

Intel Compilers - Intel MPI

‘‘‘sh

FC=ifort FFLAGS="-O3" cmake ../ -DWITH_OPENMP=ON -DMPI_Fortran_COMPILER=mpiifort

‘‘‘

Serial

‘‘‘sh

mkdir build-serial

pushd build-serial

FFLAGS="-O3" cmake ../ -DWITH_MPI=OFF

‘‘‘

Intel Compilers

‘‘‘sh

FC=ifort FFLAGS="-O3" cmake ../ -DWITH_MPI=OFF

‘‘‘

Serial with OpenMP threads

‘‘‘sh

mkdir build-openmp

pushd build-openmp

FFLAGS="-O3" cmake ../ -DWITH_OPENMP=ON -DWITH_MPI=OFF

‘‘‘

Intel Compilers

‘‘‘sh

FC=ifort FFLAGS="-O3" cmake ../ -DWITH_OPENMP=ON -DWITH_MPI=OFF

‘‘‘

Xeon Phi

‘‘‘sh

mkdir build-xeonphi

pushd build-xeonphi

FC=ifort FFLAGS="-O3 " cmake ../ -DWITH_PHI=ON -DWITH_MPI=ON

‘‘‘

Optimisation flags

* gfortran

‘‘‘sh

FFLAGS="-O3 -mtune=native"

‘‘‘

* Intel

317

©STFC Appendix E

‘‘‘sh

FFLAGS="-fpp -O3 -xHost -fimf-domain-exclusion=15"

‘‘‘

* If you plan to run the binary on a different type of a machine than you build it, check

the manual of your compiler

for the flags matching the _running machine_

Debugging, or when things go unexpected

* gfortran/ifort

‘‘‘sh

cmake ../ -DCMAKE_BUILD_TYPE=Debug

‘‘‘

* other compilers

‘‘‘sh

FFLAGS="desired flags" cmake ../

‘‘‘

Building with NETCDF support

‘‘‘sh

mkdir build-mpi-netcdf

pushd build-mpi-netcdf

FFLAGS="-O3" cmake ../ -DWITH_NETCDF=ON

make -j10

make install

‘‘‘

Building with KIM support

‘‘‘

mkdir build-mpi-kim

pushd build-mpi-kim

FFLAGS="-O3" cmake ../ -DWITH_KIM=ON

make -j10

make install

‘‘‘

Building with PLUMED support

‘‘‘sh

mkdir build-mpi-plumed

pushd build-mpi-plumed

FFLAGS="-O3" cmake ../ -DWITH_PLUMED=ON

make -j10

make install

‘‘‘

building with DOXYGEN API Documentation

‘‘‘sh

mkdir build-mpi

318

©STFC Appendix E

cd build mpi

cmake -DDOCS_DOXYGEN=On ..

make doxygen

‘‘‘

building with FORD API Documentation

‘‘‘sh

mkdir build-mpi

cd build mpi

cmake -DDOCS_FORD=On ..

make ford

‘‘‘

FAQ

On Ubuntu machines

It was noticed that for some mpi implementations the linking stage fails. You will see a

lot of errors claiming undefined references to MPI_*

solution

‘‘‘sh

FC=mpif90 FFLAGS="-O3" cmake ../

‘‘‘

Intel MPI

Intel MPI Fortran wrapper breaks ifort preprocessing

you will get an error on the lines Len_trim(xxx) not supported or similar.

solution

do not use FC=mpiifort

E.2 coding style

Coding Style

The programming style of DL_POLY is intended to ensure the code is a

consistent, readable and maintainable as possible. The following rules apply

throughout the code. Contributors to the code are urged to read and apply this

style before submitting code for inclusion consideration.

Units

All routines employ DL_POLY internal units. Output contains, when relevant, the units.

SIMULATION CONTROL PARAMETERS

simulation temperature (K) 1.0000E+01

simulation pressure (katms) 0.0000E+00

319

©STFC Appendix E

Integration : Leapfrog Verlet

Ensemble : NVT Nose-Hoover

thermostat relaxation time (ps) 1.0000E-01

selected number of timesteps 5000

General Style

- Use modern Fortran free form syntax.

- Code should be written in Fortran2003/2008 dialect if possible.

- Check the deprecated features from Fortran 2003/2008 and prior.

Avoid using these features.

- Fortran2008 should be treated with care, since not all compilers

implement it.

- Do not use **Common** blocks and **Block Data**, use **Modules**

with public data if constant or a user defined type to group data which

changes during runtime.

- Do not use **go to** statements

- Do not use **format** statements

- File extension shall be .F90 for any new written code.

- Indent code blocks by two space characters. Do not use

tabs as they are not part of the Fortran standard.

‘‘‘fortran

Subroutine init(T,k,traj)

Class(current_type) :: T

Type(trajectory_type),Intent(in) :: traj

Real(Kind=dp),Intent(in) :: k(3)

Allocate(T%jk(traj%nFrames,3))

T%k = k

T%n = traj%nFrames

End Subroutine init

‘‘‘

- Indent **Contains** statements to the same level as the sorrounding

Module, or procedure

‘‘‘fortran

Module my_module

Implicit None

Integer(Kind = wi), Parameter :: pi = 3.14...

...

Contains

Subroutine my_subroutine(a,b)

...

320

©STFC Appendix E

End Module my_module

‘‘‘

- Do not use more than one blank line to separate blocks of code.

- Code lines shall not exceed 132 characters (the modern Fortran standard

limit).

- Do not write Fortran keywords in ALL capitals. Capitalize the first

letter of the statement to make them stand out for the reader.

‘‘‘fortran

Program dl_poly

Use kinds, Only : wi,wp

Implicit None

End Program dl_poly

‘‘‘

- While Fortran supports multiple statements on a line separated by *;*

try to use them sparingly and wisely.

- Variables, constants and program units should be named in English or using

common physics notation. Do not use cryptic names.

- Try to group variables names based on physical meaning or usage.

‘‘‘fortran

! Verlet neighbour list data

!> Update cells flag

Logical, Public :: update = .true.

!> Unconditional update flag

Logical, Public :: unconditional_update = .false.

!> Tracking points for Verlet neighbour list

Real(Kind = wp), Allocatable, Public :: xbg(:),ybg(:),zbg(:)

!> Largest vdw cutoff, defines Verlet neighbour list radius

Real(Kind = wp), Public :: cutoff

!> Padding around cutoff

Real(Kind = wp), Public :: padding

!> Actual Verlet neighbour list cutoff (cutoff+padding)

Real(Kind = wp), Public :: cutoff_extended

!> Linked cell list

Integer(Kind = wi), Allocatable, Public :: list(:,:)

!> Maximum rank of linked cell list

Integer(Kind = wi), Public :: max_list

!> Maximum number of cells per domain

Integer(Kind = wi), Public :: max_cell

‘‘‘

- Avoid naming program units, variables, constants using

intrinsincs routines or keywords from fortran standard.

- While Fortran is case insensitive, use for lower case letters for program

units, variables and constants.

- Where more than a word is used in a name use _ as separator (snake

321

©STFC Appendix E

case notation).

- Use the mordern syntax for logical expressions,

- == not .eq.

- /= not .ne.

- > not .gt.

- < not .lt.

- >= not .ge.

- <= not .le. .

- Prefer positive testing in logical blocks.

‘‘‘fortran

If (isw == 0) Then

! do some fancy code

Else

! do some not so fancy code

End If

! to

If (isw /= 0) Then

! do some not so fancy code

Else

! do some fancy code

End If

‘‘‘

- One line **If** shall be avoided.

