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1 Introduction

All molecular dynamicists worth their salt will be familiar with Euler’s celebrated equations
(1) describing the torque induced motion of a rigid body:
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where 7P is the torque, &P the angular velocity,IZ_, IP . IP are the moments of inertia
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and & the is angular velocity - all defined in the so-called principal frame of reference.
These equations are augmented by equations of motion for the Euler angles that define the
orientation (here expressed in the z-convention [1]:
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These equations present a number of difficulties to a molecular dynamicist, some of which
are conceptual and some practical!.The purpose of this note is to help make newcomers
aware of them, and hopefully clarify some issues, which are rarely, if ever, discussed in
mathematical texts.

!There is also an infamous and common mistake to be aware of. When implementing Euler’s equations
in software, and also when manipulating formulae, it is a common error to forget what frame of reference is
being used, and thereby leave out the centrifugal terms altogther. What makes this error so pernicious is
the fact that the resulting code will run very nicely, conserving energy and generating seemingly meaningful
results. This blunder is therefore very hard to detect from an inspection of the results.



2 Spinning into trouble

Perhaps the first conceptual difficulty with Euler’s equations (1) is that they are presented
in the principal frame. This is, of course, the frame of reference in which the moment of
inertia tensor I is diagonal. (The moment of inertia tensor is a 3x3 symmetric matrix, which
can always be diagonalised, and so we may assume a suitable body fixed frame of reference
always exists.) The body fixed frame of reference rotates with the rigid body and so the
tensor I remains diagonal in that frame. This is in marked contrast to the behaviour of I
in the laboratory frame, where the six independent components vary as the body rotates.

So where’s the conceptual difficulty? This, I’m sure, can be expressed in various ways
by different people, but for me the difficulty lies in the fact that the motion of the body
is being described in a frame of reference which moves with the body. This seems absurd,
surely if the frame of reference is fixed in the body, how can the body move with respect
to it? If one tries to think along such lines, one can, at a pinch, imagine some situations
where this does make sense, such as a body that grows or shrinks in the rotating frame,
a strange form of motion perhaps, but one that doesn’t interfere with one’s grasp of what
the frame of reference means. However, in general there is little profit in thinking in this
way. It is much better to think in terms of vectors. (In so doing it is best always to think of
them as real physical objects, which retain their identity in any frame of reference. This is
particularly helpful when dealing with angular velocity, where it is easy to slip into thinking
that the angular velocity vector of a rotating body vanishes in the body frame, because the
body is no longer ‘rotating’ in that frame.)

How does a vector representation clarify matters? Imagine the rotating rigid body
‘frozen’ at an instant in time. At this instant a simple relationship exists between the
components of a vector ¥ in the body (principal) frame and the laboratory frame:

#=R7 (3)

where R is the familiar rotation matrix. Despite having different components, vectors ¥/
and ¥P are, of course, the same physical object. This immutability is universal, and applies
equally to the angular velocity vector & and the torque vector 7. This situation is shown
in Figure 1, where the laboratory and rotating frames (X,Y,Z) and (X’,Y’,Z’) respectively,
appear with the angular velocity vector @ and the torque vector 7. Now, as a result of
the presence of the torque vector, in a very short time interval §¢, the angular momentum
vector will change by the addition of a small vector Wt Meanwhile, the rigid body, which
was intially rotating about the vector &, after the interval §t¢, ends up rotating about the
vector @ + @ 6t. As this happens, of course, the body fixed axes must follow the change.
This is the essential physics. What Euler’s equations provide is the description (i.e. the
components) of the important vectors in the frame (X’,Y’,Z’) at the instant it was ‘frozen’.
This gives us some physical insight into what is actually going on in Euler’s formulation.
So much for a pictorial description, let’s see what’s going on mathematically.



3 Doing the maths

If we go back to basic texts on vectors [1] to find out how they behave in a rotating system,
then we soon encounter the famous equation:
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This equation, which is central to the derivation of Euler’s equation, relates the rate of
change of a vector ¥ in the laboratory frame, to its rate of change in a rotating frame.
It is clear that the time derivative on the left of this equation refers to an inertial frame
(i.e. one not accelerating with respect to what Newton called absolute space). However
the derivative on the right (with the subscript r, for rotation) refers to a rotating, and
therefore a non-inertial frame. It is therefore no surprise to see the appearance of the



vector product & X ¥ on the right, which provides the adjustment necessary to translate
the observed change in the rotating frame, back to the laboratory frame. This additional
term is sometimes called the centrifugal term.

One of the easiest ways to visualise equation (3) is to imagine a constant (i.e. fixed)
vector in the rotating frame, set at some angle to the axis of rotation, and then think how
this might appear to a laboratory observer. (The rotating vector traces out a ‘coolie’ hat!)
The tip of the vector traces a circle (the rim of the coolie hat) in the laboratory frame, and
the velocity of the tip along this circle, at any instant, is the time derivative of the vector
in inertial space. If, in addition, the vector in the rotating frame is changing with time,
the ‘velocity’ (i.e. rate-of-change) vector of that must be added vectorially to the circular
velocity.