- Always use the optional separation space for **End** constructs, *e.g.*

End If not **Endif** and **End Do** not **Enddo**

- For program units use the full **End**: **End Subroutine name**.

- Never use **Go To** statements

- Use **Do** ... **End Do** instead of **Do** ... Label **Continue**

- Do not use **Format**.

‘‘‘fortran

Write(*,20) reclen

20 Format(’(’,i0,’a)’)

! replace with

Write(*,’(a,i0,a)’)"(",reclen,"a)"

‘‘‘

- Do not use interactive commands, like **Read** from keyboard or

Pause.

- Use **Implicit None** to avoid unwanted side effects. This is only nessecary once per

module.

- Avoid implicit casting of data: use 2.0_wp instead of 2.0 in an

expression.

‘‘‘fortran

If (sw == 1) Then

factor = 2.0_wp*engke*rf

322

©STFC Appendix E

End If

! and not

If (sw == 1) factor = 2.0_wp*engke*rf

‘‘‘

- Floating point comparisons shall be done with care. Consider the following

examples using a tolerance of **Epsilon(a)** or **Tiny(a)**,

- a > tolerance instead of a > 0.0

- a - b > tolerance instead of a > b

- abs(a - b) < tolerance instead of a == b .

- Avoid use of magic numbers, declare constants at the top level of a module and use

those instead.

‘‘‘fortran

If (integrator == 1) Then

! instead use

Integer(Kind = wi), Parameter :: VELOCITY_VERLET = 1

...

If (integrator == VELOCITY_VERLET) Then

‘‘‘

- Any new feature shall be turnable on/off from CONTROL file.

- Any new feature shall be documented in the manual and will cite relevant

literature.

Modular structure

- All subroutines/functions shall be enclosed by a module.

- Modules may contain the following:

- Type declarations

- Subroutines and functions

- Paramter definitions (using the **Parameter** attribute)

- Interfaces for overloaded procedures

- Declaration of **Public** data

- Modules may NOT contain the following:

- Variables (_i.e._ specifications without the **Parameter** attribute)

- By default everything in a module shall be made private, explicitly

make public what is needed outside the module or type using the **Public** statement.

- Data which is used only in the defining module should be declared

private.

- Each module should be in a separate file.

- Module names shall match their file names.

- When using a module with the **Use** statement, **Only** must also be used

- While overloading operators may be tempting, it is best avoided if

you prefer performance to aesthetical beauty.

‘‘‘fortran

Use domains_module, Only : map

‘‘‘

323

©STFC Appendix E

- User derived types should be created to contain data relevant to the module,

preferably one per module.

- Types may match the module name but append them with **_type**.

- Types shall provide init and **Final** procedures, optionally a summary

procedure.

- If provided a summary procedure shall produce valid YAML 1.2 output.

Specification Statements

- Align declaration statements clearly separating types and attributes

from names.

- Separate variable declaration block from code block of a subroutine

by a blank line.

- Use separate declaration blocks for routine arguments and local

variables.

‘‘‘fortran

!> Calculate the factorial of n

Function factorial(n) Result(res)

!> The integer to calculate the factorial of

Integer(Kind = wi), Intent(In) :: n

!> The factorial of n

Integer(Kind = wi) :: res

!> Running total

Integer(Kind = wi) :: total

!> Loop iterator

Integer(Kind = wi) :: i

...

‘‘‘

- Always use :: to separate types and attributes from names.

- Use :: as an alignment guide if the list of names is too long.

- Separate logical declaration blocks can be aligned differently to

save screen real estate, *e.g.* parameters vs internal variables of a

routine.

‘‘‘fortran

Integer, Intent(In) :: imcon,mxshak

Real(Kind = wp), Intent(InOut) :: xxx(1:mxatms),yyy(1:mxatms),zzz(1:mxatms)

Real(Kind = wp), Intent(Out) :: strcon(1:9)

Real(Kind = wp), Intent(Out) :: vircon

Logical :: safe

Integer :: fail(1:2),i,j,k,icyc

Real(Kind = wp) :: amti,amtj,dli,dlj, &

gamma,gammi,gammj,tstep2

‘‘‘

Comments

324

©STFC Appendix E

- Comments shall be indented to align with the code

- Comments shall be written in lower case except for proper nouns and

standard abreviations.

- Comments shall explain what a code does and why, not how it does

it. Let the code explain how it is done.

Ford and Doxygen

- By conforming to the following style useful developer documentation may be created

automatically using either FORD or Doxygen.

- Comments attached to program units, variables and derived types may be automatically

documented.

- Documentation must precede the declaration of the unit, variable or derived type.

- Comments to be documented must use the tag "!>" (This is default tag in FORD for a

comment preceding the content. In Doxygen, "!>" is the only tag which can both start

and continue a comment. So this seems to be the best compromise to make the source

compatible with both systems. FORD does not like inline comments).

- To insert a line break in a multiline comment use a blank comment line.

- Comments use markdown syntax for formatting.

- LaTeX style maths may be used to include equations in the documentation.

- See the example structure for more comprehensive examples of documentation comments.

‘‘‘fortran

!># Example

!>

!> Author - John Smith

!>

!> An example program

Program example

Use kinds, Only : wi

Implicit None

!> Integer counter

Integer(Kind = wi) :: i

...

!> Calculate the factorial of n

Function fact(n)

...

‘‘‘

Procedures

- A **Function** shall be pure (with no side-effects). If side-effect are

needed use a **Subroutine**.

- All arguments of a **Function/Subroutine** shall have an **Intent**

attribute (with the exception of the **Class** in type bound procedures).

- Avoid using **Recursive** procedures.

- When you are passing an array argument to a **Subroutine/Function**,

and the **Subroutine/Function** does not change the size of the

325

©STFC Appendix E

array, you should pass it as an assumed shape array. Memory

management of such an array is automatically handled by the

Subroutine/Function, and you do not have to worry about having

to **Allocate** or **Deallocate** your array. It also helps the

compiler to optimise the code.

Allocatable Data and Pointers

- If possible **Allocate** and **Deallocate** for an array or pointer

shall appear in the same scope.

- For **Allocatable** members of a user defined type, allocation shall

happen in the **init** and deallocation in the **final** subroutine.

- In all cases, **Deallocate** in the opposite order you did **Allocate**.

‘‘‘fortran

Allocate(xxx(n),Stat = stat)

Allocate(yyy(n),Stat = stat)

Allocate(zzz(n),Stat = stat)

Deallocate(zzz)

Deallocate(yyy)

Deallocate(xxx)

‘‘‘

- If using **Pointer**, define it before usage by pointing to **Null**

or using **Nullify**.

- Similarly, when a pointer is not used anymore nullify it using the

same techniques as above.

E.3 contributing

Contribution workflow and the review process

This document outlines the best practice, using git and CI, which **must** be

followed for all contributions to DL_POLY. Also contained are instructions and

tips for managing your fork of the project which will help keep merges clean

and avoid many headaches.

Golden rules

In brief the rules for contribution are as follows,

* Follow the branch, fix, merge model, from your own fork

* An issue must be created for every piece of work (bug, feature, *etc.*)

* Merge requests will not be accepted without a review

* New features must have a test

* All tests must pass, no regressions may be merged

Issues

Using issues

326

©STFC Appendix E

* Open an issue for each piece of work done.

* Open issues for design discussions. For example the questions Aidan had

about link cells/domain decomposition. The answers may be important for

newer members.

* New features, _e.g._ task parallelism by Aidan, shaped particles by Vlad,

shall have an issue too, the comments shall be used to provide succint

reports on progress.

Labels

Labels may be assigned to issues to help classify them. Examples include,

* Testing: as in testing the water. This label shall be attached to things one

may think to make one day.

* Development: this is what I am working now on.

* Production: anything in this is critical and shall be fixed asap.

* Design: queries or suggestions about the structure of the program.

* Leader: for issues relating to new features.

Review

All merge requests will be reviewed to ensure the integrity of the code.

The reviewer/s have the following responsibilities,

* Ensuring all contribution rules have been followed

* Ensuring the [coding style](./coding_style.md) is adhered to

* Only accepting a merge if all tests have passed

* Using the comments system to request changes for the submittor to make

Using the git for development

The Gitlab instance hosts a _devel_ repository, which we will refer to as

devel. Contributors will work on their own personal copies of the

repository by creating _forks_. This allows us to keep _devel_ clean (one

commit per merge request, if possible, all commits passing tests) while users may work on

their own _fork_, creating commits and changing the code as they see fit.

The _devel_ repository may be cloned as follows,

‘‘‘sh

git clone git@gitlab.com:ccp5/dl-poly.git dl-poly-devel

‘‘‘

A _fork_ is created using the web UI. It may then be cloned for a user called ’username’

as follows,

‘‘‘sh

git clone git@gitlab.com:username/dl-poly.git dl-poly-fork

‘‘‘

Branch, fix, merge model:

327

©STFC Appendix E

All work should follow the workflow of branch, fix, merge. Let us assume you

have an issue with your code which needs to be fixed.

Step 1: Branch from your fork

Create a new branch for the issue on the dashboard of your fork, we will assume

the branch is called ’issueXYZ’. Clone the branch,

‘‘‘sh

$ git clone -b issueXYZ --single-branch git@gitlab.com:username/dl-poly.git dl-poly-

issueXYZ

‘‘‘

Alternatively you can create the branch in the cli using

‘‘‘sh

clone the repository, if you already have a local repository this is not nessecary

$ git clone git@gitlab.com:username/dl-poly.git dl-poly-issueXYZ

$ pushd dl-poly-issueXYZ

create and checkout a new branch (this is equivilent to git branch followed by git

checkout)

$ git checkout -b issueXYZ

create a remote tracking branch for you to push your changes to

$ git push -u origin issueXYZ

‘‘‘

Step 2: Fix the issue and commit your changes

Fix whatever is wrong.

Use git status to see which files you have changed and prepare a commit.

‘‘‘sh

stage changes

$ git add <filename|folder> to add the new things

commit the changes with a clear and brief message

$ git commit -m "<commit message>"

push the commit to origin

$ git push

‘‘‘

Step 3a: Merge your branch into devel

On the web interface navigate to _devel_ and create a merge request for your

branch on your _fork_. Add any relevant labels or milestones and assign a

reviewer. Compare the code and if you are happy click Submit Merge Request.

After the merge request has been submitted tests will be run and your reviewer

will be notified.

Step 3b: Finalising the merge

If all is OK with the commit your reviewer may set the request to be merged

328

©STFC Appendix E

once all tests pass. Otherwise the reviewer may open discussions using the

Gitlab comment system to point out issues that may need to be addressed before

the commit can be merged.

If changes need to be made you may make more commits onto your branch. When you

push your branch to your _fork_ the merge request will be automatically updated

to use the latest commit. Reply to the discussions to indicate when and how

they have been addressed.

If your branch has become out of sync with _devel_ then conflicts may arise.

Sometimes these cannot be automatically resolved and you will need to resolve

them by hand. Gitlab provides instructions for this, or you can follow this

routine,

‘‘‘sh

add devel as a remote if you have not already

$ git remote add devel git@gitlab.com:ccp5/dl-poly.git

get the changes to devel since you started working on your issue

$ git fetch devel

merge these changes into your branch (assuming you want to merge into the master branch

on devel)

$ git merge devel/devel

resolve any conflicts

push to your fork

$ git push

‘‘‘

Alternatively you may use rebase which will replay the changes you made in your

branch on top of _devel/devel_ however be sure you understand the differences between

merge and rebase

‘‘‘sh

add devel as a remote if you have not already

$ git remote add devel git@gitlab.com:ccp5/dl-poly.git

get the changes to devel since you started working on your issue

$ git fetch devel

merge these changes into your branch (assuming you want to merge into the master branch

on devel)

$ git rebase devel/devel

resolve any conflicts

push to your fork

$ git push

‘‘‘

Advanced git

Keeping your fork in sync with project

By adding two remotes, one for _devel_ and one for your _fork_ it is possible

to keep your _fork_ in sync with _devel_. This will greatly simplify merge

requests.

329

©STFC Appendix E

‘‘‘sh

clone your fork

$ git clone git@gitlab.com:username/dl-poly.git dl-poly-fork

pushd dl-poly-fork

add a remote for devel

$ git remote add devel git@gitlab.com:ccp5/dl-poly.git

‘‘‘

These commands need to be done only once. ‘git remote -v‘ shall show you

the origin and project fetch and push links

‘‘‘sh

$ git remote -v

origin git@gitlab.com:username/dl-poly.git (fetch)

origin git@gitlab.com:username/dl-poly.git (push)

devel git@gitlab.com:ccp5/dl-poly.git (fetch)

devel git@gitlab.com:ccp5/dl-poly.git (push)

‘‘‘

When you need to sync your _fork_ with _devel_, do the following,

‘‘‘sh

get the latest commits from devel

$ git fetch devel

ensure you are in the master branch of your fork

$ git checkout master

merge your master branch into the master branch of devel

$ git merge devel/devel

push these changes back to the remote of your fork (origin)

$ git push

‘‘‘

of course one can use a similar process to merge any other branch or available

projects.

Rebasing commits

When working on an issue you may use multiple commits. When you are ready to

create a merge request, you should squash your changes into one commit in order

to keep _devel_ clean. This is most easily achieved with an interactive

rebase.

Assuming you have made five commits,

‘‘‘sh

rebase your branch five commits before HEAD i.e. where your branch originally diverged

$ git rebase -i HEAD~5

follow the instructions. ’pick’ the first commit then ’sqaush’ or ’fixup’ the rest.

You should now be left with a single commit containing all your changes

Push your commmit to the remote, use --force if you have already pushed this branch to

’rewrite history’

$ git push origin branchname --force

330

©STFC Appendix E

‘‘‘

using force is a powerful and dangerous option. use it only if you know 150% nobody else

touched that branch.

Cleaning stale branches

Deleting branches from the web interface will get rid of the remotes and not of

your local copies. The local branches left behind are called stale branches. To

get rid of them

‘‘‘sh

$ git remote prune origin

‘‘‘

To delete a local branch

‘‘‘sh

$ git branch -d localBranch

‘‘‘

if unmerged commits exists but you still want to delete use

‘‘‘sh

$ git branch -D localBranch

‘‘‘

To delete a remote branch on the remote _origin_ use

‘‘‘sh

$ git push -d origin remoteBranch

‘‘‘

Code Coverage

If one builds DL_POLY_4 with **-DWITH_COVERAGE=ON** two targets will be

available *make coverage* and *make runcoverage*. First will run the code

coverage on all tests from *make test*.

make runcoverage will run on the inputs which are put by user in

CodeAnalysis. If one uses MPI **-DMPI_NPROCS**, default 4, controls on how

many processes the job will run.