All this make good physical and intuitive sense, but there is a potential source of
confusion. This arises when one asks what are the components of the vectors in these
equations. Clearly, for this equation to make sense, all the vectors must be defined with
respect to the same frame of reference, otherwise corresponding components would not have
the same meaning. But on the left of (4) the time derivative must be in an inertial frame,
while on the right it must be in the rotating frame. (And speaking frankly, at this point,
I don’t know what frame the cross product is meant to be in, except that & and ¥ should
together be in the same frame to provide a meaningful vector product.)

There is a smart trick to deal with this. If we construct an inertial frame which at
one instant in time just so happens to coincide with the body fixed frame, then at that
one instant, the components of the time derivative on both sides of (3) are in the same
frame of reference. If we also evaluate the cross product in that same frame, we can
sum up all the components on the right in a way that is physically meaningful. Note
that this instantaneous frame is otherwise unrelated to the rotating frame, and it has no
rotational motion of its own. It follows that when constructing this frame, we can use a
simple rotational transformation of our original laboratory frame, without adding extra
centrifugal terms. The disadvantage of this ‘trick’ is that it makes one think that Euler’s
equation is expressed in a frame of reference that is co-rotating with the body. This is
simply not true, such a frame would be non-inertial. It is expressed in a frame of reference
which is only instantaneously coincident with the body frame, and which is fundamentally
interial in character.

So, after all this discussion, we can write (4) in the form
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to indicate that everthing (including & and %) are expressed in the principal frame.
Now, going back to Euler’s equations, let us derive them with what we know.



4 Deriving Euler’s equations - 1

Any standard textbook [1] that introduces the reader to rigid body motion will show the
derivation of the rotational equation of motion of a rigid body about its own centre of mass
in an inertial frame:
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where J is the angular momentum vector. Following the discussion leading to equation (5)
we can immediately transform equation (6) and obtain
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The angular momentum is
JP =T1° &P (8)

and using the chain rule for vector differentiation the time derivative can be written as
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In the principal frame of reference, the moment of inertia tensor is constant and its time
derivative vanishes. Hence the time derivative of the angular momentum in the body frame
is

%fp =17 & (10)
So we may write (7) as
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Which is mathematically identical to Euler’s equation (1).

5 Deriving Euler’s equations - 2

As is apparent from the above that equation (4) is the key to deriving Euler’s equation.
However it is equally apparent that one has to deal with some slippery concepts on the
way. Can one take a more pedestrian route, one that doesn’t require so much physical
intuition? The answer is yes, but the derivation is much longer, which probably accounts
for its absence from the text books.

We begin by noting that equation (8) is not restricted to the principal frame, and can
be generally written as

=

J=1a. (12)



Inserting this into equation (6) and performing the time differentiation, we obtain
F=1d+1a (13)

which is an equation set entirely in the laboratory frame. In consequence the tensor I is
generally not diagonal, and its components vary with time.

We can now consider an instant in time and ask what must be done to diagonalise I.
The answer is that we must find a matrix R (and its transpose R') such that

IP=RIR' (14)

The matrix R is the matrix of eigenvectors of I, which, of course, is a rotation matrix. It
may be conveniently obtained by standard methods such Jacobi diagonalisation. We may
now multiply equation (13) by the rotation matrix and obtain

R7=RIR'RG+RIR'R&, (15)
In which we have also used the well known property of the rotation matrix that
R'R=1 (16)
where 1 is the unit matrix. Completing the transformation, our equation now becomes
#=01dJ +RIR &, (17)

It is useful to pause at this point and examine what we have obtained. The resemblance
of this equation to Euler’s is apparent, provided we can convert the final term on the right
into the centrifugal form given by Euler. If, for the moment, we assume this can be done,
we already have learned an important lesson. It is obvious that the equation remains in
the inertial frame, since all we have done is apply a rotational operation R to the equation,
which carries no dynamical implications; we have just reorientated our inertial axes. This
is a valuable observation.

The reader now has three choices. The first is to accept that equations (1) and (17),
are one and the same (which is where the physics stops) and skip to the next section.
The second is to follow the rest of the demonstration and appreciate the brevity of Euler’s
approach. The third, strictly for young Turks, is to go away and complete it independently.