331

Appendix F

DL POLY 4 Academic Licence
Agreement

F.1 The full version

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,

but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and

conditions of version 3 of the GNU General Public License, supplemented by the

additional permissions listed below.

0. Additional Definitions.

As used herein, this License refers to version 3 of the GNU Lesser General Public License

, and the GNU GPL refers to version 3 of the GNU General Public License.

The Library refers to a covered work governed by this License, other than an Application

or a Combined Work as defined below.

An Application is any work that makes use of an interface provided by the Library, but

which is not otherwise based on the Library. Defining a subclass of a class defined

by the Library is deemed a mode of using an interface provided by the Library.

A Combined Work is a work produced by combining or linking an Application with the

Library. The particular version of the Library with which the Combined Work was made

is also called the Linked Version.

The Minimal Corresponding Source for a Combined Work means the Corresponding Source for

the Combined Work, excluding any source code for portions of the Combined Work that,

considered in isolation, are based on the Application, and not on the Linked Version.

The Corresponding Application Code for a Combined Work means the object code and/or

source code for the Application, including any data and utility programs needed for

332

©STFC Appendix F

reproducing the Combined Work from the Application, but excluding the System

Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound

by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a

function or data to be supplied by an Application that uses the facility (other than

as an argument passed when the facility is invoked), then you may convey a copy of

the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the

event an Application does not supply the function or data, the facility still

operates, and performs whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable

to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that

is part of the Library. You may convey such object code under terms of your choice,

provided that, if the incorporated material is not limited to numerical parameters,

data structure layouts and accessors, or small macros, inline functions and templates

(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it

and that the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together,

effectively do not restrict modification of the portions of the Library contained in

the Combined Work and reverse engineering for debugging such modifications, if you

also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in

it and that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the

copyright notice for the Library among these notices, as well as a reference

directing the user to the copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the

Corresponding Application Code in a form suitable for, and under terms that permit,

the user to recombine or relink the Application with a modified version of the Linked

Version to produce a modified Combined Work, in the manner specified by section 6 of

the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable

mechanism is one that (a) uses at run time a copy of the Library already present on

the user’s computer system, and (b) will operate properly with a modified version of

the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to

provide such information under section 6 of the GNU GPL, and only to the extent that

333

©STFC Bibliography

such information is necessary to install and execute a modified version of the

Combined Work produced by recombining or relinking the Application with a modified

version of the Linked Version. (If you use option 4d0, the Installation Information

must accompany the Minimal Corresponding Source and Corresponding Application Code.

If you use option 4d1, you must provide the Installation Information in the manner

specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a

single library together with other library facilities that are not Applications and

are not covered by this License, and convey such a combined library under terms of

your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library,

uncombined with any other library facilities, conveyed under the terms of this

License.

b) Give prominent notice with the combined library that part of it is a work based on the

Library, and explaining where to find the accompanying uncombined form of the same

work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser

General Public License from time to time. Such new versions will be similar in spirit

to the present version, but may differ in detail to address new problems or concerns

.

Each version is given a distinguishing version number. If the Library as you received it

specifies that a certain numbered version of the GNU Lesser General Public License or

any later version applies to it, you have the option of following the terms and

conditions either of that published version or of any later version published by the

Free Software Foundation. If the Library as you received it does not specify a

version number of the GNU Lesser General Public License, you may choose any version

of the GNU Lesser General Public License ever published by the Free Software

Foundation.

If the Library as you received it specifies that a proxy can decide whether future

versions of the GNU Lesser General Public License shall apply, that proxy’s public

statement of acceptance of any version is permanent authorization for you to choose

that version for the Library.

334

Bibliography

[1] Smith, W., and Forester, T. R., 1996, J. Molec. Graphics, 14, 136. 3

[2] Todorov, I. T., and Smith, W., 2004, Phil. Trans. R. Soc. Lond. A, 362, 1835. 3, 233

[3] Todorov, I. T., Smith, W., Trachenko, K., and Dove, M. T., 2006, J. Mater. Chem., 16, 1611–1618.
3, 233

[4] Smith, W., 1987, Molecular Graphics, 5, 71. 3

[5] Smith, W., 1991, Comput. Phys. Commun., 62, 229. 3, 5, 233

[6] Smith, W., 1993, Theoretica. Chim. Acta., 84, 385. 3, 5, 233

[7] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 52. 3

[8] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 63. 3, 5, 76

[9] Pinches, M. R. S., Tildesley, D., and Smith, W., 1991, Molecular Simulation, 6, 51. 3, 5, 233

[10] Rapaport, D. C., 1991, Comput. Phys. Commun., 62, 217. 3, 5, 233

[11] Daw, M. S., and Baskes, M. I., 1984, Phys. Rev. B, 29, 6443. 4, 33

[12] Foiles, S. M., Baskes, M. I., and Daw, M. S., 1986, Chem. Phys. Lett., 33, 7983. 4, 33

[13] Finnis, M. W., and Sinclair, J. E., 1984, Philos. Mag. A, 50, 45. 4, 33, 35

[14] Sutton, A. P., and Chen, J., 1990, Philos. Mag. Lett., 61, 139. 4, 35

[15] Rafii-Tabar, H., and Sutton, A. P., 1991, Philos. Mag. Lett., 63, 217. 4, 35, 43

[16] Todd, B. D., and Lynden-Bell, R. M., 1993, Surf. Science, 281, 191. 4, 35

[17] Tersoff, J., 1989, Phys. Rev. B, 39, 5566. 4, 44, 234

[18] van Gunsteren, W. F., and Berendsen, H. J. C. 1987, Groningen Molecular Simulation (GROMOS)
Library Manual. BIOMOS, Nijenborgh, 9747 Ag Groningen, The Netherlands. Standard GROMOS
reference. 4, 13

[19] Mayo, S. L., Olafson, B. D., and Goddard, W. A., 1990, J. Phys. Chem., 94, 8897. 4, 13, 47, 48, 203

[20] Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A., 1986, J. Comp. Chem., 7, 230. 4, 13

[21] Smith, W., 2003, Daresbury Laboratory. 4, 10, 138, 149, 150, 151, 186, 258

[22] Allen, M. P., and Tildesley, D. J. 1989, Computer Simulation of Liquids. Oxford: Clarendon Press.
5, 53, 72, 74, 77, 233, 235

[23] Andersen, H. C., 1983, J. Comput. Phys., 52, 24. 5, 74, 233

335

©STFC Bibliography

[24] Miller, T. F., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., and Martyna, G. M., 2002, J.
Chem. Phys., 116, 8649. 5, 101, 102

[25] Evans, D. J., and Morriss, G. P., 1984, Computer Physics Reports, 1, 297. 5, 73, 77

[26] Adelman, S. A., and Doll, J. D., 1976, J. Chem. Phys., 64, 2375. 5, 73, 77

[27] Andersen, H. C., 1979, J. Chem. Phys., 72, 2384. 5, 73, 77

[28] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R., 1984, J.
Chem. Phys., 81, 3684. 5, 73, 77, 85

[29] Hoover, W. G., 1985, Phys. Rev., A31, 1695. 5, 73, 77, 81, 83, 85

[30] Quigley, D., and Probert, M. I. J., 2004, J. Chem Phys., 120, 11432. 5, 73, 85, 86

[31] Martyna, G. M., Tuckerman, M. E., Tobias, D. J., and Klein, M. L., 1996, Molec. Phys., 87, 1117. 5,
73, 85, 96, 102

[32] Warner, H. R. J., 1972, ind. Eng. Chem. Fundam., 11, 379. 15, 193

[33] Bird, R. B. e. a. 1977, Dynamics of Polymeric Liquids, volume 1 and 2. Wiley, New York. 15, 193

[34] Grest, G. S., and Kremer, K., 1986, Phys. Rev. A, 33, 3628. 15, 193

[35] Allinger, N. L., Yuh, Y. H., and Lii, J.-H., 1998, J. Am. Chem. Soc., 111, 8551. 15, 16, 18, 19, 20,
193, 194

[36] Vessal, B., 1994, J. Non-Cryst. Solids, 177, 103. 17, 19, 48, 194, 203

[37] Smith, W., Greaves, G. N., and Gillan, M. J., 1995, J. Chem. Phys., 103, 3091. 17, 19, 48, 194, 203

[38] Sun, H., 1998, J. Phys. Chem. B, 102(38), 7338–7364. 18, 20, 194

[39] Kumagai, N., Kawamura, K., and Yokokawa, T., 1994, Mol. Simul., 12(3-9), 177. 18, 20

[40] Smith, W., 1993, CCP5 Information Quarterly, 39, 14. 19, 22, 26

[41] Ryckaert, J. P., and Bellemans, A., 1975, Chem. Phys. Lett., 30, 123. 20, 23, 195

[42] Schmidt, M. E., Shin, S., and Rice, S. A., 1996, J. Chem. Phys., 104, 2101. 21, 23, 195

[43] Rohl, A. L., Wright, K., and Gale, J. D., 2003, Amer. Mineralogist, 88, 921. 26

[44] Raiteri, P., and Gale, J. D., 2010, J. Am. Chem. Soc., 132, 17623–17634. 26

[45] Barrat, J.-L., and Bocquet, L., 1999, Phys. Rev. Lett., 82(23), 4671–4674. 29, 198

[46] Wang, X., Ramirez-Hinestrosa, S., Dobnikar, J., and Frenkel, D., 2020, Phys. Chem. Chem. Phys.,
22, 10624–10633. 29, 198

[47] Mie, G., 1903, Annalen der Physik, 11, 657–697. 29, 198

[48] Clarke, J. H. R., Smith, W., and Woodcock, L. V., 1986, J. Chem. Phys., 84, 2290. 29, 198

[49] Weeks, J. D., Chandler, D., and Andersen, H. C., 1971, J. Chem. Phys., 54, 5237. 30, 198

[50] Groot, R. D., and Warren, P. B., 1997, J. Chem. Phys., 107(11), 4423–4435. 30, 77, 198, 251, 253

[51] Ponder, J. W., Wu, C., Ren, P., Pande, V. S., Chodera, J. D., Schnieders, M. J., Haque, I., Mobley,
D. L., Lambrecht, D. S., DiStasio Jr., R. A., Head-Gordon, M., Clark, G. N. I., Johnson, M. E., and
Head-Gordon, T., 2010, J. Phys. Chem. B, 114, 2549–2564. 30, 194, 198

336

©STFC Bibliography

[52] Pedone, A., Malavasi, G., Menziani, M. C., Cormack, A. N., and Segre, U., 2006, The Journal of
Physical Chemistry B, 110(24), 11780–11795. 30

[53] Ziegler, J. F., Biersack, J. P., and Littmark, U. 1985, The Stopping and Range of Ions in Matter.
Pergamon, New York. 30

[54] Trachenko, K., Dove, M. T., and Salje, E. K. H., 2003, Journal of Physics: Condensed Matter, 15(37),
6457. 31

[55] Raiteri, P., Gale, J. D., Quigley, D., and Rodger, P. M., 2010, The Journal of Physical Chemistry C,
114(13), 5997–6010. 31

[56] Al-Matar, A. K., and Rockstraw, D. A., 2004, J. Comput. Chem., 25, 660–668. 33

[57] Hepburn, D. J., and Ackland, G. J., 2008, Phys. Rev. B, 78(16), 165115. 33, 43

[58] Lau, T. T., Först, C. J., Lin, X., Gale, J. D., Yip, S., and Vliet, K. J. V., 2007, Phys. Rev. Lett.,
98(21), 215501. 33, 43

[59] Cooper, M. W. D., Rushton, M. J. D., and Grimes, R. W., 2014, J. Phys.: Condens. Matter, 26,
105401. 33, 35

[60] J., F., 1952, Philos. Mag., 43, 153. 34

[61] Ackland, G. J., and Reed, S. K., 2003, Phys. Rev. B, 67, 1741081–1741089. 34

[62] Olsson, P., Wallenius, J., Domain, C., Nordlund, K., and Malerba, L., 2005, Phys. Rev. B, 72,
2141191–2141196. 34

[63] Dai, X. D., Kong, Y., Li, J. H., and Liu, B. X., 2006, J. Phys.: Condens. Matter, 18, 4527–4542. 35

[64] Cleri, F., and Rosato, F., 1993, Phys. Rev. B, 48, 22. 35

[65] Johnson, R. A., 1989, Phys. Rev. B, 39, 12556. 43

[66] Kumagai, T., Izumi, S., Hara, S., and Sakai, S., 2007, Comput. Mat. Sci., 39, 457. 44

[67] Eastwood, J. W., Hockney, R. W., and Lawrence, D. N., 1980, Comput. Phys. Commun., 19, 215. 47,
48, 49

[68] Fennell, C. J., and Gezelter, D. J., 2006, J. Chem. Phys., 124, 234104. 51, 53

[69] Neumann, M., 1985, J. Chem. Phys., 82, 5663. 52

[70] Fuchs, K., 1935, Proc. R. Soc., A, 151, 585. 54, 56

[71] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G., 1995, J. Chem.
Phys., 103, 8577. 54, 55, 131, 236

[72] Boateng, H. A., and Todorov, I. T., 2015, J. Chem. Phys., 142, 034117. 56

[73] Sagui, C., Pedersen, L., and Darden, T., 2004, J. Chem. Phys., 120, 73. 57

[74] Drude, P., 1900, Annalen der Physik, 306(3), 566. 63

[75] Drude, P., 1900, Annalen der Physik, 308(11), 369. 63

[76] Lemkul, J. A., Huang, J., Roux, B., and MacKerell Jr., A. D., 2016, ACS Chem. Rev., 116, 4983–5013.
63, 64

[77] Thole, B. T., 1981, J. Chem. Phys., 59, 341–350. 64, 208

337

©STFC Bibliography

[78] Fincham, D., and Mitchell, P. J., 1993, J. Phys. Condens. Matter, 5, 1031. 64

[79] Lindan, P. J. D., and Gillan, M. J., 1993, J. Phys. Condens. Matter, 5, 1019. 65

[80] Shewchuk, J. R. August 4, 1994, An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain, Edition 1 1/4. School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213. 65, 146

[81] Schroder, U., 1966, Solid State Commun., 4, 347–349. 65

[82] Torrie, G. M., and Valleau, J. P., 1977, Journal of Computational Physics, 23, 187–199. 67, 69, 205

[83] Kastner, J., 2011, Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 932–942. 67,
69, 205

[84] Shardlow, T., 2003, SIAM Journal on Scientific Computing, 24(4), 1267–1282. 73, 77, 84

[85] Duffy, D. M., and Rutherford, A. M., 2007, J. Phys.: Condens. Matter, 19(1), 016207. 73, 77, 79, 112

[86] Leimkuhler, B., Noorizadeh, E., and Theil, F., 2009, J. Stat. Phys., 135, 261–277. 73, 77, 83