To proceed further, we need to look closely at the moment of inertia tensor. We shall
consider the case where it is derived for a rigid molecule consisting of point masses m; at
displacements ci; from the molecular centre of mass. Thus

1= mi{di1 - [didi]} (18)



where the term in square brackets [...] is an outer product of the contained vectors. Equiv-
alently we have for each component of I

Ing =Y _ mi{d;6ap — diadig}. (19)
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The time derivative of this is easily obtained:

Ing = = mi{diadig + diadig}. (20)
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where we have used the fact the dl2 is a constant for a rigid molecule. We now need the
product R I R, which is given by
Rua jaﬂ Rg)\ = Zmi{_Rua diadiﬁ RE)\ - R,ua diadiﬁ R;’)\} (21)
i

in which we have used the Einstein convention regarding repeated indices «, 8 etc. This
equation readily collapses into the following form.
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Now we must recognise that
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or in expanded form .
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This clumsy notation is meant to indicate the cyclic nature of the index . Thus when
a = 2 (i.e. the y component), |+ 1| = 3 (the z component) and therefore |« + 3| =1 (the
x component), and so on. Substituting this into (22) gives
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(where fortunately, the Einstein convention is not needed!) We can now inspect individual
components of the matrix I, while remembering the definition of the matrix I in equation
(19) and that off-diagonal components of the matrix I? are zero. Thus we find that

B,=1,=1=0 (26)
and
I:]c)y = ng = wQ(ILIc)w - Ig];y)
Igz = ng = wg(Ig)z - Igm) (27)
Iy, = I3y = willyy — I2,).



Finally, we need the product I? @P, which is easily obtained. The result is

(ip (:;'p)z = wgwg(ﬂ;z - Ig];y)
(ip Qp)y = wgwg(Igz - Igz) (28)
(Ip a)'p)z = wgwg(lyzjy - I:Ivjw)

These are the terms which must replace the final term in equation (17), thus establishing
its equivalence to Eulers equations (1).

6 Turning the screw

So far we have said little about the auxiliary equations for the motion of the Euler angles
(2). These are obtained in a straighforward manner by defining angular velocity vectors
Wy, Wy, Wy, associated with rotation through the respective Euler angles, and transforming
these vectors into the principal frame.

These equations can, in principle, be solved directly by some numerical algorithm, but
nobody does this any more. This is because the equations (2) generate infinities when the
angle @ becomes zero, as it is perfectly free to do! For this reason Denis Evans and Sohail
Murad famously introduced quaternions into molecular dynamics [2], which did away with
this difficulty forever. I don’t propose to elaborate on the topic, given the fact that the
method is now universal and is described in detail in the standard texts [3]. I would however
like to suggest an alternative approach.

First we should note that equation (25) can also be written in the laboratory frame:
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This is derived in a manner completely analogous to (25) and we have gathered the con-
tributions to the components of the moment of inertia tensor. (Notice this formula works
equally well for sums involving the diagonal components on the right). We now have an
expression for I which we shall represent briefly as:

I=F(@,1I). (30)

We now write equation (13) as
w=TY7-1a) (31)

In which the inverse matrix is trivial, since it is only a 3 x 3 matrix. Equations (30) and
(31) constitute a set of coupled equations which can be solved by a leapfrog algorithm as
follows.

n—1/2

1. At each time step n we have 7", I", & and the angular momentum Jn-1/2,



2. Integrate (6):
JrHZ = jn=1/2 4 A 7

3. Estimate &™:
an = I,_Ll(Jn_l/Q + Jn+1/2)/2

4. Calculate 1" using (29):
i = @@, )

5. Integrate (31):
ajn—l—l/Z — a}n—l/Z + At I;l(’l_m _ in (I)»n)

6. Calculate interim I"+1/2;
In+1/2 - I + (At/2) v

7. Calculate I"1/2 using (29):
in+1/2 — F(u—jn+1/2’1n+1/2)

8. Calculate I"+1:
In—|—1 — 1" + At in—l—l/?

The experienced practitioner will recognise opportunities to iterate on both @" and I*+1/2
in this scheme, and so improve the accuracy of the interim values. This, admittedly long-
winded, procedure has the advantage that it solves the rotational equations of motion
entirely in the the laboratory frame, without any of the inherent instabilities of equation
(2).

There is an important omission however. Nowhere do we calculate the rotation matrix
R, and without it we cannot find the positions of the atoms of the rigid molecule in space.
Thus the calculation of the torque becomes problematical! But this is not an insurmountable
problem as we can diagonalise the intertia tensor using Jacobi’s method and so obtain R
as the matrix of eigenvectors. This need not be as expensive an operation as it first seems,
since the rotation matrix from the proceeding time step will be an excellent approximation
to it, and can be used to partially diagonalise I. The number of iterations in the Jacobi
method will therefore be be much reduced. I offer this algorithm as an alternative for those
who find quaternions too esoteric!

7 Summary

The equations of Euler have been derived and the conceptual difficulties inherent in the
standard derivation examined. An alternative derivation has been presented. Finally an
altogether different approach to the solution of the rotational equations of motion has been
presented.
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