[87] Ikeguchi, M., 2004, J. Comp. Chemi., 25, 529–541. 74, 89, 91, 95, 96, 98

[88] Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., 1977, J. Comput. Phys., 23, 327. 74, 233

[89] McCammon, J. A., and Harvey, S. C. 1987, Dynamics of Proteins and Nucleic Acids. Cambridge:
University Press. 76

[90] Izaguirre, J. A. Langevin stabilisation of multiscale mollified dynamics. In Brandt A., Binder K., B. J.,
editor, Multiscale Computational Methods in Chemistry and Physics, volume 117 of NATO Science
Series: Series III - Computer and System Sciences, pages 34–47. IOS Press, Amsterdam, 2001. 77, 79

[91] Samoletov, A., Chaplain, M. A. J., and Dettmann, C. P., 2007, J. Stat. Phys., 128, 1321–1336. 77, 83

[92] Hoogerbrugge, P. J., and Koelman, J. M. V. A., 1992, EPL (Europhysics Letters), 19(3), 155–160. 77,
251

[93] Español, P., and Warren, P., 1995, EPL (Europhysics Letters), 30(4), 191–196. 77, 251

[94] Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, Molec. Phys., 78, 533. 92

[95] Martyna, G. M., Tobias, D. J., and Klein, M. L., 1994, J. Chem. Phys., 101, 4177. 92, 99

[96] Fincham, D., 1992, Molecular Simulation, 8, 165. 101

[97] Lifshits, I., Kaganov, M., and Tanatarov, L., 1960, J. Nucl. Energy A, 12(1), 69–78. 112

[98] Duffy, D., Khakshouri, S., and Rutherford, A., 2009, Nucl. Instrum. Meth. B, 267(18), 3050. 112

[99] Zarkadoula, E., Daraszewicz, S. L., Duffy, D. M., Seaton, M. A., Todorov, I. T., Nordlund, K., Dove,
M. T., and Trachenko, K., 2014, J. Phys.: Condens. Matter, 26(8), 085401. 112, 249

[100] Daraszewicz, S. L., Giret, Y., Naruse, N., Murooka, Y., Yang, J., Duffy, D. M., Shluger, A. L., and
Tanimura, K., 2013, Phys. Rev. B, 88(18), 184101. 112

[101] Khara, G. S., Murphy, S. T., Daraszewicz, S. L., and Duffy, D. M., 2016, J. Phys.: Condens. Matter,
28(39), 395201. 112, 250

[102] Zarkadoula, E., Daraszewicz, S. L., Duffy, D. M., Seaton, M. A., Todorov, I. T., Nordlund, K., Dove,
M. T., and Trachenko, K., 2013, J. Phys.: Condens. Matter, 252(12), 125402. 117

338

©STFC Bibliography

[103] Seaton, M., Anderson, R., Metz, S., and Smith, W., 2013, Molecular Simulation, 39(10), 796–821.
119, 254

[104] Duarte, F., and Kamerlin, S. C. L. Theory and Applications of the Empirical Valence Bond Approach,
chapter 2, pages 27–61. 2017. 129

[105] Scivetti, I., Sen, K., Elena, A. M., and Todorov, I., 2020, The Journal of Physical Chemistry A,
124(37), 7585–7597. 129, 131, 132, 133, 135, 136

[106] Mones, L., Kulhnek, P., Simon, I., Laio, A., and Fuxreiter, M., 2009, The Journal of Physical Chemistry
B, 113(22), 7867–7873. 130

[107] Todorov, I. T., Bush, I. J., and Porter, A. R., 2009, Parallel Scientific Computing and Optimization.
Springer Optimization and Its Applications, 27. 145

[108] Todorov, I. T., Bush, I. J., and Smith, W., 2008, Cray User Group 2008. 145

[109] Bush, I. J., Todorov, I. T., and Smith, W., 2010, Cray User Group 2010. 145

[110] Diver, A., Dicks, O., Elena, A. M., Todorov, I. T., and Trachenko, K., 2020, Journal of Physics:
Condensed Matter, 32(41), 415703. 231

[111] Hockney, R. W., and Eastwood, J. W. 1981, Computer Simulation Using Particles. McGraw-Hill
International. 233, 235, 236

[112] Smith, W., 1992, Comput. Phys. Commun., 67, 392. 233

[113] Smith, W., and Fincham, D., 1993, Molecular Simulation, 10, 67. 233

[114] Bush, I. J., Todorov, I. T., and Smith, W., 2006, Computer Physics Communications, 175, 323. 236

[115] Bush, I. J., 2000, Daresbury Laboratory. 236

[116] Reith, D., Pütz, M., and Mü, ller-Plathe, F., 2003, J. Comp. Chem., 24, 1624. 249

[117] Rühle, V., Junghans, C., Lukyanov, A., Kremer, K., and Andrienko, D., 2009, J. Chem. Theory
Comput., 5, 3211. 249

[118] Malerba, L., Marinica, M. C., Anento, N., Björkas, C., Nguyen, H., Domain, C., Djurabekova, F.,
Olsson, P., Nordlund, K., Serra, A., Terentyev, D., Willaime, F., and Becquart, C. S., 2010, Journal
of Nuclear Materials, 406(1), 19–38. 249

[119] Murphy, S. T., Daraszewicz, S. L., Giret, Y., Watkins, M., Shluger, A. L., Tanimura, K., and Duffy,
D. M., 2015, Physical Review B, 92, 134110. 250

[120] Pagonabarraga, I., and Frenkel, D., 2001, Journal of Chemical Physics, 115(11), 5015–5026. 253

[121] Trofimov, S. Y., Nies, E. L. F., and Michels, M. A. J., 2002, Journal of Chemical Physics, 117(20),
9383–9394. 253

[122] Koelman, J. M. V. A., and Hoogerbrugge, P. J., 1993, EPL (Europhysics Letters), 21(3), 363–368.
253

[123] Mar, C. A., Backx, G., and Ernst, M. H., 1997, Physical Review E, 56(2), 1676–1691. 253

[124] Peters, E. A. J. F., 2004, EPL (Europhysics Letters), 66(3), 311–317. 254

[125] Lowe, C. P., 1999, EPL (Europhysics Letters), 47(2), 145–151. 254

[126] Stoyanov, S. D., and Groot, R. D., 2005, Journal of Chemical Physics, 122(11), 114112. 254

[127] Gonella, G., Orlandini, E., and Yeomans, J. M., 1997, Phys. Rev. Lett., 78, 1695. 254

339

©STFC Bibliography

340

Index

(, 73
DL POLY 4 software licence, 10

algorithm, 5, 72, 167
FIQA, 101
NOSQUISH, 5, 101, 102
RATTLE, 5, 74, 75, 233, 237, 295
SHAKE, 5, 74, 76, 233, 237, 278
Verlet, 5, 32, 72–76, 235, 237
Verlet neighbour list, 235

AMBER, 4, 13, 151
angular momentum, 99
angular restraints, 20

barostat, 5, 103, 290
Berendsen, 90
Nosé-Hoover, 92, 96

boundary conditions, 4, 49, 255
cubic, 186

CCP5, 3
constraints

bond, 3, 5, 14, 74–77, 99, 190, 222, 234, 235, 237,
269, 273, 278, 295

Gaussian, 53, 54, 77
PMF, 14, 76, 77, 190, 222, 234

direct Coulomb sum, 49, 51
distance dependant dielectric, 51, 52
distance restraints, 16
dlpoly2, 5
DPD, 77
Dreiding, 13

ensemble, 5, 286
Andersen NVT, 5, 73
Berendsen NσT, 5, 73
Berendsen NPT, 5, 73
Berendsen NVT, 5, 73
canonical, 77
DPD NVT, 73
Evans NVT, 5, 73
Gentle Stochastic NVT, 73
Inhomogeneous Langevin NVT, 117
Langevin NσT, 5, 73
Langevin NPT, 5, 73

Langevin NVT, 5, 73
Martyna-Tuckerman-Klein NσT, 5, 73
Martyna-Tuckerman-Klein NPT, 5, 73
Nosé-Hoover NσT, 5, 73
Nosé-Hoover NPT, 5, 73
Nosé-Hoover NVT, 5, 73
NVE, 5, 73, 77

equations of motion
Euler, 68, 101
rigid body, 101

error messages, 154, 262
Ewald

optimisation, 152
SPME, 54, 152
summation, 53, 54, 144, 152, 233, 236, 287

force field, 4, 13, 14, 22, 151, 235, 264, 278, 295
AMBER, 4, 13
DL POLY, 4, 13
Dreiding, 4, 13, 47, 48
GROMOS, 4, 13

force-shifted Coulomb sum, 50
FORTRAN90, 6, 7, 262
FTP, 9, 10

GROMOS, 4, 13
GUI, 10, 149–151, 185

inversional restraints, 27

Java GUI, 4, 10

licence, 3
long-ranged corrections

metal, 39
van der Waals, 32

minimisation, 146
conjugate gradients, 146
programmed, 147
zero temperature, 146

multipolar electrostatics, 56

parallelisation, 5, 139, 233
Domain Decomposition, 5
intramolecular terms, 234

341

©STFC Index

polarisation, 63, 65
shell model, 4, 13, 49, 63, 66, 68, 234, 272
shell models, 63

potential
2BEAM, 34
bond, 4, 150, 193, 222, 234, 237, 267, 287
bonded, 235, 236
calcite, 26, 27
chemical bond, 4, 13, 14, 16, 21, 22, 48, 65, 234,

235
dihedral, 4, 13, 20–24, 195, 222, 234, 272, 288
EAM, 34, 212
EEAM, 34, 212
electrostatics, 4, 8, 14, 16, 19, 22, 23, 27, 49, 222,

234, 288
external field, 4, 13, 66, 68, 234
four-body, 4, 13, 28, 48, 49, 196, 204, 222, 234,

265, 276, 287, 289
improper dihedral, 4, 13, 22, 23, 234
intermolecular, 139
intramolecular, 28, 49, 139
inversion, 4, 13, 24–26, 48, 49, 196, 234, 274, 288
metal, 4, 14, 28, 33, 139, 144, 196, 234, 236, 276
non-bonded, 4, 14, 150, 151, 188, 193, 194, 196,

234–236, 264
tabulated, 210, 266
Tersoff, 4, 13, 28, 44, 47, 196, 202, 234, 236
tether, 4, 13, 28, 222, 234, 272, 289
tethered, 68
three-body, 4, 13, 14, 17, 28, 47, 48, 150, 196,

203, 222, 234, 265, 276, 289
valence angle, 4, 13, 14, 17, 18, 22, 24, 47, 48,

150, 192, 194, 222, 234, 235, 270
van der Waals, 14, 16, 19, 22, 23, 27, 139, 144,

182, 192, 196, 286

quaternions, 101

reaction field, 52, 53
rigid body, 3, 5, 72, 99, 100, 234, 235, 300
rigid bond, see constraints,bond

stress tensor, 16, 19, 22, 26, 28, 32, 39, 47–53, 63, 68,
76, 85

sub-directory, 258, 260
bench, 8
build, 8
cmake, 8
data, 8
execute, 8
java, 8
manual, 8
source, 8

utility, 8
utils, 8

thermostat, 5, 67, 103, 290
Nosé-Hoover, 92, 96

torsional restraints, 24
Two-Temperature Model, 183, 214–216, 223, 225, 230

boundary conditions, 114, 121
cascades, 117
electron-phonon coupling, 115, 121
electronic stopping, 116
energy deposition, 121
Explicit finite-difference scheme, 113
heat capacity, 120
Heat diffusion, 112
Inhomogenous Langevin NVT, 115
laser excitation, 118
swift heavy ions, 117
thermal conductivity, 120
thermal diffusivity, 121

units
DL POLY, 7, 223
energy, 188
pressure, 7, 8, 92, 223

user registration, 10

Verlet neighbour list, 139, 235, 236, 278

WWW, iii, 3, 10, 63, 69, 70, 106, 140, 150, 151, 249,
254

342

	THE DL_POLY_4 USER MANUAL
	About DL_POLY_4
	Disclaimer
	Acknowledgements
	Manual Notation

	Contents
	List of Tables
	List of Figures
	Quick Word / INSTALL & RUN
	Introduction
	The DL_POLY Package
	Functionality
	Molecular Systems
	Force Field
	Boundary Conditions
	Java Graphical User Interface
	Algorithms
	Parallel Algorithms
	Molecular Dynamics Algorithms

	DL_POLY_Classic features incompatible or unavalable in DL_POLY_4

	Programming Style
	Programming Language
	Modularisation and Intent
	Memory Management
	Target Platforms
	Internal Documentation
	FORTRAN90 Parameters and Arithmetic Precision
	Units
	Error Messages

	Directory Structure
	The source Sub-directory
	The build Sub-directory
	The cmake Sub-directory
	The utils Sub-directory
	The execute Sub-directory
	The data Sub-directory
	The bench Sub-directory
	The java Sub-directory
	The utility Sub-directory

	Obtaining the Source Code
	OS and Hardware Specific Ports
	Other Information

	Force Field Interactions
	Introduction to the DL_POLY_4 Force Field
	The Intramolecular Potential Functions
	Bond Potentials
	Distance Restraints
	Valence Angle Potentials
	Angular Restraints
	Dihedral Angle Potentials
	Improper Dihedral Angle Potentials
	Torsional Restraints
	Inversion Angle Potentials
	The Calcite Four-Body Potential
	Inversional Restraints
	Tethering Forces

	The Intermolecular Potential Functions
	Short Ranged (van der Waals) Potentials
	Metal Potentials
	Tersoff Potentials
	Three-Body Potentials
	Four-Body Potentials

	Long Ranged Electrostatic (coulombic) Potentials
	Default (Point Charges) Electrostatics
	Direct Coulomb Sum
	Force-Shifted Coulomb Sum
	Coulomb Sum with Distance Dependent Dielectric
	Reaction Field
	Smoothed Particle Mesh Ewald

	Multipolar Electrostatics
	Direct Coulomb Sum
	Force-Shifted Coulomb Sum
	Coulomb Sum with Distance Dependent Dielectric
	Reaction Field
	Smoothed Particle Mesh Ewald

	Polarisation Shell Models
	CHARMM Shell Model Self-Induction
	Dynamical (Adiabatic Shells) Shell Model
	Relaxed (Massless Shells) Model
	Breathing Shell Model Extension
	Further Notes

	External Fields
	Treatment of Frozen Atoms, Rigid Body and Core-Shell Units
	Tabulation and interpolation in the treatment of intermolecular interactions
	Free Energy Capabilities via the PLUMED plugin
	Open Knowledgebase of Interatomic Models - OpenKIM

	Integration Algorithms
	Introduction
	Bond Constraints
	Potential of Mean Force (PMF) Constraints and the Evaluation of Free Energy
	Thermostats
	Evans Thermostat (Gaussian Constraints)
	Langevin Thermostat
	Andersen Thermostat
	Berendsen Thermostat
	Nosé-Hoover Thermostat
	Gentle Stochastic Thermostat
	Dissipative Particle Dynamics Thermostat

	Barostats
	Instantaneous pressure and stress
	Langevin Barostat
	Berendsen Barostat
	Nosé-Hoover Barostat
	Martyna-Tuckerman-Klein Barostat

	Rigid Bodies and Rotational Integration Algorithms
	Description of Rigid Body Units
	Integration of the Rigid Body Equations of Motion
	Thermostats and Barostats coupling to the Rigid Body Equations of Motion

	Coarse Graining Functionality
	User-Defined Coarse-Grain Models with Tabulated Force-Fields
	Intramolecular Probability Distribution Function (PDF) Analysis
	Setting up Tabulated Intramolecular Force-Field Files

	Two-Temperature Model
	Introduction
	Methodology
	Simulation setup
	Implementation

	Heat Flux
	Heat Flux
	Introduction
	Theory
	Implementation
	File

	Exdenting DL_POLY_4 to reactive systems: the Empirical Valence Bond method
	Framework and motivation
	The EVB method
	Calibrating EVB force fields
	Computational implementation
	Setting EVB calculations

	Construction and Execution
	Constructing DL_POLY_4: an Overview
	Constructing the Standard Versions
	Constructing Non-standard Versions

	Compiling and Running DL_POLY_4
	Note on the Interpolation Scheme
	Running
	Parallel I/O
	Restarting
	Optimising the Starting Structure
	Simulation Efficiency and Performance

	A Guide to Preparing Input Files
	Inorganic Materials
	Macromolecules
	Adding Solvent to a Structure
	Analysing Results
	Choosing Ewald Sum Variables
	Ewald sum and SPME

	Warning and Error Processing
	The DL_POLY_4 Internal Warning Facility
	The DL_POLY_4 Internal Error Facility

	New Control Format
	Introduction
	Keywords
	Value types
	Int
	Floats
	Vector
	Bool
	String
	Option

	Units

	Adding new keywords
	Going from old to new

	Data Files
	The INPUT Files
	The CONTROL File
	The CONTROL File Format
	The CONTROL File Directives
	Further Comments on the CONTROL File

	The CONFIG File
	The CONFIG File Format
	Definitions of Variables in the CONFIG File
	Further Comments on the CONFIG File

	The FIELD File
	The FIELD File Format
	Definitions of Variables in the FIELD File
	External Field
	crd
	Closing the FIELD File

	The MPOLES File
	The MPOLES File Format
	Definitions of Variables in the MPOLES File
	Closing the MPOLES File

	The REFERENCE File
	The REVOLD File
	Format
	Further Comments

	The TABLE File
	The TABLE File Format
	Definitions of Variables
	Further Comments

	The TABEAM File
	The TABEAM File Format
	Definitions of Variables
	Further Comments

	The TABBND, TABANG, TABDIH & TABINV Files
	Definitions of Variables
	Further Comments

	The DUMP_E File
	The Ce.dat, Ke.dat, De.dat and g.dat Files
	The HISTORY/HISTROF File
	The SETEVB File

	The OUTPUT Files
	The HISTORY File
	The MSDTMP File
	The DEFECTS File
	The RSDDAT File
	The CFGMIN File
	The OUTPUT File
	Header
	Simulation Control Specifications
	Force Field Specification
	System Specification
	Summary of the Initial Configuration
	Simulation Progress
	Sample of Final Configuration
	Summary of Statistical Data
	Radial Distribution Functions
	Umbrella Sampling Restraint RDF
	Z-density Profile
	Velocity Autocorrelation Functions

	The HEATFLUX File
	The PP_CONT File
	The REVCON File
	The REVIVE File
	The DUMP_E File
	The RDFDAT File
	The USRDAT File
	The ZDNDAT File
	The VAFDAT Files
	The INTDAT, INTPMF & INTTAB Files
	The STATIS File
	The LATS_E and LATS_I Files
	The PEAK_E and PEAK_I Files
	The POPEVB Files
	The ICOORD, CCOORD and ADFDAT files

	The DL_POLY_4 Parallelisation and Source Code
	Parallelisation
	The Domain Decomposition Strategy
	Distributing the Intramolecular Bonded Terms
	Distributing the Non-bonded Terms
	Modifications for the Ewald Sum
	Metal Potentials
	Tersoff, Three-Body and Four-Body Potentials
	Globally Summed Properties
	The Parallel (DD tailored) SHAKE and RATTLE Algorithms
	The Parallel Rigid Body Implementation

	Source Code
	Modularisation Principles
	File Structure
	Module Files
	General Files
	SERIAL Specific Files
	Comments on MPI Handling
	Comments on setup_module

	Examples
	Example Simulations
	Example 1: Sodium Chloride
	Example 2: DPMC in Water
	Example 3: KNaSi2O5 - Potassium/Sodium Disilicate Glass
	Example 4: Gramicidin A Molecules in Water
	Example 5: SiC with Tersoff Potentials
	Example 6: Cu3Au alloy with Sutton-Chen (metal) Potentials
	Example 7: Lipid Bilayer in Water
	Examples 8 and 9: MgO with Adiabatic and with Relaxed Shell Models
	Example 10: Potential of Mean Force on K+ in Water
	Example 11: Cu3Au Alloy with Gupta (metal) Potentials
	Example 12: Cu with EAM (metal) Potential
	Examples 13 and 14: Al with Analytic and with EAM Tabulated Sutton-Chen (metal) Potentials
	Examples 15: NiAl Alloy with EAM (metal) Potentials
	Examples 16: Fe with Finnis-Sincair (metal) Potential
	Examples 17: Ni with EAM (metal) Potential
	Examples 18 and 19: SPC IceVII Water with CBs and with RBs
	Example 20: NaCl Molecules in SPC Water Represented as CBs+RBs
	Example 21: TIP4P Water: RBs with a Massless Charged Site
	Example 22: Ionic Liquid Dimethylimidazolium Chloride as RBs
	Example 23: Calcite Nano-Particles in TIP3P Water
	Example 24: Iron/Carbon Alloy with 2BEAM (metal) Potentials
	Example 25: Iron/Chromium Alloy with 2BEAM (metal) Potentials
	Examples 26 and 27: Hexane and Methanol Melts, with Full Atomistic and Coarse-Grained Force-Fields
	Example 28: Butane in CCl4 Solution with Umbrella Sampling via PLUMED
	Example 29: Iron with tabulated EAM (metal) Potential, TTM and Cascade
	Example 30: Silicon with original Tersoff Potential, TTM and Swift heavy ion irradiation
	Example 31: Tungsten with extended Finnis-Sinclair Potential, TTM and laser irradiation

	Benchmark Cases

	Appendices
	DL_POLY_4 Dissipative Particle Dynamics
	Introduction
	Outline of Method
	Equation of state and dynamic properties
	Derivation of Equilibrium
	Summary of Dissipative Particle Dynamics

	DL_POLY_4 Periodic Boundary Conditions
	Introduction
	No periodic boundary (imcon = 0)
	Cubic periodic boundaries (imcon = 1)
	Orthorhombic periodic boundaries (imcon = 2)
	Parallelepiped periodic boundaries (imcon = 3)
	Slab boundary conditions (imcon = 6)

	DL_POLY_4 Macros
	DL_POLY_4 Error Messages & User Action
	DL_POLY_4 INSTALL Notes & README Wisdom
	INSTALL
	coding style
	contributing

	DL_POLY_4 Academic Licence Agreement
	The full version

	Bibliography
	Index

